xref: /freebsd/sys/dev/fxp/if_fxp.c (revision c0b9f4fe659b6839541970eb5675e57f4d814969)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #ifdef HAVE_KERNEL_OPTION_HEADERS
38 #include "opt_device_polling.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/endian.h>
44 #include <sys/mbuf.h>
45 		/* #include <sys/mutex.h> */
46 #include <sys/kernel.h>
47 #include <sys/module.h>
48 #include <sys/socket.h>
49 #include <sys/sysctl.h>
50 
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 
55 #include <net/bpf.h>
56 #include <sys/sockio.h>
57 #include <sys/bus.h>
58 #include <machine/bus.h>
59 #include <sys/rman.h>
60 #include <machine/resource.h>
61 
62 #include <net/ethernet.h>
63 #include <net/if_arp.h>
64 
65 #include <machine/clock.h>	/* for DELAY */
66 
67 #include <net/if_types.h>
68 #include <net/if_vlan_var.h>
69 
70 #ifdef FXP_IP_CSUM_WAR
71 #include <netinet/in.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #include <machine/in_cksum.h>
75 #endif
76 
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
79 
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82 
83 #include <dev/fxp/if_fxpreg.h>
84 #include <dev/fxp/if_fxpvar.h>
85 #include <dev/fxp/rcvbundl.h>
86 
87 MODULE_DEPEND(fxp, pci, 1, 1, 1);
88 MODULE_DEPEND(fxp, ether, 1, 1, 1);
89 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
90 #include "miibus_if.h"
91 
92 /*
93  * NOTE!  On the Alpha, we have an alignment constraint.  The
94  * card DMAs the packet immediately following the RFA.  However,
95  * the first thing in the packet is a 14-byte Ethernet header.
96  * This means that the packet is misaligned.  To compensate,
97  * we actually offset the RFA 2 bytes into the cluster.  This
98  * alignes the packet after the Ethernet header at a 32-bit
99  * boundary.  HOWEVER!  This means that the RFA is misaligned!
100  */
101 #define	RFA_ALIGNMENT_FUDGE	2
102 
103 /*
104  * Set initial transmit threshold at 64 (512 bytes). This is
105  * increased by 64 (512 bytes) at a time, to maximum of 192
106  * (1536 bytes), if an underrun occurs.
107  */
108 static int tx_threshold = 64;
109 
110 /*
111  * The configuration byte map has several undefined fields which
112  * must be one or must be zero.  Set up a template for these bits
113  * only, (assuming a 82557 chip) leaving the actual configuration
114  * to fxp_init.
115  *
116  * See struct fxp_cb_config for the bit definitions.
117  */
118 static u_char fxp_cb_config_template[] = {
119 	0x0, 0x0,		/* cb_status */
120 	0x0, 0x0,		/* cb_command */
121 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
122 	0x0,	/*  0 */
123 	0x0,	/*  1 */
124 	0x0,	/*  2 */
125 	0x0,	/*  3 */
126 	0x0,	/*  4 */
127 	0x0,	/*  5 */
128 	0x32,	/*  6 */
129 	0x0,	/*  7 */
130 	0x0,	/*  8 */
131 	0x0,	/*  9 */
132 	0x6,	/* 10 */
133 	0x0,	/* 11 */
134 	0x0,	/* 12 */
135 	0x0,	/* 13 */
136 	0xf2,	/* 14 */
137 	0x48,	/* 15 */
138 	0x0,	/* 16 */
139 	0x40,	/* 17 */
140 	0xf0,	/* 18 */
141 	0x0,	/* 19 */
142 	0x3f,	/* 20 */
143 	0x5	/* 21 */
144 };
145 
146 struct fxp_ident {
147 	uint16_t	devid;
148 	int16_t		revid;		/* -1 matches anything */
149 	char 		*name;
150 };
151 
152 /*
153  * Claim various Intel PCI device identifiers for this driver.  The
154  * sub-vendor and sub-device field are extensively used to identify
155  * particular variants, but we don't currently differentiate between
156  * them.
157  */
158 static struct fxp_ident fxp_ident_table[] = {
159     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
160     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
161     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
162     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
163     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
167     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
168     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
169     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
171     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
172     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
173     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
174     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
175     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
176     { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
177     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
178     { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
179     { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
180     { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
181     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
182     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
183     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
184     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
185     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
186     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
187     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
188     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
189     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
190     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
191     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
192     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
193     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
194     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
195     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
196     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
197     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
198     { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
199     { 0,	-1,	NULL },
200 };
201 
202 #ifdef FXP_IP_CSUM_WAR
203 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
204 #else
205 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
206 #endif
207 
208 static int		fxp_probe(device_t dev);
209 static int		fxp_attach(device_t dev);
210 static int		fxp_detach(device_t dev);
211 static int		fxp_shutdown(device_t dev);
212 static int		fxp_suspend(device_t dev);
213 static int		fxp_resume(device_t dev);
214 
215 static void		fxp_intr(void *xsc);
216 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
217 			    uint8_t statack, int count);
218 static void 		fxp_init(void *xsc);
219 static void 		fxp_init_body(struct fxp_softc *sc);
220 static void 		fxp_tick(void *xsc);
221 static void 		fxp_start(struct ifnet *ifp);
222 static void 		fxp_start_body(struct ifnet *ifp);
223 static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
224 static void		fxp_stop(struct fxp_softc *sc);
225 static void 		fxp_release(struct fxp_softc *sc);
226 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
227 			    caddr_t data);
228 static void 		fxp_watchdog(struct ifnet *ifp);
229 static int		fxp_add_rfabuf(struct fxp_softc *sc,
230     			    struct fxp_rx *rxp);
231 static int		fxp_mc_addrs(struct fxp_softc *sc);
232 static void		fxp_mc_setup(struct fxp_softc *sc);
233 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
234 			    int autosize);
235 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
236 			    uint16_t data);
237 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
238 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
239 			    int offset, int words);
240 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
241 			    int offset, int words);
242 static int		fxp_ifmedia_upd(struct ifnet *ifp);
243 static void		fxp_ifmedia_sts(struct ifnet *ifp,
244 			    struct ifmediareq *ifmr);
245 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
246 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
247 			    struct ifmediareq *ifmr);
248 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
249 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
250 			    int value);
251 static void		fxp_load_ucode(struct fxp_softc *sc);
252 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
253 			    int low, int high);
254 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
255 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
256 static void 		fxp_scb_wait(struct fxp_softc *sc);
257 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
258 static void		fxp_dma_wait(struct fxp_softc *sc,
259     			    volatile uint16_t *status, bus_dma_tag_t dmat,
260 			    bus_dmamap_t map);
261 
262 static device_method_t fxp_methods[] = {
263 	/* Device interface */
264 	DEVMETHOD(device_probe,		fxp_probe),
265 	DEVMETHOD(device_attach,	fxp_attach),
266 	DEVMETHOD(device_detach,	fxp_detach),
267 	DEVMETHOD(device_shutdown,	fxp_shutdown),
268 	DEVMETHOD(device_suspend,	fxp_suspend),
269 	DEVMETHOD(device_resume,	fxp_resume),
270 
271 	/* MII interface */
272 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
273 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
274 
275 	{ 0, 0 }
276 };
277 
278 static driver_t fxp_driver = {
279 	"fxp",
280 	fxp_methods,
281 	sizeof(struct fxp_softc),
282 };
283 
284 static devclass_t fxp_devclass;
285 
286 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
287 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
288 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
289 
290 static struct resource_spec fxp_res_spec_mem[] = {
291 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
292 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
293 	{ -1, 0 }
294 };
295 
296 static struct resource_spec fxp_res_spec_io[] = {
297 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
298 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
299 	{ -1, 0 }
300 };
301 
302 /*
303  * Wait for the previous command to be accepted (but not necessarily
304  * completed).
305  */
306 static void
307 fxp_scb_wait(struct fxp_softc *sc)
308 {
309 	union {
310 		uint16_t w;
311 		uint8_t b[2];
312 	} flowctl;
313 	int i = 10000;
314 
315 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
316 		DELAY(2);
317 	if (i == 0) {
318 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
319 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
320 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
321 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
322 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
323 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
324 	}
325 }
326 
327 static void
328 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
329 {
330 
331 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
332 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
333 		fxp_scb_wait(sc);
334 	}
335 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
336 }
337 
338 static void
339 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
340     bus_dma_tag_t dmat, bus_dmamap_t map)
341 {
342 	int i = 10000;
343 
344 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
345 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
346 		DELAY(2);
347 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
348 	}
349 	if (i == 0)
350 		device_printf(sc->dev, "DMA timeout\n");
351 }
352 
353 /*
354  * Return identification string if this device is ours.
355  */
356 static int
357 fxp_probe(device_t dev)
358 {
359 	uint16_t devid;
360 	uint8_t revid;
361 	struct fxp_ident *ident;
362 
363 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
364 		devid = pci_get_device(dev);
365 		revid = pci_get_revid(dev);
366 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
367 			if (ident->devid == devid &&
368 			    (ident->revid == revid || ident->revid == -1)) {
369 				device_set_desc(dev, ident->name);
370 				return (BUS_PROBE_DEFAULT);
371 			}
372 		}
373 	}
374 	return (ENXIO);
375 }
376 
377 static void
378 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
379 {
380 	uint32_t *addr;
381 
382 	if (error)
383 		return;
384 
385 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
386 	addr = arg;
387 	*addr = segs->ds_addr;
388 }
389 
390 static int
391 fxp_attach(device_t dev)
392 {
393 	struct fxp_softc *sc;
394 	struct fxp_cb_tx *tcbp;
395 	struct fxp_tx *txp;
396 	struct fxp_rx *rxp;
397 	struct ifnet *ifp;
398 	uint32_t val;
399 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
400 	u_char eaddr[ETHER_ADDR_LEN];
401 	int i, prefer_iomap;
402 	int error;
403 
404 	error = 0;
405 	sc = device_get_softc(dev);
406 	sc->dev = dev;
407 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
408 	    MTX_DEF);
409 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
410 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
411 	    fxp_serial_ifmedia_sts);
412 
413 	ifp = sc->ifp = if_alloc(IFT_ETHER);
414 	if (ifp == NULL) {
415 		device_printf(dev, "can not if_alloc()\n");
416 		error = ENOSPC;
417 		goto fail;
418 	}
419 
420 	/*
421 	 * Enable bus mastering.
422 	 */
423 	pci_enable_busmaster(dev);
424 	val = pci_read_config(dev, PCIR_COMMAND, 2);
425 
426 	/*
427 	 * Figure out which we should try first - memory mapping or i/o mapping?
428 	 * We default to memory mapping. Then we accept an override from the
429 	 * command line. Then we check to see which one is enabled.
430 	 */
431 	prefer_iomap = 0;
432 	resource_int_value(device_get_name(dev), device_get_unit(dev),
433 	    "prefer_iomap", &prefer_iomap);
434 	if (prefer_iomap)
435 		sc->fxp_spec = fxp_res_spec_io;
436 	else
437 		sc->fxp_spec = fxp_res_spec_mem;
438 
439 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
440 	if (error) {
441 		if (sc->fxp_spec == fxp_res_spec_mem)
442 			sc->fxp_spec = fxp_res_spec_io;
443 		else
444 			sc->fxp_spec = fxp_res_spec_mem;
445 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
446 	}
447 	if (error) {
448 		device_printf(dev, "could not allocate resources\n");
449 		error = ENXIO;
450 		goto fail;
451 	}
452 
453 	if (bootverbose) {
454 		device_printf(dev, "using %s space register mapping\n",
455 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
456 	}
457 
458 	/*
459 	 * Reset to a stable state.
460 	 */
461 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
462 	DELAY(10);
463 
464 	/*
465 	 * Find out how large of an SEEPROM we have.
466 	 */
467 	fxp_autosize_eeprom(sc);
468 
469 	/*
470 	 * Find out the chip revision; lump all 82557 revs together.
471 	 */
472 	fxp_read_eeprom(sc, &data, 5, 1);
473 	if ((data >> 8) == 1)
474 		sc->revision = FXP_REV_82557;
475 	else
476 		sc->revision = pci_get_revid(dev);
477 
478 	/*
479 	 * Determine whether we must use the 503 serial interface.
480 	 */
481 	fxp_read_eeprom(sc, &data, 6, 1);
482 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
483 	    && (data & FXP_PHY_SERIAL_ONLY))
484 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
485 
486 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
487 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
488 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
489 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
490 	    "FXP driver receive interrupt microcode bundling delay");
491 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
492 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
493 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
494 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
495 	    "FXP driver receive interrupt microcode bundle size limit");
496 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
497 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
498 	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
499 	    "FXP RNR events");
500 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
501 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
502 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
503 	    "FXP flow control disabled");
504 
505 	/*
506 	 * Pull in device tunables.
507 	 */
508 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
509 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
510 	sc->tunable_noflow = 1;
511 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
512 	    "int_delay", &sc->tunable_int_delay);
513 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
514 	    "bundle_max", &sc->tunable_bundle_max);
515 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
516 	    "noflow", &sc->tunable_noflow);
517 	sc->rnr = 0;
518 
519 	/*
520 	 * Enable workarounds for certain chip revision deficiencies.
521 	 *
522 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
523 	 * some systems based a normal 82559 design, have a defect where
524 	 * the chip can cause a PCI protocol violation if it receives
525 	 * a CU_RESUME command when it is entering the IDLE state.  The
526 	 * workaround is to disable Dynamic Standby Mode, so the chip never
527 	 * deasserts CLKRUN#, and always remains in an active state.
528 	 *
529 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
530 	 */
531 	i = pci_get_device(dev);
532 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
533 	    sc->revision >= FXP_REV_82559_A0) {
534 		fxp_read_eeprom(sc, &data, 10, 1);
535 		if (data & 0x02) {			/* STB enable */
536 			uint16_t cksum;
537 			int i;
538 
539 			device_printf(dev,
540 			    "Disabling dynamic standby mode in EEPROM\n");
541 			data &= ~0x02;
542 			fxp_write_eeprom(sc, &data, 10, 1);
543 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
544 			cksum = 0;
545 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
546 				fxp_read_eeprom(sc, &data, i, 1);
547 				cksum += data;
548 			}
549 			i = (1 << sc->eeprom_size) - 1;
550 			cksum = 0xBABA - cksum;
551 			fxp_read_eeprom(sc, &data, i, 1);
552 			fxp_write_eeprom(sc, &cksum, i, 1);
553 			device_printf(dev,
554 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
555 			    i, data, cksum);
556 #if 1
557 			/*
558 			 * If the user elects to continue, try the software
559 			 * workaround, as it is better than nothing.
560 			 */
561 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
562 #endif
563 		}
564 	}
565 
566 	/*
567 	 * If we are not a 82557 chip, we can enable extended features.
568 	 */
569 	if (sc->revision != FXP_REV_82557) {
570 		/*
571 		 * If MWI is enabled in the PCI configuration, and there
572 		 * is a valid cacheline size (8 or 16 dwords), then tell
573 		 * the board to turn on MWI.
574 		 */
575 		if (val & PCIM_CMD_MWRICEN &&
576 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
577 			sc->flags |= FXP_FLAG_MWI_ENABLE;
578 
579 		/* turn on the extended TxCB feature */
580 		sc->flags |= FXP_FLAG_EXT_TXCB;
581 
582 		/* enable reception of long frames for VLAN */
583 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
584 	} else {
585 		/* a hack to get long VLAN frames on a 82557 */
586 		sc->flags |= FXP_FLAG_SAVE_BAD;
587 	}
588 
589 	/*
590 	 * Enable use of extended RFDs and TCBs for 82550
591 	 * and later chips. Note: we need extended TXCB support
592 	 * too, but that's already enabled by the code above.
593 	 * Be careful to do this only on the right devices.
594 	 */
595 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
596 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
597 	    || sc->revision == FXP_REV_82551_10) {
598 		sc->rfa_size = sizeof (struct fxp_rfa);
599 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
600 		sc->flags |= FXP_FLAG_EXT_RFA;
601 	} else {
602 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
603 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
604 	}
605 
606 	/*
607 	 * Allocate DMA tags and DMA safe memory.
608 	 */
609 	sc->maxtxseg = FXP_NTXSEG;
610 	if (sc->flags & FXP_FLAG_EXT_RFA)
611 		sc->maxtxseg--;
612 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
613 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
614 	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
615 	    &sc->fxp_mtag);
616 	if (error) {
617 		device_printf(dev, "could not allocate dma tag\n");
618 		goto fail;
619 	}
620 
621 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
622 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
623 	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
624 	    &sc->fxp_stag);
625 	if (error) {
626 		device_printf(dev, "could not allocate dma tag\n");
627 		goto fail;
628 	}
629 
630 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
631 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
632 	if (error)
633 		goto fail;
634 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
635 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
636 	if (error) {
637 		device_printf(dev, "could not map the stats buffer\n");
638 		goto fail;
639 	}
640 
641 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
642 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
643 	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
644 	if (error) {
645 		device_printf(dev, "could not allocate dma tag\n");
646 		goto fail;
647 	}
648 
649 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
650 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
651 	if (error)
652 		goto fail;
653 
654 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
655 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
656 	    &sc->fxp_desc.cbl_addr, 0);
657 	if (error) {
658 		device_printf(dev, "could not map DMA memory\n");
659 		goto fail;
660 	}
661 
662 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
663 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
664 	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
665 	    &sc->mcs_tag);
666 	if (error) {
667 		device_printf(dev, "could not allocate dma tag\n");
668 		goto fail;
669 	}
670 
671 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
672 	    BUS_DMA_NOWAIT, &sc->mcs_map);
673 	if (error)
674 		goto fail;
675 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
676 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
677 	if (error) {
678 		device_printf(dev, "can't map the multicast setup command\n");
679 		goto fail;
680 	}
681 
682 	/*
683 	 * Pre-allocate the TX DMA maps and setup the pointers to
684 	 * the TX command blocks.
685 	 */
686 	txp = sc->fxp_desc.tx_list;
687 	tcbp = sc->fxp_desc.cbl_list;
688 	for (i = 0; i < FXP_NTXCB; i++) {
689 		txp[i].tx_cb = tcbp + i;
690 		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
691 		if (error) {
692 			device_printf(dev, "can't create DMA map for TX\n");
693 			goto fail;
694 		}
695 	}
696 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
697 	if (error) {
698 		device_printf(dev, "can't create spare DMA map\n");
699 		goto fail;
700 	}
701 
702 	/*
703 	 * Pre-allocate our receive buffers.
704 	 */
705 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
706 	for (i = 0; i < FXP_NRFABUFS; i++) {
707 		rxp = &sc->fxp_desc.rx_list[i];
708 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
709 		if (error) {
710 			device_printf(dev, "can't create DMA map for RX\n");
711 			goto fail;
712 		}
713 		if (fxp_add_rfabuf(sc, rxp) != 0) {
714 			error = ENOMEM;
715 			goto fail;
716 		}
717 	}
718 
719 	/*
720 	 * Read MAC address.
721 	 */
722 	fxp_read_eeprom(sc, myea, 0, 3);
723 	eaddr[0] = myea[0] & 0xff;
724 	eaddr[1] = myea[0] >> 8;
725 	eaddr[2] = myea[1] & 0xff;
726 	eaddr[3] = myea[1] >> 8;
727 	eaddr[4] = myea[2] & 0xff;
728 	eaddr[5] = myea[2] >> 8;
729 	if (bootverbose) {
730 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
731 		    pci_get_vendor(dev), pci_get_device(dev),
732 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
733 		    pci_get_revid(dev));
734 		fxp_read_eeprom(sc, &data, 10, 1);
735 		device_printf(dev, "Dynamic Standby mode is %s\n",
736 		    data & 0x02 ? "enabled" : "disabled");
737 	}
738 
739 	/*
740 	 * If this is only a 10Mbps device, then there is no MII, and
741 	 * the PHY will use a serial interface instead.
742 	 *
743 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
744 	 * doesn't have a programming interface of any sort.  The
745 	 * media is sensed automatically based on how the link partner
746 	 * is configured.  This is, in essence, manual configuration.
747 	 */
748 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
749 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
750 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
751 	} else {
752 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
753 		    fxp_ifmedia_sts)) {
754 	                device_printf(dev, "MII without any PHY!\n");
755 			error = ENXIO;
756 			goto fail;
757 		}
758 	}
759 
760 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
761 	ifp->if_baudrate = 100000000;
762 	ifp->if_init = fxp_init;
763 	ifp->if_softc = sc;
764 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
765 	ifp->if_ioctl = fxp_ioctl;
766 	ifp->if_start = fxp_start;
767 	ifp->if_watchdog = fxp_watchdog;
768 
769 	ifp->if_capabilities = ifp->if_capenable = 0;
770 
771 	/* Enable checksum offload for 82550 or better chips */
772 	if (sc->flags & FXP_FLAG_EXT_RFA) {
773 		ifp->if_hwassist = FXP_CSUM_FEATURES;
774 		ifp->if_capabilities |= IFCAP_HWCSUM;
775 		ifp->if_capenable |= IFCAP_HWCSUM;
776 	}
777 
778 #ifdef DEVICE_POLLING
779 	/* Inform the world we support polling. */
780 	ifp->if_capabilities |= IFCAP_POLLING;
781 #endif
782 
783 	/*
784 	 * Attach the interface.
785 	 */
786 	ether_ifattach(ifp, eaddr);
787 
788 	/*
789 	 * Tell the upper layer(s) we support long frames.
790 	 * Must appear after the call to ether_ifattach() because
791 	 * ether_ifattach() sets ifi_hdrlen to the default value.
792 	 */
793 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
794 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
795 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
796 
797 	/*
798 	 * Let the system queue as many packets as we have available
799 	 * TX descriptors.
800 	 */
801 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
802 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
803 	IFQ_SET_READY(&ifp->if_snd);
804 
805 	/*
806 	 * Hook our interrupt after all initialization is complete.
807 	 */
808 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
809 			       fxp_intr, sc, &sc->ih);
810 	if (error) {
811 		device_printf(dev, "could not setup irq\n");
812 		ether_ifdetach(sc->ifp);
813 		goto fail;
814 	}
815 
816 fail:
817 	if (error)
818 		fxp_release(sc);
819 	return (error);
820 }
821 
822 /*
823  * Release all resources.  The softc lock should not be held and the
824  * interrupt should already be torn down.
825  */
826 static void
827 fxp_release(struct fxp_softc *sc)
828 {
829 	struct fxp_rx *rxp;
830 	struct fxp_tx *txp;
831 	int i;
832 
833 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
834 	KASSERT(sc->ih == NULL,
835 	    ("fxp_release() called with intr handle still active"));
836 	if (sc->miibus)
837 		device_delete_child(sc->dev, sc->miibus);
838 	bus_generic_detach(sc->dev);
839 	ifmedia_removeall(&sc->sc_media);
840 	if (sc->fxp_desc.cbl_list) {
841 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
842 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
843 		    sc->cbl_map);
844 	}
845 	if (sc->fxp_stats) {
846 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
847 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
848 	}
849 	if (sc->mcsp) {
850 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
851 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
852 	}
853 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
854 	if (sc->fxp_mtag) {
855 		for (i = 0; i < FXP_NRFABUFS; i++) {
856 			rxp = &sc->fxp_desc.rx_list[i];
857 			if (rxp->rx_mbuf != NULL) {
858 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
859 				    BUS_DMASYNC_POSTREAD);
860 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
861 				m_freem(rxp->rx_mbuf);
862 			}
863 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
864 		}
865 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
866 		for (i = 0; i < FXP_NTXCB; i++) {
867 			txp = &sc->fxp_desc.tx_list[i];
868 			if (txp->tx_mbuf != NULL) {
869 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
870 				    BUS_DMASYNC_POSTWRITE);
871 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
872 				m_freem(txp->tx_mbuf);
873 			}
874 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
875 		}
876 		bus_dma_tag_destroy(sc->fxp_mtag);
877 	}
878 	if (sc->fxp_stag)
879 		bus_dma_tag_destroy(sc->fxp_stag);
880 	if (sc->cbl_tag)
881 		bus_dma_tag_destroy(sc->cbl_tag);
882 	if (sc->mcs_tag)
883 		bus_dma_tag_destroy(sc->mcs_tag);
884 	if (sc->ifp)
885 		if_free(sc->ifp);
886 
887 	mtx_destroy(&sc->sc_mtx);
888 }
889 
890 /*
891  * Detach interface.
892  */
893 static int
894 fxp_detach(device_t dev)
895 {
896 	struct fxp_softc *sc = device_get_softc(dev);
897 
898 #ifdef DEVICE_POLLING
899 	if (sc->ifp->if_capenable & IFCAP_POLLING)
900 		ether_poll_deregister(sc->ifp);
901 #endif
902 
903 	FXP_LOCK(sc);
904 	sc->suspended = 1;	/* Do same thing as we do for suspend */
905 	/*
906 	 * Stop DMA and drop transmit queue, but disable interrupts first.
907 	 */
908 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
909 	fxp_stop(sc);
910 	FXP_UNLOCK(sc);
911 	callout_drain(&sc->stat_ch);
912 
913 	/*
914 	 * Close down routes etc.
915 	 */
916 	ether_ifdetach(sc->ifp);
917 
918 	/*
919 	 * Unhook interrupt before dropping lock. This is to prevent
920 	 * races with fxp_intr().
921 	 */
922 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
923 	sc->ih = NULL;
924 
925 	/* Release our allocated resources. */
926 	fxp_release(sc);
927 	return (0);
928 }
929 
930 /*
931  * Device shutdown routine. Called at system shutdown after sync. The
932  * main purpose of this routine is to shut off receiver DMA so that
933  * kernel memory doesn't get clobbered during warmboot.
934  */
935 static int
936 fxp_shutdown(device_t dev)
937 {
938 	struct fxp_softc *sc = device_get_softc(dev);
939 
940 	/*
941 	 * Make sure that DMA is disabled prior to reboot. Not doing
942 	 * do could allow DMA to corrupt kernel memory during the
943 	 * reboot before the driver initializes.
944 	 */
945 	FXP_LOCK(sc);
946 	fxp_stop(sc);
947 	FXP_UNLOCK(sc);
948 	return (0);
949 }
950 
951 /*
952  * Device suspend routine.  Stop the interface and save some PCI
953  * settings in case the BIOS doesn't restore them properly on
954  * resume.
955  */
956 static int
957 fxp_suspend(device_t dev)
958 {
959 	struct fxp_softc *sc = device_get_softc(dev);
960 
961 	FXP_LOCK(sc);
962 
963 	fxp_stop(sc);
964 
965 	sc->suspended = 1;
966 
967 	FXP_UNLOCK(sc);
968 	return (0);
969 }
970 
971 /*
972  * Device resume routine. re-enable busmastering, and restart the interface if
973  * appropriate.
974  */
975 static int
976 fxp_resume(device_t dev)
977 {
978 	struct fxp_softc *sc = device_get_softc(dev);
979 	struct ifnet *ifp = sc->ifp;
980 
981 	FXP_LOCK(sc);
982 
983 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
984 	DELAY(10);
985 
986 	/* reinitialize interface if necessary */
987 	if (ifp->if_flags & IFF_UP)
988 		fxp_init_body(sc);
989 
990 	sc->suspended = 0;
991 
992 	FXP_UNLOCK(sc);
993 	return (0);
994 }
995 
996 static void
997 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
998 {
999 	uint16_t reg;
1000 	int x;
1001 
1002 	/*
1003 	 * Shift in data.
1004 	 */
1005 	for (x = 1 << (length - 1); x; x >>= 1) {
1006 		if (data & x)
1007 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1008 		else
1009 			reg = FXP_EEPROM_EECS;
1010 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1011 		DELAY(1);
1012 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1013 		DELAY(1);
1014 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1015 		DELAY(1);
1016 	}
1017 }
1018 
1019 /*
1020  * Read from the serial EEPROM. Basically, you manually shift in
1021  * the read opcode (one bit at a time) and then shift in the address,
1022  * and then you shift out the data (all of this one bit at a time).
1023  * The word size is 16 bits, so you have to provide the address for
1024  * every 16 bits of data.
1025  */
1026 static uint16_t
1027 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1028 {
1029 	uint16_t reg, data;
1030 	int x;
1031 
1032 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1033 	/*
1034 	 * Shift in read opcode.
1035 	 */
1036 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1037 	/*
1038 	 * Shift in address.
1039 	 */
1040 	data = 0;
1041 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1042 		if (offset & x)
1043 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1044 		else
1045 			reg = FXP_EEPROM_EECS;
1046 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1047 		DELAY(1);
1048 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1049 		DELAY(1);
1050 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1051 		DELAY(1);
1052 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1053 		data++;
1054 		if (autosize && reg == 0) {
1055 			sc->eeprom_size = data;
1056 			break;
1057 		}
1058 	}
1059 	/*
1060 	 * Shift out data.
1061 	 */
1062 	data = 0;
1063 	reg = FXP_EEPROM_EECS;
1064 	for (x = 1 << 15; x; x >>= 1) {
1065 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1066 		DELAY(1);
1067 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1068 			data |= x;
1069 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1070 		DELAY(1);
1071 	}
1072 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1073 	DELAY(1);
1074 
1075 	return (data);
1076 }
1077 
1078 static void
1079 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1080 {
1081 	int i;
1082 
1083 	/*
1084 	 * Erase/write enable.
1085 	 */
1086 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1087 	fxp_eeprom_shiftin(sc, 0x4, 3);
1088 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1089 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1090 	DELAY(1);
1091 	/*
1092 	 * Shift in write opcode, address, data.
1093 	 */
1094 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1095 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1096 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1097 	fxp_eeprom_shiftin(sc, data, 16);
1098 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1099 	DELAY(1);
1100 	/*
1101 	 * Wait for EEPROM to finish up.
1102 	 */
1103 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1104 	DELAY(1);
1105 	for (i = 0; i < 1000; i++) {
1106 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1107 			break;
1108 		DELAY(50);
1109 	}
1110 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1111 	DELAY(1);
1112 	/*
1113 	 * Erase/write disable.
1114 	 */
1115 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1116 	fxp_eeprom_shiftin(sc, 0x4, 3);
1117 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1118 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1119 	DELAY(1);
1120 }
1121 
1122 /*
1123  * From NetBSD:
1124  *
1125  * Figure out EEPROM size.
1126  *
1127  * 559's can have either 64-word or 256-word EEPROMs, the 558
1128  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1129  * talks about the existance of 16 to 256 word EEPROMs.
1130  *
1131  * The only known sizes are 64 and 256, where the 256 version is used
1132  * by CardBus cards to store CIS information.
1133  *
1134  * The address is shifted in msb-to-lsb, and after the last
1135  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1136  * after which follows the actual data. We try to detect this zero, by
1137  * probing the data-out bit in the EEPROM control register just after
1138  * having shifted in a bit. If the bit is zero, we assume we've
1139  * shifted enough address bits. The data-out should be tri-state,
1140  * before this, which should translate to a logical one.
1141  */
1142 static void
1143 fxp_autosize_eeprom(struct fxp_softc *sc)
1144 {
1145 
1146 	/* guess maximum size of 256 words */
1147 	sc->eeprom_size = 8;
1148 
1149 	/* autosize */
1150 	(void) fxp_eeprom_getword(sc, 0, 1);
1151 }
1152 
1153 static void
1154 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1155 {
1156 	int i;
1157 
1158 	for (i = 0; i < words; i++)
1159 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1160 }
1161 
1162 static void
1163 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1164 {
1165 	int i;
1166 
1167 	for (i = 0; i < words; i++)
1168 		fxp_eeprom_putword(sc, offset + i, data[i]);
1169 }
1170 
1171 /*
1172  * Grab the softc lock and call the real fxp_start_body() routine
1173  */
1174 static void
1175 fxp_start(struct ifnet *ifp)
1176 {
1177 	struct fxp_softc *sc = ifp->if_softc;
1178 
1179 	FXP_LOCK(sc);
1180 	fxp_start_body(ifp);
1181 	FXP_UNLOCK(sc);
1182 }
1183 
1184 /*
1185  * Start packet transmission on the interface.
1186  * This routine must be called with the softc lock held, and is an
1187  * internal entry point only.
1188  */
1189 static void
1190 fxp_start_body(struct ifnet *ifp)
1191 {
1192 	struct fxp_softc *sc = ifp->if_softc;
1193 	struct mbuf *mb_head;
1194 	int error, txqueued;
1195 
1196 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1197 
1198 	/*
1199 	 * See if we need to suspend xmit until the multicast filter
1200 	 * has been reprogrammed (which can only be done at the head
1201 	 * of the command chain).
1202 	 */
1203 	if (sc->need_mcsetup)
1204 		return;
1205 
1206 	/*
1207 	 * We're finished if there is nothing more to add to the list or if
1208 	 * we're all filled up with buffers to transmit.
1209 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1210 	 *       a NOP command when needed.
1211 	 */
1212 	txqueued = 0;
1213 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1214 	    sc->tx_queued < FXP_NTXCB - 1) {
1215 
1216 		/*
1217 		 * Grab a packet to transmit.
1218 		 */
1219 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1220 		if (mb_head == NULL)
1221 			break;
1222 
1223 		error = fxp_encap(sc, mb_head);
1224 		if (error)
1225 			break;
1226 		txqueued = 1;
1227 	}
1228 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1229 
1230 	/*
1231 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1232 	 * going again if suspended.
1233 	 */
1234 	if (txqueued) {
1235 		fxp_scb_wait(sc);
1236 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1237 	}
1238 }
1239 
1240 static int
1241 fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1242 {
1243 	struct ifnet *ifp;
1244 	struct mbuf *m;
1245 	struct fxp_tx *txp;
1246 	struct fxp_cb_tx *cbp;
1247 	bus_dma_segment_t segs[FXP_NTXSEG];
1248 	int chainlen, error, i, nseg;
1249 
1250 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1251 	ifp = sc->ifp;
1252 
1253 	/*
1254 	 * Get pointer to next available tx desc.
1255 	 */
1256 	txp = sc->fxp_desc.tx_last->tx_next;
1257 
1258 	/*
1259 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1260 	 * Ethernet Controller Family Open Source Software
1261 	 * Developer Manual says:
1262 	 *   Using software parsing is only allowed with legal
1263 	 *   TCP/IP or UDP/IP packets.
1264 	 *   ...
1265 	 *   For all other datagrams, hardware parsing must
1266 	 *   be used.
1267 	 * Software parsing appears to truncate ICMP and
1268 	 * fragmented UDP packets that contain one to three
1269 	 * bytes in the second (and final) mbuf of the packet.
1270 	 */
1271 	if (sc->flags & FXP_FLAG_EXT_RFA)
1272 		txp->tx_cb->ipcb_ip_activation_high =
1273 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1274 
1275 	/*
1276 	 * Deal with TCP/IP checksum offload. Note that
1277 	 * in order for TCP checksum offload to work,
1278 	 * the pseudo header checksum must have already
1279 	 * been computed and stored in the checksum field
1280 	 * in the TCP header. The stack should have
1281 	 * already done this for us.
1282 	 */
1283 	if (m_head->m_pkthdr.csum_flags) {
1284 		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1285 			txp->tx_cb->ipcb_ip_schedule =
1286 			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1287 			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1288 				txp->tx_cb->ipcb_ip_schedule |=
1289 				    FXP_IPCB_TCP_PACKET;
1290 		}
1291 
1292 #ifdef FXP_IP_CSUM_WAR
1293 		/*
1294 		 * XXX The 82550 chip appears to have trouble
1295 		 * dealing with IP header checksums in very small
1296 		 * datagrams, namely fragments from 1 to 3 bytes
1297 		 * in size. For example, say you want to transmit
1298 		 * a UDP packet of 1473 bytes. The packet will be
1299 		 * fragmented over two IP datagrams, the latter
1300 		 * containing only one byte of data. The 82550 will
1301 		 * botch the header checksum on the 1-byte fragment.
1302 		 * As long as the datagram contains 4 or more bytes
1303 		 * of data, you're ok.
1304 		 *
1305                  * The following code attempts to work around this
1306 		 * problem: if the datagram is less than 38 bytes
1307 		 * in size (14 bytes ether header, 20 bytes IP header,
1308 		 * plus 4 bytes of data), we punt and compute the IP
1309 		 * header checksum by hand. This workaround doesn't
1310 		 * work very well, however, since it can be fooled
1311 		 * by things like VLAN tags and IP options that make
1312 		 * the header sizes/offsets vary.
1313 		 */
1314 
1315 		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1316 			if (m_head->m_pkthdr.len < 38) {
1317 				struct ip *ip;
1318 				m_head->m_data += ETHER_HDR_LEN;
1319 				ip = mtod(mb_head, struct ip *);
1320 				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1321 				m_head->m_data -= ETHER_HDR_LEN;
1322 			} else {
1323 				txp->tx_cb->ipcb_ip_activation_high =
1324 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1325 				txp->tx_cb->ipcb_ip_schedule |=
1326 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1327 			}
1328 		}
1329 #endif
1330 	}
1331 
1332 	chainlen = 0;
1333 	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1334 		chainlen++;
1335 	if (chainlen > sc->maxtxseg) {
1336 		struct mbuf *mn;
1337 
1338 		/*
1339 		 * We ran out of segments. We have to recopy this
1340 		 * mbuf chain first. Bail out if we can't get the
1341 		 * new buffers.
1342 		 */
1343 		mn = m_defrag(m_head, M_DONTWAIT);
1344 		if (mn == NULL) {
1345 			m_freem(m_head);
1346 			return (-1);
1347 		} else {
1348 			m_head = mn;
1349 		}
1350 	}
1351 
1352 	/*
1353 	 * Go through each of the mbufs in the chain and initialize
1354 	 * the transmit buffer descriptors with the physical address
1355 	 * and size of the mbuf.
1356 	 */
1357 	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1358 	    m_head, segs, &nseg, 0);
1359 	if (error) {
1360 		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1361 		m_freem(m_head);
1362 		return (-1);
1363 	}
1364 
1365 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1366 
1367 	cbp = txp->tx_cb;
1368 	for (i = 0; i < nseg; i++) {
1369 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1370 		/*
1371 		 * If this is an 82550/82551, then we're using extended
1372 		 * TxCBs _and_ we're using checksum offload. This means
1373 		 * that the TxCB is really an IPCB. One major difference
1374 		 * between the two is that with plain extended TxCBs,
1375 		 * the bottom half of the TxCB contains two entries from
1376 		 * the TBD array, whereas IPCBs contain just one entry:
1377 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1378 		 * checksum offload control bits. So to make things work
1379 		 * right, we have to start filling in the TBD array
1380 		 * starting from a different place depending on whether
1381 		 * the chip is an 82550/82551 or not.
1382 		 */
1383 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1384 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1385 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1386 		} else {
1387 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1388 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1389 		}
1390 	}
1391 	cbp->tbd_number = nseg;
1392 
1393 	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1394 	txp->tx_mbuf = m_head;
1395 	txp->tx_cb->cb_status = 0;
1396 	txp->tx_cb->byte_count = 0;
1397 	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1398 		txp->tx_cb->cb_command =
1399 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1400 		    FXP_CB_COMMAND_S);
1401 	} else {
1402 		txp->tx_cb->cb_command =
1403 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1404 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1405 		/*
1406 		 * Set a 5 second timer just in case we don't hear
1407 		 * from the card again.
1408 		 */
1409 		ifp->if_timer = 5;
1410 	}
1411 	txp->tx_cb->tx_threshold = tx_threshold;
1412 
1413 	/*
1414 	 * Advance the end of list forward.
1415 	 */
1416 
1417 #ifdef __alpha__
1418 	/*
1419 	 * On platforms which can't access memory in 16-bit
1420 	 * granularities, we must prevent the card from DMA'ing
1421 	 * up the status while we update the command field.
1422 	 * This could cause us to overwrite the completion status.
1423 	 * XXX This is probably bogus and we're _not_ looking
1424 	 * for atomicity here.
1425 	 */
1426 	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1427 	    htole16(FXP_CB_COMMAND_S));
1428 #else
1429 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1430 #endif /*__alpha__*/
1431 	sc->fxp_desc.tx_last = txp;
1432 
1433 	/*
1434 	 * Advance the beginning of the list forward if there are
1435 	 * no other packets queued (when nothing is queued, tx_first
1436 	 * sits on the last TxCB that was sent out).
1437 	 */
1438 	if (sc->tx_queued == 0)
1439 		sc->fxp_desc.tx_first = txp;
1440 
1441 	sc->tx_queued++;
1442 
1443 	/*
1444 	 * Pass packet to bpf if there is a listener.
1445 	 */
1446 	BPF_MTAP(ifp, m_head);
1447 	return (0);
1448 }
1449 
1450 #ifdef DEVICE_POLLING
1451 static poll_handler_t fxp_poll;
1452 
1453 static void
1454 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1455 {
1456 	struct fxp_softc *sc = ifp->if_softc;
1457 	uint8_t statack;
1458 
1459 	FXP_LOCK(sc);
1460 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1461 		FXP_UNLOCK(sc);
1462 		return;
1463 	}
1464 
1465 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1466 	    FXP_SCB_STATACK_FR;
1467 	if (cmd == POLL_AND_CHECK_STATUS) {
1468 		uint8_t tmp;
1469 
1470 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1471 		if (tmp == 0xff || tmp == 0) {
1472 			FXP_UNLOCK(sc);
1473 			return; /* nothing to do */
1474 		}
1475 		tmp &= ~statack;
1476 		/* ack what we can */
1477 		if (tmp != 0)
1478 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1479 		statack |= tmp;
1480 	}
1481 	fxp_intr_body(sc, ifp, statack, count);
1482 	FXP_UNLOCK(sc);
1483 }
1484 #endif /* DEVICE_POLLING */
1485 
1486 /*
1487  * Process interface interrupts.
1488  */
1489 static void
1490 fxp_intr(void *xsc)
1491 {
1492 	struct fxp_softc *sc = xsc;
1493 	struct ifnet *ifp = sc->ifp;
1494 	uint8_t statack;
1495 
1496 	FXP_LOCK(sc);
1497 	if (sc->suspended) {
1498 		FXP_UNLOCK(sc);
1499 		return;
1500 	}
1501 
1502 #ifdef DEVICE_POLLING
1503 	if (ifp->if_capenable & IFCAP_POLLING) {
1504 		FXP_UNLOCK(sc);
1505 		return;
1506 	}
1507 #endif
1508 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1509 		/*
1510 		 * It should not be possible to have all bits set; the
1511 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1512 		 * all bits are set, this may indicate that the card has
1513 		 * been physically ejected, so ignore it.
1514 		 */
1515 		if (statack == 0xff) {
1516 			FXP_UNLOCK(sc);
1517 			return;
1518 		}
1519 
1520 		/*
1521 		 * First ACK all the interrupts in this pass.
1522 		 */
1523 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1524 		fxp_intr_body(sc, ifp, statack, -1);
1525 	}
1526 	FXP_UNLOCK(sc);
1527 }
1528 
1529 static void
1530 fxp_txeof(struct fxp_softc *sc)
1531 {
1532 	struct fxp_tx *txp;
1533 
1534 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1535 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1536 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1537 	    txp = txp->tx_next) {
1538 		if (txp->tx_mbuf != NULL) {
1539 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1540 			    BUS_DMASYNC_POSTWRITE);
1541 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1542 			m_freem(txp->tx_mbuf);
1543 			txp->tx_mbuf = NULL;
1544 			/* clear this to reset csum offload bits */
1545 			txp->tx_cb->tbd[0].tb_addr = 0;
1546 		}
1547 		sc->tx_queued--;
1548 	}
1549 	sc->fxp_desc.tx_first = txp;
1550 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1551 }
1552 
1553 static void
1554 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1555     int count)
1556 {
1557 	struct mbuf *m;
1558 	struct fxp_rx *rxp;
1559 	struct fxp_rfa *rfa;
1560 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1561 	int fxp_rc = 0;
1562 
1563 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1564 	if (rnr)
1565 		sc->rnr++;
1566 #ifdef DEVICE_POLLING
1567 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1568 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1569 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1570 		rnr = 1;
1571 	}
1572 #endif
1573 
1574 	/*
1575 	 * Free any finished transmit mbuf chains.
1576 	 *
1577 	 * Handle the CNA event likt a CXTNO event. It used to
1578 	 * be that this event (control unit not ready) was not
1579 	 * encountered, but it is now with the SMPng modifications.
1580 	 * The exact sequence of events that occur when the interface
1581 	 * is brought up are different now, and if this event
1582 	 * goes unhandled, the configuration/rxfilter setup sequence
1583 	 * can stall for several seconds. The result is that no
1584 	 * packets go out onto the wire for about 5 to 10 seconds
1585 	 * after the interface is ifconfig'ed for the first time.
1586 	 */
1587 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1588 		fxp_txeof(sc);
1589 
1590 		ifp->if_timer = 0;
1591 		if (sc->tx_queued == 0) {
1592 			if (sc->need_mcsetup)
1593 				fxp_mc_setup(sc);
1594 		}
1595 		/*
1596 		 * Try to start more packets transmitting.
1597 		 */
1598 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1599 			fxp_start_body(ifp);
1600 	}
1601 
1602 	/*
1603 	 * Just return if nothing happened on the receive side.
1604 	 */
1605 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1606 		return;
1607 
1608 	/*
1609 	 * Process receiver interrupts. If a no-resource (RNR)
1610 	 * condition exists, get whatever packets we can and
1611 	 * re-start the receiver.
1612 	 *
1613 	 * When using polling, we do not process the list to completion,
1614 	 * so when we get an RNR interrupt we must defer the restart
1615 	 * until we hit the last buffer with the C bit set.
1616 	 * If we run out of cycles and rfa_headm has the C bit set,
1617 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1618 	 * that the info will be used in the subsequent polling cycle.
1619 	 */
1620 	for (;;) {
1621 		rxp = sc->fxp_desc.rx_head;
1622 		m = rxp->rx_mbuf;
1623 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1624 		    RFA_ALIGNMENT_FUDGE);
1625 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1626 		    BUS_DMASYNC_POSTREAD);
1627 
1628 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1629 		if (count >= 0 && count-- == 0) {
1630 			if (rnr) {
1631 				/* Defer RNR processing until the next time. */
1632 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1633 				rnr = 0;
1634 			}
1635 			break;
1636 		}
1637 #endif /* DEVICE_POLLING */
1638 
1639 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1640 			break;
1641 
1642 		/*
1643 		 * Advance head forward.
1644 		 */
1645 		sc->fxp_desc.rx_head = rxp->rx_next;
1646 
1647 		/*
1648 		 * Add a new buffer to the receive chain.
1649 		 * If this fails, the old buffer is recycled
1650 		 * instead.
1651 		 */
1652 		fxp_rc = fxp_add_rfabuf(sc, rxp);
1653 		if (fxp_rc == 0) {
1654 			int total_len;
1655 
1656 			/*
1657 			 * Fetch packet length (the top 2 bits of
1658 			 * actual_size are flags set by the controller
1659 			 * upon completion), and drop the packet in case
1660 			 * of bogus length or CRC errors.
1661 			 */
1662 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1663 			if (total_len < sizeof(struct ether_header) ||
1664 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1665 				sc->rfa_size ||
1666 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1667 				m_freem(m);
1668 				continue;
1669 			}
1670 
1671                         /* Do IP checksum checking. */
1672 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1673 				if (rfa->rfax_csum_sts &
1674 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1675 					m->m_pkthdr.csum_flags |=
1676 					    CSUM_IP_CHECKED;
1677 				if (rfa->rfax_csum_sts &
1678 				    FXP_RFDX_CS_IP_CSUM_VALID)
1679 					m->m_pkthdr.csum_flags |=
1680 					    CSUM_IP_VALID;
1681 				if ((rfa->rfax_csum_sts &
1682 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1683 				    (rfa->rfax_csum_sts &
1684 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1685 					m->m_pkthdr.csum_flags |=
1686 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1687 					m->m_pkthdr.csum_data = 0xffff;
1688 				}
1689 			}
1690 
1691 			m->m_pkthdr.len = m->m_len = total_len;
1692 			m->m_pkthdr.rcvif = ifp;
1693 
1694 			/*
1695 			 * Drop locks before calling if_input() since it
1696 			 * may re-enter fxp_start() in the netisr case.
1697 			 * This would result in a lock reversal.  Better
1698 			 * performance might be obtained by chaining all
1699 			 * packets received, dropping the lock, and then
1700 			 * calling if_input() on each one.
1701 			 */
1702 			FXP_UNLOCK(sc);
1703 			(*ifp->if_input)(ifp, m);
1704 			FXP_LOCK(sc);
1705 		} else if (fxp_rc == ENOBUFS) {
1706 			rnr = 0;
1707 			break;
1708 		}
1709 	}
1710 	if (rnr) {
1711 		fxp_scb_wait(sc);
1712 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1713 		    sc->fxp_desc.rx_head->rx_addr);
1714 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1715 	}
1716 }
1717 
1718 /*
1719  * Update packet in/out/collision statistics. The i82557 doesn't
1720  * allow you to access these counters without doing a fairly
1721  * expensive DMA to get _all_ of the statistics it maintains, so
1722  * we do this operation here only once per second. The statistics
1723  * counters in the kernel are updated from the previous dump-stats
1724  * DMA and then a new dump-stats DMA is started. The on-chip
1725  * counters are zeroed when the DMA completes. If we can't start
1726  * the DMA immediately, we don't wait - we just prepare to read
1727  * them again next time.
1728  */
1729 static void
1730 fxp_tick(void *xsc)
1731 {
1732 	struct fxp_softc *sc = xsc;
1733 	struct ifnet *ifp = sc->ifp;
1734 	struct fxp_stats *sp = sc->fxp_stats;
1735 
1736 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1737 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1738 	ifp->if_opackets += le32toh(sp->tx_good);
1739 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1740 	if (sp->rx_good) {
1741 		ifp->if_ipackets += le32toh(sp->rx_good);
1742 		sc->rx_idle_secs = 0;
1743 	} else {
1744 		/*
1745 		 * Receiver's been idle for another second.
1746 		 */
1747 		sc->rx_idle_secs++;
1748 	}
1749 	ifp->if_ierrors +=
1750 	    le32toh(sp->rx_crc_errors) +
1751 	    le32toh(sp->rx_alignment_errors) +
1752 	    le32toh(sp->rx_rnr_errors) +
1753 	    le32toh(sp->rx_overrun_errors);
1754 	/*
1755 	 * If any transmit underruns occured, bump up the transmit
1756 	 * threshold by another 512 bytes (64 * 8).
1757 	 */
1758 	if (sp->tx_underruns) {
1759 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1760 		if (tx_threshold < 192)
1761 			tx_threshold += 64;
1762 	}
1763 
1764 	/*
1765 	 * Release any xmit buffers that have completed DMA. This isn't
1766 	 * strictly necessary to do here, but it's advantagous for mbufs
1767 	 * with external storage to be released in a timely manner rather
1768 	 * than being defered for a potentially long time. This limits
1769 	 * the delay to a maximum of one second.
1770 	 */
1771 	fxp_txeof(sc);
1772 
1773 	/*
1774 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1775 	 * then assume the receiver has locked up and attempt to clear
1776 	 * the condition by reprogramming the multicast filter. This is
1777 	 * a work-around for a bug in the 82557 where the receiver locks
1778 	 * up if it gets certain types of garbage in the syncronization
1779 	 * bits prior to the packet header. This bug is supposed to only
1780 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1781 	 * mode as well (perhaps due to a 10/100 speed transition).
1782 	 */
1783 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1784 		sc->rx_idle_secs = 0;
1785 		fxp_mc_setup(sc);
1786 	}
1787 	/*
1788 	 * If there is no pending command, start another stats
1789 	 * dump. Otherwise punt for now.
1790 	 */
1791 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1792 		/*
1793 		 * Start another stats dump.
1794 		 */
1795 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1796 		    BUS_DMASYNC_PREREAD);
1797 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1798 	} else {
1799 		/*
1800 		 * A previous command is still waiting to be accepted.
1801 		 * Just zero our copy of the stats and wait for the
1802 		 * next timer event to update them.
1803 		 */
1804 		sp->tx_good = 0;
1805 		sp->tx_underruns = 0;
1806 		sp->tx_total_collisions = 0;
1807 
1808 		sp->rx_good = 0;
1809 		sp->rx_crc_errors = 0;
1810 		sp->rx_alignment_errors = 0;
1811 		sp->rx_rnr_errors = 0;
1812 		sp->rx_overrun_errors = 0;
1813 	}
1814 	if (sc->miibus != NULL)
1815 		mii_tick(device_get_softc(sc->miibus));
1816 
1817 	/*
1818 	 * Schedule another timeout one second from now.
1819 	 */
1820 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1821 }
1822 
1823 /*
1824  * Stop the interface. Cancels the statistics updater and resets
1825  * the interface.
1826  */
1827 static void
1828 fxp_stop(struct fxp_softc *sc)
1829 {
1830 	struct ifnet *ifp = sc->ifp;
1831 	struct fxp_tx *txp;
1832 	int i;
1833 
1834 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1835 	ifp->if_timer = 0;
1836 
1837 	/*
1838 	 * Cancel stats updater.
1839 	 */
1840 	callout_stop(&sc->stat_ch);
1841 
1842 	/*
1843 	 * Issue software reset, which also unloads the microcode.
1844 	 */
1845 	sc->flags &= ~FXP_FLAG_UCODE;
1846 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1847 	DELAY(50);
1848 
1849 	/*
1850 	 * Release any xmit buffers.
1851 	 */
1852 	txp = sc->fxp_desc.tx_list;
1853 	if (txp != NULL) {
1854 		for (i = 0; i < FXP_NTXCB; i++) {
1855  			if (txp[i].tx_mbuf != NULL) {
1856 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1857 				    BUS_DMASYNC_POSTWRITE);
1858 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1859 				m_freem(txp[i].tx_mbuf);
1860 				txp[i].tx_mbuf = NULL;
1861 				/* clear this to reset csum offload bits */
1862 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1863 			}
1864 		}
1865 	}
1866 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1867 	sc->tx_queued = 0;
1868 }
1869 
1870 /*
1871  * Watchdog/transmission transmit timeout handler. Called when a
1872  * transmission is started on the interface, but no interrupt is
1873  * received before the timeout. This usually indicates that the
1874  * card has wedged for some reason.
1875  */
1876 static void
1877 fxp_watchdog(struct ifnet *ifp)
1878 {
1879 	struct fxp_softc *sc = ifp->if_softc;
1880 
1881 	FXP_LOCK(sc);
1882 	device_printf(sc->dev, "device timeout\n");
1883 	ifp->if_oerrors++;
1884 
1885 	fxp_init_body(sc);
1886 	FXP_UNLOCK(sc);
1887 }
1888 
1889 /*
1890  * Acquire locks and then call the real initialization function.  This
1891  * is necessary because ether_ioctl() calls if_init() and this would
1892  * result in mutex recursion if the mutex was held.
1893  */
1894 static void
1895 fxp_init(void *xsc)
1896 {
1897 	struct fxp_softc *sc = xsc;
1898 
1899 	FXP_LOCK(sc);
1900 	fxp_init_body(sc);
1901 	FXP_UNLOCK(sc);
1902 }
1903 
1904 /*
1905  * Perform device initialization. This routine must be called with the
1906  * softc lock held.
1907  */
1908 static void
1909 fxp_init_body(struct fxp_softc *sc)
1910 {
1911 	struct ifnet *ifp = sc->ifp;
1912 	struct fxp_cb_config *cbp;
1913 	struct fxp_cb_ias *cb_ias;
1914 	struct fxp_cb_tx *tcbp;
1915 	struct fxp_tx *txp;
1916 	struct fxp_cb_mcs *mcsp;
1917 	int i, prm;
1918 
1919 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1920 	/*
1921 	 * Cancel any pending I/O
1922 	 */
1923 	fxp_stop(sc);
1924 
1925 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1926 
1927 	/*
1928 	 * Initialize base of CBL and RFA memory. Loading with zero
1929 	 * sets it up for regular linear addressing.
1930 	 */
1931 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1932 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1933 
1934 	fxp_scb_wait(sc);
1935 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1936 
1937 	/*
1938 	 * Initialize base of dump-stats buffer.
1939 	 */
1940 	fxp_scb_wait(sc);
1941 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1942 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1943 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1944 
1945 	/*
1946 	 * Attempt to load microcode if requested.
1947 	 */
1948 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1949 		fxp_load_ucode(sc);
1950 
1951 	/*
1952 	 * Initialize the multicast address list.
1953 	 */
1954 	if (fxp_mc_addrs(sc)) {
1955 		mcsp = sc->mcsp;
1956 		mcsp->cb_status = 0;
1957 		mcsp->cb_command =
1958 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1959 		mcsp->link_addr = 0xffffffff;
1960 		/*
1961 	 	 * Start the multicast setup command.
1962 		 */
1963 		fxp_scb_wait(sc);
1964 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1965 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1966 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1967 		/* ...and wait for it to complete. */
1968 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1969 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1970 		    BUS_DMASYNC_POSTWRITE);
1971 	}
1972 
1973 	/*
1974 	 * We temporarily use memory that contains the TxCB list to
1975 	 * construct the config CB. The TxCB list memory is rebuilt
1976 	 * later.
1977 	 */
1978 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
1979 
1980 	/*
1981 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1982 	 * zero and must be one bits in this structure and this is the easiest
1983 	 * way to initialize them all to proper values.
1984 	 */
1985 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
1986 
1987 	cbp->cb_status =	0;
1988 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1989 	    FXP_CB_COMMAND_EL);
1990 	cbp->link_addr =	0xffffffff;	/* (no) next command */
1991 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
1992 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1993 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1994 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1995 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1996 	cbp->type_enable =	0;	/* actually reserved */
1997 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1998 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1999 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2000 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2001 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2002 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2003 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2004 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2005 	cbp->ci_int =		1;	/* interrupt on CU idle */
2006 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2007 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2008 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2009 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2010 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2011 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2012 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2013 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2014 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2015 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2016 	cbp->csma_dis =		0;	/* (don't) disable link */
2017 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2018 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2019 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2020 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2021 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2022 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2023 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2024 	cbp->loopback =		0;	/* (don't) loopback */
2025 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2026 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2027 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2028 	cbp->promiscuous =	prm;	/* promiscuous mode */
2029 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2030 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2031 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2032 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2033 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2034 
2035 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2036 	cbp->padding =		1;	/* (do) pad short tx packets */
2037 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2038 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2039 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2040 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2041 					/* must set wake_en in PMCSR also */
2042 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2043 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2044 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2045 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2046 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2047 
2048 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2049 		/*
2050 		 * The 82557 has no hardware flow control, the values
2051 		 * below are the defaults for the chip.
2052 		 */
2053 		cbp->fc_delay_lsb =	0;
2054 		cbp->fc_delay_msb =	0x40;
2055 		cbp->pri_fc_thresh =	3;
2056 		cbp->tx_fc_dis =	0;
2057 		cbp->rx_fc_restop =	0;
2058 		cbp->rx_fc_restart =	0;
2059 		cbp->fc_filter =	0;
2060 		cbp->pri_fc_loc =	1;
2061 	} else {
2062 		cbp->fc_delay_lsb =	0x1f;
2063 		cbp->fc_delay_msb =	0x01;
2064 		cbp->pri_fc_thresh =	3;
2065 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2066 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2067 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2068 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2069 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2070 	}
2071 
2072 	/*
2073 	 * Start the config command/DMA.
2074 	 */
2075 	fxp_scb_wait(sc);
2076 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2077 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2078 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2079 	/* ...and wait for it to complete. */
2080 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2081 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2082 
2083 	/*
2084 	 * Now initialize the station address. Temporarily use the TxCB
2085 	 * memory area like we did above for the config CB.
2086 	 */
2087 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2088 	cb_ias->cb_status = 0;
2089 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2090 	cb_ias->link_addr = 0xffffffff;
2091 	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2092 
2093 	/*
2094 	 * Start the IAS (Individual Address Setup) command/DMA.
2095 	 */
2096 	fxp_scb_wait(sc);
2097 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2098 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2099 	/* ...and wait for it to complete. */
2100 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2101 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2102 
2103 	/*
2104 	 * Initialize transmit control block (TxCB) list.
2105 	 */
2106 	txp = sc->fxp_desc.tx_list;
2107 	tcbp = sc->fxp_desc.cbl_list;
2108 	bzero(tcbp, FXP_TXCB_SZ);
2109 	for (i = 0; i < FXP_NTXCB; i++) {
2110 		txp[i].tx_mbuf = NULL;
2111 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2112 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2113 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2114 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2115 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2116 			tcbp[i].tbd_array_addr =
2117 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2118 		else
2119 			tcbp[i].tbd_array_addr =
2120 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2121 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2122 	}
2123 	/*
2124 	 * Set the suspend flag on the first TxCB and start the control
2125 	 * unit. It will execute the NOP and then suspend.
2126 	 */
2127 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2128 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2129 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2130 	sc->tx_queued = 1;
2131 
2132 	fxp_scb_wait(sc);
2133 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2134 
2135 	/*
2136 	 * Initialize receiver buffer area - RFA.
2137 	 */
2138 	fxp_scb_wait(sc);
2139 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2140 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2141 
2142 	/*
2143 	 * Set current media.
2144 	 */
2145 	if (sc->miibus != NULL)
2146 		mii_mediachg(device_get_softc(sc->miibus));
2147 
2148 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2149 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2150 
2151 	/*
2152 	 * Enable interrupts.
2153 	 */
2154 #ifdef DEVICE_POLLING
2155 	/*
2156 	 * ... but only do that if we are not polling. And because (presumably)
2157 	 * the default is interrupts on, we need to disable them explicitly!
2158 	 */
2159 	if (ifp->if_capenable & IFCAP_POLLING )
2160 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2161 	else
2162 #endif /* DEVICE_POLLING */
2163 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2164 
2165 	/*
2166 	 * Start stats updater.
2167 	 */
2168 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2169 }
2170 
2171 static int
2172 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2173 {
2174 
2175 	return (0);
2176 }
2177 
2178 static void
2179 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2180 {
2181 
2182 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2183 }
2184 
2185 /*
2186  * Change media according to request.
2187  */
2188 static int
2189 fxp_ifmedia_upd(struct ifnet *ifp)
2190 {
2191 	struct fxp_softc *sc = ifp->if_softc;
2192 	struct mii_data *mii;
2193 
2194 	mii = device_get_softc(sc->miibus);
2195 	FXP_LOCK(sc);
2196 	mii_mediachg(mii);
2197 	FXP_UNLOCK(sc);
2198 	return (0);
2199 }
2200 
2201 /*
2202  * Notify the world which media we're using.
2203  */
2204 static void
2205 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2206 {
2207 	struct fxp_softc *sc = ifp->if_softc;
2208 	struct mii_data *mii;
2209 
2210 	mii = device_get_softc(sc->miibus);
2211 	FXP_LOCK(sc);
2212 	mii_pollstat(mii);
2213 	ifmr->ifm_active = mii->mii_media_active;
2214 	ifmr->ifm_status = mii->mii_media_status;
2215 
2216 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2217 		sc->cu_resume_bug = 1;
2218 	else
2219 		sc->cu_resume_bug = 0;
2220 	FXP_UNLOCK(sc);
2221 }
2222 
2223 /*
2224  * Add a buffer to the end of the RFA buffer list.
2225  * Return 0 if successful, 1 for failure. A failure results in
2226  * adding the 'oldm' (if non-NULL) on to the end of the list -
2227  * tossing out its old contents and recycling it.
2228  * The RFA struct is stuck at the beginning of mbuf cluster and the
2229  * data pointer is fixed up to point just past it.
2230  */
2231 static int
2232 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2233 {
2234 	struct mbuf *m;
2235 	struct fxp_rfa *rfa, *p_rfa;
2236 	struct fxp_rx *p_rx;
2237 	bus_dmamap_t tmp_map;
2238 	int error;
2239 
2240 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2241 	if (m == NULL)
2242 		return (ENOBUFS);
2243 
2244 	/*
2245 	 * Move the data pointer up so that the incoming data packet
2246 	 * will be 32-bit aligned.
2247 	 */
2248 	m->m_data += RFA_ALIGNMENT_FUDGE;
2249 
2250 	/*
2251 	 * Get a pointer to the base of the mbuf cluster and move
2252 	 * data start past it.
2253 	 */
2254 	rfa = mtod(m, struct fxp_rfa *);
2255 	m->m_data += sc->rfa_size;
2256 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2257 
2258 	rfa->rfa_status = 0;
2259 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2260 	rfa->actual_size = 0;
2261 
2262 	/*
2263 	 * Initialize the rest of the RFA.  Note that since the RFA
2264 	 * is misaligned, we cannot store values directly.  We're thus
2265 	 * using the le32enc() function which handles endianness and
2266 	 * is also alignment-safe.
2267 	 */
2268 	le32enc(&rfa->link_addr, 0xffffffff);
2269 	le32enc(&rfa->rbd_addr, 0xffffffff);
2270 
2271 	/* Map the RFA into DMA memory. */
2272 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2273 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2274 	    &rxp->rx_addr, 0);
2275 	if (error) {
2276 		m_freem(m);
2277 		return (error);
2278 	}
2279 
2280 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2281 	tmp_map = sc->spare_map;
2282 	sc->spare_map = rxp->rx_map;
2283 	rxp->rx_map = tmp_map;
2284 	rxp->rx_mbuf = m;
2285 
2286 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2287 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2288 
2289 	/*
2290 	 * If there are other buffers already on the list, attach this
2291 	 * one to the end by fixing up the tail to point to this one.
2292 	 */
2293 	if (sc->fxp_desc.rx_head != NULL) {
2294 		p_rx = sc->fxp_desc.rx_tail;
2295 		p_rfa = (struct fxp_rfa *)
2296 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2297 		p_rx->rx_next = rxp;
2298 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2299 		p_rfa->rfa_control = 0;
2300 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2301 		    BUS_DMASYNC_PREWRITE);
2302 	} else {
2303 		rxp->rx_next = NULL;
2304 		sc->fxp_desc.rx_head = rxp;
2305 	}
2306 	sc->fxp_desc.rx_tail = rxp;
2307 	return (0);
2308 }
2309 
2310 static volatile int
2311 fxp_miibus_readreg(device_t dev, int phy, int reg)
2312 {
2313 	struct fxp_softc *sc = device_get_softc(dev);
2314 	int count = 10000;
2315 	int value;
2316 
2317 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2318 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2319 
2320 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2321 	    && count--)
2322 		DELAY(10);
2323 
2324 	if (count <= 0)
2325 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2326 
2327 	return (value & 0xffff);
2328 }
2329 
2330 static void
2331 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2332 {
2333 	struct fxp_softc *sc = device_get_softc(dev);
2334 	int count = 10000;
2335 
2336 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2337 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2338 	    (value & 0xffff));
2339 
2340 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2341 	    count--)
2342 		DELAY(10);
2343 
2344 	if (count <= 0)
2345 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2346 }
2347 
2348 static int
2349 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2350 {
2351 	struct fxp_softc *sc = ifp->if_softc;
2352 	struct ifreq *ifr = (struct ifreq *)data;
2353 	struct mii_data *mii;
2354 	int flag, mask, error = 0;
2355 
2356 	switch (command) {
2357 	case SIOCSIFFLAGS:
2358 		FXP_LOCK(sc);
2359 		if (ifp->if_flags & IFF_ALLMULTI)
2360 			sc->flags |= FXP_FLAG_ALL_MCAST;
2361 		else
2362 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2363 
2364 		/*
2365 		 * If interface is marked up and not running, then start it.
2366 		 * If it is marked down and running, stop it.
2367 		 * XXX If it's up then re-initialize it. This is so flags
2368 		 * such as IFF_PROMISC are handled.
2369 		 */
2370 		if (ifp->if_flags & IFF_UP) {
2371 			fxp_init_body(sc);
2372 		} else {
2373 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2374 				fxp_stop(sc);
2375 		}
2376 		FXP_UNLOCK(sc);
2377 		break;
2378 
2379 	case SIOCADDMULTI:
2380 	case SIOCDELMULTI:
2381 		FXP_LOCK(sc);
2382 		if (ifp->if_flags & IFF_ALLMULTI)
2383 			sc->flags |= FXP_FLAG_ALL_MCAST;
2384 		else
2385 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2386 		/*
2387 		 * Multicast list has changed; set the hardware filter
2388 		 * accordingly.
2389 		 */
2390 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2391 			fxp_mc_setup(sc);
2392 		/*
2393 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2394 		 * again rather than else {}.
2395 		 */
2396 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2397 			fxp_init_body(sc);
2398 		FXP_UNLOCK(sc);
2399 		error = 0;
2400 		break;
2401 
2402 	case SIOCSIFMEDIA:
2403 	case SIOCGIFMEDIA:
2404 		if (sc->miibus != NULL) {
2405 			mii = device_get_softc(sc->miibus);
2406                         error = ifmedia_ioctl(ifp, ifr,
2407                             &mii->mii_media, command);
2408 		} else {
2409                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2410 		}
2411 		break;
2412 
2413 	case SIOCSIFCAP:
2414 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2415 #ifdef DEVICE_POLLING
2416 		if (mask & IFCAP_POLLING) {
2417 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2418 				error = ether_poll_register(fxp_poll, ifp);
2419 				if (error)
2420 					return(error);
2421 				FXP_LOCK(sc);
2422 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2423 				    FXP_SCB_INTR_DISABLE);
2424 				ifp->if_capenable |= IFCAP_POLLING;
2425 				FXP_UNLOCK(sc);
2426 			} else {
2427 				error = ether_poll_deregister(ifp);
2428 				/* Enable interrupts in any case */
2429 				FXP_LOCK(sc);
2430 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2431 				ifp->if_capenable &= ~IFCAP_POLLING;
2432 				FXP_UNLOCK(sc);
2433 			}
2434 		}
2435 #endif
2436 		if (mask & IFCAP_VLAN_MTU) {
2437 			FXP_LOCK(sc);
2438 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2439 			if (sc->revision != FXP_REV_82557)
2440 				flag = FXP_FLAG_LONG_PKT_EN;
2441 			else /* a hack to get long frames on the old chip */
2442 				flag = FXP_FLAG_SAVE_BAD;
2443 			sc->flags ^= flag;
2444 			if (ifp->if_flags & IFF_UP)
2445 				fxp_init_body(sc);
2446 			FXP_UNLOCK(sc);
2447 		}
2448 		break;
2449 
2450 	default:
2451 		error = ether_ioctl(ifp, command, data);
2452 	}
2453 	return (error);
2454 }
2455 
2456 /*
2457  * Fill in the multicast address list and return number of entries.
2458  */
2459 static int
2460 fxp_mc_addrs(struct fxp_softc *sc)
2461 {
2462 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2463 	struct ifnet *ifp = sc->ifp;
2464 	struct ifmultiaddr *ifma;
2465 	int nmcasts;
2466 
2467 	nmcasts = 0;
2468 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2469 		IF_ADDR_LOCK(ifp);
2470 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2471 			if (ifma->ifma_addr->sa_family != AF_LINK)
2472 				continue;
2473 			if (nmcasts >= MAXMCADDR) {
2474 				sc->flags |= FXP_FLAG_ALL_MCAST;
2475 				nmcasts = 0;
2476 				break;
2477 			}
2478 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2479 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2480 			nmcasts++;
2481 		}
2482 		IF_ADDR_UNLOCK(ifp);
2483 	}
2484 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2485 	return (nmcasts);
2486 }
2487 
2488 /*
2489  * Program the multicast filter.
2490  *
2491  * We have an artificial restriction that the multicast setup command
2492  * must be the first command in the chain, so we take steps to ensure
2493  * this. By requiring this, it allows us to keep up the performance of
2494  * the pre-initialized command ring (esp. link pointers) by not actually
2495  * inserting the mcsetup command in the ring - i.e. its link pointer
2496  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2497  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2498  * lead into the regular TxCB ring when it completes.
2499  *
2500  * This function must be called at splimp.
2501  */
2502 static void
2503 fxp_mc_setup(struct fxp_softc *sc)
2504 {
2505 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2506 	struct ifnet *ifp = sc->ifp;
2507 	struct fxp_tx *txp;
2508 	int count;
2509 
2510 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2511 	/*
2512 	 * If there are queued commands, we must wait until they are all
2513 	 * completed. If we are already waiting, then add a NOP command
2514 	 * with interrupt option so that we're notified when all commands
2515 	 * have been completed - fxp_start() ensures that no additional
2516 	 * TX commands will be added when need_mcsetup is true.
2517 	 */
2518 	if (sc->tx_queued) {
2519 		/*
2520 		 * need_mcsetup will be true if we are already waiting for the
2521 		 * NOP command to be completed (see below). In this case, bail.
2522 		 */
2523 		if (sc->need_mcsetup)
2524 			return;
2525 		sc->need_mcsetup = 1;
2526 
2527 		/*
2528 		 * Add a NOP command with interrupt so that we are notified
2529 		 * when all TX commands have been processed.
2530 		 */
2531 		txp = sc->fxp_desc.tx_last->tx_next;
2532 		txp->tx_mbuf = NULL;
2533 		txp->tx_cb->cb_status = 0;
2534 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2535 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2536 		/*
2537 		 * Advance the end of list forward.
2538 		 */
2539 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2540 		    htole16(~FXP_CB_COMMAND_S);
2541 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2542 		sc->fxp_desc.tx_last = txp;
2543 		sc->tx_queued++;
2544 		/*
2545 		 * Issue a resume in case the CU has just suspended.
2546 		 */
2547 		fxp_scb_wait(sc);
2548 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2549 		/*
2550 		 * Set a 5 second timer just in case we don't hear from the
2551 		 * card again.
2552 		 */
2553 		ifp->if_timer = 5;
2554 
2555 		return;
2556 	}
2557 	sc->need_mcsetup = 0;
2558 
2559 	/*
2560 	 * Initialize multicast setup descriptor.
2561 	 */
2562 	mcsp->cb_status = 0;
2563 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2564 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2565 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2566 	txp = &sc->fxp_desc.mcs_tx;
2567 	txp->tx_mbuf = NULL;
2568 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2569 	txp->tx_next = sc->fxp_desc.tx_list;
2570 	(void) fxp_mc_addrs(sc);
2571 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2572 	sc->tx_queued = 1;
2573 
2574 	/*
2575 	 * Wait until command unit is not active. This should never
2576 	 * be the case when nothing is queued, but make sure anyway.
2577 	 */
2578 	count = 100;
2579 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2580 	    FXP_SCB_CUS_ACTIVE && --count)
2581 		DELAY(10);
2582 	if (count == 0) {
2583 		device_printf(sc->dev, "command queue timeout\n");
2584 		return;
2585 	}
2586 
2587 	/*
2588 	 * Start the multicast setup command.
2589 	 */
2590 	fxp_scb_wait(sc);
2591 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2592 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2593 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2594 
2595 	ifp->if_timer = 2;
2596 	return;
2597 }
2598 
2599 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2600 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2601 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2602 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2603 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2604 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2605 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2606 
2607 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2608 
2609 struct ucode {
2610 	uint32_t	revision;
2611 	uint32_t	*ucode;
2612 	int		length;
2613 	u_short		int_delay_offset;
2614 	u_short		bundle_max_offset;
2615 } ucode_table[] = {
2616 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2617 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2618 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2619 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2620 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2621 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2622 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2623 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2624 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2625 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2626 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2627 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2628 	{ 0, NULL, 0, 0, 0 }
2629 };
2630 
2631 static void
2632 fxp_load_ucode(struct fxp_softc *sc)
2633 {
2634 	struct ucode *uc;
2635 	struct fxp_cb_ucode *cbp;
2636 	int i;
2637 
2638 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2639 		if (sc->revision == uc->revision)
2640 			break;
2641 	if (uc->ucode == NULL)
2642 		return;
2643 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2644 	cbp->cb_status = 0;
2645 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2646 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2647 	for (i = 0; i < uc->length; i++)
2648 		cbp->ucode[i] = htole32(uc->ucode[i]);
2649 	if (uc->int_delay_offset)
2650 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2651 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2652 	if (uc->bundle_max_offset)
2653 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2654 		    htole16(sc->tunable_bundle_max);
2655 	/*
2656 	 * Download the ucode to the chip.
2657 	 */
2658 	fxp_scb_wait(sc);
2659 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2660 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2661 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2662 	/* ...and wait for it to complete. */
2663 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2664 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2665 	device_printf(sc->dev,
2666 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2667 	    sc->tunable_int_delay,
2668 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2669 	sc->flags |= FXP_FLAG_UCODE;
2670 }
2671 
2672 static int
2673 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2674 {
2675 	int error, value;
2676 
2677 	value = *(int *)arg1;
2678 	error = sysctl_handle_int(oidp, &value, 0, req);
2679 	if (error || !req->newptr)
2680 		return (error);
2681 	if (value < low || value > high)
2682 		return (EINVAL);
2683 	*(int *)arg1 = value;
2684 	return (0);
2685 }
2686 
2687 /*
2688  * Interrupt delay is expressed in microseconds, a multiplier is used
2689  * to convert this to the appropriate clock ticks before using.
2690  */
2691 static int
2692 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2693 {
2694 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2695 }
2696 
2697 static int
2698 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2699 {
2700 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2701 }
2702