xref: /freebsd/sys/dev/fxp/if_fxp.c (revision b52b9d56d4e96089873a75f9e29062eec19fabba)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/mbuf.h>
38 #include <sys/malloc.h>
39 		/* #include <sys/mutex.h> */
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/sysctl.h>
43 
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 
48 #ifdef NS
49 #include <netns/ns.h>
50 #include <netns/ns_if.h>
51 #endif
52 
53 #include <net/bpf.h>
54 #include <sys/sockio.h>
55 #include <sys/bus.h>
56 #include <machine/bus.h>
57 #include <sys/rman.h>
58 #include <machine/resource.h>
59 
60 #include <net/ethernet.h>
61 #include <net/if_arp.h>
62 
63 #include <vm/vm.h>		/* for vtophys */
64 #include <vm/pmap.h>		/* for vtophys */
65 #include <machine/clock.h>	/* for DELAY */
66 
67 #include <net/if_types.h>
68 #include <net/if_vlan_var.h>
69 
70 #include <pci/pcivar.h>
71 #include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
72 
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/fxp/if_fxpreg.h>
77 #include <dev/fxp/if_fxpvar.h>
78 #include <dev/fxp/rcvbundl.h>
79 
80 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
81 #include "miibus_if.h"
82 
83 /*
84  * NOTE!  On the Alpha, we have an alignment constraint.  The
85  * card DMAs the packet immediately following the RFA.  However,
86  * the first thing in the packet is a 14-byte Ethernet header.
87  * This means that the packet is misaligned.  To compensate,
88  * we actually offset the RFA 2 bytes into the cluster.  This
89  * alignes the packet after the Ethernet header at a 32-bit
90  * boundary.  HOWEVER!  This means that the RFA is misaligned!
91  */
92 #define	RFA_ALIGNMENT_FUDGE	2
93 
94 /*
95  * Set initial transmit threshold at 64 (512 bytes). This is
96  * increased by 64 (512 bytes) at a time, to maximum of 192
97  * (1536 bytes), if an underrun occurs.
98  */
99 static int tx_threshold = 64;
100 
101 /*
102  * The configuration byte map has several undefined fields which
103  * must be one or must be zero.  Set up a template for these bits
104  * only, (assuming a 82557 chip) leaving the actual configuration
105  * to fxp_init.
106  *
107  * See struct fxp_cb_config for the bit definitions.
108  */
109 static u_char fxp_cb_config_template[] = {
110 	0x0, 0x0,		/* cb_status */
111 	0x0, 0x0,		/* cb_command */
112 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113 	0x0,	/*  0 */
114 	0x0,	/*  1 */
115 	0x0,	/*  2 */
116 	0x0,	/*  3 */
117 	0x0,	/*  4 */
118 	0x0,	/*  5 */
119 	0x32,	/*  6 */
120 	0x0,	/*  7 */
121 	0x0,	/*  8 */
122 	0x0,	/*  9 */
123 	0x6,	/* 10 */
124 	0x0,	/* 11 */
125 	0x0,	/* 12 */
126 	0x0,	/* 13 */
127 	0xf2,	/* 14 */
128 	0x48,	/* 15 */
129 	0x0,	/* 16 */
130 	0x40,	/* 17 */
131 	0xf0,	/* 18 */
132 	0x0,	/* 19 */
133 	0x3f,	/* 20 */
134 	0x5	/* 21 */
135 };
136 
137 struct fxp_ident {
138 	u_int16_t	devid;
139 	char 		*name;
140 };
141 
142 /*
143  * Claim various Intel PCI device identifiers for this driver.  The
144  * sub-vendor and sub-device field are extensively used to identify
145  * particular variants, but we don't currently differentiate between
146  * them.
147  */
148 static struct fxp_ident fxp_ident_table[] = {
149     { 0x1229,		"Intel Pro 10/100B/100+ Ethernet" },
150     { 0x2449,		"Intel Pro/100 Ethernet" },
151     { 0x1209,		"Intel Embedded 10/100 Ethernet" },
152     { 0x1029,		"Intel Pro/100 Ethernet" },
153     { 0x1030,		"Intel Pro/100 Ethernet" },
154     { 0x1031,		"Intel Pro/100 Ethernet" },
155     { 0x1032,		"Intel Pro/100 Ethernet" },
156     { 0x1033,		"Intel Pro/100 Ethernet" },
157     { 0x1034,		"Intel Pro/100 Ethernet" },
158     { 0x1035,		"Intel Pro/100 Ethernet" },
159     { 0x1036,		"Intel Pro/100 Ethernet" },
160     { 0x1037,		"Intel Pro/100 Ethernet" },
161     { 0x1038,		"Intel Pro/100 Ethernet" },
162     { 0x1039,		"Intel Pro/100 Ethernet" },
163     { 0x103A,		"Intel Pro/100 Ethernet" },
164     { 0,		NULL },
165 };
166 
167 static int		fxp_probe(device_t dev);
168 static int		fxp_attach(device_t dev);
169 static int		fxp_detach(device_t dev);
170 static int		fxp_shutdown(device_t dev);
171 static int		fxp_suspend(device_t dev);
172 static int		fxp_resume(device_t dev);
173 
174 static void		fxp_intr(void *xsc);
175 static void 		fxp_init(void *xsc);
176 static void 		fxp_tick(void *xsc);
177 static void		fxp_powerstate_d0(device_t dev);
178 static void 		fxp_start(struct ifnet *ifp);
179 static void		fxp_stop(struct fxp_softc *sc);
180 static void 		fxp_release(struct fxp_softc *sc);
181 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
182 			    caddr_t data);
183 static void 		fxp_watchdog(struct ifnet *ifp);
184 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
185 static int		fxp_mc_addrs(struct fxp_softc *sc);
186 static void		fxp_mc_setup(struct fxp_softc *sc);
187 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
188 			    int autosize);
189 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
190 			    u_int16_t data);
191 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
192 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
193 			    int offset, int words);
194 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
195 			    int offset, int words);
196 static int		fxp_ifmedia_upd(struct ifnet *ifp);
197 static void		fxp_ifmedia_sts(struct ifnet *ifp,
198 			    struct ifmediareq *ifmr);
199 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
200 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
201 			    struct ifmediareq *ifmr);
202 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
203 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
204 			    int value);
205 static void		fxp_load_ucode(struct fxp_softc *sc);
206 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
207 			    int low, int high);
208 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
209 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
210 static __inline void	fxp_lwcopy(volatile u_int32_t *src,
211 			    volatile u_int32_t *dst);
212 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
213 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
214 static __inline void	fxp_dma_wait(volatile u_int16_t *status,
215 			    struct fxp_softc *sc);
216 
217 static device_method_t fxp_methods[] = {
218 	/* Device interface */
219 	DEVMETHOD(device_probe,		fxp_probe),
220 	DEVMETHOD(device_attach,	fxp_attach),
221 	DEVMETHOD(device_detach,	fxp_detach),
222 	DEVMETHOD(device_shutdown,	fxp_shutdown),
223 	DEVMETHOD(device_suspend,	fxp_suspend),
224 	DEVMETHOD(device_resume,	fxp_resume),
225 
226 	/* MII interface */
227 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
228 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
229 
230 	{ 0, 0 }
231 };
232 
233 static driver_t fxp_driver = {
234 	"fxp",
235 	fxp_methods,
236 	sizeof(struct fxp_softc),
237 };
238 
239 static devclass_t fxp_devclass;
240 
241 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
242 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
243 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
244 
245 /*
246  * Inline function to copy a 16-bit aligned 32-bit quantity.
247  */
248 static __inline void
249 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
250 {
251 #ifdef __i386__
252 	*dst = *src;
253 #else
254 	volatile u_int16_t *a = (volatile u_int16_t *)src;
255 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
256 
257 	b[0] = a[0];
258 	b[1] = a[1];
259 #endif
260 }
261 
262 /*
263  * Wait for the previous command to be accepted (but not necessarily
264  * completed).
265  */
266 static __inline void
267 fxp_scb_wait(struct fxp_softc *sc)
268 {
269 	int i = 10000;
270 
271 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
272 		DELAY(2);
273 	if (i == 0)
274 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
275 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
276 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
277 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
278 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
279 }
280 
281 static __inline void
282 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
283 {
284 
285 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
286 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
287 		fxp_scb_wait(sc);
288 	}
289 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
290 }
291 
292 static __inline void
293 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
294 {
295 	int i = 10000;
296 
297 	while (!(*status & FXP_CB_STATUS_C) && --i)
298 		DELAY(2);
299 	if (i == 0)
300 		device_printf(sc->dev, "DMA timeout\n");
301 }
302 
303 /*
304  * Return identification string if this is device is ours.
305  */
306 static int
307 fxp_probe(device_t dev)
308 {
309 	u_int16_t devid;
310 	struct fxp_ident *ident;
311 
312 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
313 		devid = pci_get_device(dev);
314 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
315 			if (ident->devid == devid) {
316 				device_set_desc(dev, ident->name);
317 				return (0);
318 			}
319 		}
320 	}
321 	return (ENXIO);
322 }
323 
324 static void
325 fxp_powerstate_d0(device_t dev)
326 {
327 #if __FreeBSD_version >= 430002
328 	u_int32_t iobase, membase, irq;
329 
330 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
331 		/* Save important PCI config data. */
332 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
333 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
334 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
335 
336 		/* Reset the power state. */
337 		device_printf(dev, "chip is in D%d power mode "
338 		    "-- setting to D0\n", pci_get_powerstate(dev));
339 
340 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
341 
342 		/* Restore PCI config data. */
343 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
344 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
345 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
346 	}
347 #endif
348 }
349 
350 static int
351 fxp_attach(device_t dev)
352 {
353 	int error = 0;
354 	struct fxp_softc *sc = device_get_softc(dev);
355 	struct ifnet *ifp;
356 	u_int32_t val;
357 	u_int16_t data;
358 	int i, rid, m1, m2, prefer_iomap;
359 	int s;
360 
361 	bzero(sc, sizeof(*sc));
362 	sc->dev = dev;
363 	callout_handle_init(&sc->stat_ch);
364 	sysctl_ctx_init(&sc->sysctl_ctx);
365 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
366 	    MTX_DEF | MTX_RECURSE);
367 
368 	s = splimp();
369 
370 	/*
371 	 * Enable bus mastering. Enable memory space too, in case
372 	 * BIOS/Prom forgot about it.
373 	 */
374 	val = pci_read_config(dev, PCIR_COMMAND, 2);
375 	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
376 	pci_write_config(dev, PCIR_COMMAND, val, 2);
377 	val = pci_read_config(dev, PCIR_COMMAND, 2);
378 
379 	fxp_powerstate_d0(dev);
380 
381 	/*
382 	 * Figure out which we should try first - memory mapping or i/o mapping?
383 	 * We default to memory mapping. Then we accept an override from the
384 	 * command line. Then we check to see which one is enabled.
385 	 */
386 	m1 = PCIM_CMD_MEMEN;
387 	m2 = PCIM_CMD_PORTEN;
388 	prefer_iomap = 0;
389 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
390 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
391 		m1 = PCIM_CMD_PORTEN;
392 		m2 = PCIM_CMD_MEMEN;
393 	}
394 
395 	if (val & m1) {
396 		sc->rtp =
397 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
398 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
399 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
400 	                                     0, ~0, 1, RF_ACTIVE);
401 	}
402 	if (sc->mem == NULL && (val & m2)) {
403 		sc->rtp =
404 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
405 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
406 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
407                                             0, ~0, 1, RF_ACTIVE);
408 	}
409 
410 	if (!sc->mem) {
411 		device_printf(dev, "could not map device registers\n");
412 		error = ENXIO;
413 		goto fail;
414         }
415 	if (bootverbose) {
416 		device_printf(dev, "using %s space register mapping\n",
417 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
418 	}
419 
420 	sc->sc_st = rman_get_bustag(sc->mem);
421 	sc->sc_sh = rman_get_bushandle(sc->mem);
422 
423 	/*
424 	 * Allocate our interrupt.
425 	 */
426 	rid = 0;
427 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
428 				 RF_SHAREABLE | RF_ACTIVE);
429 	if (sc->irq == NULL) {
430 		device_printf(dev, "could not map interrupt\n");
431 		error = ENXIO;
432 		goto fail;
433 	}
434 
435 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
436 			       fxp_intr, sc, &sc->ih);
437 	if (error) {
438 		device_printf(dev, "could not setup irq\n");
439 		goto fail;
440 	}
441 
442 	/*
443 	 * Reset to a stable state.
444 	 */
445 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
446 	DELAY(10);
447 
448 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
449 	    M_DEVBUF, M_NOWAIT | M_ZERO);
450 	if (sc->cbl_base == NULL)
451 		goto failmem;
452 
453 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
454 	    M_NOWAIT | M_ZERO);
455 	if (sc->fxp_stats == NULL)
456 		goto failmem;
457 
458 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
459 	if (sc->mcsp == NULL)
460 		goto failmem;
461 
462 	/*
463 	 * Pre-allocate our receive buffers.
464 	 */
465 	for (i = 0; i < FXP_NRFABUFS; i++) {
466 		if (fxp_add_rfabuf(sc, NULL) != 0) {
467 			goto failmem;
468 		}
469 	}
470 
471 	/*
472 	 * Find out how large of an SEEPROM we have.
473 	 */
474 	fxp_autosize_eeprom(sc);
475 
476 	/*
477 	 * Determine whether we must use the 503 serial interface.
478 	 */
479 	fxp_read_eeprom(sc, &data, 6, 1);
480 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
481 	    (data & FXP_PHY_SERIAL_ONLY))
482 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
483 
484 	/*
485 	 * Create the sysctl tree
486 	 */
487 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
488 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
489 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
490 	if (sc->sysctl_tree == NULL)
491 		goto fail;
492 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
493 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
494 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
495 	    "FXP driver receive interrupt microcode bundling delay");
496 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
497 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
498 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
499 	    "FXP driver receive interrupt microcode bundle size limit");
500 
501 	/*
502 	 * Pull in device tunables.
503 	 */
504 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
505 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
506 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
507 	    "int_delay", &sc->tunable_int_delay);
508 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
509 	    "bundle_max", &sc->tunable_bundle_max);
510 
511 	/*
512 	 * Find out the chip revision; lump all 82557 revs together.
513 	 */
514 	fxp_read_eeprom(sc, &data, 5, 1);
515 	if ((data >> 8) == 1)
516 		sc->revision = FXP_REV_82557;
517 	else
518 		sc->revision = pci_get_revid(dev);
519 
520 	/*
521 	 * Enable workarounds for certain chip revision deficiencies.
522 	 *
523 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
524 	 * some systems based a normal 82559 design, have a defect where
525 	 * the chip can cause a PCI protocol violation if it receives
526 	 * a CU_RESUME command when it is entering the IDLE state.  The
527 	 * workaround is to disable Dynamic Standby Mode, so the chip never
528 	 * deasserts CLKRUN#, and always remains in an active state.
529 	 *
530 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
531 	 */
532 	i = pci_get_device(dev);
533 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
534 	    sc->revision >= FXP_REV_82559_A0) {
535 		fxp_read_eeprom(sc, &data, 10, 1);
536 		if (data & 0x02) {			/* STB enable */
537 			u_int16_t cksum;
538 			int i;
539 
540 			device_printf(dev,
541 			    "Disabling dynamic standby mode in EEPROM\n");
542 			data &= ~0x02;
543 			fxp_write_eeprom(sc, &data, 10, 1);
544 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
545 			cksum = 0;
546 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
547 				fxp_read_eeprom(sc, &data, i, 1);
548 				cksum += data;
549 			}
550 			i = (1 << sc->eeprom_size) - 1;
551 			cksum = 0xBABA - cksum;
552 			fxp_read_eeprom(sc, &data, i, 1);
553 			fxp_write_eeprom(sc, &cksum, i, 1);
554 			device_printf(dev,
555 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
556 			    i, data, cksum);
557 #if 1
558 			/*
559 			 * If the user elects to continue, try the software
560 			 * workaround, as it is better than nothing.
561 			 */
562 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
563 #endif
564 		}
565 	}
566 
567 	/*
568 	 * If we are not a 82557 chip, we can enable extended features.
569 	 */
570 	if (sc->revision != FXP_REV_82557) {
571 		/*
572 		 * If MWI is enabled in the PCI configuration, and there
573 		 * is a valid cacheline size (8 or 16 dwords), then tell
574 		 * the board to turn on MWI.
575 		 */
576 		if (val & PCIM_CMD_MWRICEN &&
577 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
578 			sc->flags |= FXP_FLAG_MWI_ENABLE;
579 
580 		/* turn on the extended TxCB feature */
581 		sc->flags |= FXP_FLAG_EXT_TXCB;
582 
583 		/* enable reception of long frames for VLAN */
584 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
585 	}
586 
587 	/*
588 	 * Read MAC address.
589 	 */
590 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
591 	device_printf(dev, "Ethernet address %6D%s\n",
592 	    sc->arpcom.ac_enaddr, ":",
593 	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
594 	if (bootverbose) {
595 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
596 		    pci_get_vendor(dev), pci_get_device(dev),
597 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
598 		    pci_get_revid(dev));
599 		fxp_read_eeprom(sc, &data, 10, 1);
600 		device_printf(dev, "Dynamic Standby mode is %s\n",
601 		    data & 0x02 ? "enabled" : "disabled");
602 	}
603 
604 	/*
605 	 * If this is only a 10Mbps device, then there is no MII, and
606 	 * the PHY will use a serial interface instead.
607 	 *
608 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
609 	 * doesn't have a programming interface of any sort.  The
610 	 * media is sensed automatically based on how the link partner
611 	 * is configured.  This is, in essence, manual configuration.
612 	 */
613 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
614 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
615 		    fxp_serial_ifmedia_sts);
616 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
617 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
618 	} else {
619 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
620 		    fxp_ifmedia_sts)) {
621 	                device_printf(dev, "MII without any PHY!\n");
622 			error = ENXIO;
623 			goto fail;
624 		}
625 	}
626 
627 	ifp = &sc->arpcom.ac_if;
628 	ifp->if_unit = device_get_unit(dev);
629 	ifp->if_name = "fxp";
630 	ifp->if_output = ether_output;
631 	ifp->if_baudrate = 100000000;
632 	ifp->if_init = fxp_init;
633 	ifp->if_softc = sc;
634 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
635 	ifp->if_ioctl = fxp_ioctl;
636 	ifp->if_start = fxp_start;
637 	ifp->if_watchdog = fxp_watchdog;
638 
639 	/*
640 	 * Attach the interface.
641 	 */
642 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
643 
644 	/*
645 	 * Tell the upper layer(s) we support long frames.
646 	 */
647 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
648 
649 	/*
650 	 * Let the system queue as many packets as we have available
651 	 * TX descriptors.
652 	 */
653 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
654 
655 	splx(s);
656 	return (0);
657 
658 failmem:
659 	device_printf(dev, "Failed to malloc memory\n");
660 	error = ENOMEM;
661 fail:
662 	splx(s);
663 	fxp_release(sc);
664 	return (error);
665 }
666 
667 /*
668  * release all resources
669  */
670 static void
671 fxp_release(struct fxp_softc *sc)
672 {
673 
674 	bus_generic_detach(sc->dev);
675 	if (sc->miibus)
676 		device_delete_child(sc->dev, sc->miibus);
677 
678 	if (sc->cbl_base)
679 		free(sc->cbl_base, M_DEVBUF);
680 	if (sc->fxp_stats)
681 		free(sc->fxp_stats, M_DEVBUF);
682 	if (sc->mcsp)
683 		free(sc->mcsp, M_DEVBUF);
684 	if (sc->rfa_headm)
685 		m_freem(sc->rfa_headm);
686 
687 	if (sc->ih)
688 		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
689 	if (sc->irq)
690 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
691 	if (sc->mem)
692 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
693 
694         sysctl_ctx_free(&sc->sysctl_ctx);
695 
696 	mtx_destroy(&sc->sc_mtx);
697 }
698 
699 /*
700  * Detach interface.
701  */
702 static int
703 fxp_detach(device_t dev)
704 {
705 	struct fxp_softc *sc = device_get_softc(dev);
706 	int s;
707 
708 	/* disable interrupts */
709 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
710 
711 	s = splimp();
712 
713 	/*
714 	 * Stop DMA and drop transmit queue.
715 	 */
716 	fxp_stop(sc);
717 
718 	/*
719 	 * Close down routes etc.
720 	 */
721 	ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
722 
723 	/*
724 	 * Free all media structures.
725 	 */
726 	ifmedia_removeall(&sc->sc_media);
727 
728 	splx(s);
729 
730 	/* Release our allocated resources. */
731 	fxp_release(sc);
732 
733 	return (0);
734 }
735 
736 /*
737  * Device shutdown routine. Called at system shutdown after sync. The
738  * main purpose of this routine is to shut off receiver DMA so that
739  * kernel memory doesn't get clobbered during warmboot.
740  */
741 static int
742 fxp_shutdown(device_t dev)
743 {
744 	/*
745 	 * Make sure that DMA is disabled prior to reboot. Not doing
746 	 * do could allow DMA to corrupt kernel memory during the
747 	 * reboot before the driver initializes.
748 	 */
749 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
750 	return (0);
751 }
752 
753 /*
754  * Device suspend routine.  Stop the interface and save some PCI
755  * settings in case the BIOS doesn't restore them properly on
756  * resume.
757  */
758 static int
759 fxp_suspend(device_t dev)
760 {
761 	struct fxp_softc *sc = device_get_softc(dev);
762 	int i, s;
763 
764 	s = splimp();
765 
766 	fxp_stop(sc);
767 
768 	for (i = 0; i < 5; i++)
769 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
770 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
771 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
772 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
773 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
774 
775 	sc->suspended = 1;
776 
777 	splx(s);
778 	return (0);
779 }
780 
781 /*
782  * Device resume routine.  Restore some PCI settings in case the BIOS
783  * doesn't, re-enable busmastering, and restart the interface if
784  * appropriate.
785  */
786 static int
787 fxp_resume(device_t dev)
788 {
789 	struct fxp_softc *sc = device_get_softc(dev);
790 	struct ifnet *ifp = &sc->sc_if;
791 	u_int16_t pci_command;
792 	int i, s;
793 
794 	s = splimp();
795 
796 	fxp_powerstate_d0(dev);
797 
798 	/* better way to do this? */
799 	for (i = 0; i < 5; i++)
800 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
801 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
802 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
803 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
804 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
805 
806 	/* reenable busmastering */
807 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
808 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
809 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
810 
811 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
812 	DELAY(10);
813 
814 	/* reinitialize interface if necessary */
815 	if (ifp->if_flags & IFF_UP)
816 		fxp_init(sc);
817 
818 	sc->suspended = 0;
819 
820 	splx(s);
821 	return (0);
822 }
823 
824 static void
825 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
826 {
827 	u_int16_t reg;
828 	int x;
829 
830 	/*
831 	 * Shift in data.
832 	 */
833 	for (x = 1 << (length - 1); x; x >>= 1) {
834 		if (data & x)
835 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
836 		else
837 			reg = FXP_EEPROM_EECS;
838 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
839 		DELAY(1);
840 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
841 		DELAY(1);
842 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
843 		DELAY(1);
844 	}
845 }
846 
847 /*
848  * Read from the serial EEPROM. Basically, you manually shift in
849  * the read opcode (one bit at a time) and then shift in the address,
850  * and then you shift out the data (all of this one bit at a time).
851  * The word size is 16 bits, so you have to provide the address for
852  * every 16 bits of data.
853  */
854 static u_int16_t
855 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
856 {
857 	u_int16_t reg, data;
858 	int x;
859 
860 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
861 	/*
862 	 * Shift in read opcode.
863 	 */
864 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
865 	/*
866 	 * Shift in address.
867 	 */
868 	data = 0;
869 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
870 		if (offset & x)
871 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
872 		else
873 			reg = FXP_EEPROM_EECS;
874 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
875 		DELAY(1);
876 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
877 		DELAY(1);
878 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
879 		DELAY(1);
880 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
881 		data++;
882 		if (autosize && reg == 0) {
883 			sc->eeprom_size = data;
884 			break;
885 		}
886 	}
887 	/*
888 	 * Shift out data.
889 	 */
890 	data = 0;
891 	reg = FXP_EEPROM_EECS;
892 	for (x = 1 << 15; x; x >>= 1) {
893 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
894 		DELAY(1);
895 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
896 			data |= x;
897 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
898 		DELAY(1);
899 	}
900 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
901 	DELAY(1);
902 
903 	return (data);
904 }
905 
906 static void
907 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
908 {
909 	int i;
910 
911 	/*
912 	 * Erase/write enable.
913 	 */
914 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
915 	fxp_eeprom_shiftin(sc, 0x4, 3);
916 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
917 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
918 	DELAY(1);
919 	/*
920 	 * Shift in write opcode, address, data.
921 	 */
922 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
923 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
924 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
925 	fxp_eeprom_shiftin(sc, data, 16);
926 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
927 	DELAY(1);
928 	/*
929 	 * Wait for EEPROM to finish up.
930 	 */
931 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
932 	DELAY(1);
933 	for (i = 0; i < 1000; i++) {
934 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
935 			break;
936 		DELAY(50);
937 	}
938 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
939 	DELAY(1);
940 	/*
941 	 * Erase/write disable.
942 	 */
943 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
944 	fxp_eeprom_shiftin(sc, 0x4, 3);
945 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
946 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
947 	DELAY(1);
948 }
949 
950 /*
951  * From NetBSD:
952  *
953  * Figure out EEPROM size.
954  *
955  * 559's can have either 64-word or 256-word EEPROMs, the 558
956  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
957  * talks about the existance of 16 to 256 word EEPROMs.
958  *
959  * The only known sizes are 64 and 256, where the 256 version is used
960  * by CardBus cards to store CIS information.
961  *
962  * The address is shifted in msb-to-lsb, and after the last
963  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
964  * after which follows the actual data. We try to detect this zero, by
965  * probing the data-out bit in the EEPROM control register just after
966  * having shifted in a bit. If the bit is zero, we assume we've
967  * shifted enough address bits. The data-out should be tri-state,
968  * before this, which should translate to a logical one.
969  */
970 static void
971 fxp_autosize_eeprom(struct fxp_softc *sc)
972 {
973 
974 	/* guess maximum size of 256 words */
975 	sc->eeprom_size = 8;
976 
977 	/* autosize */
978 	(void) fxp_eeprom_getword(sc, 0, 1);
979 }
980 
981 static void
982 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
983 {
984 	int i;
985 
986 	for (i = 0; i < words; i++)
987 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
988 }
989 
990 static void
991 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
992 {
993 	int i;
994 
995 	for (i = 0; i < words; i++)
996 		fxp_eeprom_putword(sc, offset + i, data[i]);
997 }
998 
999 /*
1000  * Start packet transmission on the interface.
1001  */
1002 static void
1003 fxp_start(struct ifnet *ifp)
1004 {
1005 	struct fxp_softc *sc = ifp->if_softc;
1006 	struct fxp_cb_tx *txp;
1007 
1008 	/*
1009 	 * See if we need to suspend xmit until the multicast filter
1010 	 * has been reprogrammed (which can only be done at the head
1011 	 * of the command chain).
1012 	 */
1013 	if (sc->need_mcsetup) {
1014 		return;
1015 	}
1016 
1017 	txp = NULL;
1018 
1019 	/*
1020 	 * We're finished if there is nothing more to add to the list or if
1021 	 * we're all filled up with buffers to transmit.
1022 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1023 	 *       a NOP command when needed.
1024 	 */
1025 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1026 		struct mbuf *m, *mb_head;
1027 		int segment;
1028 
1029 		/*
1030 		 * Grab a packet to transmit.
1031 		 */
1032 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1033 
1034 		/*
1035 		 * Get pointer to next available tx desc.
1036 		 */
1037 		txp = sc->cbl_last->next;
1038 
1039 		/*
1040 		 * Go through each of the mbufs in the chain and initialize
1041 		 * the transmit buffer descriptors with the physical address
1042 		 * and size of the mbuf.
1043 		 */
1044 tbdinit:
1045 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1046 			if (m->m_len != 0) {
1047 				if (segment == FXP_NTXSEG)
1048 					break;
1049 				txp->tbd[segment].tb_addr =
1050 				    vtophys(mtod(m, vm_offset_t));
1051 				txp->tbd[segment].tb_size = m->m_len;
1052 				segment++;
1053 			}
1054 		}
1055 		if (m != NULL) {
1056 			struct mbuf *mn;
1057 
1058 			/*
1059 			 * We ran out of segments. We have to recopy this
1060 			 * mbuf chain first. Bail out if we can't get the
1061 			 * new buffers.
1062 			 */
1063 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1064 			if (mn == NULL) {
1065 				m_freem(mb_head);
1066 				break;
1067 			}
1068 			if (mb_head->m_pkthdr.len > MHLEN) {
1069 				MCLGET(mn, M_DONTWAIT);
1070 				if ((mn->m_flags & M_EXT) == 0) {
1071 					m_freem(mn);
1072 					m_freem(mb_head);
1073 					break;
1074 				}
1075 			}
1076 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1077 			    mtod(mn, caddr_t));
1078 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1079 			m_freem(mb_head);
1080 			mb_head = mn;
1081 			goto tbdinit;
1082 		}
1083 
1084 		txp->tbd_number = segment;
1085 		txp->mb_head = mb_head;
1086 		txp->cb_status = 0;
1087 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1088 			txp->cb_command =
1089 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1090 			    FXP_CB_COMMAND_S;
1091 		} else {
1092 			txp->cb_command =
1093 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1094 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1095 			/*
1096 			 * Set a 5 second timer just in case we don't hear
1097 			 * from the card again.
1098 			 */
1099 			ifp->if_timer = 5;
1100 		}
1101 		txp->tx_threshold = tx_threshold;
1102 
1103 		/*
1104 		 * Advance the end of list forward.
1105 		 */
1106 
1107 #ifdef __alpha__
1108 		/*
1109 		 * On platforms which can't access memory in 16-bit
1110 		 * granularities, we must prevent the card from DMA'ing
1111 		 * up the status while we update the command field.
1112 		 * This could cause us to overwrite the completion status.
1113 		 */
1114 		atomic_clear_short(&sc->cbl_last->cb_command,
1115 		    FXP_CB_COMMAND_S);
1116 #else
1117 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1118 #endif /*__alpha__*/
1119 		sc->cbl_last = txp;
1120 
1121 		/*
1122 		 * Advance the beginning of the list forward if there are
1123 		 * no other packets queued (when nothing is queued, cbl_first
1124 		 * sits on the last TxCB that was sent out).
1125 		 */
1126 		if (sc->tx_queued == 0)
1127 			sc->cbl_first = txp;
1128 
1129 		sc->tx_queued++;
1130 
1131 		/*
1132 		 * Pass packet to bpf if there is a listener.
1133 		 */
1134 		if (ifp->if_bpf)
1135 			bpf_mtap(ifp, mb_head);
1136 	}
1137 
1138 	/*
1139 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1140 	 * going again if suspended.
1141 	 */
1142 	if (txp != NULL) {
1143 		fxp_scb_wait(sc);
1144 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1145 	}
1146 }
1147 
1148 static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count);
1149 
1150 #ifdef DEVICE_POLLING
1151 static poll_handler_t fxp_poll;
1152 
1153 static void
1154 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1155 {
1156 	struct fxp_softc *sc = ifp->if_softc;
1157 	u_int8_t statack;
1158 
1159 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1160 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1161 		return;
1162 	}
1163 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1164 	    FXP_SCB_STATACK_FR;
1165 	if (cmd == POLL_AND_CHECK_STATUS) {
1166 		u_int8_t tmp;
1167 
1168 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1169 		if (tmp == 0xff || tmp == 0)
1170 			return; /* nothing to do */
1171 		tmp &= ~statack;
1172 		/* ack what we can */
1173 		if (tmp != 0)
1174 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1175 		statack |= tmp;
1176 	}
1177 	fxp_intr_body(sc, statack, count);
1178 }
1179 #endif /* DEVICE_POLLING */
1180 
1181 /*
1182  * Process interface interrupts.
1183  */
1184 static void
1185 fxp_intr(void *xsc)
1186 {
1187 	struct fxp_softc *sc = xsc;
1188 	u_int8_t statack;
1189 
1190 #ifdef DEVICE_POLLING
1191 	struct ifnet *ifp = &sc->sc_if;
1192 
1193 	if (ifp->if_ipending & IFF_POLLING)
1194 		return;
1195 	if (ether_poll_register(fxp_poll, ifp)) {
1196 		/* disable interrupts */
1197 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1198 		fxp_poll(ifp, 0, 1);
1199 		return;
1200 	}
1201 #endif
1202 
1203 	if (sc->suspended) {
1204 		return;
1205 	}
1206 
1207 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1208 		/*
1209 		 * It should not be possible to have all bits set; the
1210 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1211 		 * all bits are set, this may indicate that the card has
1212 		 * been physically ejected, so ignore it.
1213 		 */
1214 		if (statack == 0xff)
1215 			return;
1216 
1217 		/*
1218 		 * First ACK all the interrupts in this pass.
1219 		 */
1220 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1221 		fxp_intr_body(sc, statack, -1);
1222 	}
1223 }
1224 
1225 static void
1226 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1227 {
1228 	struct ifnet *ifp = &sc->sc_if;
1229 
1230 	/*
1231 	 * Free any finished transmit mbuf chains.
1232 	 *
1233 	 * Handle the CNA event likt a CXTNO event. It used to
1234 	 * be that this event (control unit not ready) was not
1235 	 * encountered, but it is now with the SMPng modifications.
1236 	 * The exact sequence of events that occur when the interface
1237 	 * is brought up are different now, and if this event
1238 	 * goes unhandled, the configuration/rxfilter setup sequence
1239 	 * can stall for several seconds. The result is that no
1240 	 * packets go out onto the wire for about 5 to 10 seconds
1241 	 * after the interface is ifconfig'ed for the first time.
1242 	 */
1243 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1244 		struct fxp_cb_tx *txp;
1245 
1246 		for (txp = sc->cbl_first; sc->tx_queued &&
1247 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1248 		    txp = txp->next) {
1249 			if (txp->mb_head != NULL) {
1250 				m_freem(txp->mb_head);
1251 				txp->mb_head = NULL;
1252 			}
1253 			sc->tx_queued--;
1254 		}
1255 		sc->cbl_first = txp;
1256 		ifp->if_timer = 0;
1257 		if (sc->tx_queued == 0) {
1258 			if (sc->need_mcsetup)
1259 				fxp_mc_setup(sc);
1260 		}
1261 		/*
1262 		 * Try to start more packets transmitting.
1263 		 */
1264 		if (ifp->if_snd.ifq_head != NULL)
1265 			fxp_start(ifp);
1266 	}
1267 	/*
1268 	 * Process receiver interrupts. If a no-resource (RNR)
1269 	 * condition exists, get whatever packets we can and
1270 	 * re-start the receiver.
1271 	 */
1272 	if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1273 		struct mbuf *m;
1274 		struct fxp_rfa *rfa;
1275 rcvloop:
1276 		m = sc->rfa_headm;
1277 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1278 		    RFA_ALIGNMENT_FUDGE);
1279 
1280 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1281 		if (count < 0 || count-- > 0)
1282 #endif
1283 		if (rfa->rfa_status & FXP_RFA_STATUS_C) {
1284 			/*
1285 			 * Remove first packet from the chain.
1286 			 */
1287 			sc->rfa_headm = m->m_next;
1288 			m->m_next = NULL;
1289 
1290 			/*
1291 			 * Add a new buffer to the receive chain.
1292 			 * If this fails, the old buffer is recycled
1293 			 * instead.
1294 			 */
1295 			if (fxp_add_rfabuf(sc, m) == 0) {
1296 				struct ether_header *eh;
1297 				int total_len;
1298 
1299 				total_len = rfa->actual_size &
1300 				    (MCLBYTES - 1);
1301 				if (total_len <
1302 				    sizeof(struct ether_header)) {
1303 					m_freem(m);
1304 					goto rcvloop;
1305 				}
1306 
1307 				/*
1308 				 * Drop the packet if it has CRC
1309 				 * errors.  This test is only needed
1310 				 * when doing 802.1q VLAN on the 82557
1311 				 * chip.
1312 				 */
1313 				if (rfa->rfa_status &
1314 				    FXP_RFA_STATUS_CRC) {
1315 					m_freem(m);
1316 					goto rcvloop;
1317 				}
1318 
1319 				m->m_pkthdr.rcvif = ifp;
1320 				m->m_pkthdr.len = m->m_len = total_len;
1321 				eh = mtod(m, struct ether_header *);
1322 				m->m_data +=
1323 				    sizeof(struct ether_header);
1324 				m->m_len -=
1325 				    sizeof(struct ether_header);
1326 				m->m_pkthdr.len = m->m_len;
1327 				ether_input(ifp, eh, m);
1328 			}
1329 			goto rcvloop;
1330 		}
1331 		if (statack & FXP_SCB_STATACK_RNR) {
1332 			fxp_scb_wait(sc);
1333 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1334 			    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1335 				RFA_ALIGNMENT_FUDGE);
1336 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1337 		}
1338 	}
1339 }
1340 
1341 /*
1342  * Update packet in/out/collision statistics. The i82557 doesn't
1343  * allow you to access these counters without doing a fairly
1344  * expensive DMA to get _all_ of the statistics it maintains, so
1345  * we do this operation here only once per second. The statistics
1346  * counters in the kernel are updated from the previous dump-stats
1347  * DMA and then a new dump-stats DMA is started. The on-chip
1348  * counters are zeroed when the DMA completes. If we can't start
1349  * the DMA immediately, we don't wait - we just prepare to read
1350  * them again next time.
1351  */
1352 static void
1353 fxp_tick(void *xsc)
1354 {
1355 	struct fxp_softc *sc = xsc;
1356 	struct ifnet *ifp = &sc->sc_if;
1357 	struct fxp_stats *sp = sc->fxp_stats;
1358 	struct fxp_cb_tx *txp;
1359 	int s;
1360 
1361 	ifp->if_opackets += sp->tx_good;
1362 	ifp->if_collisions += sp->tx_total_collisions;
1363 	if (sp->rx_good) {
1364 		ifp->if_ipackets += sp->rx_good;
1365 		sc->rx_idle_secs = 0;
1366 	} else {
1367 		/*
1368 		 * Receiver's been idle for another second.
1369 		 */
1370 		sc->rx_idle_secs++;
1371 	}
1372 	ifp->if_ierrors +=
1373 	    sp->rx_crc_errors +
1374 	    sp->rx_alignment_errors +
1375 	    sp->rx_rnr_errors +
1376 	    sp->rx_overrun_errors;
1377 	/*
1378 	 * If any transmit underruns occured, bump up the transmit
1379 	 * threshold by another 512 bytes (64 * 8).
1380 	 */
1381 	if (sp->tx_underruns) {
1382 		ifp->if_oerrors += sp->tx_underruns;
1383 		if (tx_threshold < 192)
1384 			tx_threshold += 64;
1385 	}
1386 	s = splimp();
1387 	/*
1388 	 * Release any xmit buffers that have completed DMA. This isn't
1389 	 * strictly necessary to do here, but it's advantagous for mbufs
1390 	 * with external storage to be released in a timely manner rather
1391 	 * than being defered for a potentially long time. This limits
1392 	 * the delay to a maximum of one second.
1393 	 */
1394 	for (txp = sc->cbl_first; sc->tx_queued &&
1395 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1396 	    txp = txp->next) {
1397 		if (txp->mb_head != NULL) {
1398 			m_freem(txp->mb_head);
1399 			txp->mb_head = NULL;
1400 		}
1401 		sc->tx_queued--;
1402 	}
1403 	sc->cbl_first = txp;
1404 	/*
1405 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1406 	 * then assume the receiver has locked up and attempt to clear
1407 	 * the condition by reprogramming the multicast filter. This is
1408 	 * a work-around for a bug in the 82557 where the receiver locks
1409 	 * up if it gets certain types of garbage in the syncronization
1410 	 * bits prior to the packet header. This bug is supposed to only
1411 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1412 	 * mode as well (perhaps due to a 10/100 speed transition).
1413 	 */
1414 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1415 		sc->rx_idle_secs = 0;
1416 		fxp_mc_setup(sc);
1417 	}
1418 	/*
1419 	 * If there is no pending command, start another stats
1420 	 * dump. Otherwise punt for now.
1421 	 */
1422 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1423 		/*
1424 		 * Start another stats dump.
1425 		 */
1426 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1427 	} else {
1428 		/*
1429 		 * A previous command is still waiting to be accepted.
1430 		 * Just zero our copy of the stats and wait for the
1431 		 * next timer event to update them.
1432 		 */
1433 		sp->tx_good = 0;
1434 		sp->tx_underruns = 0;
1435 		sp->tx_total_collisions = 0;
1436 
1437 		sp->rx_good = 0;
1438 		sp->rx_crc_errors = 0;
1439 		sp->rx_alignment_errors = 0;
1440 		sp->rx_rnr_errors = 0;
1441 		sp->rx_overrun_errors = 0;
1442 	}
1443 	if (sc->miibus != NULL)
1444 		mii_tick(device_get_softc(sc->miibus));
1445 	splx(s);
1446 	/*
1447 	 * Schedule another timeout one second from now.
1448 	 */
1449 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1450 }
1451 
1452 /*
1453  * Stop the interface. Cancels the statistics updater and resets
1454  * the interface.
1455  */
1456 static void
1457 fxp_stop(struct fxp_softc *sc)
1458 {
1459 	struct ifnet *ifp = &sc->sc_if;
1460 	struct fxp_cb_tx *txp;
1461 	int i;
1462 
1463 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1464 	ifp->if_timer = 0;
1465 
1466 #ifdef DEVICE_POLLING
1467 	ether_poll_deregister(ifp);
1468 #endif
1469 	/*
1470 	 * Cancel stats updater.
1471 	 */
1472 	untimeout(fxp_tick, sc, sc->stat_ch);
1473 
1474 	/*
1475 	 * Issue software reset, which also unloads the microcode.
1476 	 */
1477 	sc->flags &= ~FXP_FLAG_UCODE;
1478 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1479 	DELAY(50);
1480 
1481 	/*
1482 	 * Release any xmit buffers.
1483 	 */
1484 	txp = sc->cbl_base;
1485 	if (txp != NULL) {
1486 		for (i = 0; i < FXP_NTXCB; i++) {
1487 			if (txp[i].mb_head != NULL) {
1488 				m_freem(txp[i].mb_head);
1489 				txp[i].mb_head = NULL;
1490 			}
1491 		}
1492 	}
1493 	sc->tx_queued = 0;
1494 
1495 	/*
1496 	 * Free all the receive buffers then reallocate/reinitialize
1497 	 */
1498 	if (sc->rfa_headm != NULL)
1499 		m_freem(sc->rfa_headm);
1500 	sc->rfa_headm = NULL;
1501 	sc->rfa_tailm = NULL;
1502 	for (i = 0; i < FXP_NRFABUFS; i++) {
1503 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1504 			/*
1505 			 * This "can't happen" - we're at splimp()
1506 			 * and we just freed all the buffers we need
1507 			 * above.
1508 			 */
1509 			panic("fxp_stop: no buffers!");
1510 		}
1511 	}
1512 }
1513 
1514 /*
1515  * Watchdog/transmission transmit timeout handler. Called when a
1516  * transmission is started on the interface, but no interrupt is
1517  * received before the timeout. This usually indicates that the
1518  * card has wedged for some reason.
1519  */
1520 static void
1521 fxp_watchdog(struct ifnet *ifp)
1522 {
1523 	struct fxp_softc *sc = ifp->if_softc;
1524 
1525 	device_printf(sc->dev, "device timeout\n");
1526 	ifp->if_oerrors++;
1527 
1528 	fxp_init(sc);
1529 }
1530 
1531 static void
1532 fxp_init(void *xsc)
1533 {
1534 	struct fxp_softc *sc = xsc;
1535 	struct ifnet *ifp = &sc->sc_if;
1536 	struct fxp_cb_config *cbp;
1537 	struct fxp_cb_ias *cb_ias;
1538 	struct fxp_cb_tx *txp;
1539 	struct fxp_cb_mcs *mcsp;
1540 	int i, prm, s;
1541 
1542 	s = splimp();
1543 	/*
1544 	 * Cancel any pending I/O
1545 	 */
1546 	fxp_stop(sc);
1547 
1548 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1549 
1550 	/*
1551 	 * Initialize base of CBL and RFA memory. Loading with zero
1552 	 * sets it up for regular linear addressing.
1553 	 */
1554 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1555 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1556 
1557 	fxp_scb_wait(sc);
1558 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1559 
1560 	/*
1561 	 * Initialize base of dump-stats buffer.
1562 	 */
1563 	fxp_scb_wait(sc);
1564 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1565 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1566 
1567 	/*
1568 	 * Attempt to load microcode if requested.
1569 	 */
1570 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1571 		fxp_load_ucode(sc);
1572 
1573 	/*
1574 	 * Initialize the multicast address list.
1575 	 */
1576 	if (fxp_mc_addrs(sc)) {
1577 		mcsp = sc->mcsp;
1578 		mcsp->cb_status = 0;
1579 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1580 		mcsp->link_addr = -1;
1581 		/*
1582 	 	 * Start the multicast setup command.
1583 		 */
1584 		fxp_scb_wait(sc);
1585 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1586 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1587 		/* ...and wait for it to complete. */
1588 		fxp_dma_wait(&mcsp->cb_status, sc);
1589 	}
1590 
1591 	/*
1592 	 * We temporarily use memory that contains the TxCB list to
1593 	 * construct the config CB. The TxCB list memory is rebuilt
1594 	 * later.
1595 	 */
1596 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1597 
1598 	/*
1599 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1600 	 * zero and must be one bits in this structure and this is the easiest
1601 	 * way to initialize them all to proper values.
1602 	 */
1603 	bcopy(fxp_cb_config_template,
1604 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1605 		sizeof(fxp_cb_config_template));
1606 
1607 	cbp->cb_status =	0;
1608 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1609 	cbp->link_addr =	-1;	/* (no) next command */
1610 	cbp->byte_count =	22;	/* (22) bytes to config */
1611 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1612 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1613 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1614 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1615 	cbp->type_enable =	0;	/* actually reserved */
1616 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1617 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1618 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1619 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1620 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1621 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1622 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1623 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1624 	cbp->ci_int =		1;	/* interrupt on CU idle */
1625 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1626 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1627 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1628 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1629 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1630 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1631 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1632 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1633 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1634 	cbp->csma_dis =		0;	/* (don't) disable link */
1635 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1636 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1637 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1638 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1639 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1640 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1641 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1642 	cbp->loopback =		0;	/* (don't) loopback */
1643 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1644 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1645 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1646 	cbp->promiscuous =	prm;	/* promiscuous mode */
1647 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1648 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1649 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1650 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1651 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1652 
1653 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1654 	cbp->padding =		1;	/* (do) pad short tx packets */
1655 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1656 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1657 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1658 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1659 					/* must set wake_en in PMCSR also */
1660 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1661 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1662 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1663 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1664 
1665 	if (sc->revision == FXP_REV_82557) {
1666 		/*
1667 		 * The 82557 has no hardware flow control, the values
1668 		 * below are the defaults for the chip.
1669 		 */
1670 		cbp->fc_delay_lsb =	0;
1671 		cbp->fc_delay_msb =	0x40;
1672 		cbp->pri_fc_thresh =	3;
1673 		cbp->tx_fc_dis =	0;
1674 		cbp->rx_fc_restop =	0;
1675 		cbp->rx_fc_restart =	0;
1676 		cbp->fc_filter =	0;
1677 		cbp->pri_fc_loc =	1;
1678 	} else {
1679 		cbp->fc_delay_lsb =	0x1f;
1680 		cbp->fc_delay_msb =	0x01;
1681 		cbp->pri_fc_thresh =	3;
1682 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1683 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1684 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1685 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1686 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1687 	}
1688 
1689 	/*
1690 	 * Start the config command/DMA.
1691 	 */
1692 	fxp_scb_wait(sc);
1693 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1694 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1695 	/* ...and wait for it to complete. */
1696 	fxp_dma_wait(&cbp->cb_status, sc);
1697 
1698 	/*
1699 	 * Now initialize the station address. Temporarily use the TxCB
1700 	 * memory area like we did above for the config CB.
1701 	 */
1702 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1703 	cb_ias->cb_status = 0;
1704 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1705 	cb_ias->link_addr = -1;
1706 	bcopy(sc->arpcom.ac_enaddr,
1707 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1708 	    sizeof(sc->arpcom.ac_enaddr));
1709 
1710 	/*
1711 	 * Start the IAS (Individual Address Setup) command/DMA.
1712 	 */
1713 	fxp_scb_wait(sc);
1714 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1715 	/* ...and wait for it to complete. */
1716 	fxp_dma_wait(&cb_ias->cb_status, sc);
1717 
1718 	/*
1719 	 * Initialize transmit control block (TxCB) list.
1720 	 */
1721 
1722 	txp = sc->cbl_base;
1723 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1724 	for (i = 0; i < FXP_NTXCB; i++) {
1725 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1726 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1727 		txp[i].link_addr =
1728 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1729 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1730 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1731 		else
1732 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1733 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1734 	}
1735 	/*
1736 	 * Set the suspend flag on the first TxCB and start the control
1737 	 * unit. It will execute the NOP and then suspend.
1738 	 */
1739 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1740 	sc->cbl_first = sc->cbl_last = txp;
1741 	sc->tx_queued = 1;
1742 
1743 	fxp_scb_wait(sc);
1744 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1745 
1746 	/*
1747 	 * Initialize receiver buffer area - RFA.
1748 	 */
1749 	fxp_scb_wait(sc);
1750 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1751 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1752 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1753 
1754 	/*
1755 	 * Set current media.
1756 	 */
1757 	if (sc->miibus != NULL)
1758 		mii_mediachg(device_get_softc(sc->miibus));
1759 
1760 	ifp->if_flags |= IFF_RUNNING;
1761 	ifp->if_flags &= ~IFF_OACTIVE;
1762 
1763 	/*
1764 	 * Enable interrupts.
1765 	 */
1766 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1767 	splx(s);
1768 
1769 	/*
1770 	 * Start stats updater.
1771 	 */
1772 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1773 }
1774 
1775 static int
1776 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1777 {
1778 
1779 	return (0);
1780 }
1781 
1782 static void
1783 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1784 {
1785 
1786 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1787 }
1788 
1789 /*
1790  * Change media according to request.
1791  */
1792 static int
1793 fxp_ifmedia_upd(struct ifnet *ifp)
1794 {
1795 	struct fxp_softc *sc = ifp->if_softc;
1796 	struct mii_data *mii;
1797 
1798 	mii = device_get_softc(sc->miibus);
1799 	mii_mediachg(mii);
1800 	return (0);
1801 }
1802 
1803 /*
1804  * Notify the world which media we're using.
1805  */
1806 static void
1807 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1808 {
1809 	struct fxp_softc *sc = ifp->if_softc;
1810 	struct mii_data *mii;
1811 
1812 	mii = device_get_softc(sc->miibus);
1813 	mii_pollstat(mii);
1814 	ifmr->ifm_active = mii->mii_media_active;
1815 	ifmr->ifm_status = mii->mii_media_status;
1816 
1817 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1818 		sc->cu_resume_bug = 1;
1819 	else
1820 		sc->cu_resume_bug = 0;
1821 }
1822 
1823 /*
1824  * Add a buffer to the end of the RFA buffer list.
1825  * Return 0 if successful, 1 for failure. A failure results in
1826  * adding the 'oldm' (if non-NULL) on to the end of the list -
1827  * tossing out its old contents and recycling it.
1828  * The RFA struct is stuck at the beginning of mbuf cluster and the
1829  * data pointer is fixed up to point just past it.
1830  */
1831 static int
1832 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1833 {
1834 	u_int32_t v;
1835 	struct mbuf *m;
1836 	struct fxp_rfa *rfa, *p_rfa;
1837 
1838 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1839 	if (m != NULL) {
1840 		MCLGET(m, M_DONTWAIT);
1841 		if ((m->m_flags & M_EXT) == 0) {
1842 			m_freem(m);
1843 			if (oldm == NULL)
1844 				return 1;
1845 			m = oldm;
1846 			m->m_data = m->m_ext.ext_buf;
1847 		}
1848 	} else {
1849 		if (oldm == NULL)
1850 			return 1;
1851 		m = oldm;
1852 		m->m_data = m->m_ext.ext_buf;
1853 	}
1854 
1855 	/*
1856 	 * Move the data pointer up so that the incoming data packet
1857 	 * will be 32-bit aligned.
1858 	 */
1859 	m->m_data += RFA_ALIGNMENT_FUDGE;
1860 
1861 	/*
1862 	 * Get a pointer to the base of the mbuf cluster and move
1863 	 * data start past it.
1864 	 */
1865 	rfa = mtod(m, struct fxp_rfa *);
1866 	m->m_data += sizeof(struct fxp_rfa);
1867 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1868 
1869 	/*
1870 	 * Initialize the rest of the RFA.  Note that since the RFA
1871 	 * is misaligned, we cannot store values directly.  Instead,
1872 	 * we use an optimized, inline copy.
1873 	 */
1874 
1875 	rfa->rfa_status = 0;
1876 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1877 	rfa->actual_size = 0;
1878 
1879 	v = -1;
1880 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1881 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1882 
1883 	/*
1884 	 * If there are other buffers already on the list, attach this
1885 	 * one to the end by fixing up the tail to point to this one.
1886 	 */
1887 	if (sc->rfa_headm != NULL) {
1888 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1889 		    RFA_ALIGNMENT_FUDGE);
1890 		sc->rfa_tailm->m_next = m;
1891 		v = vtophys(rfa);
1892 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1893 		p_rfa->rfa_control = 0;
1894 	} else {
1895 		sc->rfa_headm = m;
1896 	}
1897 	sc->rfa_tailm = m;
1898 
1899 	return (m == oldm);
1900 }
1901 
1902 static volatile int
1903 fxp_miibus_readreg(device_t dev, int phy, int reg)
1904 {
1905 	struct fxp_softc *sc = device_get_softc(dev);
1906 	int count = 10000;
1907 	int value;
1908 
1909 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1910 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1911 
1912 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1913 	    && count--)
1914 		DELAY(10);
1915 
1916 	if (count <= 0)
1917 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1918 
1919 	return (value & 0xffff);
1920 }
1921 
1922 static void
1923 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1924 {
1925 	struct fxp_softc *sc = device_get_softc(dev);
1926 	int count = 10000;
1927 
1928 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1929 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1930 	    (value & 0xffff));
1931 
1932 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1933 	    count--)
1934 		DELAY(10);
1935 
1936 	if (count <= 0)
1937 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1938 }
1939 
1940 static int
1941 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1942 {
1943 	struct fxp_softc *sc = ifp->if_softc;
1944 	struct ifreq *ifr = (struct ifreq *)data;
1945 	struct mii_data *mii;
1946 	int s, error = 0;
1947 
1948 	s = splimp();
1949 
1950 	switch (command) {
1951 	case SIOCSIFADDR:
1952 	case SIOCGIFADDR:
1953 	case SIOCSIFMTU:
1954 		error = ether_ioctl(ifp, command, data);
1955 		break;
1956 
1957 	case SIOCSIFFLAGS:
1958 		if (ifp->if_flags & IFF_ALLMULTI)
1959 			sc->flags |= FXP_FLAG_ALL_MCAST;
1960 		else
1961 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1962 
1963 		/*
1964 		 * If interface is marked up and not running, then start it.
1965 		 * If it is marked down and running, stop it.
1966 		 * XXX If it's up then re-initialize it. This is so flags
1967 		 * such as IFF_PROMISC are handled.
1968 		 */
1969 		if (ifp->if_flags & IFF_UP) {
1970 			fxp_init(sc);
1971 		} else {
1972 			if (ifp->if_flags & IFF_RUNNING)
1973 				fxp_stop(sc);
1974 		}
1975 		break;
1976 
1977 	case SIOCADDMULTI:
1978 	case SIOCDELMULTI:
1979 		if (ifp->if_flags & IFF_ALLMULTI)
1980 			sc->flags |= FXP_FLAG_ALL_MCAST;
1981 		else
1982 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1983 		/*
1984 		 * Multicast list has changed; set the hardware filter
1985 		 * accordingly.
1986 		 */
1987 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
1988 			fxp_mc_setup(sc);
1989 		/*
1990 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
1991 		 * again rather than else {}.
1992 		 */
1993 		if (sc->flags & FXP_FLAG_ALL_MCAST)
1994 			fxp_init(sc);
1995 		error = 0;
1996 		break;
1997 
1998 	case SIOCSIFMEDIA:
1999 	case SIOCGIFMEDIA:
2000 		if (sc->miibus != NULL) {
2001 			mii = device_get_softc(sc->miibus);
2002                         error = ifmedia_ioctl(ifp, ifr,
2003                             &mii->mii_media, command);
2004 		} else {
2005                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2006 		}
2007 		break;
2008 
2009 	default:
2010 		error = EINVAL;
2011 	}
2012 	splx(s);
2013 	return (error);
2014 }
2015 
2016 /*
2017  * Fill in the multicast address list and return number of entries.
2018  */
2019 static int
2020 fxp_mc_addrs(struct fxp_softc *sc)
2021 {
2022 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2023 	struct ifnet *ifp = &sc->sc_if;
2024 	struct ifmultiaddr *ifma;
2025 	int nmcasts;
2026 
2027 	nmcasts = 0;
2028 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2029 #if __FreeBSD_version < 500000
2030 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2031 #else
2032 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2033 #endif
2034 			if (ifma->ifma_addr->sa_family != AF_LINK)
2035 				continue;
2036 			if (nmcasts >= MAXMCADDR) {
2037 				sc->flags |= FXP_FLAG_ALL_MCAST;
2038 				nmcasts = 0;
2039 				break;
2040 			}
2041 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2042 			    (void *)(uintptr_t)(volatile void *)
2043 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2044 			nmcasts++;
2045 		}
2046 	}
2047 	mcsp->mc_cnt = nmcasts * 6;
2048 	return (nmcasts);
2049 }
2050 
2051 /*
2052  * Program the multicast filter.
2053  *
2054  * We have an artificial restriction that the multicast setup command
2055  * must be the first command in the chain, so we take steps to ensure
2056  * this. By requiring this, it allows us to keep up the performance of
2057  * the pre-initialized command ring (esp. link pointers) by not actually
2058  * inserting the mcsetup command in the ring - i.e. its link pointer
2059  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2060  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2061  * lead into the regular TxCB ring when it completes.
2062  *
2063  * This function must be called at splimp.
2064  */
2065 static void
2066 fxp_mc_setup(struct fxp_softc *sc)
2067 {
2068 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2069 	struct ifnet *ifp = &sc->sc_if;
2070 	int count;
2071 
2072 	/*
2073 	 * If there are queued commands, we must wait until they are all
2074 	 * completed. If we are already waiting, then add a NOP command
2075 	 * with interrupt option so that we're notified when all commands
2076 	 * have been completed - fxp_start() ensures that no additional
2077 	 * TX commands will be added when need_mcsetup is true.
2078 	 */
2079 	if (sc->tx_queued) {
2080 		struct fxp_cb_tx *txp;
2081 
2082 		/*
2083 		 * need_mcsetup will be true if we are already waiting for the
2084 		 * NOP command to be completed (see below). In this case, bail.
2085 		 */
2086 		if (sc->need_mcsetup)
2087 			return;
2088 		sc->need_mcsetup = 1;
2089 
2090 		/*
2091 		 * Add a NOP command with interrupt so that we are notified
2092 		 * when all TX commands have been processed.
2093 		 */
2094 		txp = sc->cbl_last->next;
2095 		txp->mb_head = NULL;
2096 		txp->cb_status = 0;
2097 		txp->cb_command = FXP_CB_COMMAND_NOP |
2098 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2099 		/*
2100 		 * Advance the end of list forward.
2101 		 */
2102 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2103 		sc->cbl_last = txp;
2104 		sc->tx_queued++;
2105 		/*
2106 		 * Issue a resume in case the CU has just suspended.
2107 		 */
2108 		fxp_scb_wait(sc);
2109 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2110 		/*
2111 		 * Set a 5 second timer just in case we don't hear from the
2112 		 * card again.
2113 		 */
2114 		ifp->if_timer = 5;
2115 
2116 		return;
2117 	}
2118 	sc->need_mcsetup = 0;
2119 
2120 	/*
2121 	 * Initialize multicast setup descriptor.
2122 	 */
2123 	mcsp->next = sc->cbl_base;
2124 	mcsp->mb_head = NULL;
2125 	mcsp->cb_status = 0;
2126 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2127 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2128 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2129 	(void) fxp_mc_addrs(sc);
2130 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2131 	sc->tx_queued = 1;
2132 
2133 	/*
2134 	 * Wait until command unit is not active. This should never
2135 	 * be the case when nothing is queued, but make sure anyway.
2136 	 */
2137 	count = 100;
2138 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2139 	    FXP_SCB_CUS_ACTIVE && --count)
2140 		DELAY(10);
2141 	if (count == 0) {
2142 		device_printf(sc->dev, "command queue timeout\n");
2143 		return;
2144 	}
2145 
2146 	/*
2147 	 * Start the multicast setup command.
2148 	 */
2149 	fxp_scb_wait(sc);
2150 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2151 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2152 
2153 	ifp->if_timer = 2;
2154 	return;
2155 }
2156 
2157 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2158 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2159 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2160 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2161 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2162 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2163 
2164 #define UCODE(x)	x, sizeof(x)
2165 
2166 struct ucode {
2167 	u_int32_t	revision;
2168 	u_int32_t	*ucode;
2169 	int		length;
2170 	u_short		int_delay_offset;
2171 	u_short		bundle_max_offset;
2172 } ucode_table[] = {
2173 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2174 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2175 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2176 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2177 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2178 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2179 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2180 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2181 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2182 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2183 	{ 0, NULL, 0, 0, 0 }
2184 };
2185 
2186 static void
2187 fxp_load_ucode(struct fxp_softc *sc)
2188 {
2189 	struct ucode *uc;
2190 	struct fxp_cb_ucode *cbp;
2191 
2192 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2193 		if (sc->revision == uc->revision)
2194 			break;
2195 	if (uc->ucode == NULL)
2196 		return;
2197 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2198 	cbp->cb_status = 0;
2199 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2200 	cbp->link_addr = -1;    	/* (no) next command */
2201 	memcpy(cbp->ucode, uc->ucode, uc->length);
2202 	if (uc->int_delay_offset)
2203 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2204 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2205 	if (uc->bundle_max_offset)
2206 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2207 		    sc->tunable_bundle_max;
2208 	/*
2209 	 * Download the ucode to the chip.
2210 	 */
2211 	fxp_scb_wait(sc);
2212 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2213 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2214 	/* ...and wait for it to complete. */
2215 	fxp_dma_wait(&cbp->cb_status, sc);
2216 	device_printf(sc->dev,
2217 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2218 	    sc->tunable_int_delay,
2219 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2220 	sc->flags |= FXP_FLAG_UCODE;
2221 }
2222 
2223 static int
2224 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2225 {
2226 	int error, value;
2227 
2228 	value = *(int *)arg1;
2229 	error = sysctl_handle_int(oidp, &value, 0, req);
2230 	if (error || !req->newptr)
2231 		return (error);
2232 	if (value < low || value > high)
2233 		return (EINVAL);
2234 	*(int *)arg1 = value;
2235 	return (0);
2236 }
2237 
2238 /*
2239  * Interrupt delay is expressed in microseconds, a multiplier is used
2240  * to convert this to the appropriate clock ticks before using.
2241  */
2242 static int
2243 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2244 {
2245 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2246 }
2247 
2248 static int
2249 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2250 {
2251 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2252 }
2253