1 /*- 2 * Copyright (c) 1995, David Greenman 3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice unmodified, this list of conditions, and the following 11 * disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 /* 32 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/mbuf.h> 38 #include <sys/malloc.h> 39 /* #include <sys/mutex.h> */ 40 #include <sys/kernel.h> 41 #include <sys/socket.h> 42 #include <sys/sysctl.h> 43 44 #include <net/if.h> 45 #include <net/if_dl.h> 46 #include <net/if_media.h> 47 48 #ifdef NS 49 #include <netns/ns.h> 50 #include <netns/ns_if.h> 51 #endif 52 53 #include <net/bpf.h> 54 #include <sys/sockio.h> 55 #include <sys/bus.h> 56 #include <machine/bus.h> 57 #include <sys/rman.h> 58 #include <machine/resource.h> 59 60 #include <net/ethernet.h> 61 #include <net/if_arp.h> 62 63 #include <vm/vm.h> /* for vtophys */ 64 #include <vm/pmap.h> /* for vtophys */ 65 #include <machine/clock.h> /* for DELAY */ 66 67 #include <net/if_types.h> 68 #include <net/if_vlan_var.h> 69 70 #include <pci/pcivar.h> 71 #include <pci/pcireg.h> /* for PCIM_CMD_xxx */ 72 73 #include <dev/mii/mii.h> 74 #include <dev/mii/miivar.h> 75 76 #include <dev/fxp/if_fxpreg.h> 77 #include <dev/fxp/if_fxpvar.h> 78 #include <dev/fxp/rcvbundl.h> 79 80 MODULE_DEPEND(fxp, miibus, 1, 1, 1); 81 #include "miibus_if.h" 82 83 /* 84 * NOTE! On the Alpha, we have an alignment constraint. The 85 * card DMAs the packet immediately following the RFA. However, 86 * the first thing in the packet is a 14-byte Ethernet header. 87 * This means that the packet is misaligned. To compensate, 88 * we actually offset the RFA 2 bytes into the cluster. This 89 * alignes the packet after the Ethernet header at a 32-bit 90 * boundary. HOWEVER! This means that the RFA is misaligned! 91 */ 92 #define RFA_ALIGNMENT_FUDGE 2 93 94 /* 95 * Set initial transmit threshold at 64 (512 bytes). This is 96 * increased by 64 (512 bytes) at a time, to maximum of 192 97 * (1536 bytes), if an underrun occurs. 98 */ 99 static int tx_threshold = 64; 100 101 /* 102 * The configuration byte map has several undefined fields which 103 * must be one or must be zero. Set up a template for these bits 104 * only, (assuming a 82557 chip) leaving the actual configuration 105 * to fxp_init. 106 * 107 * See struct fxp_cb_config for the bit definitions. 108 */ 109 static u_char fxp_cb_config_template[] = { 110 0x0, 0x0, /* cb_status */ 111 0x0, 0x0, /* cb_command */ 112 0x0, 0x0, 0x0, 0x0, /* link_addr */ 113 0x0, /* 0 */ 114 0x0, /* 1 */ 115 0x0, /* 2 */ 116 0x0, /* 3 */ 117 0x0, /* 4 */ 118 0x0, /* 5 */ 119 0x32, /* 6 */ 120 0x0, /* 7 */ 121 0x0, /* 8 */ 122 0x0, /* 9 */ 123 0x6, /* 10 */ 124 0x0, /* 11 */ 125 0x0, /* 12 */ 126 0x0, /* 13 */ 127 0xf2, /* 14 */ 128 0x48, /* 15 */ 129 0x0, /* 16 */ 130 0x40, /* 17 */ 131 0xf0, /* 18 */ 132 0x0, /* 19 */ 133 0x3f, /* 20 */ 134 0x5 /* 21 */ 135 }; 136 137 struct fxp_ident { 138 u_int16_t devid; 139 char *name; 140 }; 141 142 /* 143 * Claim various Intel PCI device identifiers for this driver. The 144 * sub-vendor and sub-device field are extensively used to identify 145 * particular variants, but we don't currently differentiate between 146 * them. 147 */ 148 static struct fxp_ident fxp_ident_table[] = { 149 { 0x1229, "Intel Pro 10/100B/100+ Ethernet" }, 150 { 0x2449, "Intel Pro/100 Ethernet" }, 151 { 0x1209, "Intel Embedded 10/100 Ethernet" }, 152 { 0x1029, "Intel Pro/100 Ethernet" }, 153 { 0x1030, "Intel Pro/100 Ethernet" }, 154 { 0x1031, "Intel Pro/100 Ethernet" }, 155 { 0x1032, "Intel Pro/100 Ethernet" }, 156 { 0x1033, "Intel Pro/100 Ethernet" }, 157 { 0x1034, "Intel Pro/100 Ethernet" }, 158 { 0x1035, "Intel Pro/100 Ethernet" }, 159 { 0x1036, "Intel Pro/100 Ethernet" }, 160 { 0x1037, "Intel Pro/100 Ethernet" }, 161 { 0x1038, "Intel Pro/100 Ethernet" }, 162 { 0x1039, "Intel Pro/100 Ethernet" }, 163 { 0x103A, "Intel Pro/100 Ethernet" }, 164 { 0, NULL }, 165 }; 166 167 static int fxp_probe(device_t dev); 168 static int fxp_attach(device_t dev); 169 static int fxp_detach(device_t dev); 170 static int fxp_shutdown(device_t dev); 171 static int fxp_suspend(device_t dev); 172 static int fxp_resume(device_t dev); 173 174 static void fxp_intr(void *xsc); 175 static void fxp_init(void *xsc); 176 static void fxp_tick(void *xsc); 177 static void fxp_powerstate_d0(device_t dev); 178 static void fxp_start(struct ifnet *ifp); 179 static void fxp_stop(struct fxp_softc *sc); 180 static void fxp_release(struct fxp_softc *sc); 181 static int fxp_ioctl(struct ifnet *ifp, u_long command, 182 caddr_t data); 183 static void fxp_watchdog(struct ifnet *ifp); 184 static int fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm); 185 static int fxp_mc_addrs(struct fxp_softc *sc); 186 static void fxp_mc_setup(struct fxp_softc *sc); 187 static u_int16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, 188 int autosize); 189 static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, 190 u_int16_t data); 191 static void fxp_autosize_eeprom(struct fxp_softc *sc); 192 static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, 193 int offset, int words); 194 static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, 195 int offset, int words); 196 static int fxp_ifmedia_upd(struct ifnet *ifp); 197 static void fxp_ifmedia_sts(struct ifnet *ifp, 198 struct ifmediareq *ifmr); 199 static int fxp_serial_ifmedia_upd(struct ifnet *ifp); 200 static void fxp_serial_ifmedia_sts(struct ifnet *ifp, 201 struct ifmediareq *ifmr); 202 static volatile int fxp_miibus_readreg(device_t dev, int phy, int reg); 203 static void fxp_miibus_writereg(device_t dev, int phy, int reg, 204 int value); 205 static void fxp_load_ucode(struct fxp_softc *sc); 206 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, 207 int low, int high); 208 static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS); 209 static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS); 210 static __inline void fxp_lwcopy(volatile u_int32_t *src, 211 volatile u_int32_t *dst); 212 static __inline void fxp_scb_wait(struct fxp_softc *sc); 213 static __inline void fxp_scb_cmd(struct fxp_softc *sc, int cmd); 214 static __inline void fxp_dma_wait(volatile u_int16_t *status, 215 struct fxp_softc *sc); 216 217 static device_method_t fxp_methods[] = { 218 /* Device interface */ 219 DEVMETHOD(device_probe, fxp_probe), 220 DEVMETHOD(device_attach, fxp_attach), 221 DEVMETHOD(device_detach, fxp_detach), 222 DEVMETHOD(device_shutdown, fxp_shutdown), 223 DEVMETHOD(device_suspend, fxp_suspend), 224 DEVMETHOD(device_resume, fxp_resume), 225 226 /* MII interface */ 227 DEVMETHOD(miibus_readreg, fxp_miibus_readreg), 228 DEVMETHOD(miibus_writereg, fxp_miibus_writereg), 229 230 { 0, 0 } 231 }; 232 233 static driver_t fxp_driver = { 234 "fxp", 235 fxp_methods, 236 sizeof(struct fxp_softc), 237 }; 238 239 static devclass_t fxp_devclass; 240 241 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0); 242 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0); 243 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0); 244 245 /* 246 * Inline function to copy a 16-bit aligned 32-bit quantity. 247 */ 248 static __inline void 249 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst) 250 { 251 #ifdef __i386__ 252 *dst = *src; 253 #else 254 volatile u_int16_t *a = (volatile u_int16_t *)src; 255 volatile u_int16_t *b = (volatile u_int16_t *)dst; 256 257 b[0] = a[0]; 258 b[1] = a[1]; 259 #endif 260 } 261 262 /* 263 * Wait for the previous command to be accepted (but not necessarily 264 * completed). 265 */ 266 static __inline void 267 fxp_scb_wait(struct fxp_softc *sc) 268 { 269 int i = 10000; 270 271 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) 272 DELAY(2); 273 if (i == 0) 274 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n", 275 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND), 276 CSR_READ_1(sc, FXP_CSR_SCB_STATACK), 277 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), 278 CSR_READ_2(sc, FXP_CSR_FLOWCONTROL)); 279 } 280 281 static __inline void 282 fxp_scb_cmd(struct fxp_softc *sc, int cmd) 283 { 284 285 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) { 286 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP); 287 fxp_scb_wait(sc); 288 } 289 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); 290 } 291 292 static __inline void 293 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc) 294 { 295 int i = 10000; 296 297 while (!(*status & FXP_CB_STATUS_C) && --i) 298 DELAY(2); 299 if (i == 0) 300 device_printf(sc->dev, "DMA timeout\n"); 301 } 302 303 /* 304 * Return identification string if this is device is ours. 305 */ 306 static int 307 fxp_probe(device_t dev) 308 { 309 u_int16_t devid; 310 struct fxp_ident *ident; 311 312 if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) { 313 devid = pci_get_device(dev); 314 for (ident = fxp_ident_table; ident->name != NULL; ident++) { 315 if (ident->devid == devid) { 316 device_set_desc(dev, ident->name); 317 return (0); 318 } 319 } 320 } 321 return (ENXIO); 322 } 323 324 static void 325 fxp_powerstate_d0(device_t dev) 326 { 327 #if __FreeBSD_version >= 430002 328 u_int32_t iobase, membase, irq; 329 330 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 331 /* Save important PCI config data. */ 332 iobase = pci_read_config(dev, FXP_PCI_IOBA, 4); 333 membase = pci_read_config(dev, FXP_PCI_MMBA, 4); 334 irq = pci_read_config(dev, PCIR_INTLINE, 4); 335 336 /* Reset the power state. */ 337 device_printf(dev, "chip is in D%d power mode " 338 "-- setting to D0\n", pci_get_powerstate(dev)); 339 340 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 341 342 /* Restore PCI config data. */ 343 pci_write_config(dev, FXP_PCI_IOBA, iobase, 4); 344 pci_write_config(dev, FXP_PCI_MMBA, membase, 4); 345 pci_write_config(dev, PCIR_INTLINE, irq, 4); 346 } 347 #endif 348 } 349 350 static int 351 fxp_attach(device_t dev) 352 { 353 int error = 0; 354 struct fxp_softc *sc = device_get_softc(dev); 355 struct ifnet *ifp; 356 u_int32_t val; 357 u_int16_t data; 358 int i, rid, m1, m2, prefer_iomap; 359 int s; 360 361 bzero(sc, sizeof(*sc)); 362 sc->dev = dev; 363 callout_handle_init(&sc->stat_ch); 364 sysctl_ctx_init(&sc->sysctl_ctx); 365 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 366 MTX_DEF | MTX_RECURSE); 367 368 s = splimp(); 369 370 /* 371 * Enable bus mastering. Enable memory space too, in case 372 * BIOS/Prom forgot about it. 373 */ 374 val = pci_read_config(dev, PCIR_COMMAND, 2); 375 val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); 376 pci_write_config(dev, PCIR_COMMAND, val, 2); 377 val = pci_read_config(dev, PCIR_COMMAND, 2); 378 379 fxp_powerstate_d0(dev); 380 381 /* 382 * Figure out which we should try first - memory mapping or i/o mapping? 383 * We default to memory mapping. Then we accept an override from the 384 * command line. Then we check to see which one is enabled. 385 */ 386 m1 = PCIM_CMD_MEMEN; 387 m2 = PCIM_CMD_PORTEN; 388 prefer_iomap = 0; 389 if (resource_int_value(device_get_name(dev), device_get_unit(dev), 390 "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) { 391 m1 = PCIM_CMD_PORTEN; 392 m2 = PCIM_CMD_MEMEN; 393 } 394 395 if (val & m1) { 396 sc->rtp = 397 (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; 398 sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA; 399 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd, 400 0, ~0, 1, RF_ACTIVE); 401 } 402 if (sc->mem == NULL && (val & m2)) { 403 sc->rtp = 404 (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; 405 sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA; 406 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd, 407 0, ~0, 1, RF_ACTIVE); 408 } 409 410 if (!sc->mem) { 411 device_printf(dev, "could not map device registers\n"); 412 error = ENXIO; 413 goto fail; 414 } 415 if (bootverbose) { 416 device_printf(dev, "using %s space register mapping\n", 417 sc->rtp == SYS_RES_MEMORY? "memory" : "I/O"); 418 } 419 420 sc->sc_st = rman_get_bustag(sc->mem); 421 sc->sc_sh = rman_get_bushandle(sc->mem); 422 423 /* 424 * Allocate our interrupt. 425 */ 426 rid = 0; 427 sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 428 RF_SHAREABLE | RF_ACTIVE); 429 if (sc->irq == NULL) { 430 device_printf(dev, "could not map interrupt\n"); 431 error = ENXIO; 432 goto fail; 433 } 434 435 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET, 436 fxp_intr, sc, &sc->ih); 437 if (error) { 438 device_printf(dev, "could not setup irq\n"); 439 goto fail; 440 } 441 442 /* 443 * Reset to a stable state. 444 */ 445 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 446 DELAY(10); 447 448 sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB, 449 M_DEVBUF, M_NOWAIT | M_ZERO); 450 if (sc->cbl_base == NULL) 451 goto failmem; 452 453 sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF, 454 M_NOWAIT | M_ZERO); 455 if (sc->fxp_stats == NULL) 456 goto failmem; 457 458 sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT); 459 if (sc->mcsp == NULL) 460 goto failmem; 461 462 /* 463 * Pre-allocate our receive buffers. 464 */ 465 for (i = 0; i < FXP_NRFABUFS; i++) { 466 if (fxp_add_rfabuf(sc, NULL) != 0) { 467 goto failmem; 468 } 469 } 470 471 /* 472 * Find out how large of an SEEPROM we have. 473 */ 474 fxp_autosize_eeprom(sc); 475 476 /* 477 * Determine whether we must use the 503 serial interface. 478 */ 479 fxp_read_eeprom(sc, &data, 6, 1); 480 if ((data & FXP_PHY_DEVICE_MASK) != 0 && 481 (data & FXP_PHY_SERIAL_ONLY)) 482 sc->flags |= FXP_FLAG_SERIAL_MEDIA; 483 484 /* 485 * Create the sysctl tree 486 */ 487 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 488 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 489 device_get_nameunit(dev), CTLFLAG_RD, 0, ""); 490 if (sc->sysctl_tree == NULL) 491 goto fail; 492 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 493 OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON, 494 &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I", 495 "FXP driver receive interrupt microcode bundling delay"); 496 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 497 OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON, 498 &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I", 499 "FXP driver receive interrupt microcode bundle size limit"); 500 501 /* 502 * Pull in device tunables. 503 */ 504 sc->tunable_int_delay = TUNABLE_INT_DELAY; 505 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX; 506 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 507 "int_delay", &sc->tunable_int_delay); 508 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 509 "bundle_max", &sc->tunable_bundle_max); 510 511 /* 512 * Find out the chip revision; lump all 82557 revs together. 513 */ 514 fxp_read_eeprom(sc, &data, 5, 1); 515 if ((data >> 8) == 1) 516 sc->revision = FXP_REV_82557; 517 else 518 sc->revision = pci_get_revid(dev); 519 520 /* 521 * Enable workarounds for certain chip revision deficiencies. 522 * 523 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly 524 * some systems based a normal 82559 design, have a defect where 525 * the chip can cause a PCI protocol violation if it receives 526 * a CU_RESUME command when it is entering the IDLE state. The 527 * workaround is to disable Dynamic Standby Mode, so the chip never 528 * deasserts CLKRUN#, and always remains in an active state. 529 * 530 * See Intel 82801BA/82801BAM Specification Update, Errata #30. 531 */ 532 i = pci_get_device(dev); 533 if (i == 0x2449 || (i > 0x1030 && i < 0x1039) || 534 sc->revision >= FXP_REV_82559_A0) { 535 fxp_read_eeprom(sc, &data, 10, 1); 536 if (data & 0x02) { /* STB enable */ 537 u_int16_t cksum; 538 int i; 539 540 device_printf(dev, 541 "Disabling dynamic standby mode in EEPROM\n"); 542 data &= ~0x02; 543 fxp_write_eeprom(sc, &data, 10, 1); 544 device_printf(dev, "New EEPROM ID: 0x%x\n", data); 545 cksum = 0; 546 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) { 547 fxp_read_eeprom(sc, &data, i, 1); 548 cksum += data; 549 } 550 i = (1 << sc->eeprom_size) - 1; 551 cksum = 0xBABA - cksum; 552 fxp_read_eeprom(sc, &data, i, 1); 553 fxp_write_eeprom(sc, &cksum, i, 1); 554 device_printf(dev, 555 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n", 556 i, data, cksum); 557 #if 1 558 /* 559 * If the user elects to continue, try the software 560 * workaround, as it is better than nothing. 561 */ 562 sc->flags |= FXP_FLAG_CU_RESUME_BUG; 563 #endif 564 } 565 } 566 567 /* 568 * If we are not a 82557 chip, we can enable extended features. 569 */ 570 if (sc->revision != FXP_REV_82557) { 571 /* 572 * If MWI is enabled in the PCI configuration, and there 573 * is a valid cacheline size (8 or 16 dwords), then tell 574 * the board to turn on MWI. 575 */ 576 if (val & PCIM_CMD_MWRICEN && 577 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0) 578 sc->flags |= FXP_FLAG_MWI_ENABLE; 579 580 /* turn on the extended TxCB feature */ 581 sc->flags |= FXP_FLAG_EXT_TXCB; 582 583 /* enable reception of long frames for VLAN */ 584 sc->flags |= FXP_FLAG_LONG_PKT_EN; 585 } 586 587 /* 588 * Read MAC address. 589 */ 590 fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3); 591 device_printf(dev, "Ethernet address %6D%s\n", 592 sc->arpcom.ac_enaddr, ":", 593 sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : ""); 594 if (bootverbose) { 595 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n", 596 pci_get_vendor(dev), pci_get_device(dev), 597 pci_get_subvendor(dev), pci_get_subdevice(dev), 598 pci_get_revid(dev)); 599 fxp_read_eeprom(sc, &data, 10, 1); 600 device_printf(dev, "Dynamic Standby mode is %s\n", 601 data & 0x02 ? "enabled" : "disabled"); 602 } 603 604 /* 605 * If this is only a 10Mbps device, then there is no MII, and 606 * the PHY will use a serial interface instead. 607 * 608 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 609 * doesn't have a programming interface of any sort. The 610 * media is sensed automatically based on how the link partner 611 * is configured. This is, in essence, manual configuration. 612 */ 613 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) { 614 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd, 615 fxp_serial_ifmedia_sts); 616 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 617 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); 618 } else { 619 if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd, 620 fxp_ifmedia_sts)) { 621 device_printf(dev, "MII without any PHY!\n"); 622 error = ENXIO; 623 goto fail; 624 } 625 } 626 627 ifp = &sc->arpcom.ac_if; 628 ifp->if_unit = device_get_unit(dev); 629 ifp->if_name = "fxp"; 630 ifp->if_output = ether_output; 631 ifp->if_baudrate = 100000000; 632 ifp->if_init = fxp_init; 633 ifp->if_softc = sc; 634 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 635 ifp->if_ioctl = fxp_ioctl; 636 ifp->if_start = fxp_start; 637 ifp->if_watchdog = fxp_watchdog; 638 639 /* 640 * Attach the interface. 641 */ 642 ether_ifattach(ifp, ETHER_BPF_SUPPORTED); 643 644 /* 645 * Tell the upper layer(s) we support long frames. 646 */ 647 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 648 649 /* 650 * Let the system queue as many packets as we have available 651 * TX descriptors. 652 */ 653 ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1; 654 655 splx(s); 656 return (0); 657 658 failmem: 659 device_printf(dev, "Failed to malloc memory\n"); 660 error = ENOMEM; 661 fail: 662 splx(s); 663 fxp_release(sc); 664 return (error); 665 } 666 667 /* 668 * release all resources 669 */ 670 static void 671 fxp_release(struct fxp_softc *sc) 672 { 673 674 bus_generic_detach(sc->dev); 675 if (sc->miibus) 676 device_delete_child(sc->dev, sc->miibus); 677 678 if (sc->cbl_base) 679 free(sc->cbl_base, M_DEVBUF); 680 if (sc->fxp_stats) 681 free(sc->fxp_stats, M_DEVBUF); 682 if (sc->mcsp) 683 free(sc->mcsp, M_DEVBUF); 684 if (sc->rfa_headm) 685 m_freem(sc->rfa_headm); 686 687 if (sc->ih) 688 bus_teardown_intr(sc->dev, sc->irq, sc->ih); 689 if (sc->irq) 690 bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq); 691 if (sc->mem) 692 bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem); 693 694 sysctl_ctx_free(&sc->sysctl_ctx); 695 696 mtx_destroy(&sc->sc_mtx); 697 } 698 699 /* 700 * Detach interface. 701 */ 702 static int 703 fxp_detach(device_t dev) 704 { 705 struct fxp_softc *sc = device_get_softc(dev); 706 int s; 707 708 /* disable interrupts */ 709 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 710 711 s = splimp(); 712 713 /* 714 * Stop DMA and drop transmit queue. 715 */ 716 fxp_stop(sc); 717 718 /* 719 * Close down routes etc. 720 */ 721 ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED); 722 723 /* 724 * Free all media structures. 725 */ 726 ifmedia_removeall(&sc->sc_media); 727 728 splx(s); 729 730 /* Release our allocated resources. */ 731 fxp_release(sc); 732 733 return (0); 734 } 735 736 /* 737 * Device shutdown routine. Called at system shutdown after sync. The 738 * main purpose of this routine is to shut off receiver DMA so that 739 * kernel memory doesn't get clobbered during warmboot. 740 */ 741 static int 742 fxp_shutdown(device_t dev) 743 { 744 /* 745 * Make sure that DMA is disabled prior to reboot. Not doing 746 * do could allow DMA to corrupt kernel memory during the 747 * reboot before the driver initializes. 748 */ 749 fxp_stop((struct fxp_softc *) device_get_softc(dev)); 750 return (0); 751 } 752 753 /* 754 * Device suspend routine. Stop the interface and save some PCI 755 * settings in case the BIOS doesn't restore them properly on 756 * resume. 757 */ 758 static int 759 fxp_suspend(device_t dev) 760 { 761 struct fxp_softc *sc = device_get_softc(dev); 762 int i, s; 763 764 s = splimp(); 765 766 fxp_stop(sc); 767 768 for (i = 0; i < 5; i++) 769 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4); 770 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4); 771 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1); 772 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 773 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); 774 775 sc->suspended = 1; 776 777 splx(s); 778 return (0); 779 } 780 781 /* 782 * Device resume routine. Restore some PCI settings in case the BIOS 783 * doesn't, re-enable busmastering, and restart the interface if 784 * appropriate. 785 */ 786 static int 787 fxp_resume(device_t dev) 788 { 789 struct fxp_softc *sc = device_get_softc(dev); 790 struct ifnet *ifp = &sc->sc_if; 791 u_int16_t pci_command; 792 int i, s; 793 794 s = splimp(); 795 796 fxp_powerstate_d0(dev); 797 798 /* better way to do this? */ 799 for (i = 0; i < 5; i++) 800 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4); 801 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4); 802 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1); 803 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1); 804 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1); 805 806 /* reenable busmastering */ 807 pci_command = pci_read_config(dev, PCIR_COMMAND, 2); 808 pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); 809 pci_write_config(dev, PCIR_COMMAND, pci_command, 2); 810 811 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 812 DELAY(10); 813 814 /* reinitialize interface if necessary */ 815 if (ifp->if_flags & IFF_UP) 816 fxp_init(sc); 817 818 sc->suspended = 0; 819 820 splx(s); 821 return (0); 822 } 823 824 static void 825 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) 826 { 827 u_int16_t reg; 828 int x; 829 830 /* 831 * Shift in data. 832 */ 833 for (x = 1 << (length - 1); x; x >>= 1) { 834 if (data & x) 835 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 836 else 837 reg = FXP_EEPROM_EECS; 838 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 839 DELAY(1); 840 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 841 DELAY(1); 842 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 843 DELAY(1); 844 } 845 } 846 847 /* 848 * Read from the serial EEPROM. Basically, you manually shift in 849 * the read opcode (one bit at a time) and then shift in the address, 850 * and then you shift out the data (all of this one bit at a time). 851 * The word size is 16 bits, so you have to provide the address for 852 * every 16 bits of data. 853 */ 854 static u_int16_t 855 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize) 856 { 857 u_int16_t reg, data; 858 int x; 859 860 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 861 /* 862 * Shift in read opcode. 863 */ 864 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); 865 /* 866 * Shift in address. 867 */ 868 data = 0; 869 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) { 870 if (offset & x) 871 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 872 else 873 reg = FXP_EEPROM_EECS; 874 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 875 DELAY(1); 876 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 877 DELAY(1); 878 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 879 DELAY(1); 880 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO; 881 data++; 882 if (autosize && reg == 0) { 883 sc->eeprom_size = data; 884 break; 885 } 886 } 887 /* 888 * Shift out data. 889 */ 890 data = 0; 891 reg = FXP_EEPROM_EECS; 892 for (x = 1 << 15; x; x >>= 1) { 893 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 894 DELAY(1); 895 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 896 data |= x; 897 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 898 DELAY(1); 899 } 900 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 901 DELAY(1); 902 903 return (data); 904 } 905 906 static void 907 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data) 908 { 909 int i; 910 911 /* 912 * Erase/write enable. 913 */ 914 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 915 fxp_eeprom_shiftin(sc, 0x4, 3); 916 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); 917 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 918 DELAY(1); 919 /* 920 * Shift in write opcode, address, data. 921 */ 922 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 923 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); 924 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); 925 fxp_eeprom_shiftin(sc, data, 16); 926 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 927 DELAY(1); 928 /* 929 * Wait for EEPROM to finish up. 930 */ 931 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 932 DELAY(1); 933 for (i = 0; i < 1000; i++) { 934 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 935 break; 936 DELAY(50); 937 } 938 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 939 DELAY(1); 940 /* 941 * Erase/write disable. 942 */ 943 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 944 fxp_eeprom_shiftin(sc, 0x4, 3); 945 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); 946 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 947 DELAY(1); 948 } 949 950 /* 951 * From NetBSD: 952 * 953 * Figure out EEPROM size. 954 * 955 * 559's can have either 64-word or 256-word EEPROMs, the 558 956 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet 957 * talks about the existance of 16 to 256 word EEPROMs. 958 * 959 * The only known sizes are 64 and 256, where the 256 version is used 960 * by CardBus cards to store CIS information. 961 * 962 * The address is shifted in msb-to-lsb, and after the last 963 * address-bit the EEPROM is supposed to output a `dummy zero' bit, 964 * after which follows the actual data. We try to detect this zero, by 965 * probing the data-out bit in the EEPROM control register just after 966 * having shifted in a bit. If the bit is zero, we assume we've 967 * shifted enough address bits. The data-out should be tri-state, 968 * before this, which should translate to a logical one. 969 */ 970 static void 971 fxp_autosize_eeprom(struct fxp_softc *sc) 972 { 973 974 /* guess maximum size of 256 words */ 975 sc->eeprom_size = 8; 976 977 /* autosize */ 978 (void) fxp_eeprom_getword(sc, 0, 1); 979 } 980 981 static void 982 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 983 { 984 int i; 985 986 for (i = 0; i < words; i++) 987 data[i] = fxp_eeprom_getword(sc, offset + i, 0); 988 } 989 990 static void 991 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 992 { 993 int i; 994 995 for (i = 0; i < words; i++) 996 fxp_eeprom_putword(sc, offset + i, data[i]); 997 } 998 999 /* 1000 * Start packet transmission on the interface. 1001 */ 1002 static void 1003 fxp_start(struct ifnet *ifp) 1004 { 1005 struct fxp_softc *sc = ifp->if_softc; 1006 struct fxp_cb_tx *txp; 1007 1008 /* 1009 * See if we need to suspend xmit until the multicast filter 1010 * has been reprogrammed (which can only be done at the head 1011 * of the command chain). 1012 */ 1013 if (sc->need_mcsetup) { 1014 return; 1015 } 1016 1017 txp = NULL; 1018 1019 /* 1020 * We're finished if there is nothing more to add to the list or if 1021 * we're all filled up with buffers to transmit. 1022 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add 1023 * a NOP command when needed. 1024 */ 1025 while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) { 1026 struct mbuf *m, *mb_head; 1027 int segment; 1028 1029 /* 1030 * Grab a packet to transmit. 1031 */ 1032 IF_DEQUEUE(&ifp->if_snd, mb_head); 1033 1034 /* 1035 * Get pointer to next available tx desc. 1036 */ 1037 txp = sc->cbl_last->next; 1038 1039 /* 1040 * Go through each of the mbufs in the chain and initialize 1041 * the transmit buffer descriptors with the physical address 1042 * and size of the mbuf. 1043 */ 1044 tbdinit: 1045 for (m = mb_head, segment = 0; m != NULL; m = m->m_next) { 1046 if (m->m_len != 0) { 1047 if (segment == FXP_NTXSEG) 1048 break; 1049 txp->tbd[segment].tb_addr = 1050 vtophys(mtod(m, vm_offset_t)); 1051 txp->tbd[segment].tb_size = m->m_len; 1052 segment++; 1053 } 1054 } 1055 if (m != NULL) { 1056 struct mbuf *mn; 1057 1058 /* 1059 * We ran out of segments. We have to recopy this 1060 * mbuf chain first. Bail out if we can't get the 1061 * new buffers. 1062 */ 1063 MGETHDR(mn, M_DONTWAIT, MT_DATA); 1064 if (mn == NULL) { 1065 m_freem(mb_head); 1066 break; 1067 } 1068 if (mb_head->m_pkthdr.len > MHLEN) { 1069 MCLGET(mn, M_DONTWAIT); 1070 if ((mn->m_flags & M_EXT) == 0) { 1071 m_freem(mn); 1072 m_freem(mb_head); 1073 break; 1074 } 1075 } 1076 m_copydata(mb_head, 0, mb_head->m_pkthdr.len, 1077 mtod(mn, caddr_t)); 1078 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len; 1079 m_freem(mb_head); 1080 mb_head = mn; 1081 goto tbdinit; 1082 } 1083 1084 txp->tbd_number = segment; 1085 txp->mb_head = mb_head; 1086 txp->cb_status = 0; 1087 if (sc->tx_queued != FXP_CXINT_THRESH - 1) { 1088 txp->cb_command = 1089 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | 1090 FXP_CB_COMMAND_S; 1091 } else { 1092 txp->cb_command = 1093 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | 1094 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; 1095 /* 1096 * Set a 5 second timer just in case we don't hear 1097 * from the card again. 1098 */ 1099 ifp->if_timer = 5; 1100 } 1101 txp->tx_threshold = tx_threshold; 1102 1103 /* 1104 * Advance the end of list forward. 1105 */ 1106 1107 #ifdef __alpha__ 1108 /* 1109 * On platforms which can't access memory in 16-bit 1110 * granularities, we must prevent the card from DMA'ing 1111 * up the status while we update the command field. 1112 * This could cause us to overwrite the completion status. 1113 */ 1114 atomic_clear_short(&sc->cbl_last->cb_command, 1115 FXP_CB_COMMAND_S); 1116 #else 1117 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S; 1118 #endif /*__alpha__*/ 1119 sc->cbl_last = txp; 1120 1121 /* 1122 * Advance the beginning of the list forward if there are 1123 * no other packets queued (when nothing is queued, cbl_first 1124 * sits on the last TxCB that was sent out). 1125 */ 1126 if (sc->tx_queued == 0) 1127 sc->cbl_first = txp; 1128 1129 sc->tx_queued++; 1130 1131 /* 1132 * Pass packet to bpf if there is a listener. 1133 */ 1134 if (ifp->if_bpf) 1135 bpf_mtap(ifp, mb_head); 1136 } 1137 1138 /* 1139 * We're finished. If we added to the list, issue a RESUME to get DMA 1140 * going again if suspended. 1141 */ 1142 if (txp != NULL) { 1143 fxp_scb_wait(sc); 1144 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 1145 } 1146 } 1147 1148 static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count); 1149 1150 #ifdef DEVICE_POLLING 1151 static poll_handler_t fxp_poll; 1152 1153 static void 1154 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1155 { 1156 struct fxp_softc *sc = ifp->if_softc; 1157 u_int8_t statack; 1158 1159 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */ 1160 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 1161 return; 1162 } 1163 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA | 1164 FXP_SCB_STATACK_FR; 1165 if (cmd == POLL_AND_CHECK_STATUS) { 1166 u_int8_t tmp; 1167 1168 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK); 1169 if (tmp == 0xff || tmp == 0) 1170 return; /* nothing to do */ 1171 tmp &= ~statack; 1172 /* ack what we can */ 1173 if (tmp != 0) 1174 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp); 1175 statack |= tmp; 1176 } 1177 fxp_intr_body(sc, statack, count); 1178 } 1179 #endif /* DEVICE_POLLING */ 1180 1181 /* 1182 * Process interface interrupts. 1183 */ 1184 static void 1185 fxp_intr(void *xsc) 1186 { 1187 struct fxp_softc *sc = xsc; 1188 u_int8_t statack; 1189 1190 #ifdef DEVICE_POLLING 1191 struct ifnet *ifp = &sc->sc_if; 1192 1193 if (ifp->if_ipending & IFF_POLLING) 1194 return; 1195 if (ether_poll_register(fxp_poll, ifp)) { 1196 /* disable interrupts */ 1197 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 1198 fxp_poll(ifp, 0, 1); 1199 return; 1200 } 1201 #endif 1202 1203 if (sc->suspended) { 1204 return; 1205 } 1206 1207 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { 1208 /* 1209 * It should not be possible to have all bits set; the 1210 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If 1211 * all bits are set, this may indicate that the card has 1212 * been physically ejected, so ignore it. 1213 */ 1214 if (statack == 0xff) 1215 return; 1216 1217 /* 1218 * First ACK all the interrupts in this pass. 1219 */ 1220 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); 1221 fxp_intr_body(sc, statack, -1); 1222 } 1223 } 1224 1225 static void 1226 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count) 1227 { 1228 struct ifnet *ifp = &sc->sc_if; 1229 1230 /* 1231 * Free any finished transmit mbuf chains. 1232 * 1233 * Handle the CNA event likt a CXTNO event. It used to 1234 * be that this event (control unit not ready) was not 1235 * encountered, but it is now with the SMPng modifications. 1236 * The exact sequence of events that occur when the interface 1237 * is brought up are different now, and if this event 1238 * goes unhandled, the configuration/rxfilter setup sequence 1239 * can stall for several seconds. The result is that no 1240 * packets go out onto the wire for about 5 to 10 seconds 1241 * after the interface is ifconfig'ed for the first time. 1242 */ 1243 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) { 1244 struct fxp_cb_tx *txp; 1245 1246 for (txp = sc->cbl_first; sc->tx_queued && 1247 (txp->cb_status & FXP_CB_STATUS_C) != 0; 1248 txp = txp->next) { 1249 if (txp->mb_head != NULL) { 1250 m_freem(txp->mb_head); 1251 txp->mb_head = NULL; 1252 } 1253 sc->tx_queued--; 1254 } 1255 sc->cbl_first = txp; 1256 ifp->if_timer = 0; 1257 if (sc->tx_queued == 0) { 1258 if (sc->need_mcsetup) 1259 fxp_mc_setup(sc); 1260 } 1261 /* 1262 * Try to start more packets transmitting. 1263 */ 1264 if (ifp->if_snd.ifq_head != NULL) 1265 fxp_start(ifp); 1266 } 1267 /* 1268 * Process receiver interrupts. If a no-resource (RNR) 1269 * condition exists, get whatever packets we can and 1270 * re-start the receiver. 1271 */ 1272 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) { 1273 struct mbuf *m; 1274 struct fxp_rfa *rfa; 1275 rcvloop: 1276 m = sc->rfa_headm; 1277 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + 1278 RFA_ALIGNMENT_FUDGE); 1279 1280 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */ 1281 if (count < 0 || count-- > 0) 1282 #endif 1283 if (rfa->rfa_status & FXP_RFA_STATUS_C) { 1284 /* 1285 * Remove first packet from the chain. 1286 */ 1287 sc->rfa_headm = m->m_next; 1288 m->m_next = NULL; 1289 1290 /* 1291 * Add a new buffer to the receive chain. 1292 * If this fails, the old buffer is recycled 1293 * instead. 1294 */ 1295 if (fxp_add_rfabuf(sc, m) == 0) { 1296 struct ether_header *eh; 1297 int total_len; 1298 1299 total_len = rfa->actual_size & 1300 (MCLBYTES - 1); 1301 if (total_len < 1302 sizeof(struct ether_header)) { 1303 m_freem(m); 1304 goto rcvloop; 1305 } 1306 1307 /* 1308 * Drop the packet if it has CRC 1309 * errors. This test is only needed 1310 * when doing 802.1q VLAN on the 82557 1311 * chip. 1312 */ 1313 if (rfa->rfa_status & 1314 FXP_RFA_STATUS_CRC) { 1315 m_freem(m); 1316 goto rcvloop; 1317 } 1318 1319 m->m_pkthdr.rcvif = ifp; 1320 m->m_pkthdr.len = m->m_len = total_len; 1321 eh = mtod(m, struct ether_header *); 1322 m->m_data += 1323 sizeof(struct ether_header); 1324 m->m_len -= 1325 sizeof(struct ether_header); 1326 m->m_pkthdr.len = m->m_len; 1327 ether_input(ifp, eh, m); 1328 } 1329 goto rcvloop; 1330 } 1331 if (statack & FXP_SCB_STATACK_RNR) { 1332 fxp_scb_wait(sc); 1333 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 1334 vtophys(sc->rfa_headm->m_ext.ext_buf) + 1335 RFA_ALIGNMENT_FUDGE); 1336 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 1337 } 1338 } 1339 } 1340 1341 /* 1342 * Update packet in/out/collision statistics. The i82557 doesn't 1343 * allow you to access these counters without doing a fairly 1344 * expensive DMA to get _all_ of the statistics it maintains, so 1345 * we do this operation here only once per second. The statistics 1346 * counters in the kernel are updated from the previous dump-stats 1347 * DMA and then a new dump-stats DMA is started. The on-chip 1348 * counters are zeroed when the DMA completes. If we can't start 1349 * the DMA immediately, we don't wait - we just prepare to read 1350 * them again next time. 1351 */ 1352 static void 1353 fxp_tick(void *xsc) 1354 { 1355 struct fxp_softc *sc = xsc; 1356 struct ifnet *ifp = &sc->sc_if; 1357 struct fxp_stats *sp = sc->fxp_stats; 1358 struct fxp_cb_tx *txp; 1359 int s; 1360 1361 ifp->if_opackets += sp->tx_good; 1362 ifp->if_collisions += sp->tx_total_collisions; 1363 if (sp->rx_good) { 1364 ifp->if_ipackets += sp->rx_good; 1365 sc->rx_idle_secs = 0; 1366 } else { 1367 /* 1368 * Receiver's been idle for another second. 1369 */ 1370 sc->rx_idle_secs++; 1371 } 1372 ifp->if_ierrors += 1373 sp->rx_crc_errors + 1374 sp->rx_alignment_errors + 1375 sp->rx_rnr_errors + 1376 sp->rx_overrun_errors; 1377 /* 1378 * If any transmit underruns occured, bump up the transmit 1379 * threshold by another 512 bytes (64 * 8). 1380 */ 1381 if (sp->tx_underruns) { 1382 ifp->if_oerrors += sp->tx_underruns; 1383 if (tx_threshold < 192) 1384 tx_threshold += 64; 1385 } 1386 s = splimp(); 1387 /* 1388 * Release any xmit buffers that have completed DMA. This isn't 1389 * strictly necessary to do here, but it's advantagous for mbufs 1390 * with external storage to be released in a timely manner rather 1391 * than being defered for a potentially long time. This limits 1392 * the delay to a maximum of one second. 1393 */ 1394 for (txp = sc->cbl_first; sc->tx_queued && 1395 (txp->cb_status & FXP_CB_STATUS_C) != 0; 1396 txp = txp->next) { 1397 if (txp->mb_head != NULL) { 1398 m_freem(txp->mb_head); 1399 txp->mb_head = NULL; 1400 } 1401 sc->tx_queued--; 1402 } 1403 sc->cbl_first = txp; 1404 /* 1405 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, 1406 * then assume the receiver has locked up and attempt to clear 1407 * the condition by reprogramming the multicast filter. This is 1408 * a work-around for a bug in the 82557 where the receiver locks 1409 * up if it gets certain types of garbage in the syncronization 1410 * bits prior to the packet header. This bug is supposed to only 1411 * occur in 10Mbps mode, but has been seen to occur in 100Mbps 1412 * mode as well (perhaps due to a 10/100 speed transition). 1413 */ 1414 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { 1415 sc->rx_idle_secs = 0; 1416 fxp_mc_setup(sc); 1417 } 1418 /* 1419 * If there is no pending command, start another stats 1420 * dump. Otherwise punt for now. 1421 */ 1422 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { 1423 /* 1424 * Start another stats dump. 1425 */ 1426 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); 1427 } else { 1428 /* 1429 * A previous command is still waiting to be accepted. 1430 * Just zero our copy of the stats and wait for the 1431 * next timer event to update them. 1432 */ 1433 sp->tx_good = 0; 1434 sp->tx_underruns = 0; 1435 sp->tx_total_collisions = 0; 1436 1437 sp->rx_good = 0; 1438 sp->rx_crc_errors = 0; 1439 sp->rx_alignment_errors = 0; 1440 sp->rx_rnr_errors = 0; 1441 sp->rx_overrun_errors = 0; 1442 } 1443 if (sc->miibus != NULL) 1444 mii_tick(device_get_softc(sc->miibus)); 1445 splx(s); 1446 /* 1447 * Schedule another timeout one second from now. 1448 */ 1449 sc->stat_ch = timeout(fxp_tick, sc, hz); 1450 } 1451 1452 /* 1453 * Stop the interface. Cancels the statistics updater and resets 1454 * the interface. 1455 */ 1456 static void 1457 fxp_stop(struct fxp_softc *sc) 1458 { 1459 struct ifnet *ifp = &sc->sc_if; 1460 struct fxp_cb_tx *txp; 1461 int i; 1462 1463 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1464 ifp->if_timer = 0; 1465 1466 #ifdef DEVICE_POLLING 1467 ether_poll_deregister(ifp); 1468 #endif 1469 /* 1470 * Cancel stats updater. 1471 */ 1472 untimeout(fxp_tick, sc, sc->stat_ch); 1473 1474 /* 1475 * Issue software reset, which also unloads the microcode. 1476 */ 1477 sc->flags &= ~FXP_FLAG_UCODE; 1478 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 1479 DELAY(50); 1480 1481 /* 1482 * Release any xmit buffers. 1483 */ 1484 txp = sc->cbl_base; 1485 if (txp != NULL) { 1486 for (i = 0; i < FXP_NTXCB; i++) { 1487 if (txp[i].mb_head != NULL) { 1488 m_freem(txp[i].mb_head); 1489 txp[i].mb_head = NULL; 1490 } 1491 } 1492 } 1493 sc->tx_queued = 0; 1494 1495 /* 1496 * Free all the receive buffers then reallocate/reinitialize 1497 */ 1498 if (sc->rfa_headm != NULL) 1499 m_freem(sc->rfa_headm); 1500 sc->rfa_headm = NULL; 1501 sc->rfa_tailm = NULL; 1502 for (i = 0; i < FXP_NRFABUFS; i++) { 1503 if (fxp_add_rfabuf(sc, NULL) != 0) { 1504 /* 1505 * This "can't happen" - we're at splimp() 1506 * and we just freed all the buffers we need 1507 * above. 1508 */ 1509 panic("fxp_stop: no buffers!"); 1510 } 1511 } 1512 } 1513 1514 /* 1515 * Watchdog/transmission transmit timeout handler. Called when a 1516 * transmission is started on the interface, but no interrupt is 1517 * received before the timeout. This usually indicates that the 1518 * card has wedged for some reason. 1519 */ 1520 static void 1521 fxp_watchdog(struct ifnet *ifp) 1522 { 1523 struct fxp_softc *sc = ifp->if_softc; 1524 1525 device_printf(sc->dev, "device timeout\n"); 1526 ifp->if_oerrors++; 1527 1528 fxp_init(sc); 1529 } 1530 1531 static void 1532 fxp_init(void *xsc) 1533 { 1534 struct fxp_softc *sc = xsc; 1535 struct ifnet *ifp = &sc->sc_if; 1536 struct fxp_cb_config *cbp; 1537 struct fxp_cb_ias *cb_ias; 1538 struct fxp_cb_tx *txp; 1539 struct fxp_cb_mcs *mcsp; 1540 int i, prm, s; 1541 1542 s = splimp(); 1543 /* 1544 * Cancel any pending I/O 1545 */ 1546 fxp_stop(sc); 1547 1548 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; 1549 1550 /* 1551 * Initialize base of CBL and RFA memory. Loading with zero 1552 * sets it up for regular linear addressing. 1553 */ 1554 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); 1555 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); 1556 1557 fxp_scb_wait(sc); 1558 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); 1559 1560 /* 1561 * Initialize base of dump-stats buffer. 1562 */ 1563 fxp_scb_wait(sc); 1564 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats)); 1565 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); 1566 1567 /* 1568 * Attempt to load microcode if requested. 1569 */ 1570 if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0) 1571 fxp_load_ucode(sc); 1572 1573 /* 1574 * Initialize the multicast address list. 1575 */ 1576 if (fxp_mc_addrs(sc)) { 1577 mcsp = sc->mcsp; 1578 mcsp->cb_status = 0; 1579 mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL; 1580 mcsp->link_addr = -1; 1581 /* 1582 * Start the multicast setup command. 1583 */ 1584 fxp_scb_wait(sc); 1585 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status)); 1586 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1587 /* ...and wait for it to complete. */ 1588 fxp_dma_wait(&mcsp->cb_status, sc); 1589 } 1590 1591 /* 1592 * We temporarily use memory that contains the TxCB list to 1593 * construct the config CB. The TxCB list memory is rebuilt 1594 * later. 1595 */ 1596 cbp = (struct fxp_cb_config *) sc->cbl_base; 1597 1598 /* 1599 * This bcopy is kind of disgusting, but there are a bunch of must be 1600 * zero and must be one bits in this structure and this is the easiest 1601 * way to initialize them all to proper values. 1602 */ 1603 bcopy(fxp_cb_config_template, 1604 (void *)(uintptr_t)(volatile void *)&cbp->cb_status, 1605 sizeof(fxp_cb_config_template)); 1606 1607 cbp->cb_status = 0; 1608 cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL; 1609 cbp->link_addr = -1; /* (no) next command */ 1610 cbp->byte_count = 22; /* (22) bytes to config */ 1611 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ 1612 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ 1613 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ 1614 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0; 1615 cbp->type_enable = 0; /* actually reserved */ 1616 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0; 1617 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0; 1618 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ 1619 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ 1620 cbp->dma_mbce = 0; /* (disable) dma max counters */ 1621 cbp->late_scb = 0; /* (don't) defer SCB update */ 1622 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */ 1623 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */ 1624 cbp->ci_int = 1; /* interrupt on CU idle */ 1625 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1; 1626 cbp->ext_stats_dis = 1; /* disable extended counters */ 1627 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */ 1628 cbp->save_bf = sc->revision == FXP_REV_82557 ? 1 : prm; 1629 cbp->disc_short_rx = !prm; /* discard short packets */ 1630 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */ 1631 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */ 1632 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */ 1633 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1; 1634 cbp->csma_dis = 0; /* (don't) disable link */ 1635 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */ 1636 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */ 1637 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */ 1638 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */ 1639 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */ 1640 cbp->nsai = 1; /* (don't) disable source addr insert */ 1641 cbp->preamble_length = 2; /* (7 byte) preamble */ 1642 cbp->loopback = 0; /* (don't) loopback */ 1643 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ 1644 cbp->linear_pri_mode = 0; /* (wait after xmit only) */ 1645 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ 1646 cbp->promiscuous = prm; /* promiscuous mode */ 1647 cbp->bcast_disable = 0; /* (don't) disable broadcasts */ 1648 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/ 1649 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */ 1650 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */ 1651 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0; 1652 1653 cbp->stripping = !prm; /* truncate rx packet to byte count */ 1654 cbp->padding = 1; /* (do) pad short tx packets */ 1655 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ 1656 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0; 1657 cbp->ia_wake_en = 0; /* (don't) wake up on address match */ 1658 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */ 1659 /* must set wake_en in PMCSR also */ 1660 cbp->force_fdx = 0; /* (don't) force full duplex */ 1661 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ 1662 cbp->multi_ia = 0; /* (don't) accept multiple IAs */ 1663 cbp->mc_all = sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0; 1664 1665 if (sc->revision == FXP_REV_82557) { 1666 /* 1667 * The 82557 has no hardware flow control, the values 1668 * below are the defaults for the chip. 1669 */ 1670 cbp->fc_delay_lsb = 0; 1671 cbp->fc_delay_msb = 0x40; 1672 cbp->pri_fc_thresh = 3; 1673 cbp->tx_fc_dis = 0; 1674 cbp->rx_fc_restop = 0; 1675 cbp->rx_fc_restart = 0; 1676 cbp->fc_filter = 0; 1677 cbp->pri_fc_loc = 1; 1678 } else { 1679 cbp->fc_delay_lsb = 0x1f; 1680 cbp->fc_delay_msb = 0x01; 1681 cbp->pri_fc_thresh = 3; 1682 cbp->tx_fc_dis = 0; /* enable transmit FC */ 1683 cbp->rx_fc_restop = 1; /* enable FC restop frames */ 1684 cbp->rx_fc_restart = 1; /* enable FC restart frames */ 1685 cbp->fc_filter = !prm; /* drop FC frames to host */ 1686 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */ 1687 } 1688 1689 /* 1690 * Start the config command/DMA. 1691 */ 1692 fxp_scb_wait(sc); 1693 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status)); 1694 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1695 /* ...and wait for it to complete. */ 1696 fxp_dma_wait(&cbp->cb_status, sc); 1697 1698 /* 1699 * Now initialize the station address. Temporarily use the TxCB 1700 * memory area like we did above for the config CB. 1701 */ 1702 cb_ias = (struct fxp_cb_ias *) sc->cbl_base; 1703 cb_ias->cb_status = 0; 1704 cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL; 1705 cb_ias->link_addr = -1; 1706 bcopy(sc->arpcom.ac_enaddr, 1707 (void *)(uintptr_t)(volatile void *)cb_ias->macaddr, 1708 sizeof(sc->arpcom.ac_enaddr)); 1709 1710 /* 1711 * Start the IAS (Individual Address Setup) command/DMA. 1712 */ 1713 fxp_scb_wait(sc); 1714 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1715 /* ...and wait for it to complete. */ 1716 fxp_dma_wait(&cb_ias->cb_status, sc); 1717 1718 /* 1719 * Initialize transmit control block (TxCB) list. 1720 */ 1721 1722 txp = sc->cbl_base; 1723 bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB); 1724 for (i = 0; i < FXP_NTXCB; i++) { 1725 txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK; 1726 txp[i].cb_command = FXP_CB_COMMAND_NOP; 1727 txp[i].link_addr = 1728 vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status); 1729 if (sc->flags & FXP_FLAG_EXT_TXCB) 1730 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]); 1731 else 1732 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]); 1733 txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK]; 1734 } 1735 /* 1736 * Set the suspend flag on the first TxCB and start the control 1737 * unit. It will execute the NOP and then suspend. 1738 */ 1739 txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S; 1740 sc->cbl_first = sc->cbl_last = txp; 1741 sc->tx_queued = 1; 1742 1743 fxp_scb_wait(sc); 1744 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1745 1746 /* 1747 * Initialize receiver buffer area - RFA. 1748 */ 1749 fxp_scb_wait(sc); 1750 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 1751 vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE); 1752 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 1753 1754 /* 1755 * Set current media. 1756 */ 1757 if (sc->miibus != NULL) 1758 mii_mediachg(device_get_softc(sc->miibus)); 1759 1760 ifp->if_flags |= IFF_RUNNING; 1761 ifp->if_flags &= ~IFF_OACTIVE; 1762 1763 /* 1764 * Enable interrupts. 1765 */ 1766 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 1767 splx(s); 1768 1769 /* 1770 * Start stats updater. 1771 */ 1772 sc->stat_ch = timeout(fxp_tick, sc, hz); 1773 } 1774 1775 static int 1776 fxp_serial_ifmedia_upd(struct ifnet *ifp) 1777 { 1778 1779 return (0); 1780 } 1781 1782 static void 1783 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1784 { 1785 1786 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 1787 } 1788 1789 /* 1790 * Change media according to request. 1791 */ 1792 static int 1793 fxp_ifmedia_upd(struct ifnet *ifp) 1794 { 1795 struct fxp_softc *sc = ifp->if_softc; 1796 struct mii_data *mii; 1797 1798 mii = device_get_softc(sc->miibus); 1799 mii_mediachg(mii); 1800 return (0); 1801 } 1802 1803 /* 1804 * Notify the world which media we're using. 1805 */ 1806 static void 1807 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1808 { 1809 struct fxp_softc *sc = ifp->if_softc; 1810 struct mii_data *mii; 1811 1812 mii = device_get_softc(sc->miibus); 1813 mii_pollstat(mii); 1814 ifmr->ifm_active = mii->mii_media_active; 1815 ifmr->ifm_status = mii->mii_media_status; 1816 1817 if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG) 1818 sc->cu_resume_bug = 1; 1819 else 1820 sc->cu_resume_bug = 0; 1821 } 1822 1823 /* 1824 * Add a buffer to the end of the RFA buffer list. 1825 * Return 0 if successful, 1 for failure. A failure results in 1826 * adding the 'oldm' (if non-NULL) on to the end of the list - 1827 * tossing out its old contents and recycling it. 1828 * The RFA struct is stuck at the beginning of mbuf cluster and the 1829 * data pointer is fixed up to point just past it. 1830 */ 1831 static int 1832 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm) 1833 { 1834 u_int32_t v; 1835 struct mbuf *m; 1836 struct fxp_rfa *rfa, *p_rfa; 1837 1838 MGETHDR(m, M_DONTWAIT, MT_DATA); 1839 if (m != NULL) { 1840 MCLGET(m, M_DONTWAIT); 1841 if ((m->m_flags & M_EXT) == 0) { 1842 m_freem(m); 1843 if (oldm == NULL) 1844 return 1; 1845 m = oldm; 1846 m->m_data = m->m_ext.ext_buf; 1847 } 1848 } else { 1849 if (oldm == NULL) 1850 return 1; 1851 m = oldm; 1852 m->m_data = m->m_ext.ext_buf; 1853 } 1854 1855 /* 1856 * Move the data pointer up so that the incoming data packet 1857 * will be 32-bit aligned. 1858 */ 1859 m->m_data += RFA_ALIGNMENT_FUDGE; 1860 1861 /* 1862 * Get a pointer to the base of the mbuf cluster and move 1863 * data start past it. 1864 */ 1865 rfa = mtod(m, struct fxp_rfa *); 1866 m->m_data += sizeof(struct fxp_rfa); 1867 rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE); 1868 1869 /* 1870 * Initialize the rest of the RFA. Note that since the RFA 1871 * is misaligned, we cannot store values directly. Instead, 1872 * we use an optimized, inline copy. 1873 */ 1874 1875 rfa->rfa_status = 0; 1876 rfa->rfa_control = FXP_RFA_CONTROL_EL; 1877 rfa->actual_size = 0; 1878 1879 v = -1; 1880 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr); 1881 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr); 1882 1883 /* 1884 * If there are other buffers already on the list, attach this 1885 * one to the end by fixing up the tail to point to this one. 1886 */ 1887 if (sc->rfa_headm != NULL) { 1888 p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf + 1889 RFA_ALIGNMENT_FUDGE); 1890 sc->rfa_tailm->m_next = m; 1891 v = vtophys(rfa); 1892 fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr); 1893 p_rfa->rfa_control = 0; 1894 } else { 1895 sc->rfa_headm = m; 1896 } 1897 sc->rfa_tailm = m; 1898 1899 return (m == oldm); 1900 } 1901 1902 static volatile int 1903 fxp_miibus_readreg(device_t dev, int phy, int reg) 1904 { 1905 struct fxp_softc *sc = device_get_softc(dev); 1906 int count = 10000; 1907 int value; 1908 1909 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 1910 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); 1911 1912 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 1913 && count--) 1914 DELAY(10); 1915 1916 if (count <= 0) 1917 device_printf(dev, "fxp_miibus_readreg: timed out\n"); 1918 1919 return (value & 0xffff); 1920 } 1921 1922 static void 1923 fxp_miibus_writereg(device_t dev, int phy, int reg, int value) 1924 { 1925 struct fxp_softc *sc = device_get_softc(dev); 1926 int count = 10000; 1927 1928 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 1929 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | 1930 (value & 0xffff)); 1931 1932 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && 1933 count--) 1934 DELAY(10); 1935 1936 if (count <= 0) 1937 device_printf(dev, "fxp_miibus_writereg: timed out\n"); 1938 } 1939 1940 static int 1941 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1942 { 1943 struct fxp_softc *sc = ifp->if_softc; 1944 struct ifreq *ifr = (struct ifreq *)data; 1945 struct mii_data *mii; 1946 int s, error = 0; 1947 1948 s = splimp(); 1949 1950 switch (command) { 1951 case SIOCSIFADDR: 1952 case SIOCGIFADDR: 1953 case SIOCSIFMTU: 1954 error = ether_ioctl(ifp, command, data); 1955 break; 1956 1957 case SIOCSIFFLAGS: 1958 if (ifp->if_flags & IFF_ALLMULTI) 1959 sc->flags |= FXP_FLAG_ALL_MCAST; 1960 else 1961 sc->flags &= ~FXP_FLAG_ALL_MCAST; 1962 1963 /* 1964 * If interface is marked up and not running, then start it. 1965 * If it is marked down and running, stop it. 1966 * XXX If it's up then re-initialize it. This is so flags 1967 * such as IFF_PROMISC are handled. 1968 */ 1969 if (ifp->if_flags & IFF_UP) { 1970 fxp_init(sc); 1971 } else { 1972 if (ifp->if_flags & IFF_RUNNING) 1973 fxp_stop(sc); 1974 } 1975 break; 1976 1977 case SIOCADDMULTI: 1978 case SIOCDELMULTI: 1979 if (ifp->if_flags & IFF_ALLMULTI) 1980 sc->flags |= FXP_FLAG_ALL_MCAST; 1981 else 1982 sc->flags &= ~FXP_FLAG_ALL_MCAST; 1983 /* 1984 * Multicast list has changed; set the hardware filter 1985 * accordingly. 1986 */ 1987 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) 1988 fxp_mc_setup(sc); 1989 /* 1990 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it 1991 * again rather than else {}. 1992 */ 1993 if (sc->flags & FXP_FLAG_ALL_MCAST) 1994 fxp_init(sc); 1995 error = 0; 1996 break; 1997 1998 case SIOCSIFMEDIA: 1999 case SIOCGIFMEDIA: 2000 if (sc->miibus != NULL) { 2001 mii = device_get_softc(sc->miibus); 2002 error = ifmedia_ioctl(ifp, ifr, 2003 &mii->mii_media, command); 2004 } else { 2005 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); 2006 } 2007 break; 2008 2009 default: 2010 error = EINVAL; 2011 } 2012 splx(s); 2013 return (error); 2014 } 2015 2016 /* 2017 * Fill in the multicast address list and return number of entries. 2018 */ 2019 static int 2020 fxp_mc_addrs(struct fxp_softc *sc) 2021 { 2022 struct fxp_cb_mcs *mcsp = sc->mcsp; 2023 struct ifnet *ifp = &sc->sc_if; 2024 struct ifmultiaddr *ifma; 2025 int nmcasts; 2026 2027 nmcasts = 0; 2028 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) { 2029 #if __FreeBSD_version < 500000 2030 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2031 #else 2032 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2033 #endif 2034 if (ifma->ifma_addr->sa_family != AF_LINK) 2035 continue; 2036 if (nmcasts >= MAXMCADDR) { 2037 sc->flags |= FXP_FLAG_ALL_MCAST; 2038 nmcasts = 0; 2039 break; 2040 } 2041 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 2042 (void *)(uintptr_t)(volatile void *) 2043 &sc->mcsp->mc_addr[nmcasts][0], 6); 2044 nmcasts++; 2045 } 2046 } 2047 mcsp->mc_cnt = nmcasts * 6; 2048 return (nmcasts); 2049 } 2050 2051 /* 2052 * Program the multicast filter. 2053 * 2054 * We have an artificial restriction that the multicast setup command 2055 * must be the first command in the chain, so we take steps to ensure 2056 * this. By requiring this, it allows us to keep up the performance of 2057 * the pre-initialized command ring (esp. link pointers) by not actually 2058 * inserting the mcsetup command in the ring - i.e. its link pointer 2059 * points to the TxCB ring, but the mcsetup descriptor itself is not part 2060 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it 2061 * lead into the regular TxCB ring when it completes. 2062 * 2063 * This function must be called at splimp. 2064 */ 2065 static void 2066 fxp_mc_setup(struct fxp_softc *sc) 2067 { 2068 struct fxp_cb_mcs *mcsp = sc->mcsp; 2069 struct ifnet *ifp = &sc->sc_if; 2070 int count; 2071 2072 /* 2073 * If there are queued commands, we must wait until they are all 2074 * completed. If we are already waiting, then add a NOP command 2075 * with interrupt option so that we're notified when all commands 2076 * have been completed - fxp_start() ensures that no additional 2077 * TX commands will be added when need_mcsetup is true. 2078 */ 2079 if (sc->tx_queued) { 2080 struct fxp_cb_tx *txp; 2081 2082 /* 2083 * need_mcsetup will be true if we are already waiting for the 2084 * NOP command to be completed (see below). In this case, bail. 2085 */ 2086 if (sc->need_mcsetup) 2087 return; 2088 sc->need_mcsetup = 1; 2089 2090 /* 2091 * Add a NOP command with interrupt so that we are notified 2092 * when all TX commands have been processed. 2093 */ 2094 txp = sc->cbl_last->next; 2095 txp->mb_head = NULL; 2096 txp->cb_status = 0; 2097 txp->cb_command = FXP_CB_COMMAND_NOP | 2098 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; 2099 /* 2100 * Advance the end of list forward. 2101 */ 2102 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S; 2103 sc->cbl_last = txp; 2104 sc->tx_queued++; 2105 /* 2106 * Issue a resume in case the CU has just suspended. 2107 */ 2108 fxp_scb_wait(sc); 2109 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 2110 /* 2111 * Set a 5 second timer just in case we don't hear from the 2112 * card again. 2113 */ 2114 ifp->if_timer = 5; 2115 2116 return; 2117 } 2118 sc->need_mcsetup = 0; 2119 2120 /* 2121 * Initialize multicast setup descriptor. 2122 */ 2123 mcsp->next = sc->cbl_base; 2124 mcsp->mb_head = NULL; 2125 mcsp->cb_status = 0; 2126 mcsp->cb_command = FXP_CB_COMMAND_MCAS | 2127 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; 2128 mcsp->link_addr = vtophys(&sc->cbl_base->cb_status); 2129 (void) fxp_mc_addrs(sc); 2130 sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp; 2131 sc->tx_queued = 1; 2132 2133 /* 2134 * Wait until command unit is not active. This should never 2135 * be the case when nothing is queued, but make sure anyway. 2136 */ 2137 count = 100; 2138 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) == 2139 FXP_SCB_CUS_ACTIVE && --count) 2140 DELAY(10); 2141 if (count == 0) { 2142 device_printf(sc->dev, "command queue timeout\n"); 2143 return; 2144 } 2145 2146 /* 2147 * Start the multicast setup command. 2148 */ 2149 fxp_scb_wait(sc); 2150 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status)); 2151 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2152 2153 ifp->if_timer = 2; 2154 return; 2155 } 2156 2157 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE; 2158 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE; 2159 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE; 2160 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE; 2161 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE; 2162 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE; 2163 2164 #define UCODE(x) x, sizeof(x) 2165 2166 struct ucode { 2167 u_int32_t revision; 2168 u_int32_t *ucode; 2169 int length; 2170 u_short int_delay_offset; 2171 u_short bundle_max_offset; 2172 } ucode_table[] = { 2173 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 }, 2174 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 }, 2175 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma), 2176 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD }, 2177 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s), 2178 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD }, 2179 { FXP_REV_82550, UCODE(fxp_ucode_d102), 2180 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD }, 2181 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c), 2182 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD }, 2183 { 0, NULL, 0, 0, 0 } 2184 }; 2185 2186 static void 2187 fxp_load_ucode(struct fxp_softc *sc) 2188 { 2189 struct ucode *uc; 2190 struct fxp_cb_ucode *cbp; 2191 2192 for (uc = ucode_table; uc->ucode != NULL; uc++) 2193 if (sc->revision == uc->revision) 2194 break; 2195 if (uc->ucode == NULL) 2196 return; 2197 cbp = (struct fxp_cb_ucode *)sc->cbl_base; 2198 cbp->cb_status = 0; 2199 cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL; 2200 cbp->link_addr = -1; /* (no) next command */ 2201 memcpy(cbp->ucode, uc->ucode, uc->length); 2202 if (uc->int_delay_offset) 2203 *(u_short *)&cbp->ucode[uc->int_delay_offset] = 2204 sc->tunable_int_delay + sc->tunable_int_delay / 2; 2205 if (uc->bundle_max_offset) 2206 *(u_short *)&cbp->ucode[uc->bundle_max_offset] = 2207 sc->tunable_bundle_max; 2208 /* 2209 * Download the ucode to the chip. 2210 */ 2211 fxp_scb_wait(sc); 2212 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status)); 2213 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2214 /* ...and wait for it to complete. */ 2215 fxp_dma_wait(&cbp->cb_status, sc); 2216 device_printf(sc->dev, 2217 "Microcode loaded, int_delay: %d usec bundle_max: %d\n", 2218 sc->tunable_int_delay, 2219 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max); 2220 sc->flags |= FXP_FLAG_UCODE; 2221 } 2222 2223 static int 2224 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 2225 { 2226 int error, value; 2227 2228 value = *(int *)arg1; 2229 error = sysctl_handle_int(oidp, &value, 0, req); 2230 if (error || !req->newptr) 2231 return (error); 2232 if (value < low || value > high) 2233 return (EINVAL); 2234 *(int *)arg1 = value; 2235 return (0); 2236 } 2237 2238 /* 2239 * Interrupt delay is expressed in microseconds, a multiplier is used 2240 * to convert this to the appropriate clock ticks before using. 2241 */ 2242 static int 2243 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS) 2244 { 2245 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000)); 2246 } 2247 2248 static int 2249 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS) 2250 { 2251 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff)); 2252 } 2253