xref: /freebsd/sys/dev/fxp/if_fxp.c (revision b6de9e91bd2c47efaeec72a08642f8fd99cc7b20)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/endian.h>
40 #include <sys/mbuf.h>
41 		/* #include <sys/mutex.h> */
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sysctl.h>
46 
47 #include <net/if.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 
51 #include <net/bpf.h>
52 #include <sys/sockio.h>
53 #include <sys/bus.h>
54 #include <machine/bus.h>
55 #include <sys/rman.h>
56 #include <machine/resource.h>
57 
58 #include <net/ethernet.h>
59 #include <net/if_arp.h>
60 
61 #include <machine/clock.h>	/* for DELAY */
62 
63 #include <net/if_types.h>
64 #include <net/if_vlan_var.h>
65 
66 #ifdef FXP_IP_CSUM_WAR
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <machine/in_cksum.h>
71 #endif
72 
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75 
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 
79 #include <dev/fxp/if_fxpreg.h>
80 #include <dev/fxp/if_fxpvar.h>
81 #include <dev/fxp/rcvbundl.h>
82 
83 MODULE_DEPEND(fxp, pci, 1, 1, 1);
84 MODULE_DEPEND(fxp, ether, 1, 1, 1);
85 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86 #include "miibus_if.h"
87 
88 /*
89  * NOTE!  On the Alpha, we have an alignment constraint.  The
90  * card DMAs the packet immediately following the RFA.  However,
91  * the first thing in the packet is a 14-byte Ethernet header.
92  * This means that the packet is misaligned.  To compensate,
93  * we actually offset the RFA 2 bytes into the cluster.  This
94  * alignes the packet after the Ethernet header at a 32-bit
95  * boundary.  HOWEVER!  This means that the RFA is misaligned!
96  */
97 #define	RFA_ALIGNMENT_FUDGE	2
98 
99 /*
100  * Set initial transmit threshold at 64 (512 bytes). This is
101  * increased by 64 (512 bytes) at a time, to maximum of 192
102  * (1536 bytes), if an underrun occurs.
103  */
104 static int tx_threshold = 64;
105 
106 /*
107  * The configuration byte map has several undefined fields which
108  * must be one or must be zero.  Set up a template for these bits
109  * only, (assuming a 82557 chip) leaving the actual configuration
110  * to fxp_init.
111  *
112  * See struct fxp_cb_config for the bit definitions.
113  */
114 static u_char fxp_cb_config_template[] = {
115 	0x0, 0x0,		/* cb_status */
116 	0x0, 0x0,		/* cb_command */
117 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118 	0x0,	/*  0 */
119 	0x0,	/*  1 */
120 	0x0,	/*  2 */
121 	0x0,	/*  3 */
122 	0x0,	/*  4 */
123 	0x0,	/*  5 */
124 	0x32,	/*  6 */
125 	0x0,	/*  7 */
126 	0x0,	/*  8 */
127 	0x0,	/*  9 */
128 	0x6,	/* 10 */
129 	0x0,	/* 11 */
130 	0x0,	/* 12 */
131 	0x0,	/* 13 */
132 	0xf2,	/* 14 */
133 	0x48,	/* 15 */
134 	0x0,	/* 16 */
135 	0x40,	/* 17 */
136 	0xf0,	/* 18 */
137 	0x0,	/* 19 */
138 	0x3f,	/* 20 */
139 	0x5	/* 21 */
140 };
141 
142 struct fxp_ident {
143 	uint16_t	devid;
144 	int16_t		revid;		/* -1 matches anything */
145 	char 		*name;
146 };
147 
148 /*
149  * Claim various Intel PCI device identifiers for this driver.  The
150  * sub-vendor and sub-device field are extensively used to identify
151  * particular variants, but we don't currently differentiate between
152  * them.
153  */
154 static struct fxp_ident fxp_ident_table[] = {
155     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172     { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174     { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
175     { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
176     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
177     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
178     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
179     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
180     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
181     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
182     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
183     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
184     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
185     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
186     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
187     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
188     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
189     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
190     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
191     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
192     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
193     { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
194     { 0,	-1,	NULL },
195 };
196 
197 #ifdef FXP_IP_CSUM_WAR
198 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
199 #else
200 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
201 #endif
202 
203 static int		fxp_probe(device_t dev);
204 static int		fxp_attach(device_t dev);
205 static int		fxp_detach(device_t dev);
206 static int		fxp_shutdown(device_t dev);
207 static int		fxp_suspend(device_t dev);
208 static int		fxp_resume(device_t dev);
209 
210 static void		fxp_intr(void *xsc);
211 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
212 			    uint8_t statack, int count);
213 static void 		fxp_init(void *xsc);
214 static void 		fxp_init_body(struct fxp_softc *sc);
215 static void 		fxp_tick(void *xsc);
216 static void 		fxp_start(struct ifnet *ifp);
217 static void 		fxp_start_body(struct ifnet *ifp);
218 static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
219 static void		fxp_stop(struct fxp_softc *sc);
220 static void 		fxp_release(struct fxp_softc *sc);
221 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
222 			    caddr_t data);
223 static void 		fxp_watchdog(struct ifnet *ifp);
224 static int		fxp_add_rfabuf(struct fxp_softc *sc,
225     			    struct fxp_rx *rxp);
226 static int		fxp_mc_addrs(struct fxp_softc *sc);
227 static void		fxp_mc_setup(struct fxp_softc *sc);
228 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
229 			    int autosize);
230 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
231 			    uint16_t data);
232 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
233 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
234 			    int offset, int words);
235 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
236 			    int offset, int words);
237 static int		fxp_ifmedia_upd(struct ifnet *ifp);
238 static void		fxp_ifmedia_sts(struct ifnet *ifp,
239 			    struct ifmediareq *ifmr);
240 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
241 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
242 			    struct ifmediareq *ifmr);
243 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
244 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
245 			    int value);
246 static void		fxp_load_ucode(struct fxp_softc *sc);
247 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
248 			    int low, int high);
249 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
250 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
251 static void 		fxp_scb_wait(struct fxp_softc *sc);
252 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
253 static void		fxp_dma_wait(struct fxp_softc *sc,
254     			    volatile uint16_t *status, bus_dma_tag_t dmat,
255 			    bus_dmamap_t map);
256 
257 static device_method_t fxp_methods[] = {
258 	/* Device interface */
259 	DEVMETHOD(device_probe,		fxp_probe),
260 	DEVMETHOD(device_attach,	fxp_attach),
261 	DEVMETHOD(device_detach,	fxp_detach),
262 	DEVMETHOD(device_shutdown,	fxp_shutdown),
263 	DEVMETHOD(device_suspend,	fxp_suspend),
264 	DEVMETHOD(device_resume,	fxp_resume),
265 
266 	/* MII interface */
267 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
268 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
269 
270 	{ 0, 0 }
271 };
272 
273 static driver_t fxp_driver = {
274 	"fxp",
275 	fxp_methods,
276 	sizeof(struct fxp_softc),
277 };
278 
279 static devclass_t fxp_devclass;
280 
281 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
282 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
283 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
284 
285 static struct resource_spec fxp_res_spec_mem[] = {
286 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
287 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
288 	{ -1, 0 }
289 };
290 
291 static struct resource_spec fxp_res_spec_io[] = {
292 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
293 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
294 	{ -1, 0 }
295 };
296 
297 /*
298  * Wait for the previous command to be accepted (but not necessarily
299  * completed).
300  */
301 static void
302 fxp_scb_wait(struct fxp_softc *sc)
303 {
304 	union {
305 		uint16_t w;
306 		uint8_t b[2];
307 	} flowctl;
308 	int i = 10000;
309 
310 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
311 		DELAY(2);
312 	if (i == 0) {
313 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
314 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
315 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
316 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
317 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
318 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
319 	}
320 }
321 
322 static void
323 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
324 {
325 
326 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
327 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
328 		fxp_scb_wait(sc);
329 	}
330 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
331 }
332 
333 static void
334 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
335     bus_dma_tag_t dmat, bus_dmamap_t map)
336 {
337 	int i = 10000;
338 
339 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
340 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
341 		DELAY(2);
342 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
343 	}
344 	if (i == 0)
345 		device_printf(sc->dev, "DMA timeout\n");
346 }
347 
348 /*
349  * Return identification string if this device is ours.
350  */
351 static int
352 fxp_probe(device_t dev)
353 {
354 	uint16_t devid;
355 	uint8_t revid;
356 	struct fxp_ident *ident;
357 
358 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
359 		devid = pci_get_device(dev);
360 		revid = pci_get_revid(dev);
361 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
362 			if (ident->devid == devid &&
363 			    (ident->revid == revid || ident->revid == -1)) {
364 				device_set_desc(dev, ident->name);
365 				return (BUS_PROBE_DEFAULT);
366 			}
367 		}
368 	}
369 	return (ENXIO);
370 }
371 
372 static void
373 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
374 {
375 	uint32_t *addr;
376 
377 	if (error)
378 		return;
379 
380 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
381 	addr = arg;
382 	*addr = segs->ds_addr;
383 }
384 
385 static int
386 fxp_attach(device_t dev)
387 {
388 	struct fxp_softc *sc;
389 	struct fxp_cb_tx *tcbp;
390 	struct fxp_tx *txp;
391 	struct fxp_rx *rxp;
392 	struct ifnet *ifp;
393 	uint32_t val;
394 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
395 	u_char eaddr[ETHER_ADDR_LEN];
396 	int i, prefer_iomap;
397 	int error;
398 
399 	error = 0;
400 	sc = device_get_softc(dev);
401 	sc->dev = dev;
402 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
403 	    MTX_DEF);
404 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
405 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
406 	    fxp_serial_ifmedia_sts);
407 
408 	ifp = sc->ifp = if_alloc(IFT_ETHER);
409 	if (ifp == NULL) {
410 		device_printf(dev, "can not if_alloc()\n");
411 		error = ENOSPC;
412 		goto fail;
413 	}
414 
415 	/*
416 	 * Enable bus mastering.
417 	 */
418 	pci_enable_busmaster(dev);
419 	val = pci_read_config(dev, PCIR_COMMAND, 2);
420 
421 	/*
422 	 * Figure out which we should try first - memory mapping or i/o mapping?
423 	 * We default to memory mapping. Then we accept an override from the
424 	 * command line. Then we check to see which one is enabled.
425 	 */
426 	prefer_iomap = 0;
427 	resource_int_value(device_get_name(dev), device_get_unit(dev),
428 	    "prefer_iomap", &prefer_iomap);
429 	if (prefer_iomap)
430 		sc->fxp_spec = fxp_res_spec_io;
431 	else
432 		sc->fxp_spec = fxp_res_spec_mem;
433 
434 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
435 	if (error) {
436 		if (sc->fxp_spec == fxp_res_spec_mem)
437 			sc->fxp_spec = fxp_res_spec_io;
438 		else
439 			sc->fxp_spec = fxp_res_spec_mem;
440 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
441 	}
442 	if (error) {
443 		device_printf(dev, "could not allocate resources\n");
444 		error = ENXIO;
445 		goto fail;
446 	}
447 
448 	if (bootverbose) {
449 		device_printf(dev, "using %s space register mapping\n",
450 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
451 	}
452 
453 	/*
454 	 * Reset to a stable state.
455 	 */
456 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
457 	DELAY(10);
458 
459 	/*
460 	 * Find out how large of an SEEPROM we have.
461 	 */
462 	fxp_autosize_eeprom(sc);
463 
464 	/*
465 	 * Find out the chip revision; lump all 82557 revs together.
466 	 */
467 	fxp_read_eeprom(sc, &data, 5, 1);
468 	if ((data >> 8) == 1)
469 		sc->revision = FXP_REV_82557;
470 	else
471 		sc->revision = pci_get_revid(dev);
472 
473 	/*
474 	 * Determine whether we must use the 503 serial interface.
475 	 */
476 	fxp_read_eeprom(sc, &data, 6, 1);
477 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
478 	    && (data & FXP_PHY_SERIAL_ONLY))
479 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
480 
481 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
482 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
483 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
484 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
485 	    "FXP driver receive interrupt microcode bundling delay");
486 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
487 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
488 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
489 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
490 	    "FXP driver receive interrupt microcode bundle size limit");
491 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
492 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
493 	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
494 	    "FXP RNR events");
495 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
496 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
497 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
498 	    "FXP flow control disabled");
499 
500 	/*
501 	 * Pull in device tunables.
502 	 */
503 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
504 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
505 	sc->tunable_noflow = 1;
506 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
507 	    "int_delay", &sc->tunable_int_delay);
508 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
509 	    "bundle_max", &sc->tunable_bundle_max);
510 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
511 	    "noflow", &sc->tunable_noflow);
512 	sc->rnr = 0;
513 
514 	/*
515 	 * Enable workarounds for certain chip revision deficiencies.
516 	 *
517 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
518 	 * some systems based a normal 82559 design, have a defect where
519 	 * the chip can cause a PCI protocol violation if it receives
520 	 * a CU_RESUME command when it is entering the IDLE state.  The
521 	 * workaround is to disable Dynamic Standby Mode, so the chip never
522 	 * deasserts CLKRUN#, and always remains in an active state.
523 	 *
524 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
525 	 */
526 	i = pci_get_device(dev);
527 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
528 	    sc->revision >= FXP_REV_82559_A0) {
529 		fxp_read_eeprom(sc, &data, 10, 1);
530 		if (data & 0x02) {			/* STB enable */
531 			uint16_t cksum;
532 			int i;
533 
534 			device_printf(dev,
535 			    "Disabling dynamic standby mode in EEPROM\n");
536 			data &= ~0x02;
537 			fxp_write_eeprom(sc, &data, 10, 1);
538 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
539 			cksum = 0;
540 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
541 				fxp_read_eeprom(sc, &data, i, 1);
542 				cksum += data;
543 			}
544 			i = (1 << sc->eeprom_size) - 1;
545 			cksum = 0xBABA - cksum;
546 			fxp_read_eeprom(sc, &data, i, 1);
547 			fxp_write_eeprom(sc, &cksum, i, 1);
548 			device_printf(dev,
549 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
550 			    i, data, cksum);
551 #if 1
552 			/*
553 			 * If the user elects to continue, try the software
554 			 * workaround, as it is better than nothing.
555 			 */
556 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
557 #endif
558 		}
559 	}
560 
561 	/*
562 	 * If we are not a 82557 chip, we can enable extended features.
563 	 */
564 	if (sc->revision != FXP_REV_82557) {
565 		/*
566 		 * If MWI is enabled in the PCI configuration, and there
567 		 * is a valid cacheline size (8 or 16 dwords), then tell
568 		 * the board to turn on MWI.
569 		 */
570 		if (val & PCIM_CMD_MWRICEN &&
571 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
572 			sc->flags |= FXP_FLAG_MWI_ENABLE;
573 
574 		/* turn on the extended TxCB feature */
575 		sc->flags |= FXP_FLAG_EXT_TXCB;
576 
577 		/* enable reception of long frames for VLAN */
578 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
579 	} else {
580 		/* a hack to get long VLAN frames on a 82557 */
581 		sc->flags |= FXP_FLAG_SAVE_BAD;
582 	}
583 
584 	/*
585 	 * Enable use of extended RFDs and TCBs for 82550
586 	 * and later chips. Note: we need extended TXCB support
587 	 * too, but that's already enabled by the code above.
588 	 * Be careful to do this only on the right devices.
589 	 */
590 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
591 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
592 	    || sc->revision == FXP_REV_82551_10) {
593 		sc->rfa_size = sizeof (struct fxp_rfa);
594 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
595 		sc->flags |= FXP_FLAG_EXT_RFA;
596 	} else {
597 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
598 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
599 	}
600 
601 	/*
602 	 * Allocate DMA tags and DMA safe memory.
603 	 */
604 	sc->maxtxseg = FXP_NTXSEG;
605 	if (sc->flags & FXP_FLAG_EXT_RFA)
606 		sc->maxtxseg--;
607 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
608 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
609 	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
610 	    &sc->fxp_mtag);
611 	if (error) {
612 		device_printf(dev, "could not allocate dma tag\n");
613 		goto fail;
614 	}
615 
616 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
617 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
618 	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
619 	    &sc->fxp_stag);
620 	if (error) {
621 		device_printf(dev, "could not allocate dma tag\n");
622 		goto fail;
623 	}
624 
625 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
626 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
627 	if (error)
628 		goto fail;
629 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
630 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
631 	if (error) {
632 		device_printf(dev, "could not map the stats buffer\n");
633 		goto fail;
634 	}
635 
636 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
637 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
638 	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
639 	if (error) {
640 		device_printf(dev, "could not allocate dma tag\n");
641 		goto fail;
642 	}
643 
644 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
645 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
646 	if (error)
647 		goto fail;
648 
649 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
650 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
651 	    &sc->fxp_desc.cbl_addr, 0);
652 	if (error) {
653 		device_printf(dev, "could not map DMA memory\n");
654 		goto fail;
655 	}
656 
657 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
658 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
659 	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
660 	    &sc->mcs_tag);
661 	if (error) {
662 		device_printf(dev, "could not allocate dma tag\n");
663 		goto fail;
664 	}
665 
666 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
667 	    BUS_DMA_NOWAIT, &sc->mcs_map);
668 	if (error)
669 		goto fail;
670 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
671 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
672 	if (error) {
673 		device_printf(dev, "can't map the multicast setup command\n");
674 		goto fail;
675 	}
676 
677 	/*
678 	 * Pre-allocate the TX DMA maps and setup the pointers to
679 	 * the TX command blocks.
680 	 */
681 	txp = sc->fxp_desc.tx_list;
682 	tcbp = sc->fxp_desc.cbl_list;
683 	for (i = 0; i < FXP_NTXCB; i++) {
684 		txp[i].tx_cb = tcbp + i;
685 		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
686 		if (error) {
687 			device_printf(dev, "can't create DMA map for TX\n");
688 			goto fail;
689 		}
690 	}
691 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
692 	if (error) {
693 		device_printf(dev, "can't create spare DMA map\n");
694 		goto fail;
695 	}
696 
697 	/*
698 	 * Pre-allocate our receive buffers.
699 	 */
700 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
701 	for (i = 0; i < FXP_NRFABUFS; i++) {
702 		rxp = &sc->fxp_desc.rx_list[i];
703 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
704 		if (error) {
705 			device_printf(dev, "can't create DMA map for RX\n");
706 			goto fail;
707 		}
708 		if (fxp_add_rfabuf(sc, rxp) != 0) {
709 			error = ENOMEM;
710 			goto fail;
711 		}
712 	}
713 
714 	/*
715 	 * Read MAC address.
716 	 */
717 	fxp_read_eeprom(sc, myea, 0, 3);
718 	eaddr[0] = myea[0] & 0xff;
719 	eaddr[1] = myea[0] >> 8;
720 	eaddr[2] = myea[1] & 0xff;
721 	eaddr[3] = myea[1] >> 8;
722 	eaddr[4] = myea[2] & 0xff;
723 	eaddr[5] = myea[2] >> 8;
724 	if (bootverbose) {
725 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
726 		    pci_get_vendor(dev), pci_get_device(dev),
727 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
728 		    pci_get_revid(dev));
729 		fxp_read_eeprom(sc, &data, 10, 1);
730 		device_printf(dev, "Dynamic Standby mode is %s\n",
731 		    data & 0x02 ? "enabled" : "disabled");
732 	}
733 
734 	/*
735 	 * If this is only a 10Mbps device, then there is no MII, and
736 	 * the PHY will use a serial interface instead.
737 	 *
738 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
739 	 * doesn't have a programming interface of any sort.  The
740 	 * media is sensed automatically based on how the link partner
741 	 * is configured.  This is, in essence, manual configuration.
742 	 */
743 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
744 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
745 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
746 	} else {
747 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
748 		    fxp_ifmedia_sts)) {
749 	                device_printf(dev, "MII without any PHY!\n");
750 			error = ENXIO;
751 			goto fail;
752 		}
753 	}
754 
755 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
756 	ifp->if_baudrate = 100000000;
757 	ifp->if_init = fxp_init;
758 	ifp->if_softc = sc;
759 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
760 	ifp->if_ioctl = fxp_ioctl;
761 	ifp->if_start = fxp_start;
762 	ifp->if_watchdog = fxp_watchdog;
763 
764 	ifp->if_capabilities = ifp->if_capenable = 0;
765 
766 	/* Enable checksum offload for 82550 or better chips */
767 	if (sc->flags & FXP_FLAG_EXT_RFA) {
768 		ifp->if_hwassist = FXP_CSUM_FEATURES;
769 		ifp->if_capabilities |= IFCAP_HWCSUM;
770 		ifp->if_capenable |= IFCAP_HWCSUM;
771 	}
772 
773 #ifdef DEVICE_POLLING
774 	/* Inform the world we support polling. */
775 	ifp->if_capabilities |= IFCAP_POLLING;
776 	ifp->if_capenable |= IFCAP_POLLING;
777 #endif
778 
779 	/*
780 	 * Attach the interface.
781 	 */
782 	ether_ifattach(ifp, eaddr);
783 
784 	/*
785 	 * Tell the upper layer(s) we support long frames.
786 	 * Must appear after the call to ether_ifattach() because
787 	 * ether_ifattach() sets ifi_hdrlen to the default value.
788 	 */
789 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
790 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
791 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
792 
793 	/*
794 	 * Let the system queue as many packets as we have available
795 	 * TX descriptors.
796 	 */
797 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
798 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
799 	IFQ_SET_READY(&ifp->if_snd);
800 
801 	/*
802 	 * Hook our interrupt after all initialization is complete.
803 	 */
804 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
805 			       fxp_intr, sc, &sc->ih);
806 	if (error) {
807 		device_printf(dev, "could not setup irq\n");
808 		ether_ifdetach(sc->ifp);
809 		goto fail;
810 	}
811 
812 fail:
813 	if (error)
814 		fxp_release(sc);
815 	return (error);
816 }
817 
818 /*
819  * Release all resources.  The softc lock should not be held and the
820  * interrupt should already be torn down.
821  */
822 static void
823 fxp_release(struct fxp_softc *sc)
824 {
825 	struct fxp_rx *rxp;
826 	struct fxp_tx *txp;
827 	int i;
828 
829 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
830 	KASSERT(sc->ih == NULL,
831 	    ("fxp_release() called with intr handle still active"));
832 	if (sc->miibus)
833 		device_delete_child(sc->dev, sc->miibus);
834 	bus_generic_detach(sc->dev);
835 	ifmedia_removeall(&sc->sc_media);
836 	if (sc->fxp_desc.cbl_list) {
837 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
838 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
839 		    sc->cbl_map);
840 	}
841 	if (sc->fxp_stats) {
842 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
843 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
844 	}
845 	if (sc->mcsp) {
846 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
847 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
848 	}
849 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
850 	if (sc->fxp_mtag) {
851 		for (i = 0; i < FXP_NRFABUFS; i++) {
852 			rxp = &sc->fxp_desc.rx_list[i];
853 			if (rxp->rx_mbuf != NULL) {
854 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
855 				    BUS_DMASYNC_POSTREAD);
856 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
857 				m_freem(rxp->rx_mbuf);
858 			}
859 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
860 		}
861 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
862 		for (i = 0; i < FXP_NTXCB; i++) {
863 			txp = &sc->fxp_desc.tx_list[i];
864 			if (txp->tx_mbuf != NULL) {
865 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
866 				    BUS_DMASYNC_POSTWRITE);
867 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
868 				m_freem(txp->tx_mbuf);
869 			}
870 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
871 		}
872 		bus_dma_tag_destroy(sc->fxp_mtag);
873 	}
874 	if (sc->fxp_stag)
875 		bus_dma_tag_destroy(sc->fxp_stag);
876 	if (sc->cbl_tag)
877 		bus_dma_tag_destroy(sc->cbl_tag);
878 	if (sc->mcs_tag)
879 		bus_dma_tag_destroy(sc->mcs_tag);
880 	if (sc->ifp)
881 		if_free(sc->ifp);
882 
883 	mtx_destroy(&sc->sc_mtx);
884 }
885 
886 /*
887  * Detach interface.
888  */
889 static int
890 fxp_detach(device_t dev)
891 {
892 	struct fxp_softc *sc = device_get_softc(dev);
893 
894 	FXP_LOCK(sc);
895 	sc->suspended = 1;	/* Do same thing as we do for suspend */
896 	/*
897 	 * Stop DMA and drop transmit queue, but disable interrupts first.
898 	 */
899 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
900 	fxp_stop(sc);
901 	FXP_UNLOCK(sc);
902 	callout_drain(&sc->stat_ch);
903 
904 	/*
905 	 * Close down routes etc.
906 	 */
907 	ether_ifdetach(sc->ifp);
908 
909 	/*
910 	 * Unhook interrupt before dropping lock. This is to prevent
911 	 * races with fxp_intr().
912 	 */
913 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
914 	sc->ih = NULL;
915 
916 	/* Release our allocated resources. */
917 	fxp_release(sc);
918 	return (0);
919 }
920 
921 /*
922  * Device shutdown routine. Called at system shutdown after sync. The
923  * main purpose of this routine is to shut off receiver DMA so that
924  * kernel memory doesn't get clobbered during warmboot.
925  */
926 static int
927 fxp_shutdown(device_t dev)
928 {
929 	struct fxp_softc *sc = device_get_softc(dev);
930 
931 	/*
932 	 * Make sure that DMA is disabled prior to reboot. Not doing
933 	 * do could allow DMA to corrupt kernel memory during the
934 	 * reboot before the driver initializes.
935 	 */
936 	FXP_LOCK(sc);
937 	fxp_stop(sc);
938 	FXP_UNLOCK(sc);
939 	return (0);
940 }
941 
942 /*
943  * Device suspend routine.  Stop the interface and save some PCI
944  * settings in case the BIOS doesn't restore them properly on
945  * resume.
946  */
947 static int
948 fxp_suspend(device_t dev)
949 {
950 	struct fxp_softc *sc = device_get_softc(dev);
951 
952 	FXP_LOCK(sc);
953 
954 	fxp_stop(sc);
955 
956 	sc->suspended = 1;
957 
958 	FXP_UNLOCK(sc);
959 	return (0);
960 }
961 
962 /*
963  * Device resume routine. re-enable busmastering, and restart the interface if
964  * appropriate.
965  */
966 static int
967 fxp_resume(device_t dev)
968 {
969 	struct fxp_softc *sc = device_get_softc(dev);
970 	struct ifnet *ifp = sc->ifp;
971 
972 	FXP_LOCK(sc);
973 
974 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
975 	DELAY(10);
976 
977 	/* reinitialize interface if necessary */
978 	if (ifp->if_flags & IFF_UP)
979 		fxp_init_body(sc);
980 
981 	sc->suspended = 0;
982 
983 	FXP_UNLOCK(sc);
984 	return (0);
985 }
986 
987 static void
988 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
989 {
990 	uint16_t reg;
991 	int x;
992 
993 	/*
994 	 * Shift in data.
995 	 */
996 	for (x = 1 << (length - 1); x; x >>= 1) {
997 		if (data & x)
998 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
999 		else
1000 			reg = FXP_EEPROM_EECS;
1001 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1002 		DELAY(1);
1003 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1004 		DELAY(1);
1005 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1006 		DELAY(1);
1007 	}
1008 }
1009 
1010 /*
1011  * Read from the serial EEPROM. Basically, you manually shift in
1012  * the read opcode (one bit at a time) and then shift in the address,
1013  * and then you shift out the data (all of this one bit at a time).
1014  * The word size is 16 bits, so you have to provide the address for
1015  * every 16 bits of data.
1016  */
1017 static uint16_t
1018 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1019 {
1020 	uint16_t reg, data;
1021 	int x;
1022 
1023 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1024 	/*
1025 	 * Shift in read opcode.
1026 	 */
1027 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1028 	/*
1029 	 * Shift in address.
1030 	 */
1031 	data = 0;
1032 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1033 		if (offset & x)
1034 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1035 		else
1036 			reg = FXP_EEPROM_EECS;
1037 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1038 		DELAY(1);
1039 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1040 		DELAY(1);
1041 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1042 		DELAY(1);
1043 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1044 		data++;
1045 		if (autosize && reg == 0) {
1046 			sc->eeprom_size = data;
1047 			break;
1048 		}
1049 	}
1050 	/*
1051 	 * Shift out data.
1052 	 */
1053 	data = 0;
1054 	reg = FXP_EEPROM_EECS;
1055 	for (x = 1 << 15; x; x >>= 1) {
1056 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1057 		DELAY(1);
1058 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1059 			data |= x;
1060 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1061 		DELAY(1);
1062 	}
1063 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1064 	DELAY(1);
1065 
1066 	return (data);
1067 }
1068 
1069 static void
1070 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1071 {
1072 	int i;
1073 
1074 	/*
1075 	 * Erase/write enable.
1076 	 */
1077 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1078 	fxp_eeprom_shiftin(sc, 0x4, 3);
1079 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1080 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1081 	DELAY(1);
1082 	/*
1083 	 * Shift in write opcode, address, data.
1084 	 */
1085 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1086 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1087 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1088 	fxp_eeprom_shiftin(sc, data, 16);
1089 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1090 	DELAY(1);
1091 	/*
1092 	 * Wait for EEPROM to finish up.
1093 	 */
1094 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1095 	DELAY(1);
1096 	for (i = 0; i < 1000; i++) {
1097 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1098 			break;
1099 		DELAY(50);
1100 	}
1101 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1102 	DELAY(1);
1103 	/*
1104 	 * Erase/write disable.
1105 	 */
1106 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1107 	fxp_eeprom_shiftin(sc, 0x4, 3);
1108 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1109 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1110 	DELAY(1);
1111 }
1112 
1113 /*
1114  * From NetBSD:
1115  *
1116  * Figure out EEPROM size.
1117  *
1118  * 559's can have either 64-word or 256-word EEPROMs, the 558
1119  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1120  * talks about the existance of 16 to 256 word EEPROMs.
1121  *
1122  * The only known sizes are 64 and 256, where the 256 version is used
1123  * by CardBus cards to store CIS information.
1124  *
1125  * The address is shifted in msb-to-lsb, and after the last
1126  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1127  * after which follows the actual data. We try to detect this zero, by
1128  * probing the data-out bit in the EEPROM control register just after
1129  * having shifted in a bit. If the bit is zero, we assume we've
1130  * shifted enough address bits. The data-out should be tri-state,
1131  * before this, which should translate to a logical one.
1132  */
1133 static void
1134 fxp_autosize_eeprom(struct fxp_softc *sc)
1135 {
1136 
1137 	/* guess maximum size of 256 words */
1138 	sc->eeprom_size = 8;
1139 
1140 	/* autosize */
1141 	(void) fxp_eeprom_getword(sc, 0, 1);
1142 }
1143 
1144 static void
1145 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1146 {
1147 	int i;
1148 
1149 	for (i = 0; i < words; i++)
1150 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1151 }
1152 
1153 static void
1154 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1155 {
1156 	int i;
1157 
1158 	for (i = 0; i < words; i++)
1159 		fxp_eeprom_putword(sc, offset + i, data[i]);
1160 }
1161 
1162 /*
1163  * Grab the softc lock and call the real fxp_start_body() routine
1164  */
1165 static void
1166 fxp_start(struct ifnet *ifp)
1167 {
1168 	struct fxp_softc *sc = ifp->if_softc;
1169 
1170 	FXP_LOCK(sc);
1171 	fxp_start_body(ifp);
1172 	FXP_UNLOCK(sc);
1173 }
1174 
1175 /*
1176  * Start packet transmission on the interface.
1177  * This routine must be called with the softc lock held, and is an
1178  * internal entry point only.
1179  */
1180 static void
1181 fxp_start_body(struct ifnet *ifp)
1182 {
1183 	struct fxp_softc *sc = ifp->if_softc;
1184 	struct mbuf *mb_head;
1185 	int error, txqueued;
1186 
1187 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1188 
1189 	/*
1190 	 * See if we need to suspend xmit until the multicast filter
1191 	 * has been reprogrammed (which can only be done at the head
1192 	 * of the command chain).
1193 	 */
1194 	if (sc->need_mcsetup)
1195 		return;
1196 
1197 	/*
1198 	 * We're finished if there is nothing more to add to the list or if
1199 	 * we're all filled up with buffers to transmit.
1200 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1201 	 *       a NOP command when needed.
1202 	 */
1203 	txqueued = 0;
1204 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1205 	    sc->tx_queued < FXP_NTXCB - 1) {
1206 
1207 		/*
1208 		 * Grab a packet to transmit.
1209 		 */
1210 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1211 		if (mb_head == NULL)
1212 			break;
1213 
1214 		error = fxp_encap(sc, mb_head);
1215 		if (error)
1216 			break;
1217 		txqueued = 1;
1218 	}
1219 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1220 
1221 	/*
1222 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1223 	 * going again if suspended.
1224 	 */
1225 	if (txqueued) {
1226 		fxp_scb_wait(sc);
1227 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1228 	}
1229 }
1230 
1231 static int
1232 fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1233 {
1234 	struct ifnet *ifp;
1235 	struct mbuf *m;
1236 	struct fxp_tx *txp;
1237 	struct fxp_cb_tx *cbp;
1238 	bus_dma_segment_t segs[FXP_NTXSEG];
1239 	int chainlen, error, i, nseg;
1240 
1241 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1242 	ifp = sc->ifp;
1243 
1244 	/*
1245 	 * Get pointer to next available tx desc.
1246 	 */
1247 	txp = sc->fxp_desc.tx_last->tx_next;
1248 
1249 	/*
1250 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1251 	 * Ethernet Controller Family Open Source Software
1252 	 * Developer Manual says:
1253 	 *   Using software parsing is only allowed with legal
1254 	 *   TCP/IP or UDP/IP packets.
1255 	 *   ...
1256 	 *   For all other datagrams, hardware parsing must
1257 	 *   be used.
1258 	 * Software parsing appears to truncate ICMP and
1259 	 * fragmented UDP packets that contain one to three
1260 	 * bytes in the second (and final) mbuf of the packet.
1261 	 */
1262 	if (sc->flags & FXP_FLAG_EXT_RFA)
1263 		txp->tx_cb->ipcb_ip_activation_high =
1264 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1265 
1266 	/*
1267 	 * Deal with TCP/IP checksum offload. Note that
1268 	 * in order for TCP checksum offload to work,
1269 	 * the pseudo header checksum must have already
1270 	 * been computed and stored in the checksum field
1271 	 * in the TCP header. The stack should have
1272 	 * already done this for us.
1273 	 */
1274 	if (m_head->m_pkthdr.csum_flags) {
1275 		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1276 			txp->tx_cb->ipcb_ip_schedule =
1277 			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1278 			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1279 				txp->tx_cb->ipcb_ip_schedule |=
1280 				    FXP_IPCB_TCP_PACKET;
1281 		}
1282 
1283 #ifdef FXP_IP_CSUM_WAR
1284 		/*
1285 		 * XXX The 82550 chip appears to have trouble
1286 		 * dealing with IP header checksums in very small
1287 		 * datagrams, namely fragments from 1 to 3 bytes
1288 		 * in size. For example, say you want to transmit
1289 		 * a UDP packet of 1473 bytes. The packet will be
1290 		 * fragmented over two IP datagrams, the latter
1291 		 * containing only one byte of data. The 82550 will
1292 		 * botch the header checksum on the 1-byte fragment.
1293 		 * As long as the datagram contains 4 or more bytes
1294 		 * of data, you're ok.
1295 		 *
1296                  * The following code attempts to work around this
1297 		 * problem: if the datagram is less than 38 bytes
1298 		 * in size (14 bytes ether header, 20 bytes IP header,
1299 		 * plus 4 bytes of data), we punt and compute the IP
1300 		 * header checksum by hand. This workaround doesn't
1301 		 * work very well, however, since it can be fooled
1302 		 * by things like VLAN tags and IP options that make
1303 		 * the header sizes/offsets vary.
1304 		 */
1305 
1306 		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1307 			if (m_head->m_pkthdr.len < 38) {
1308 				struct ip *ip;
1309 				m_head->m_data += ETHER_HDR_LEN;
1310 				ip = mtod(mb_head, struct ip *);
1311 				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1312 				m_head->m_data -= ETHER_HDR_LEN;
1313 			} else {
1314 				txp->tx_cb->ipcb_ip_activation_high =
1315 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1316 				txp->tx_cb->ipcb_ip_schedule |=
1317 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1318 			}
1319 		}
1320 #endif
1321 	}
1322 
1323 	chainlen = 0;
1324 	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1325 		chainlen++;
1326 	if (chainlen > sc->maxtxseg) {
1327 		struct mbuf *mn;
1328 
1329 		/*
1330 		 * We ran out of segments. We have to recopy this
1331 		 * mbuf chain first. Bail out if we can't get the
1332 		 * new buffers.
1333 		 */
1334 		mn = m_defrag(m_head, M_DONTWAIT);
1335 		if (mn == NULL) {
1336 			m_freem(m_head);
1337 			return (-1);
1338 		} else {
1339 			m_head = mn;
1340 		}
1341 	}
1342 
1343 	/*
1344 	 * Go through each of the mbufs in the chain and initialize
1345 	 * the transmit buffer descriptors with the physical address
1346 	 * and size of the mbuf.
1347 	 */
1348 	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1349 	    m_head, segs, &nseg, 0);
1350 	if (error) {
1351 		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1352 		m_freem(m_head);
1353 		return (-1);
1354 	}
1355 
1356 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1357 
1358 	cbp = txp->tx_cb;
1359 	for (i = 0; i < nseg; i++) {
1360 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1361 		/*
1362 		 * If this is an 82550/82551, then we're using extended
1363 		 * TxCBs _and_ we're using checksum offload. This means
1364 		 * that the TxCB is really an IPCB. One major difference
1365 		 * between the two is that with plain extended TxCBs,
1366 		 * the bottom half of the TxCB contains two entries from
1367 		 * the TBD array, whereas IPCBs contain just one entry:
1368 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1369 		 * checksum offload control bits. So to make things work
1370 		 * right, we have to start filling in the TBD array
1371 		 * starting from a different place depending on whether
1372 		 * the chip is an 82550/82551 or not.
1373 		 */
1374 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1375 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1376 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1377 		} else {
1378 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1379 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1380 		}
1381 	}
1382 	cbp->tbd_number = nseg;
1383 
1384 	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1385 	txp->tx_mbuf = m_head;
1386 	txp->tx_cb->cb_status = 0;
1387 	txp->tx_cb->byte_count = 0;
1388 	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1389 		txp->tx_cb->cb_command =
1390 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1391 		    FXP_CB_COMMAND_S);
1392 	} else {
1393 		txp->tx_cb->cb_command =
1394 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1395 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1396 		/*
1397 		 * Set a 5 second timer just in case we don't hear
1398 		 * from the card again.
1399 		 */
1400 		ifp->if_timer = 5;
1401 	}
1402 	txp->tx_cb->tx_threshold = tx_threshold;
1403 
1404 	/*
1405 	 * Advance the end of list forward.
1406 	 */
1407 
1408 #ifdef __alpha__
1409 	/*
1410 	 * On platforms which can't access memory in 16-bit
1411 	 * granularities, we must prevent the card from DMA'ing
1412 	 * up the status while we update the command field.
1413 	 * This could cause us to overwrite the completion status.
1414 	 * XXX This is probably bogus and we're _not_ looking
1415 	 * for atomicity here.
1416 	 */
1417 	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1418 	    htole16(FXP_CB_COMMAND_S));
1419 #else
1420 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1421 #endif /*__alpha__*/
1422 	sc->fxp_desc.tx_last = txp;
1423 
1424 	/*
1425 	 * Advance the beginning of the list forward if there are
1426 	 * no other packets queued (when nothing is queued, tx_first
1427 	 * sits on the last TxCB that was sent out).
1428 	 */
1429 	if (sc->tx_queued == 0)
1430 		sc->fxp_desc.tx_first = txp;
1431 
1432 	sc->tx_queued++;
1433 
1434 	/*
1435 	 * Pass packet to bpf if there is a listener.
1436 	 */
1437 	BPF_MTAP(ifp, m_head);
1438 	return (0);
1439 }
1440 
1441 #ifdef DEVICE_POLLING
1442 static poll_handler_t fxp_poll;
1443 
1444 static void
1445 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1446 {
1447 	struct fxp_softc *sc = ifp->if_softc;
1448 	uint8_t statack;
1449 
1450 	FXP_LOCK(sc);
1451 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1452 		ether_poll_deregister(ifp);
1453 		cmd = POLL_DEREGISTER;
1454 	}
1455 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1456 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1457 		FXP_UNLOCK(sc);
1458 		return;
1459 	}
1460 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1461 	    FXP_SCB_STATACK_FR;
1462 	if (cmd == POLL_AND_CHECK_STATUS) {
1463 		uint8_t tmp;
1464 
1465 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1466 		if (tmp == 0xff || tmp == 0) {
1467 			FXP_UNLOCK(sc);
1468 			return; /* nothing to do */
1469 		}
1470 		tmp &= ~statack;
1471 		/* ack what we can */
1472 		if (tmp != 0)
1473 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1474 		statack |= tmp;
1475 	}
1476 	fxp_intr_body(sc, ifp, statack, count);
1477 	FXP_UNLOCK(sc);
1478 }
1479 #endif /* DEVICE_POLLING */
1480 
1481 /*
1482  * Process interface interrupts.
1483  */
1484 static void
1485 fxp_intr(void *xsc)
1486 {
1487 	struct fxp_softc *sc = xsc;
1488 	struct ifnet *ifp = sc->ifp;
1489 	uint8_t statack;
1490 
1491 	FXP_LOCK(sc);
1492 	if (sc->suspended) {
1493 		FXP_UNLOCK(sc);
1494 		return;
1495 	}
1496 
1497 #ifdef DEVICE_POLLING
1498 	if (ifp->if_flags & IFF_POLLING) {
1499 		FXP_UNLOCK(sc);
1500 		return;
1501 	}
1502 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1503 	    ether_poll_register(fxp_poll, ifp)) {
1504 		/* disable interrupts */
1505 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1506 		FXP_UNLOCK(sc);
1507 		fxp_poll(ifp, 0, 1);
1508 		return;
1509 	}
1510 #endif
1511 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1512 		/*
1513 		 * It should not be possible to have all bits set; the
1514 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1515 		 * all bits are set, this may indicate that the card has
1516 		 * been physically ejected, so ignore it.
1517 		 */
1518 		if (statack == 0xff) {
1519 			FXP_UNLOCK(sc);
1520 			return;
1521 		}
1522 
1523 		/*
1524 		 * First ACK all the interrupts in this pass.
1525 		 */
1526 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1527 		fxp_intr_body(sc, ifp, statack, -1);
1528 	}
1529 	FXP_UNLOCK(sc);
1530 }
1531 
1532 static void
1533 fxp_txeof(struct fxp_softc *sc)
1534 {
1535 	struct fxp_tx *txp;
1536 
1537 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1538 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1539 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1540 	    txp = txp->tx_next) {
1541 		if (txp->tx_mbuf != NULL) {
1542 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1543 			    BUS_DMASYNC_POSTWRITE);
1544 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1545 			m_freem(txp->tx_mbuf);
1546 			txp->tx_mbuf = NULL;
1547 			/* clear this to reset csum offload bits */
1548 			txp->tx_cb->tbd[0].tb_addr = 0;
1549 		}
1550 		sc->tx_queued--;
1551 	}
1552 	sc->fxp_desc.tx_first = txp;
1553 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1554 }
1555 
1556 static void
1557 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1558     int count)
1559 {
1560 	struct mbuf *m;
1561 	struct fxp_rx *rxp;
1562 	struct fxp_rfa *rfa;
1563 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1564 	int fxp_rc = 0;
1565 
1566 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1567 	if (rnr)
1568 		sc->rnr++;
1569 #ifdef DEVICE_POLLING
1570 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1571 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1572 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1573 		rnr = 1;
1574 	}
1575 #endif
1576 
1577 	/*
1578 	 * Free any finished transmit mbuf chains.
1579 	 *
1580 	 * Handle the CNA event likt a CXTNO event. It used to
1581 	 * be that this event (control unit not ready) was not
1582 	 * encountered, but it is now with the SMPng modifications.
1583 	 * The exact sequence of events that occur when the interface
1584 	 * is brought up are different now, and if this event
1585 	 * goes unhandled, the configuration/rxfilter setup sequence
1586 	 * can stall for several seconds. The result is that no
1587 	 * packets go out onto the wire for about 5 to 10 seconds
1588 	 * after the interface is ifconfig'ed for the first time.
1589 	 */
1590 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1591 		fxp_txeof(sc);
1592 
1593 		ifp->if_timer = 0;
1594 		if (sc->tx_queued == 0) {
1595 			if (sc->need_mcsetup)
1596 				fxp_mc_setup(sc);
1597 		}
1598 		/*
1599 		 * Try to start more packets transmitting.
1600 		 */
1601 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1602 			fxp_start_body(ifp);
1603 	}
1604 
1605 	/*
1606 	 * Just return if nothing happened on the receive side.
1607 	 */
1608 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1609 		return;
1610 
1611 	/*
1612 	 * Process receiver interrupts. If a no-resource (RNR)
1613 	 * condition exists, get whatever packets we can and
1614 	 * re-start the receiver.
1615 	 *
1616 	 * When using polling, we do not process the list to completion,
1617 	 * so when we get an RNR interrupt we must defer the restart
1618 	 * until we hit the last buffer with the C bit set.
1619 	 * If we run out of cycles and rfa_headm has the C bit set,
1620 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1621 	 * that the info will be used in the subsequent polling cycle.
1622 	 */
1623 	for (;;) {
1624 		rxp = sc->fxp_desc.rx_head;
1625 		m = rxp->rx_mbuf;
1626 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1627 		    RFA_ALIGNMENT_FUDGE);
1628 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1629 		    BUS_DMASYNC_POSTREAD);
1630 
1631 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1632 		if (count >= 0 && count-- == 0) {
1633 			if (rnr) {
1634 				/* Defer RNR processing until the next time. */
1635 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1636 				rnr = 0;
1637 			}
1638 			break;
1639 		}
1640 #endif /* DEVICE_POLLING */
1641 
1642 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1643 			break;
1644 
1645 		/*
1646 		 * Advance head forward.
1647 		 */
1648 		sc->fxp_desc.rx_head = rxp->rx_next;
1649 
1650 		/*
1651 		 * Add a new buffer to the receive chain.
1652 		 * If this fails, the old buffer is recycled
1653 		 * instead.
1654 		 */
1655 		fxp_rc = fxp_add_rfabuf(sc, rxp);
1656 		if (fxp_rc == 0) {
1657 			int total_len;
1658 
1659 			/*
1660 			 * Fetch packet length (the top 2 bits of
1661 			 * actual_size are flags set by the controller
1662 			 * upon completion), and drop the packet in case
1663 			 * of bogus length or CRC errors.
1664 			 */
1665 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1666 			if (total_len < sizeof(struct ether_header) ||
1667 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1668 				sc->rfa_size ||
1669 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1670 				m_freem(m);
1671 				continue;
1672 			}
1673 
1674                         /* Do IP checksum checking. */
1675 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1676 				if (rfa->rfax_csum_sts &
1677 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1678 					m->m_pkthdr.csum_flags |=
1679 					    CSUM_IP_CHECKED;
1680 				if (rfa->rfax_csum_sts &
1681 				    FXP_RFDX_CS_IP_CSUM_VALID)
1682 					m->m_pkthdr.csum_flags |=
1683 					    CSUM_IP_VALID;
1684 				if ((rfa->rfax_csum_sts &
1685 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1686 				    (rfa->rfax_csum_sts &
1687 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1688 					m->m_pkthdr.csum_flags |=
1689 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1690 					m->m_pkthdr.csum_data = 0xffff;
1691 				}
1692 			}
1693 
1694 			m->m_pkthdr.len = m->m_len = total_len;
1695 			m->m_pkthdr.rcvif = ifp;
1696 
1697 			/*
1698 			 * Drop locks before calling if_input() since it
1699 			 * may re-enter fxp_start() in the netisr case.
1700 			 * This would result in a lock reversal.  Better
1701 			 * performance might be obtained by chaining all
1702 			 * packets received, dropping the lock, and then
1703 			 * calling if_input() on each one.
1704 			 */
1705 			FXP_UNLOCK(sc);
1706 			(*ifp->if_input)(ifp, m);
1707 			FXP_LOCK(sc);
1708 		} else if (fxp_rc == ENOBUFS) {
1709 			rnr = 0;
1710 			break;
1711 		}
1712 	}
1713 	if (rnr) {
1714 		fxp_scb_wait(sc);
1715 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1716 		    sc->fxp_desc.rx_head->rx_addr);
1717 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1718 	}
1719 }
1720 
1721 /*
1722  * Update packet in/out/collision statistics. The i82557 doesn't
1723  * allow you to access these counters without doing a fairly
1724  * expensive DMA to get _all_ of the statistics it maintains, so
1725  * we do this operation here only once per second. The statistics
1726  * counters in the kernel are updated from the previous dump-stats
1727  * DMA and then a new dump-stats DMA is started. The on-chip
1728  * counters are zeroed when the DMA completes. If we can't start
1729  * the DMA immediately, we don't wait - we just prepare to read
1730  * them again next time.
1731  */
1732 static void
1733 fxp_tick(void *xsc)
1734 {
1735 	struct fxp_softc *sc = xsc;
1736 	struct ifnet *ifp = sc->ifp;
1737 	struct fxp_stats *sp = sc->fxp_stats;
1738 
1739 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1740 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1741 	ifp->if_opackets += le32toh(sp->tx_good);
1742 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1743 	if (sp->rx_good) {
1744 		ifp->if_ipackets += le32toh(sp->rx_good);
1745 		sc->rx_idle_secs = 0;
1746 	} else {
1747 		/*
1748 		 * Receiver's been idle for another second.
1749 		 */
1750 		sc->rx_idle_secs++;
1751 	}
1752 	ifp->if_ierrors +=
1753 	    le32toh(sp->rx_crc_errors) +
1754 	    le32toh(sp->rx_alignment_errors) +
1755 	    le32toh(sp->rx_rnr_errors) +
1756 	    le32toh(sp->rx_overrun_errors);
1757 	/*
1758 	 * If any transmit underruns occured, bump up the transmit
1759 	 * threshold by another 512 bytes (64 * 8).
1760 	 */
1761 	if (sp->tx_underruns) {
1762 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1763 		if (tx_threshold < 192)
1764 			tx_threshold += 64;
1765 	}
1766 
1767 	/*
1768 	 * Release any xmit buffers that have completed DMA. This isn't
1769 	 * strictly necessary to do here, but it's advantagous for mbufs
1770 	 * with external storage to be released in a timely manner rather
1771 	 * than being defered for a potentially long time. This limits
1772 	 * the delay to a maximum of one second.
1773 	 */
1774 	fxp_txeof(sc);
1775 
1776 	/*
1777 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1778 	 * then assume the receiver has locked up and attempt to clear
1779 	 * the condition by reprogramming the multicast filter. This is
1780 	 * a work-around for a bug in the 82557 where the receiver locks
1781 	 * up if it gets certain types of garbage in the syncronization
1782 	 * bits prior to the packet header. This bug is supposed to only
1783 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1784 	 * mode as well (perhaps due to a 10/100 speed transition).
1785 	 */
1786 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1787 		sc->rx_idle_secs = 0;
1788 		fxp_mc_setup(sc);
1789 	}
1790 	/*
1791 	 * If there is no pending command, start another stats
1792 	 * dump. Otherwise punt for now.
1793 	 */
1794 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1795 		/*
1796 		 * Start another stats dump.
1797 		 */
1798 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1799 		    BUS_DMASYNC_PREREAD);
1800 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1801 	} else {
1802 		/*
1803 		 * A previous command is still waiting to be accepted.
1804 		 * Just zero our copy of the stats and wait for the
1805 		 * next timer event to update them.
1806 		 */
1807 		sp->tx_good = 0;
1808 		sp->tx_underruns = 0;
1809 		sp->tx_total_collisions = 0;
1810 
1811 		sp->rx_good = 0;
1812 		sp->rx_crc_errors = 0;
1813 		sp->rx_alignment_errors = 0;
1814 		sp->rx_rnr_errors = 0;
1815 		sp->rx_overrun_errors = 0;
1816 	}
1817 	if (sc->miibus != NULL)
1818 		mii_tick(device_get_softc(sc->miibus));
1819 
1820 	/*
1821 	 * Schedule another timeout one second from now.
1822 	 */
1823 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1824 }
1825 
1826 /*
1827  * Stop the interface. Cancels the statistics updater and resets
1828  * the interface.
1829  */
1830 static void
1831 fxp_stop(struct fxp_softc *sc)
1832 {
1833 	struct ifnet *ifp = sc->ifp;
1834 	struct fxp_tx *txp;
1835 	int i;
1836 
1837 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1838 	ifp->if_timer = 0;
1839 
1840 #ifdef DEVICE_POLLING
1841 	ether_poll_deregister(ifp);
1842 #endif
1843 	/*
1844 	 * Cancel stats updater.
1845 	 */
1846 	callout_stop(&sc->stat_ch);
1847 
1848 	/*
1849 	 * Issue software reset, which also unloads the microcode.
1850 	 */
1851 	sc->flags &= ~FXP_FLAG_UCODE;
1852 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1853 	DELAY(50);
1854 
1855 	/*
1856 	 * Release any xmit buffers.
1857 	 */
1858 	txp = sc->fxp_desc.tx_list;
1859 	if (txp != NULL) {
1860 		for (i = 0; i < FXP_NTXCB; i++) {
1861  			if (txp[i].tx_mbuf != NULL) {
1862 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1863 				    BUS_DMASYNC_POSTWRITE);
1864 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1865 				m_freem(txp[i].tx_mbuf);
1866 				txp[i].tx_mbuf = NULL;
1867 				/* clear this to reset csum offload bits */
1868 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1869 			}
1870 		}
1871 	}
1872 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1873 	sc->tx_queued = 0;
1874 }
1875 
1876 /*
1877  * Watchdog/transmission transmit timeout handler. Called when a
1878  * transmission is started on the interface, but no interrupt is
1879  * received before the timeout. This usually indicates that the
1880  * card has wedged for some reason.
1881  */
1882 static void
1883 fxp_watchdog(struct ifnet *ifp)
1884 {
1885 	struct fxp_softc *sc = ifp->if_softc;
1886 
1887 	FXP_LOCK(sc);
1888 	device_printf(sc->dev, "device timeout\n");
1889 	ifp->if_oerrors++;
1890 
1891 	fxp_init_body(sc);
1892 	FXP_UNLOCK(sc);
1893 }
1894 
1895 /*
1896  * Acquire locks and then call the real initialization function.  This
1897  * is necessary because ether_ioctl() calls if_init() and this would
1898  * result in mutex recursion if the mutex was held.
1899  */
1900 static void
1901 fxp_init(void *xsc)
1902 {
1903 	struct fxp_softc *sc = xsc;
1904 
1905 	FXP_LOCK(sc);
1906 	fxp_init_body(sc);
1907 	FXP_UNLOCK(sc);
1908 }
1909 
1910 /*
1911  * Perform device initialization. This routine must be called with the
1912  * softc lock held.
1913  */
1914 static void
1915 fxp_init_body(struct fxp_softc *sc)
1916 {
1917 	struct ifnet *ifp = sc->ifp;
1918 	struct fxp_cb_config *cbp;
1919 	struct fxp_cb_ias *cb_ias;
1920 	struct fxp_cb_tx *tcbp;
1921 	struct fxp_tx *txp;
1922 	struct fxp_cb_mcs *mcsp;
1923 	int i, prm;
1924 
1925 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1926 	/*
1927 	 * Cancel any pending I/O
1928 	 */
1929 	fxp_stop(sc);
1930 
1931 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1932 
1933 	/*
1934 	 * Initialize base of CBL and RFA memory. Loading with zero
1935 	 * sets it up for regular linear addressing.
1936 	 */
1937 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1938 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1939 
1940 	fxp_scb_wait(sc);
1941 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1942 
1943 	/*
1944 	 * Initialize base of dump-stats buffer.
1945 	 */
1946 	fxp_scb_wait(sc);
1947 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1948 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1949 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1950 
1951 	/*
1952 	 * Attempt to load microcode if requested.
1953 	 */
1954 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1955 		fxp_load_ucode(sc);
1956 
1957 	/*
1958 	 * Initialize the multicast address list.
1959 	 */
1960 	if (fxp_mc_addrs(sc)) {
1961 		mcsp = sc->mcsp;
1962 		mcsp->cb_status = 0;
1963 		mcsp->cb_command =
1964 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1965 		mcsp->link_addr = 0xffffffff;
1966 		/*
1967 	 	 * Start the multicast setup command.
1968 		 */
1969 		fxp_scb_wait(sc);
1970 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1971 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1972 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1973 		/* ...and wait for it to complete. */
1974 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1975 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1976 		    BUS_DMASYNC_POSTWRITE);
1977 	}
1978 
1979 	/*
1980 	 * We temporarily use memory that contains the TxCB list to
1981 	 * construct the config CB. The TxCB list memory is rebuilt
1982 	 * later.
1983 	 */
1984 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
1985 
1986 	/*
1987 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1988 	 * zero and must be one bits in this structure and this is the easiest
1989 	 * way to initialize them all to proper values.
1990 	 */
1991 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
1992 
1993 	cbp->cb_status =	0;
1994 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1995 	    FXP_CB_COMMAND_EL);
1996 	cbp->link_addr =	0xffffffff;	/* (no) next command */
1997 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
1998 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1999 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2000 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2001 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2002 	cbp->type_enable =	0;	/* actually reserved */
2003 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2004 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2005 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2006 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2007 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2008 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2009 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2010 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2011 	cbp->ci_int =		1;	/* interrupt on CU idle */
2012 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2013 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2014 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2015 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2016 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2017 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2018 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2019 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2020 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2021 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2022 	cbp->csma_dis =		0;	/* (don't) disable link */
2023 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2024 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2025 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2026 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2027 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2028 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2029 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2030 	cbp->loopback =		0;	/* (don't) loopback */
2031 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2032 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2033 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2034 	cbp->promiscuous =	prm;	/* promiscuous mode */
2035 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2036 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2037 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2038 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2039 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2040 
2041 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2042 	cbp->padding =		1;	/* (do) pad short tx packets */
2043 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2044 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2045 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2046 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2047 					/* must set wake_en in PMCSR also */
2048 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2049 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2050 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2051 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2052 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2053 
2054 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2055 		/*
2056 		 * The 82557 has no hardware flow control, the values
2057 		 * below are the defaults for the chip.
2058 		 */
2059 		cbp->fc_delay_lsb =	0;
2060 		cbp->fc_delay_msb =	0x40;
2061 		cbp->pri_fc_thresh =	3;
2062 		cbp->tx_fc_dis =	0;
2063 		cbp->rx_fc_restop =	0;
2064 		cbp->rx_fc_restart =	0;
2065 		cbp->fc_filter =	0;
2066 		cbp->pri_fc_loc =	1;
2067 	} else {
2068 		cbp->fc_delay_lsb =	0x1f;
2069 		cbp->fc_delay_msb =	0x01;
2070 		cbp->pri_fc_thresh =	3;
2071 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2072 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2073 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2074 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2075 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2076 	}
2077 
2078 	/*
2079 	 * Start the config command/DMA.
2080 	 */
2081 	fxp_scb_wait(sc);
2082 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2083 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2084 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2085 	/* ...and wait for it to complete. */
2086 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2087 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2088 
2089 	/*
2090 	 * Now initialize the station address. Temporarily use the TxCB
2091 	 * memory area like we did above for the config CB.
2092 	 */
2093 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2094 	cb_ias->cb_status = 0;
2095 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2096 	cb_ias->link_addr = 0xffffffff;
2097 	bcopy(IFP2ENADDR(sc->ifp), cb_ias->macaddr,
2098 	    sizeof(IFP2ENADDR(sc->ifp)));
2099 
2100 	/*
2101 	 * Start the IAS (Individual Address Setup) command/DMA.
2102 	 */
2103 	fxp_scb_wait(sc);
2104 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2105 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2106 	/* ...and wait for it to complete. */
2107 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2108 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2109 
2110 	/*
2111 	 * Initialize transmit control block (TxCB) list.
2112 	 */
2113 	txp = sc->fxp_desc.tx_list;
2114 	tcbp = sc->fxp_desc.cbl_list;
2115 	bzero(tcbp, FXP_TXCB_SZ);
2116 	for (i = 0; i < FXP_NTXCB; i++) {
2117 		txp[i].tx_mbuf = NULL;
2118 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2119 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2120 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2121 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2122 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2123 			tcbp[i].tbd_array_addr =
2124 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2125 		else
2126 			tcbp[i].tbd_array_addr =
2127 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2128 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2129 	}
2130 	/*
2131 	 * Set the suspend flag on the first TxCB and start the control
2132 	 * unit. It will execute the NOP and then suspend.
2133 	 */
2134 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2135 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2136 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2137 	sc->tx_queued = 1;
2138 
2139 	fxp_scb_wait(sc);
2140 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2141 
2142 	/*
2143 	 * Initialize receiver buffer area - RFA.
2144 	 */
2145 	fxp_scb_wait(sc);
2146 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2147 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2148 
2149 	/*
2150 	 * Set current media.
2151 	 */
2152 	if (sc->miibus != NULL)
2153 		mii_mediachg(device_get_softc(sc->miibus));
2154 
2155 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2156 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2157 
2158 	/*
2159 	 * Enable interrupts.
2160 	 */
2161 #ifdef DEVICE_POLLING
2162 	/*
2163 	 * ... but only do that if we are not polling. And because (presumably)
2164 	 * the default is interrupts on, we need to disable them explicitly!
2165 	 */
2166 	if ( ifp->if_flags & IFF_POLLING )
2167 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2168 	else
2169 #endif /* DEVICE_POLLING */
2170 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2171 
2172 	/*
2173 	 * Start stats updater.
2174 	 */
2175 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2176 }
2177 
2178 static int
2179 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2180 {
2181 
2182 	return (0);
2183 }
2184 
2185 static void
2186 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2187 {
2188 
2189 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2190 }
2191 
2192 /*
2193  * Change media according to request.
2194  */
2195 static int
2196 fxp_ifmedia_upd(struct ifnet *ifp)
2197 {
2198 	struct fxp_softc *sc = ifp->if_softc;
2199 	struct mii_data *mii;
2200 
2201 	mii = device_get_softc(sc->miibus);
2202 	FXP_LOCK(sc);
2203 	mii_mediachg(mii);
2204 	FXP_UNLOCK(sc);
2205 	return (0);
2206 }
2207 
2208 /*
2209  * Notify the world which media we're using.
2210  */
2211 static void
2212 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2213 {
2214 	struct fxp_softc *sc = ifp->if_softc;
2215 	struct mii_data *mii;
2216 
2217 	mii = device_get_softc(sc->miibus);
2218 	FXP_LOCK(sc);
2219 	mii_pollstat(mii);
2220 	ifmr->ifm_active = mii->mii_media_active;
2221 	ifmr->ifm_status = mii->mii_media_status;
2222 
2223 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2224 		sc->cu_resume_bug = 1;
2225 	else
2226 		sc->cu_resume_bug = 0;
2227 	FXP_UNLOCK(sc);
2228 }
2229 
2230 /*
2231  * Add a buffer to the end of the RFA buffer list.
2232  * Return 0 if successful, 1 for failure. A failure results in
2233  * adding the 'oldm' (if non-NULL) on to the end of the list -
2234  * tossing out its old contents and recycling it.
2235  * The RFA struct is stuck at the beginning of mbuf cluster and the
2236  * data pointer is fixed up to point just past it.
2237  */
2238 static int
2239 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2240 {
2241 	struct mbuf *m;
2242 	struct fxp_rfa *rfa, *p_rfa;
2243 	struct fxp_rx *p_rx;
2244 	bus_dmamap_t tmp_map;
2245 	int error;
2246 
2247 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2248 	if (m == NULL)
2249 		return (ENOBUFS);
2250 
2251 	/*
2252 	 * Move the data pointer up so that the incoming data packet
2253 	 * will be 32-bit aligned.
2254 	 */
2255 	m->m_data += RFA_ALIGNMENT_FUDGE;
2256 
2257 	/*
2258 	 * Get a pointer to the base of the mbuf cluster and move
2259 	 * data start past it.
2260 	 */
2261 	rfa = mtod(m, struct fxp_rfa *);
2262 	m->m_data += sc->rfa_size;
2263 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2264 
2265 	rfa->rfa_status = 0;
2266 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2267 	rfa->actual_size = 0;
2268 
2269 	/*
2270 	 * Initialize the rest of the RFA.  Note that since the RFA
2271 	 * is misaligned, we cannot store values directly.  We're thus
2272 	 * using the le32enc() function which handles endianness and
2273 	 * is also alignment-safe.
2274 	 */
2275 	le32enc(&rfa->link_addr, 0xffffffff);
2276 	le32enc(&rfa->rbd_addr, 0xffffffff);
2277 
2278 	/* Map the RFA into DMA memory. */
2279 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2280 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2281 	    &rxp->rx_addr, 0);
2282 	if (error) {
2283 		m_freem(m);
2284 		return (error);
2285 	}
2286 
2287 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2288 	tmp_map = sc->spare_map;
2289 	sc->spare_map = rxp->rx_map;
2290 	rxp->rx_map = tmp_map;
2291 	rxp->rx_mbuf = m;
2292 
2293 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2294 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2295 
2296 	/*
2297 	 * If there are other buffers already on the list, attach this
2298 	 * one to the end by fixing up the tail to point to this one.
2299 	 */
2300 	if (sc->fxp_desc.rx_head != NULL) {
2301 		p_rx = sc->fxp_desc.rx_tail;
2302 		p_rfa = (struct fxp_rfa *)
2303 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2304 		p_rx->rx_next = rxp;
2305 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2306 		p_rfa->rfa_control = 0;
2307 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2308 		    BUS_DMASYNC_PREWRITE);
2309 	} else {
2310 		rxp->rx_next = NULL;
2311 		sc->fxp_desc.rx_head = rxp;
2312 	}
2313 	sc->fxp_desc.rx_tail = rxp;
2314 	return (0);
2315 }
2316 
2317 static volatile int
2318 fxp_miibus_readreg(device_t dev, int phy, int reg)
2319 {
2320 	struct fxp_softc *sc = device_get_softc(dev);
2321 	int count = 10000;
2322 	int value;
2323 
2324 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2325 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2326 
2327 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2328 	    && count--)
2329 		DELAY(10);
2330 
2331 	if (count <= 0)
2332 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2333 
2334 	return (value & 0xffff);
2335 }
2336 
2337 static void
2338 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2339 {
2340 	struct fxp_softc *sc = device_get_softc(dev);
2341 	int count = 10000;
2342 
2343 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2344 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2345 	    (value & 0xffff));
2346 
2347 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2348 	    count--)
2349 		DELAY(10);
2350 
2351 	if (count <= 0)
2352 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2353 }
2354 
2355 static int
2356 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2357 {
2358 	struct fxp_softc *sc = ifp->if_softc;
2359 	struct ifreq *ifr = (struct ifreq *)data;
2360 	struct mii_data *mii;
2361 	int flag, mask, error = 0;
2362 
2363 	switch (command) {
2364 	case SIOCSIFFLAGS:
2365 		FXP_LOCK(sc);
2366 		if (ifp->if_flags & IFF_ALLMULTI)
2367 			sc->flags |= FXP_FLAG_ALL_MCAST;
2368 		else
2369 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2370 
2371 		/*
2372 		 * If interface is marked up and not running, then start it.
2373 		 * If it is marked down and running, stop it.
2374 		 * XXX If it's up then re-initialize it. This is so flags
2375 		 * such as IFF_PROMISC are handled.
2376 		 */
2377 		if (ifp->if_flags & IFF_UP) {
2378 			fxp_init_body(sc);
2379 		} else {
2380 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2381 				fxp_stop(sc);
2382 		}
2383 		FXP_UNLOCK(sc);
2384 		break;
2385 
2386 	case SIOCADDMULTI:
2387 	case SIOCDELMULTI:
2388 		FXP_LOCK(sc);
2389 		if (ifp->if_flags & IFF_ALLMULTI)
2390 			sc->flags |= FXP_FLAG_ALL_MCAST;
2391 		else
2392 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2393 		/*
2394 		 * Multicast list has changed; set the hardware filter
2395 		 * accordingly.
2396 		 */
2397 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2398 			fxp_mc_setup(sc);
2399 		/*
2400 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2401 		 * again rather than else {}.
2402 		 */
2403 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2404 			fxp_init_body(sc);
2405 		FXP_UNLOCK(sc);
2406 		error = 0;
2407 		break;
2408 
2409 	case SIOCSIFMEDIA:
2410 	case SIOCGIFMEDIA:
2411 		if (sc->miibus != NULL) {
2412 			mii = device_get_softc(sc->miibus);
2413                         error = ifmedia_ioctl(ifp, ifr,
2414                             &mii->mii_media, command);
2415 		} else {
2416                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2417 		}
2418 		break;
2419 
2420 	case SIOCSIFCAP:
2421 		FXP_LOCK(sc);
2422 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2423 		if (mask & IFCAP_POLLING)
2424 			ifp->if_capenable ^= IFCAP_POLLING;
2425 		if (mask & IFCAP_VLAN_MTU) {
2426 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2427 			if (sc->revision != FXP_REV_82557)
2428 				flag = FXP_FLAG_LONG_PKT_EN;
2429 			else /* a hack to get long frames on the old chip */
2430 				flag = FXP_FLAG_SAVE_BAD;
2431 			sc->flags ^= flag;
2432 			if (ifp->if_flags & IFF_UP)
2433 				fxp_init_body(sc);
2434 		}
2435 		FXP_UNLOCK(sc);
2436 		break;
2437 
2438 	default:
2439 		error = ether_ioctl(ifp, command, data);
2440 	}
2441 	return (error);
2442 }
2443 
2444 /*
2445  * Fill in the multicast address list and return number of entries.
2446  */
2447 static int
2448 fxp_mc_addrs(struct fxp_softc *sc)
2449 {
2450 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2451 	struct ifnet *ifp = sc->ifp;
2452 	struct ifmultiaddr *ifma;
2453 	int nmcasts;
2454 
2455 	nmcasts = 0;
2456 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2457 		IF_ADDR_LOCK(ifp);
2458 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2459 			if (ifma->ifma_addr->sa_family != AF_LINK)
2460 				continue;
2461 			if (nmcasts >= MAXMCADDR) {
2462 				sc->flags |= FXP_FLAG_ALL_MCAST;
2463 				nmcasts = 0;
2464 				break;
2465 			}
2466 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2467 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2468 			nmcasts++;
2469 		}
2470 		IF_ADDR_UNLOCK(ifp);
2471 	}
2472 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2473 	return (nmcasts);
2474 }
2475 
2476 /*
2477  * Program the multicast filter.
2478  *
2479  * We have an artificial restriction that the multicast setup command
2480  * must be the first command in the chain, so we take steps to ensure
2481  * this. By requiring this, it allows us to keep up the performance of
2482  * the pre-initialized command ring (esp. link pointers) by not actually
2483  * inserting the mcsetup command in the ring - i.e. its link pointer
2484  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2485  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2486  * lead into the regular TxCB ring when it completes.
2487  *
2488  * This function must be called at splimp.
2489  */
2490 static void
2491 fxp_mc_setup(struct fxp_softc *sc)
2492 {
2493 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2494 	struct ifnet *ifp = sc->ifp;
2495 	struct fxp_tx *txp;
2496 	int count;
2497 
2498 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2499 	/*
2500 	 * If there are queued commands, we must wait until they are all
2501 	 * completed. If we are already waiting, then add a NOP command
2502 	 * with interrupt option so that we're notified when all commands
2503 	 * have been completed - fxp_start() ensures that no additional
2504 	 * TX commands will be added when need_mcsetup is true.
2505 	 */
2506 	if (sc->tx_queued) {
2507 		/*
2508 		 * need_mcsetup will be true if we are already waiting for the
2509 		 * NOP command to be completed (see below). In this case, bail.
2510 		 */
2511 		if (sc->need_mcsetup)
2512 			return;
2513 		sc->need_mcsetup = 1;
2514 
2515 		/*
2516 		 * Add a NOP command with interrupt so that we are notified
2517 		 * when all TX commands have been processed.
2518 		 */
2519 		txp = sc->fxp_desc.tx_last->tx_next;
2520 		txp->tx_mbuf = NULL;
2521 		txp->tx_cb->cb_status = 0;
2522 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2523 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2524 		/*
2525 		 * Advance the end of list forward.
2526 		 */
2527 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2528 		    htole16(~FXP_CB_COMMAND_S);
2529 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2530 		sc->fxp_desc.tx_last = txp;
2531 		sc->tx_queued++;
2532 		/*
2533 		 * Issue a resume in case the CU has just suspended.
2534 		 */
2535 		fxp_scb_wait(sc);
2536 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2537 		/*
2538 		 * Set a 5 second timer just in case we don't hear from the
2539 		 * card again.
2540 		 */
2541 		ifp->if_timer = 5;
2542 
2543 		return;
2544 	}
2545 	sc->need_mcsetup = 0;
2546 
2547 	/*
2548 	 * Initialize multicast setup descriptor.
2549 	 */
2550 	mcsp->cb_status = 0;
2551 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2552 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2553 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2554 	txp = &sc->fxp_desc.mcs_tx;
2555 	txp->tx_mbuf = NULL;
2556 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2557 	txp->tx_next = sc->fxp_desc.tx_list;
2558 	(void) fxp_mc_addrs(sc);
2559 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2560 	sc->tx_queued = 1;
2561 
2562 	/*
2563 	 * Wait until command unit is not active. This should never
2564 	 * be the case when nothing is queued, but make sure anyway.
2565 	 */
2566 	count = 100;
2567 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2568 	    FXP_SCB_CUS_ACTIVE && --count)
2569 		DELAY(10);
2570 	if (count == 0) {
2571 		device_printf(sc->dev, "command queue timeout\n");
2572 		return;
2573 	}
2574 
2575 	/*
2576 	 * Start the multicast setup command.
2577 	 */
2578 	fxp_scb_wait(sc);
2579 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2580 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2581 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2582 
2583 	ifp->if_timer = 2;
2584 	return;
2585 }
2586 
2587 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2588 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2589 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2590 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2591 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2592 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2593 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2594 
2595 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2596 
2597 struct ucode {
2598 	uint32_t	revision;
2599 	uint32_t	*ucode;
2600 	int		length;
2601 	u_short		int_delay_offset;
2602 	u_short		bundle_max_offset;
2603 } ucode_table[] = {
2604 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2605 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2606 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2607 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2608 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2609 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2610 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2611 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2612 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2613 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2614 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2615 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2616 	{ 0, NULL, 0, 0, 0 }
2617 };
2618 
2619 static void
2620 fxp_load_ucode(struct fxp_softc *sc)
2621 {
2622 	struct ucode *uc;
2623 	struct fxp_cb_ucode *cbp;
2624 	int i;
2625 
2626 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2627 		if (sc->revision == uc->revision)
2628 			break;
2629 	if (uc->ucode == NULL)
2630 		return;
2631 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2632 	cbp->cb_status = 0;
2633 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2634 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2635 	for (i = 0; i < uc->length; i++)
2636 		cbp->ucode[i] = htole32(uc->ucode[i]);
2637 	if (uc->int_delay_offset)
2638 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2639 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2640 	if (uc->bundle_max_offset)
2641 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2642 		    htole16(sc->tunable_bundle_max);
2643 	/*
2644 	 * Download the ucode to the chip.
2645 	 */
2646 	fxp_scb_wait(sc);
2647 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2648 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2649 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2650 	/* ...and wait for it to complete. */
2651 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2652 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2653 	device_printf(sc->dev,
2654 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2655 	    sc->tunable_int_delay,
2656 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2657 	sc->flags |= FXP_FLAG_UCODE;
2658 }
2659 
2660 static int
2661 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2662 {
2663 	int error, value;
2664 
2665 	value = *(int *)arg1;
2666 	error = sysctl_handle_int(oidp, &value, 0, req);
2667 	if (error || !req->newptr)
2668 		return (error);
2669 	if (value < low || value > high)
2670 		return (EINVAL);
2671 	*(int *)arg1 = value;
2672 	return (0);
2673 }
2674 
2675 /*
2676  * Interrupt delay is expressed in microseconds, a multiplier is used
2677  * to convert this to the appropriate clock ticks before using.
2678  */
2679 static int
2680 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2681 {
2682 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2683 }
2684 
2685 static int
2686 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2687 {
2688 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2689 }
2690