xref: /freebsd/sys/dev/fxp/if_fxp.c (revision b214fcceacad6b842545150664bd2695c1c2b34f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-NetBSD
3  *
4  * Copyright (c) 1995, David Greenman
5  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 /*
36  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
37  */
38 
39 #ifdef HAVE_KERNEL_OPTION_HEADERS
40 #include "opt_device_polling.h"
41 #endif
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/bus.h>
46 #include <sys/endian.h>
47 #include <sys/kernel.h>
48 #include <sys/mbuf.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/module.h>
52 #include <sys/mutex.h>
53 #include <sys/rman.h>
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <sys/sysctl.h>
57 
58 #include <net/bpf.h>
59 #include <net/ethernet.h>
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_arp.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 #include <net/if_vlan_var.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 
74 #include <machine/bus.h>
75 #include <machine/in_cksum.h>
76 #include <machine/resource.h>
77 
78 #include <dev/pci/pcivar.h>
79 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
80 
81 #include <dev/mii/mii.h>
82 #include <dev/mii/miivar.h>
83 
84 #include <dev/fxp/if_fxpreg.h>
85 #include <dev/fxp/if_fxpvar.h>
86 #include <dev/fxp/rcvbundl.h>
87 
88 MODULE_DEPEND(fxp, pci, 1, 1, 1);
89 MODULE_DEPEND(fxp, ether, 1, 1, 1);
90 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
91 #include "miibus_if.h"
92 
93 /*
94  * NOTE!  On !x86 we typically have an alignment constraint.  The
95  * card DMAs the packet immediately following the RFA.  However,
96  * the first thing in the packet is a 14-byte Ethernet header.
97  * This means that the packet is misaligned.  To compensate,
98  * we actually offset the RFA 2 bytes into the cluster.  This
99  * alignes the packet after the Ethernet header at a 32-bit
100  * boundary.  HOWEVER!  This means that the RFA is misaligned!
101  */
102 #define	RFA_ALIGNMENT_FUDGE	2
103 
104 /*
105  * Set initial transmit threshold at 64 (512 bytes). This is
106  * increased by 64 (512 bytes) at a time, to maximum of 192
107  * (1536 bytes), if an underrun occurs.
108  */
109 static int tx_threshold = 64;
110 
111 /*
112  * The configuration byte map has several undefined fields which
113  * must be one or must be zero.  Set up a template for these bits.
114  * The actual configuration is performed in fxp_init_body.
115  *
116  * See struct fxp_cb_config for the bit definitions.
117  */
118 static const u_char fxp_cb_config_template[] = {
119 	0x0, 0x0,		/* cb_status */
120 	0x0, 0x0,		/* cb_command */
121 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
122 	0x0,	/*  0 */
123 	0x0,	/*  1 */
124 	0x0,	/*  2 */
125 	0x0,	/*  3 */
126 	0x0,	/*  4 */
127 	0x0,	/*  5 */
128 	0x32,	/*  6 */
129 	0x0,	/*  7 */
130 	0x0,	/*  8 */
131 	0x0,	/*  9 */
132 	0x6,	/* 10 */
133 	0x0,	/* 11 */
134 	0x0,	/* 12 */
135 	0x0,	/* 13 */
136 	0xf2,	/* 14 */
137 	0x48,	/* 15 */
138 	0x0,	/* 16 */
139 	0x40,	/* 17 */
140 	0xf0,	/* 18 */
141 	0x0,	/* 19 */
142 	0x3f,	/* 20 */
143 	0x5,	/* 21 */
144 	0x0,	/* 22 */
145 	0x0,	/* 23 */
146 	0x0,	/* 24 */
147 	0x0,	/* 25 */
148 	0x0,	/* 26 */
149 	0x0,	/* 27 */
150 	0x0,	/* 28 */
151 	0x0,	/* 29 */
152 	0x0,	/* 30 */
153 	0x0	/* 31 */
154 };
155 
156 /*
157  * Claim various Intel PCI device identifiers for this driver.  The
158  * sub-vendor and sub-device field are extensively used to identify
159  * particular variants, but we don't currently differentiate between
160  * them.
161  */
162 static const struct fxp_ident fxp_ident_table[] = {
163     { 0x8086, 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
164     { 0x8086, 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
165     { 0x8086, 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
166     { 0x8086, 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
167     { 0x8086, 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
168     { 0x8086, 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
169     { 0x8086, 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
170     { 0x8086, 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
171     { 0x8086, 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
172     { 0x8086, 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
173     { 0x8086, 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
174     { 0x8086, 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
175     { 0x8086, 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
176     { 0x8086, 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
177     { 0x8086, 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
178     { 0x8086, 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
179     { 0x8086, 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
180     { 0x8086, 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
181     { 0x8086, 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
182     { 0x8086, 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
183     { 0x8086, 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
184     { 0x8086, 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
185     { 0x8086, 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
186     { 0x8086, 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
187     { 0x8086, 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
188     { 0x8086, 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
189     { 0x8086, 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
190     { 0x8086, 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
191     { 0x8086, 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
192     { 0x8086, 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
193     { 0x8086, 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
194     { 0x8086, 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
195     { 0x8086, 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
196     { 0x8086, 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
197     { 0x8086, 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
198     { 0x8086, 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
199     { 0x8086, 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
200     { 0x8086, 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
201     { 0x8086, 0x1229,	0x0d,	0, "Intel 82550C Pro/100 Ethernet" },
202     { 0x8086, 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
203     { 0x8086, 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
204     { 0x8086, 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
205     { 0x8086, 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
206     { 0x8086, 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
207     { 0x8086, 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
208     { 0,      0,	-1,	0, NULL },
209 };
210 
211 #ifdef FXP_IP_CSUM_WAR
212 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
213 #else
214 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
215 #endif
216 
217 static int		fxp_probe(device_t dev);
218 static int		fxp_attach(device_t dev);
219 static int		fxp_detach(device_t dev);
220 static int		fxp_shutdown(device_t dev);
221 static int		fxp_suspend(device_t dev);
222 static int		fxp_resume(device_t dev);
223 
224 static const struct fxp_ident *fxp_find_ident(device_t dev);
225 static void		fxp_intr(void *xsc);
226 static void		fxp_rxcsum(struct fxp_softc *sc, if_t ifp,
227 			    struct mbuf *m, uint16_t status, int pos);
228 static int		fxp_intr_body(struct fxp_softc *sc, if_t ifp,
229 			    uint8_t statack, int count);
230 static void 		fxp_init(void *xsc);
231 static void 		fxp_init_body(struct fxp_softc *sc, int);
232 static void 		fxp_tick(void *xsc);
233 static void 		fxp_start(if_t ifp);
234 static void 		fxp_start_body(if_t ifp);
235 static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
236 static void		fxp_txeof(struct fxp_softc *sc);
237 static void		fxp_stop(struct fxp_softc *sc);
238 static void 		fxp_release(struct fxp_softc *sc);
239 static int		fxp_ioctl(if_t ifp, u_long command,
240 			    caddr_t data);
241 static void 		fxp_watchdog(struct fxp_softc *sc);
242 static void		fxp_add_rfabuf(struct fxp_softc *sc,
243 			    struct fxp_rx *rxp);
244 static void		fxp_discard_rfabuf(struct fxp_softc *sc,
245 			    struct fxp_rx *rxp);
246 static int		fxp_new_rfabuf(struct fxp_softc *sc,
247 			    struct fxp_rx *rxp);
248 static void		fxp_mc_addrs(struct fxp_softc *sc);
249 static void		fxp_mc_setup(struct fxp_softc *sc);
250 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
251 			    int autosize);
252 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
253 			    uint16_t data);
254 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
255 static void		fxp_load_eeprom(struct fxp_softc *sc);
256 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
257 			    int offset, int words);
258 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
259 			    int offset, int words);
260 static int		fxp_ifmedia_upd(if_t ifp);
261 static void		fxp_ifmedia_sts(if_t ifp,
262 			    struct ifmediareq *ifmr);
263 static int		fxp_serial_ifmedia_upd(if_t ifp);
264 static void		fxp_serial_ifmedia_sts(if_t ifp,
265 			    struct ifmediareq *ifmr);
266 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
267 static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
268 			    int value);
269 static void		fxp_miibus_statchg(device_t dev);
270 static void		fxp_load_ucode(struct fxp_softc *sc);
271 static void		fxp_update_stats(struct fxp_softc *sc);
272 static void		fxp_sysctl_node(struct fxp_softc *sc);
273 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
274 			    int low, int high);
275 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
276 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
277 static void 		fxp_scb_wait(struct fxp_softc *sc);
278 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
279 static void		fxp_dma_wait(struct fxp_softc *sc,
280 			    volatile uint16_t *status, bus_dma_tag_t dmat,
281 			    bus_dmamap_t map);
282 
283 static device_method_t fxp_methods[] = {
284 	/* Device interface */
285 	DEVMETHOD(device_probe,		fxp_probe),
286 	DEVMETHOD(device_attach,	fxp_attach),
287 	DEVMETHOD(device_detach,	fxp_detach),
288 	DEVMETHOD(device_shutdown,	fxp_shutdown),
289 	DEVMETHOD(device_suspend,	fxp_suspend),
290 	DEVMETHOD(device_resume,	fxp_resume),
291 
292 	/* MII interface */
293 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
294 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
295 	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
296 
297 	DEVMETHOD_END
298 };
299 
300 static driver_t fxp_driver = {
301 	"fxp",
302 	fxp_methods,
303 	sizeof(struct fxp_softc),
304 };
305 
306 static devclass_t fxp_devclass;
307 
308 DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, fxp_devclass, NULL, NULL,
309     SI_ORDER_ANY);
310 MODULE_PNP_INFO("U16:vendor;U16:device", pci, fxp, fxp_ident_table,
311     nitems(fxp_ident_table) - 1);
312 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
313 
314 static struct resource_spec fxp_res_spec_mem[] = {
315 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
316 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
317 	{ -1, 0 }
318 };
319 
320 static struct resource_spec fxp_res_spec_io[] = {
321 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
322 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
323 	{ -1, 0 }
324 };
325 
326 /*
327  * Wait for the previous command to be accepted (but not necessarily
328  * completed).
329  */
330 static void
331 fxp_scb_wait(struct fxp_softc *sc)
332 {
333 	union {
334 		uint16_t w;
335 		uint8_t b[2];
336 	} flowctl;
337 	int i = 10000;
338 
339 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
340 		DELAY(2);
341 	if (i == 0) {
342 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
343 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
344 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
345 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
346 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
347 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
348 	}
349 }
350 
351 static void
352 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
353 {
354 
355 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
356 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
357 		fxp_scb_wait(sc);
358 	}
359 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
360 }
361 
362 static void
363 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
364     bus_dma_tag_t dmat, bus_dmamap_t map)
365 {
366 	int i;
367 
368 	for (i = 10000; i > 0; i--) {
369 		DELAY(2);
370 		bus_dmamap_sync(dmat, map,
371 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
372 		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
373 			break;
374 	}
375 	if (i == 0)
376 		device_printf(sc->dev, "DMA timeout\n");
377 }
378 
379 static const struct fxp_ident *
380 fxp_find_ident(device_t dev)
381 {
382 	uint16_t vendor;
383 	uint16_t device;
384 	uint8_t revid;
385 	const struct fxp_ident *ident;
386 
387 	vendor = pci_get_vendor(dev);
388 	device = pci_get_device(dev);
389 	revid = pci_get_revid(dev);
390 	for (ident = fxp_ident_table; ident->name != NULL; ident++) {
391 		if (ident->vendor == vendor && ident->device == device &&
392 		    (ident->revid == revid || ident->revid == -1)) {
393 			return (ident);
394 		}
395 	}
396 	return (NULL);
397 }
398 
399 /*
400  * Return identification string if this device is ours.
401  */
402 static int
403 fxp_probe(device_t dev)
404 {
405 	const struct fxp_ident *ident;
406 
407 	ident = fxp_find_ident(dev);
408 	if (ident != NULL) {
409 		device_set_desc(dev, ident->name);
410 		return (BUS_PROBE_DEFAULT);
411 	}
412 	return (ENXIO);
413 }
414 
415 static void
416 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
417 {
418 	uint32_t *addr;
419 
420 	if (error)
421 		return;
422 
423 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
424 	addr = arg;
425 	*addr = segs->ds_addr;
426 }
427 
428 static int
429 fxp_attach(device_t dev)
430 {
431 	struct fxp_softc *sc;
432 	struct fxp_cb_tx *tcbp;
433 	struct fxp_tx *txp;
434 	struct fxp_rx *rxp;
435 	if_t ifp;
436 	uint32_t val;
437 	uint16_t data;
438 	u_char eaddr[ETHER_ADDR_LEN];
439 	int error, flags, i, pmc, prefer_iomap;
440 
441 	error = 0;
442 	sc = device_get_softc(dev);
443 	sc->dev = dev;
444 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
445 	    MTX_DEF);
446 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
447 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
448 	    fxp_serial_ifmedia_sts);
449 
450 	ifp = sc->ifp = if_gethandle(IFT_ETHER);
451 	if (ifp == (void *)NULL) {
452 		device_printf(dev, "can not if_alloc()\n");
453 		error = ENOSPC;
454 		goto fail;
455 	}
456 
457 	/*
458 	 * Enable bus mastering.
459 	 */
460 	pci_enable_busmaster(dev);
461 
462 	/*
463 	 * Figure out which we should try first - memory mapping or i/o mapping?
464 	 * We default to memory mapping. Then we accept an override from the
465 	 * command line. Then we check to see which one is enabled.
466 	 */
467 	prefer_iomap = 0;
468 	resource_int_value(device_get_name(dev), device_get_unit(dev),
469 	    "prefer_iomap", &prefer_iomap);
470 	if (prefer_iomap)
471 		sc->fxp_spec = fxp_res_spec_io;
472 	else
473 		sc->fxp_spec = fxp_res_spec_mem;
474 
475 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
476 	if (error) {
477 		if (sc->fxp_spec == fxp_res_spec_mem)
478 			sc->fxp_spec = fxp_res_spec_io;
479 		else
480 			sc->fxp_spec = fxp_res_spec_mem;
481 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
482 	}
483 	if (error) {
484 		device_printf(dev, "could not allocate resources\n");
485 		error = ENXIO;
486 		goto fail;
487 	}
488 
489 	if (bootverbose) {
490 		device_printf(dev, "using %s space register mapping\n",
491 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
492 	}
493 
494 	/*
495 	 * Put CU/RU idle state and prepare full reset.
496 	 */
497 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
498 	DELAY(10);
499 	/* Full reset and disable interrupts. */
500 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
501 	DELAY(10);
502 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
503 
504 	/*
505 	 * Find out how large of an SEEPROM we have.
506 	 */
507 	fxp_autosize_eeprom(sc);
508 	fxp_load_eeprom(sc);
509 
510 	/*
511 	 * Find out the chip revision; lump all 82557 revs together.
512 	 */
513 	sc->ident = fxp_find_ident(dev);
514 	if (sc->ident->ich > 0) {
515 		/* Assume ICH controllers are 82559. */
516 		sc->revision = FXP_REV_82559_A0;
517 	} else {
518 		data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
519 		if ((data >> 8) == 1)
520 			sc->revision = FXP_REV_82557;
521 		else
522 			sc->revision = pci_get_revid(dev);
523 	}
524 
525 	/*
526 	 * Check availability of WOL. 82559ER does not support WOL.
527 	 */
528 	if (sc->revision >= FXP_REV_82558_A4 &&
529 	    sc->revision != FXP_REV_82559S_A) {
530 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
531 		if ((data & 0x20) != 0 &&
532 		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
533 			sc->flags |= FXP_FLAG_WOLCAP;
534 	}
535 
536 	if (sc->revision == FXP_REV_82550_C) {
537 		/*
538 		 * 82550C with server extension requires microcode to
539 		 * receive fragmented UDP datagrams.  However if the
540 		 * microcode is used for client-only featured 82550C
541 		 * it locks up controller.
542 		 */
543 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
544 		if ((data & 0x0400) == 0)
545 			sc->flags |= FXP_FLAG_NO_UCODE;
546 	}
547 
548 	/* Receiver lock-up workaround detection. */
549 	if (sc->revision < FXP_REV_82558_A4) {
550 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
551 		if ((data & 0x03) != 0x03) {
552 			sc->flags |= FXP_FLAG_RXBUG;
553 			device_printf(dev, "Enabling Rx lock-up workaround\n");
554 		}
555 	}
556 
557 	/*
558 	 * Determine whether we must use the 503 serial interface.
559 	 */
560 	data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
561 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
562 	    && (data & FXP_PHY_SERIAL_ONLY))
563 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
564 
565 	fxp_sysctl_node(sc);
566 	/*
567 	 * Enable workarounds for certain chip revision deficiencies.
568 	 *
569 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
570 	 * some systems based a normal 82559 design, have a defect where
571 	 * the chip can cause a PCI protocol violation if it receives
572 	 * a CU_RESUME command when it is entering the IDLE state.  The
573 	 * workaround is to disable Dynamic Standby Mode, so the chip never
574 	 * deasserts CLKRUN#, and always remains in an active state.
575 	 *
576 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
577 	 */
578 	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
579 	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
580 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
581 		if (data & 0x02) {			/* STB enable */
582 			uint16_t cksum;
583 			int i;
584 
585 			device_printf(dev,
586 			    "Disabling dynamic standby mode in EEPROM\n");
587 			data &= ~0x02;
588 			sc->eeprom[FXP_EEPROM_MAP_ID] = data;
589 			fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
590 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
591 			cksum = 0;
592 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
593 				cksum += sc->eeprom[i];
594 			i = (1 << sc->eeprom_size) - 1;
595 			cksum = 0xBABA - cksum;
596 			fxp_write_eeprom(sc, &cksum, i, 1);
597 			device_printf(dev,
598 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
599 			    i, sc->eeprom[i], cksum);
600 			sc->eeprom[i] = cksum;
601 			/*
602 			 * If the user elects to continue, try the software
603 			 * workaround, as it is better than nothing.
604 			 */
605 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
606 		}
607 	}
608 
609 	/*
610 	 * If we are not a 82557 chip, we can enable extended features.
611 	 */
612 	if (sc->revision != FXP_REV_82557) {
613 		/*
614 		 * If MWI is enabled in the PCI configuration, and there
615 		 * is a valid cacheline size (8 or 16 dwords), then tell
616 		 * the board to turn on MWI.
617 		 */
618 		val = pci_read_config(dev, PCIR_COMMAND, 2);
619 		if (val & PCIM_CMD_MWRICEN &&
620 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
621 			sc->flags |= FXP_FLAG_MWI_ENABLE;
622 
623 		/* turn on the extended TxCB feature */
624 		sc->flags |= FXP_FLAG_EXT_TXCB;
625 
626 		/* enable reception of long frames for VLAN */
627 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
628 	} else {
629 		/* a hack to get long VLAN frames on a 82557 */
630 		sc->flags |= FXP_FLAG_SAVE_BAD;
631 	}
632 
633 	/* For 82559 or later chips, Rx checksum offload is supported. */
634 	if (sc->revision >= FXP_REV_82559_A0) {
635 		/* 82559ER does not support Rx checksum offloading. */
636 		if (sc->ident->device != 0x1209)
637 			sc->flags |= FXP_FLAG_82559_RXCSUM;
638 	}
639 	/*
640 	 * Enable use of extended RFDs and TCBs for 82550
641 	 * and later chips. Note: we need extended TXCB support
642 	 * too, but that's already enabled by the code above.
643 	 * Be careful to do this only on the right devices.
644 	 */
645 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
646 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
647 	    || sc->revision == FXP_REV_82551_10) {
648 		sc->rfa_size = sizeof (struct fxp_rfa);
649 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
650 		sc->flags |= FXP_FLAG_EXT_RFA;
651 		/* Use extended RFA instead of 82559 checksum mode. */
652 		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
653 	} else {
654 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
655 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
656 	}
657 
658 	/*
659 	 * Allocate DMA tags and DMA safe memory.
660 	 */
661 	sc->maxtxseg = FXP_NTXSEG;
662 	sc->maxsegsize = MCLBYTES;
663 	if (sc->flags & FXP_FLAG_EXT_RFA) {
664 		sc->maxtxseg--;
665 		sc->maxsegsize = FXP_TSO_SEGSIZE;
666 	}
667 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
668 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
669 	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
670 	    sc->maxtxseg, sc->maxsegsize, 0, NULL, NULL, &sc->fxp_txmtag);
671 	if (error) {
672 		device_printf(dev, "could not create TX DMA tag\n");
673 		goto fail;
674 	}
675 
676 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
677 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
678 	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->fxp_rxmtag);
679 	if (error) {
680 		device_printf(dev, "could not create RX DMA tag\n");
681 		goto fail;
682 	}
683 
684 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
685 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
686 	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
687 	    NULL, NULL, &sc->fxp_stag);
688 	if (error) {
689 		device_printf(dev, "could not create stats DMA tag\n");
690 		goto fail;
691 	}
692 
693 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
694 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
695 	if (error) {
696 		device_printf(dev, "could not allocate stats DMA memory\n");
697 		goto fail;
698 	}
699 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
700 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
701 	    BUS_DMA_NOWAIT);
702 	if (error) {
703 		device_printf(dev, "could not load the stats DMA buffer\n");
704 		goto fail;
705 	}
706 
707 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
708 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
709 	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0, NULL, NULL, &sc->cbl_tag);
710 	if (error) {
711 		device_printf(dev, "could not create TxCB DMA tag\n");
712 		goto fail;
713 	}
714 
715 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
716 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
717 	if (error) {
718 		device_printf(dev, "could not allocate TxCB DMA memory\n");
719 		goto fail;
720 	}
721 
722 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
723 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
724 	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
725 	if (error) {
726 		device_printf(dev, "could not load TxCB DMA buffer\n");
727 		goto fail;
728 	}
729 
730 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
731 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
732 	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
733 	    NULL, NULL, &sc->mcs_tag);
734 	if (error) {
735 		device_printf(dev,
736 		    "could not create multicast setup DMA tag\n");
737 		goto fail;
738 	}
739 
740 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
741 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
742 	if (error) {
743 		device_printf(dev,
744 		    "could not allocate multicast setup DMA memory\n");
745 		goto fail;
746 	}
747 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
748 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
749 	    BUS_DMA_NOWAIT);
750 	if (error) {
751 		device_printf(dev,
752 		    "can't load the multicast setup DMA buffer\n");
753 		goto fail;
754 	}
755 
756 	/*
757 	 * Pre-allocate the TX DMA maps and setup the pointers to
758 	 * the TX command blocks.
759 	 */
760 	txp = sc->fxp_desc.tx_list;
761 	tcbp = sc->fxp_desc.cbl_list;
762 	for (i = 0; i < FXP_NTXCB; i++) {
763 		txp[i].tx_cb = tcbp + i;
764 		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
765 		if (error) {
766 			device_printf(dev, "can't create DMA map for TX\n");
767 			goto fail;
768 		}
769 	}
770 	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
771 	if (error) {
772 		device_printf(dev, "can't create spare DMA map\n");
773 		goto fail;
774 	}
775 
776 	/*
777 	 * Pre-allocate our receive buffers.
778 	 */
779 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
780 	for (i = 0; i < FXP_NRFABUFS; i++) {
781 		rxp = &sc->fxp_desc.rx_list[i];
782 		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
783 		if (error) {
784 			device_printf(dev, "can't create DMA map for RX\n");
785 			goto fail;
786 		}
787 		if (fxp_new_rfabuf(sc, rxp) != 0) {
788 			error = ENOMEM;
789 			goto fail;
790 		}
791 		fxp_add_rfabuf(sc, rxp);
792 	}
793 
794 	/*
795 	 * Read MAC address.
796 	 */
797 	eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
798 	eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
799 	eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
800 	eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
801 	eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
802 	eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
803 	if (bootverbose) {
804 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
805 		    pci_get_vendor(dev), pci_get_device(dev),
806 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
807 		    pci_get_revid(dev));
808 		device_printf(dev, "Dynamic Standby mode is %s\n",
809 		    sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
810 		    "disabled");
811 	}
812 
813 	/*
814 	 * If this is only a 10Mbps device, then there is no MII, and
815 	 * the PHY will use a serial interface instead.
816 	 *
817 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
818 	 * doesn't have a programming interface of any sort.  The
819 	 * media is sensed automatically based on how the link partner
820 	 * is configured.  This is, in essence, manual configuration.
821 	 */
822 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
823 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
824 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
825 	} else {
826 		/*
827 		 * i82557 wedge when isolating all of their PHYs.
828 		 */
829 		flags = MIIF_NOISOLATE;
830 		if (sc->revision >= FXP_REV_82558_A4)
831 			flags |= MIIF_DOPAUSE;
832 		error = mii_attach(dev, &sc->miibus, ifp,
833 		    (ifm_change_cb_t)fxp_ifmedia_upd,
834 		    (ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK,
835 		    MII_PHY_ANY, MII_OFFSET_ANY, flags);
836 		if (error != 0) {
837 			device_printf(dev, "attaching PHYs failed\n");
838 			goto fail;
839 		}
840 	}
841 
842 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
843 	if_setdev(ifp, dev);
844 	if_setinitfn(ifp, fxp_init);
845 	if_setsoftc(ifp, sc);
846 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
847 	if_setioctlfn(ifp, fxp_ioctl);
848 	if_setstartfn(ifp, fxp_start);
849 
850 	if_setcapabilities(ifp, 0);
851 	if_setcapenable(ifp, 0);
852 
853 	/* Enable checksum offload/TSO for 82550 or better chips */
854 	if (sc->flags & FXP_FLAG_EXT_RFA) {
855 		if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO);
856 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
857 		if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
858 	}
859 
860 	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
861 		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
862 		if_setcapenablebit(ifp, IFCAP_RXCSUM, 0);
863 	}
864 
865 	if (sc->flags & FXP_FLAG_WOLCAP) {
866 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
867 		if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0);
868 	}
869 
870 #ifdef DEVICE_POLLING
871 	/* Inform the world we support polling. */
872 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
873 #endif
874 
875 	/*
876 	 * Attach the interface.
877 	 */
878 	ether_ifattach(ifp, eaddr);
879 
880 	/*
881 	 * Tell the upper layer(s) we support long frames.
882 	 * Must appear after the call to ether_ifattach() because
883 	 * ether_ifattach() sets ifi_hdrlen to the default value.
884 	 */
885 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
886 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
887 	if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
888 	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
889 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING |
890 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
891 		if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING |
892 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
893 	}
894 
895 	/*
896 	 * Let the system queue as many packets as we have available
897 	 * TX descriptors.
898 	 */
899 	if_setsendqlen(ifp, FXP_NTXCB - 1);
900 	if_setsendqready(ifp);
901 
902 	/*
903 	 * Hook our interrupt after all initialization is complete.
904 	 */
905 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
906 			       NULL, fxp_intr, sc, &sc->ih);
907 	if (error) {
908 		device_printf(dev, "could not setup irq\n");
909 		ether_ifdetach(sc->ifp);
910 		goto fail;
911 	}
912 
913 	/*
914 	 * Configure hardware to reject magic frames otherwise
915 	 * system will hang on recipt of magic frames.
916 	 */
917 	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
918 		FXP_LOCK(sc);
919 		/* Clear wakeup events. */
920 		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
921 		fxp_init_body(sc, 0);
922 		fxp_stop(sc);
923 		FXP_UNLOCK(sc);
924 	}
925 
926 fail:
927 	if (error)
928 		fxp_release(sc);
929 	return (error);
930 }
931 
932 /*
933  * Release all resources.  The softc lock should not be held and the
934  * interrupt should already be torn down.
935  */
936 static void
937 fxp_release(struct fxp_softc *sc)
938 {
939 	struct fxp_rx *rxp;
940 	struct fxp_tx *txp;
941 	int i;
942 
943 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
944 	KASSERT(sc->ih == NULL,
945 	    ("fxp_release() called with intr handle still active"));
946 	if (sc->miibus)
947 		device_delete_child(sc->dev, sc->miibus);
948 	bus_generic_detach(sc->dev);
949 	ifmedia_removeall(&sc->sc_media);
950 	if (sc->fxp_desc.cbl_list) {
951 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
952 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
953 		    sc->cbl_map);
954 	}
955 	if (sc->fxp_stats) {
956 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
957 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
958 	}
959 	if (sc->mcsp) {
960 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
961 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
962 	}
963 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
964 	if (sc->fxp_rxmtag) {
965 		for (i = 0; i < FXP_NRFABUFS; i++) {
966 			rxp = &sc->fxp_desc.rx_list[i];
967 			if (rxp->rx_mbuf != NULL) {
968 				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
969 				    BUS_DMASYNC_POSTREAD);
970 				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
971 				m_freem(rxp->rx_mbuf);
972 			}
973 			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
974 		}
975 		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
976 		bus_dma_tag_destroy(sc->fxp_rxmtag);
977 	}
978 	if (sc->fxp_txmtag) {
979 		for (i = 0; i < FXP_NTXCB; i++) {
980 			txp = &sc->fxp_desc.tx_list[i];
981 			if (txp->tx_mbuf != NULL) {
982 				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
983 				    BUS_DMASYNC_POSTWRITE);
984 				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
985 				m_freem(txp->tx_mbuf);
986 			}
987 			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
988 		}
989 		bus_dma_tag_destroy(sc->fxp_txmtag);
990 	}
991 	if (sc->fxp_stag)
992 		bus_dma_tag_destroy(sc->fxp_stag);
993 	if (sc->cbl_tag)
994 		bus_dma_tag_destroy(sc->cbl_tag);
995 	if (sc->mcs_tag)
996 		bus_dma_tag_destroy(sc->mcs_tag);
997 	if (sc->ifp)
998 		if_free(sc->ifp);
999 
1000 	mtx_destroy(&sc->sc_mtx);
1001 }
1002 
1003 /*
1004  * Detach interface.
1005  */
1006 static int
1007 fxp_detach(device_t dev)
1008 {
1009 	struct fxp_softc *sc = device_get_softc(dev);
1010 
1011 #ifdef DEVICE_POLLING
1012 	if (if_getcapenable(sc->ifp) & IFCAP_POLLING)
1013 		ether_poll_deregister(sc->ifp);
1014 #endif
1015 
1016 	FXP_LOCK(sc);
1017 	/*
1018 	 * Stop DMA and drop transmit queue, but disable interrupts first.
1019 	 */
1020 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1021 	fxp_stop(sc);
1022 	FXP_UNLOCK(sc);
1023 	callout_drain(&sc->stat_ch);
1024 
1025 	/*
1026 	 * Close down routes etc.
1027 	 */
1028 	ether_ifdetach(sc->ifp);
1029 
1030 	/*
1031 	 * Unhook interrupt before dropping lock. This is to prevent
1032 	 * races with fxp_intr().
1033 	 */
1034 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1035 	sc->ih = NULL;
1036 
1037 	/* Release our allocated resources. */
1038 	fxp_release(sc);
1039 	return (0);
1040 }
1041 
1042 /*
1043  * Device shutdown routine. Called at system shutdown after sync. The
1044  * main purpose of this routine is to shut off receiver DMA so that
1045  * kernel memory doesn't get clobbered during warmboot.
1046  */
1047 static int
1048 fxp_shutdown(device_t dev)
1049 {
1050 
1051 	/*
1052 	 * Make sure that DMA is disabled prior to reboot. Not doing
1053 	 * do could allow DMA to corrupt kernel memory during the
1054 	 * reboot before the driver initializes.
1055 	 */
1056 	return (fxp_suspend(dev));
1057 }
1058 
1059 /*
1060  * Device suspend routine.  Stop the interface and save some PCI
1061  * settings in case the BIOS doesn't restore them properly on
1062  * resume.
1063  */
1064 static int
1065 fxp_suspend(device_t dev)
1066 {
1067 	struct fxp_softc *sc = device_get_softc(dev);
1068 	if_t ifp;
1069 	int pmc;
1070 	uint16_t pmstat;
1071 
1072 	FXP_LOCK(sc);
1073 
1074 	ifp = sc->ifp;
1075 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1076 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1077 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1078 		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1079 			/* Request PME. */
1080 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1081 			sc->flags |= FXP_FLAG_WOL;
1082 			/* Reconfigure hardware to accept magic frames. */
1083 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1084 			fxp_init_body(sc, 0);
1085 		}
1086 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1087 	}
1088 	fxp_stop(sc);
1089 
1090 	sc->suspended = 1;
1091 
1092 	FXP_UNLOCK(sc);
1093 	return (0);
1094 }
1095 
1096 /*
1097  * Device resume routine. re-enable busmastering, and restart the interface if
1098  * appropriate.
1099  */
1100 static int
1101 fxp_resume(device_t dev)
1102 {
1103 	struct fxp_softc *sc = device_get_softc(dev);
1104 	if_t ifp = sc->ifp;
1105 	int pmc;
1106 	uint16_t pmstat;
1107 
1108 	FXP_LOCK(sc);
1109 
1110 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1111 		sc->flags &= ~FXP_FLAG_WOL;
1112 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1113 		/* Disable PME and clear PME status. */
1114 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1115 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1116 		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1117 			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1118 			    CSR_READ_1(sc, FXP_CSR_PMDR));
1119 	}
1120 
1121 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1122 	DELAY(10);
1123 
1124 	/* reinitialize interface if necessary */
1125 	if (if_getflags(ifp) & IFF_UP)
1126 		fxp_init_body(sc, 1);
1127 
1128 	sc->suspended = 0;
1129 
1130 	FXP_UNLOCK(sc);
1131 	return (0);
1132 }
1133 
1134 static void
1135 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1136 {
1137 	uint16_t reg;
1138 	int x;
1139 
1140 	/*
1141 	 * Shift in data.
1142 	 */
1143 	for (x = 1 << (length - 1); x; x >>= 1) {
1144 		if (data & x)
1145 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1146 		else
1147 			reg = FXP_EEPROM_EECS;
1148 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1149 		DELAY(1);
1150 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1151 		DELAY(1);
1152 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1153 		DELAY(1);
1154 	}
1155 }
1156 
1157 /*
1158  * Read from the serial EEPROM. Basically, you manually shift in
1159  * the read opcode (one bit at a time) and then shift in the address,
1160  * and then you shift out the data (all of this one bit at a time).
1161  * The word size is 16 bits, so you have to provide the address for
1162  * every 16 bits of data.
1163  */
1164 static uint16_t
1165 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1166 {
1167 	uint16_t reg, data;
1168 	int x;
1169 
1170 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1171 	/*
1172 	 * Shift in read opcode.
1173 	 */
1174 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1175 	/*
1176 	 * Shift in address.
1177 	 */
1178 	data = 0;
1179 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1180 		if (offset & x)
1181 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1182 		else
1183 			reg = FXP_EEPROM_EECS;
1184 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1185 		DELAY(1);
1186 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1187 		DELAY(1);
1188 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1189 		DELAY(1);
1190 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1191 		data++;
1192 		if (autosize && reg == 0) {
1193 			sc->eeprom_size = data;
1194 			break;
1195 		}
1196 	}
1197 	/*
1198 	 * Shift out data.
1199 	 */
1200 	data = 0;
1201 	reg = FXP_EEPROM_EECS;
1202 	for (x = 1 << 15; x; x >>= 1) {
1203 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1204 		DELAY(1);
1205 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1206 			data |= x;
1207 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1208 		DELAY(1);
1209 	}
1210 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1211 	DELAY(1);
1212 
1213 	return (data);
1214 }
1215 
1216 static void
1217 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1218 {
1219 	int i;
1220 
1221 	/*
1222 	 * Erase/write enable.
1223 	 */
1224 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1225 	fxp_eeprom_shiftin(sc, 0x4, 3);
1226 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1227 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1228 	DELAY(1);
1229 	/*
1230 	 * Shift in write opcode, address, data.
1231 	 */
1232 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1233 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1234 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1235 	fxp_eeprom_shiftin(sc, data, 16);
1236 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1237 	DELAY(1);
1238 	/*
1239 	 * Wait for EEPROM to finish up.
1240 	 */
1241 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1242 	DELAY(1);
1243 	for (i = 0; i < 1000; i++) {
1244 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1245 			break;
1246 		DELAY(50);
1247 	}
1248 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1249 	DELAY(1);
1250 	/*
1251 	 * Erase/write disable.
1252 	 */
1253 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1254 	fxp_eeprom_shiftin(sc, 0x4, 3);
1255 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1256 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1257 	DELAY(1);
1258 }
1259 
1260 /*
1261  * From NetBSD:
1262  *
1263  * Figure out EEPROM size.
1264  *
1265  * 559's can have either 64-word or 256-word EEPROMs, the 558
1266  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1267  * talks about the existence of 16 to 256 word EEPROMs.
1268  *
1269  * The only known sizes are 64 and 256, where the 256 version is used
1270  * by CardBus cards to store CIS information.
1271  *
1272  * The address is shifted in msb-to-lsb, and after the last
1273  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1274  * after which follows the actual data. We try to detect this zero, by
1275  * probing the data-out bit in the EEPROM control register just after
1276  * having shifted in a bit. If the bit is zero, we assume we've
1277  * shifted enough address bits. The data-out should be tri-state,
1278  * before this, which should translate to a logical one.
1279  */
1280 static void
1281 fxp_autosize_eeprom(struct fxp_softc *sc)
1282 {
1283 
1284 	/* guess maximum size of 256 words */
1285 	sc->eeprom_size = 8;
1286 
1287 	/* autosize */
1288 	(void) fxp_eeprom_getword(sc, 0, 1);
1289 }
1290 
1291 static void
1292 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1293 {
1294 	int i;
1295 
1296 	for (i = 0; i < words; i++)
1297 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1298 }
1299 
1300 static void
1301 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1302 {
1303 	int i;
1304 
1305 	for (i = 0; i < words; i++)
1306 		fxp_eeprom_putword(sc, offset + i, data[i]);
1307 }
1308 
1309 static void
1310 fxp_load_eeprom(struct fxp_softc *sc)
1311 {
1312 	int i;
1313 	uint16_t cksum;
1314 
1315 	fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1316 	cksum = 0;
1317 	for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1318 		cksum += sc->eeprom[i];
1319 	cksum = 0xBABA - cksum;
1320 	if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1321 		device_printf(sc->dev,
1322 		    "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1323 		    cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1324 }
1325 
1326 /*
1327  * Grab the softc lock and call the real fxp_start_body() routine
1328  */
1329 static void
1330 fxp_start(if_t ifp)
1331 {
1332 	struct fxp_softc *sc = if_getsoftc(ifp);
1333 
1334 	FXP_LOCK(sc);
1335 	fxp_start_body(ifp);
1336 	FXP_UNLOCK(sc);
1337 }
1338 
1339 /*
1340  * Start packet transmission on the interface.
1341  * This routine must be called with the softc lock held, and is an
1342  * internal entry point only.
1343  */
1344 static void
1345 fxp_start_body(if_t ifp)
1346 {
1347 	struct fxp_softc *sc = if_getsoftc(ifp);
1348 	struct mbuf *mb_head;
1349 	int txqueued;
1350 
1351 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1352 
1353 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1354 	    IFF_DRV_RUNNING)
1355 		return;
1356 
1357 	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1358 		fxp_txeof(sc);
1359 	/*
1360 	 * We're finished if there is nothing more to add to the list or if
1361 	 * we're all filled up with buffers to transmit.
1362 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1363 	 *       a NOP command when needed.
1364 	 */
1365 	txqueued = 0;
1366 	while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) {
1367 
1368 		/*
1369 		 * Grab a packet to transmit.
1370 		 */
1371 		mb_head = if_dequeue(ifp);
1372 		if (mb_head == NULL)
1373 			break;
1374 
1375 		if (fxp_encap(sc, &mb_head)) {
1376 			if (mb_head == NULL)
1377 				break;
1378 			if_sendq_prepend(ifp, mb_head);
1379 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1380 		}
1381 		txqueued++;
1382 		/*
1383 		 * Pass packet to bpf if there is a listener.
1384 		 */
1385 		if_bpfmtap(ifp, mb_head);
1386 	}
1387 
1388 	/*
1389 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1390 	 * going again if suspended.
1391 	 */
1392 	if (txqueued > 0) {
1393 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1394 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1395 		fxp_scb_wait(sc);
1396 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1397 		/*
1398 		 * Set a 5 second timer just in case we don't hear
1399 		 * from the card again.
1400 		 */
1401 		sc->watchdog_timer = 5;
1402 	}
1403 }
1404 
1405 static int
1406 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1407 {
1408 	struct mbuf *m;
1409 	struct fxp_tx *txp;
1410 	struct fxp_cb_tx *cbp;
1411 	struct tcphdr *tcp;
1412 	bus_dma_segment_t segs[FXP_NTXSEG];
1413 	int error, i, nseg, tcp_payload;
1414 
1415 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1416 
1417 	tcp_payload = 0;
1418 	tcp = NULL;
1419 	/*
1420 	 * Get pointer to next available tx desc.
1421 	 */
1422 	txp = sc->fxp_desc.tx_last->tx_next;
1423 
1424 	/*
1425 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1426 	 * Ethernet Controller Family Open Source Software
1427 	 * Developer Manual says:
1428 	 *   Using software parsing is only allowed with legal
1429 	 *   TCP/IP or UDP/IP packets.
1430 	 *   ...
1431 	 *   For all other datagrams, hardware parsing must
1432 	 *   be used.
1433 	 * Software parsing appears to truncate ICMP and
1434 	 * fragmented UDP packets that contain one to three
1435 	 * bytes in the second (and final) mbuf of the packet.
1436 	 */
1437 	if (sc->flags & FXP_FLAG_EXT_RFA)
1438 		txp->tx_cb->ipcb_ip_activation_high =
1439 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1440 
1441 	m = *m_head;
1442 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1443 		/*
1444 		 * 82550/82551 requires ethernet/IP/TCP headers must be
1445 		 * contained in the first active transmit buffer.
1446 		 */
1447 		struct ether_header *eh;
1448 		struct ip *ip;
1449 		uint32_t ip_off, poff;
1450 
1451 		if (M_WRITABLE(*m_head) == 0) {
1452 			/* Get a writable copy. */
1453 			m = m_dup(*m_head, M_NOWAIT);
1454 			m_freem(*m_head);
1455 			if (m == NULL) {
1456 				*m_head = NULL;
1457 				return (ENOBUFS);
1458 			}
1459 			*m_head = m;
1460 		}
1461 		ip_off = sizeof(struct ether_header);
1462 		m = m_pullup(*m_head, ip_off);
1463 		if (m == NULL) {
1464 			*m_head = NULL;
1465 			return (ENOBUFS);
1466 		}
1467 		eh = mtod(m, struct ether_header *);
1468 		/* Check the existence of VLAN tag. */
1469 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1470 			ip_off = sizeof(struct ether_vlan_header);
1471 			m = m_pullup(m, ip_off);
1472 			if (m == NULL) {
1473 				*m_head = NULL;
1474 				return (ENOBUFS);
1475 			}
1476 		}
1477 		m = m_pullup(m, ip_off + sizeof(struct ip));
1478 		if (m == NULL) {
1479 			*m_head = NULL;
1480 			return (ENOBUFS);
1481 		}
1482 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1483 		poff = ip_off + (ip->ip_hl << 2);
1484 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1485 		if (m == NULL) {
1486 			*m_head = NULL;
1487 			return (ENOBUFS);
1488 		}
1489 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1490 		m = m_pullup(m, poff + (tcp->th_off << 2));
1491 		if (m == NULL) {
1492 			*m_head = NULL;
1493 			return (ENOBUFS);
1494 		}
1495 
1496 		/*
1497 		 * Since 82550/82551 doesn't modify IP length and pseudo
1498 		 * checksum in the first frame driver should compute it.
1499 		 */
1500 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1501 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1502 		ip->ip_sum = 0;
1503 		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1504 		    (tcp->th_off << 2));
1505 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1506 		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1507 		    m->m_pkthdr.tso_segsz));
1508 		/* Compute total TCP payload. */
1509 		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1510 		tcp_payload -= tcp->th_off << 2;
1511 		*m_head = m;
1512 	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1513 		/*
1514 		 * Deal with TCP/IP checksum offload. Note that
1515 		 * in order for TCP checksum offload to work,
1516 		 * the pseudo header checksum must have already
1517 		 * been computed and stored in the checksum field
1518 		 * in the TCP header. The stack should have
1519 		 * already done this for us.
1520 		 */
1521 		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1522 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1523 			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1524 
1525 #ifdef FXP_IP_CSUM_WAR
1526 		/*
1527 		 * XXX The 82550 chip appears to have trouble
1528 		 * dealing with IP header checksums in very small
1529 		 * datagrams, namely fragments from 1 to 3 bytes
1530 		 * in size. For example, say you want to transmit
1531 		 * a UDP packet of 1473 bytes. The packet will be
1532 		 * fragmented over two IP datagrams, the latter
1533 		 * containing only one byte of data. The 82550 will
1534 		 * botch the header checksum on the 1-byte fragment.
1535 		 * As long as the datagram contains 4 or more bytes
1536 		 * of data, you're ok.
1537 		 *
1538                  * The following code attempts to work around this
1539 		 * problem: if the datagram is less than 38 bytes
1540 		 * in size (14 bytes ether header, 20 bytes IP header,
1541 		 * plus 4 bytes of data), we punt and compute the IP
1542 		 * header checksum by hand. This workaround doesn't
1543 		 * work very well, however, since it can be fooled
1544 		 * by things like VLAN tags and IP options that make
1545 		 * the header sizes/offsets vary.
1546 		 */
1547 
1548 		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1549 			if (m->m_pkthdr.len < 38) {
1550 				struct ip *ip;
1551 				m->m_data += ETHER_HDR_LEN;
1552 				ip = mtod(m, struct ip *);
1553 				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1554 				m->m_data -= ETHER_HDR_LEN;
1555 				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1556 			} else {
1557 				txp->tx_cb->ipcb_ip_activation_high =
1558 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1559 				txp->tx_cb->ipcb_ip_schedule |=
1560 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1561 			}
1562 		}
1563 #endif
1564 	}
1565 
1566 	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1567 	    segs, &nseg, 0);
1568 	if (error == EFBIG) {
1569 		m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg);
1570 		if (m == NULL) {
1571 			m_freem(*m_head);
1572 			*m_head = NULL;
1573 			return (ENOMEM);
1574 		}
1575 		*m_head = m;
1576 		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1577 		    *m_head, segs, &nseg, 0);
1578 		if (error != 0) {
1579 			m_freem(*m_head);
1580 			*m_head = NULL;
1581 			return (ENOMEM);
1582 		}
1583 	} else if (error != 0)
1584 		return (error);
1585 	if (nseg == 0) {
1586 		m_freem(*m_head);
1587 		*m_head = NULL;
1588 		return (EIO);
1589 	}
1590 
1591 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1592 	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1593 
1594 	cbp = txp->tx_cb;
1595 	for (i = 0; i < nseg; i++) {
1596 		/*
1597 		 * If this is an 82550/82551, then we're using extended
1598 		 * TxCBs _and_ we're using checksum offload. This means
1599 		 * that the TxCB is really an IPCB. One major difference
1600 		 * between the two is that with plain extended TxCBs,
1601 		 * the bottom half of the TxCB contains two entries from
1602 		 * the TBD array, whereas IPCBs contain just one entry:
1603 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1604 		 * checksum offload control bits. So to make things work
1605 		 * right, we have to start filling in the TBD array
1606 		 * starting from a different place depending on whether
1607 		 * the chip is an 82550/82551 or not.
1608 		 */
1609 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1610 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1611 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1612 		} else {
1613 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1614 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1615 		}
1616 	}
1617 	if (sc->flags & FXP_FLAG_EXT_RFA) {
1618 		/* Configure dynamic TBD for 82550/82551. */
1619 		cbp->tbd_number = 0xFF;
1620 		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1621 	} else
1622 		cbp->tbd_number = nseg;
1623 	/* Configure TSO. */
1624 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1625 		cbp->tbdtso.tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1626 		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1627 		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1628 		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1629 		    FXP_IPCB_TCP_PACKET |
1630 		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1631 	}
1632 	/* Configure VLAN hardware tag insertion. */
1633 	if ((m->m_flags & M_VLANTAG) != 0) {
1634 		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1635 		txp->tx_cb->ipcb_ip_activation_high |=
1636 		    FXP_IPCB_INSERTVLAN_ENABLE;
1637 	}
1638 
1639 	txp->tx_mbuf = m;
1640 	txp->tx_cb->cb_status = 0;
1641 	txp->tx_cb->byte_count = 0;
1642 	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1643 		txp->tx_cb->cb_command =
1644 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1645 		    FXP_CB_COMMAND_S);
1646 	else
1647 		txp->tx_cb->cb_command =
1648 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1649 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1650 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1651 		txp->tx_cb->tx_threshold = tx_threshold;
1652 
1653 	/*
1654 	 * Advance the end of list forward.
1655 	 */
1656 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1657 	sc->fxp_desc.tx_last = txp;
1658 
1659 	/*
1660 	 * Advance the beginning of the list forward if there are
1661 	 * no other packets queued (when nothing is queued, tx_first
1662 	 * sits on the last TxCB that was sent out).
1663 	 */
1664 	if (sc->tx_queued == 0)
1665 		sc->fxp_desc.tx_first = txp;
1666 
1667 	sc->tx_queued++;
1668 
1669 	return (0);
1670 }
1671 
1672 #ifdef DEVICE_POLLING
1673 static poll_handler_t fxp_poll;
1674 
1675 static int
1676 fxp_poll(if_t ifp, enum poll_cmd cmd, int count)
1677 {
1678 	struct fxp_softc *sc = if_getsoftc(ifp);
1679 	uint8_t statack;
1680 	int rx_npkts = 0;
1681 
1682 	FXP_LOCK(sc);
1683 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1684 		FXP_UNLOCK(sc);
1685 		return (rx_npkts);
1686 	}
1687 
1688 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1689 	    FXP_SCB_STATACK_FR;
1690 	if (cmd == POLL_AND_CHECK_STATUS) {
1691 		uint8_t tmp;
1692 
1693 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1694 		if (tmp == 0xff || tmp == 0) {
1695 			FXP_UNLOCK(sc);
1696 			return (rx_npkts); /* nothing to do */
1697 		}
1698 		tmp &= ~statack;
1699 		/* ack what we can */
1700 		if (tmp != 0)
1701 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1702 		statack |= tmp;
1703 	}
1704 	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1705 	FXP_UNLOCK(sc);
1706 	return (rx_npkts);
1707 }
1708 #endif /* DEVICE_POLLING */
1709 
1710 /*
1711  * Process interface interrupts.
1712  */
1713 static void
1714 fxp_intr(void *xsc)
1715 {
1716 	struct fxp_softc *sc = xsc;
1717 	if_t ifp = sc->ifp;
1718 	uint8_t statack;
1719 
1720 	FXP_LOCK(sc);
1721 	if (sc->suspended) {
1722 		FXP_UNLOCK(sc);
1723 		return;
1724 	}
1725 
1726 #ifdef DEVICE_POLLING
1727 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
1728 		FXP_UNLOCK(sc);
1729 		return;
1730 	}
1731 #endif
1732 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1733 		/*
1734 		 * It should not be possible to have all bits set; the
1735 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1736 		 * all bits are set, this may indicate that the card has
1737 		 * been physically ejected, so ignore it.
1738 		 */
1739 		if (statack == 0xff) {
1740 			FXP_UNLOCK(sc);
1741 			return;
1742 		}
1743 
1744 		/*
1745 		 * First ACK all the interrupts in this pass.
1746 		 */
1747 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1748 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1749 			fxp_intr_body(sc, ifp, statack, -1);
1750 	}
1751 	FXP_UNLOCK(sc);
1752 }
1753 
1754 static void
1755 fxp_txeof(struct fxp_softc *sc)
1756 {
1757 	if_t ifp;
1758 	struct fxp_tx *txp;
1759 
1760 	ifp = sc->ifp;
1761 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1762 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1763 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1764 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1765 	    txp = txp->tx_next) {
1766 		if (txp->tx_mbuf != NULL) {
1767 			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1768 			    BUS_DMASYNC_POSTWRITE);
1769 			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1770 			m_freem(txp->tx_mbuf);
1771 			txp->tx_mbuf = NULL;
1772 			/* clear this to reset csum offload bits */
1773 			txp->tx_cb->tbd[0].tb_addr = 0;
1774 		}
1775 		sc->tx_queued--;
1776 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1777 	}
1778 	sc->fxp_desc.tx_first = txp;
1779 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1780 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1781 	if (sc->tx_queued == 0)
1782 		sc->watchdog_timer = 0;
1783 }
1784 
1785 static void
1786 fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m,
1787     uint16_t status, int pos)
1788 {
1789 	struct ether_header *eh;
1790 	struct ip *ip;
1791 	struct udphdr *uh;
1792 	int32_t hlen, len, pktlen, temp32;
1793 	uint16_t csum, *opts;
1794 
1795 	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1796 		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1797 			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1798 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1799 			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1800 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1801 			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1802 			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1803 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1804 				    CSUM_PSEUDO_HDR;
1805 				m->m_pkthdr.csum_data = 0xffff;
1806 			}
1807 		}
1808 		return;
1809 	}
1810 
1811 	pktlen = m->m_pkthdr.len;
1812 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1813 		return;
1814 	eh = mtod(m, struct ether_header *);
1815 	if (eh->ether_type != htons(ETHERTYPE_IP))
1816 		return;
1817 	ip = (struct ip *)(eh + 1);
1818 	if (ip->ip_v != IPVERSION)
1819 		return;
1820 
1821 	hlen = ip->ip_hl << 2;
1822 	pktlen -= sizeof(struct ether_header);
1823 	if (hlen < sizeof(struct ip))
1824 		return;
1825 	if (ntohs(ip->ip_len) < hlen)
1826 		return;
1827 	if (ntohs(ip->ip_len) != pktlen)
1828 		return;
1829 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1830 		return;	/* can't handle fragmented packet */
1831 
1832 	switch (ip->ip_p) {
1833 	case IPPROTO_TCP:
1834 		if (pktlen < (hlen + sizeof(struct tcphdr)))
1835 			return;
1836 		break;
1837 	case IPPROTO_UDP:
1838 		if (pktlen < (hlen + sizeof(struct udphdr)))
1839 			return;
1840 		uh = (struct udphdr *)((caddr_t)ip + hlen);
1841 		if (uh->uh_sum == 0)
1842 			return; /* no checksum */
1843 		break;
1844 	default:
1845 		return;
1846 	}
1847 	/* Extract computed checksum. */
1848 	csum = be16dec(mtod(m, char *) + pos);
1849 	/* checksum fixup for IP options */
1850 	len = hlen - sizeof(struct ip);
1851 	if (len > 0) {
1852 		opts = (uint16_t *)(ip + 1);
1853 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1854 			temp32 = csum - *opts;
1855 			temp32 = (temp32 >> 16) + (temp32 & 65535);
1856 			csum = temp32 & 65535;
1857 		}
1858 	}
1859 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1860 	m->m_pkthdr.csum_data = csum;
1861 }
1862 
1863 static int
1864 fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack,
1865     int count)
1866 {
1867 	struct mbuf *m;
1868 	struct fxp_rx *rxp;
1869 	struct fxp_rfa *rfa;
1870 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1871 	int rx_npkts;
1872 	uint16_t status;
1873 
1874 	rx_npkts = 0;
1875 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1876 
1877 	if (rnr)
1878 		sc->rnr++;
1879 #ifdef DEVICE_POLLING
1880 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1881 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1882 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1883 		rnr = 1;
1884 	}
1885 #endif
1886 
1887 	/*
1888 	 * Free any finished transmit mbuf chains.
1889 	 *
1890 	 * Handle the CNA event likt a CXTNO event. It used to
1891 	 * be that this event (control unit not ready) was not
1892 	 * encountered, but it is now with the SMPng modifications.
1893 	 * The exact sequence of events that occur when the interface
1894 	 * is brought up are different now, and if this event
1895 	 * goes unhandled, the configuration/rxfilter setup sequence
1896 	 * can stall for several seconds. The result is that no
1897 	 * packets go out onto the wire for about 5 to 10 seconds
1898 	 * after the interface is ifconfig'ed for the first time.
1899 	 */
1900 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1901 		fxp_txeof(sc);
1902 
1903 	/*
1904 	 * Try to start more packets transmitting.
1905 	 */
1906 	if (!if_sendq_empty(ifp))
1907 		fxp_start_body(ifp);
1908 
1909 	/*
1910 	 * Just return if nothing happened on the receive side.
1911 	 */
1912 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1913 		return (rx_npkts);
1914 
1915 	/*
1916 	 * Process receiver interrupts. If a no-resource (RNR)
1917 	 * condition exists, get whatever packets we can and
1918 	 * re-start the receiver.
1919 	 *
1920 	 * When using polling, we do not process the list to completion,
1921 	 * so when we get an RNR interrupt we must defer the restart
1922 	 * until we hit the last buffer with the C bit set.
1923 	 * If we run out of cycles and rfa_headm has the C bit set,
1924 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1925 	 * that the info will be used in the subsequent polling cycle.
1926 	 */
1927 	for (;;) {
1928 		rxp = sc->fxp_desc.rx_head;
1929 		m = rxp->rx_mbuf;
1930 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1931 		    RFA_ALIGNMENT_FUDGE);
1932 		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1933 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1934 
1935 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1936 		if (count >= 0 && count-- == 0) {
1937 			if (rnr) {
1938 				/* Defer RNR processing until the next time. */
1939 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1940 				rnr = 0;
1941 			}
1942 			break;
1943 		}
1944 #endif /* DEVICE_POLLING */
1945 
1946 		status = le16toh(rfa->rfa_status);
1947 		if ((status & FXP_RFA_STATUS_C) == 0)
1948 			break;
1949 
1950 		if ((status & FXP_RFA_STATUS_RNR) != 0)
1951 			rnr++;
1952 		/*
1953 		 * Advance head forward.
1954 		 */
1955 		sc->fxp_desc.rx_head = rxp->rx_next;
1956 
1957 		/*
1958 		 * Add a new buffer to the receive chain.
1959 		 * If this fails, the old buffer is recycled
1960 		 * instead.
1961 		 */
1962 		if (fxp_new_rfabuf(sc, rxp) == 0) {
1963 			int total_len;
1964 
1965 			/*
1966 			 * Fetch packet length (the top 2 bits of
1967 			 * actual_size are flags set by the controller
1968 			 * upon completion), and drop the packet in case
1969 			 * of bogus length or CRC errors.
1970 			 */
1971 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1972 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1973 			    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1974 				/* Adjust for appended checksum bytes. */
1975 				total_len -= 2;
1976 			}
1977 			if (total_len < (int)sizeof(struct ether_header) ||
1978 			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1979 			    sc->rfa_size) ||
1980 			    status & (FXP_RFA_STATUS_CRC |
1981 			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1982 				m_freem(m);
1983 				fxp_add_rfabuf(sc, rxp);
1984 				continue;
1985 			}
1986 
1987 			m->m_pkthdr.len = m->m_len = total_len;
1988 			if_setrcvif(m, ifp);
1989 
1990                         /* Do IP checksum checking. */
1991 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1992 				fxp_rxcsum(sc, ifp, m, status, total_len);
1993 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1994 			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1995 				m->m_pkthdr.ether_vtag =
1996 				    ntohs(rfa->rfax_vlan_id);
1997 				m->m_flags |= M_VLANTAG;
1998 			}
1999 			/*
2000 			 * Drop locks before calling if_input() since it
2001 			 * may re-enter fxp_start() in the netisr case.
2002 			 * This would result in a lock reversal.  Better
2003 			 * performance might be obtained by chaining all
2004 			 * packets received, dropping the lock, and then
2005 			 * calling if_input() on each one.
2006 			 */
2007 			FXP_UNLOCK(sc);
2008 			if_input(ifp, m);
2009 			FXP_LOCK(sc);
2010 			rx_npkts++;
2011 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2012 				return (rx_npkts);
2013 		} else {
2014 			/* Reuse RFA and loaded DMA map. */
2015 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2016 			fxp_discard_rfabuf(sc, rxp);
2017 		}
2018 		fxp_add_rfabuf(sc, rxp);
2019 	}
2020 	if (rnr) {
2021 		fxp_scb_wait(sc);
2022 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2023 		    sc->fxp_desc.rx_head->rx_addr);
2024 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2025 	}
2026 	return (rx_npkts);
2027 }
2028 
2029 static void
2030 fxp_update_stats(struct fxp_softc *sc)
2031 {
2032 	if_t ifp = sc->ifp;
2033 	struct fxp_stats *sp = sc->fxp_stats;
2034 	struct fxp_hwstats *hsp;
2035 	uint32_t *status;
2036 
2037 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2038 
2039 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2040 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2041 	/* Update statistical counters. */
2042 	if (sc->revision >= FXP_REV_82559_A0)
2043 		status = &sp->completion_status;
2044 	else if (sc->revision >= FXP_REV_82558_A4)
2045 		status = (uint32_t *)&sp->tx_tco;
2046 	else
2047 		status = &sp->tx_pause;
2048 	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2049 		hsp = &sc->fxp_hwstats;
2050 		hsp->tx_good += le32toh(sp->tx_good);
2051 		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2052 		hsp->tx_latecols += le32toh(sp->tx_latecols);
2053 		hsp->tx_underruns += le32toh(sp->tx_underruns);
2054 		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2055 		hsp->tx_deffered += le32toh(sp->tx_deffered);
2056 		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2057 		hsp->tx_multiple_collisions +=
2058 		    le32toh(sp->tx_multiple_collisions);
2059 		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2060 		hsp->rx_good += le32toh(sp->rx_good);
2061 		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2062 		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2063 		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2064 		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2065 		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2066 		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2067 		hsp->tx_pause += le32toh(sp->tx_pause);
2068 		hsp->rx_pause += le32toh(sp->rx_pause);
2069 		hsp->rx_controls += le32toh(sp->rx_controls);
2070 		hsp->tx_tco += le16toh(sp->tx_tco);
2071 		hsp->rx_tco += le16toh(sp->rx_tco);
2072 
2073 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good));
2074 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2075 		    le32toh(sp->tx_total_collisions));
2076 		if (sp->rx_good) {
2077 			if_inc_counter(ifp, IFCOUNTER_IPACKETS,
2078 			    le32toh(sp->rx_good));
2079 			sc->rx_idle_secs = 0;
2080 		} else if (sc->flags & FXP_FLAG_RXBUG) {
2081 			/*
2082 			 * Receiver's been idle for another second.
2083 			 */
2084 			sc->rx_idle_secs++;
2085 		}
2086 		if_inc_counter(ifp, IFCOUNTER_IERRORS,
2087 		    le32toh(sp->rx_crc_errors) +
2088 		    le32toh(sp->rx_alignment_errors) +
2089 		    le32toh(sp->rx_rnr_errors) +
2090 		    le32toh(sp->rx_overrun_errors));
2091 		/*
2092 		 * If any transmit underruns occurred, bump up the transmit
2093 		 * threshold by another 512 bytes (64 * 8).
2094 		 */
2095 		if (sp->tx_underruns) {
2096 			if_inc_counter(ifp, IFCOUNTER_OERRORS,
2097 			    le32toh(sp->tx_underruns));
2098 			if (tx_threshold < 192)
2099 				tx_threshold += 64;
2100 		}
2101 		*status = 0;
2102 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2103 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2104 	}
2105 }
2106 
2107 /*
2108  * Update packet in/out/collision statistics. The i82557 doesn't
2109  * allow you to access these counters without doing a fairly
2110  * expensive DMA to get _all_ of the statistics it maintains, so
2111  * we do this operation here only once per second. The statistics
2112  * counters in the kernel are updated from the previous dump-stats
2113  * DMA and then a new dump-stats DMA is started. The on-chip
2114  * counters are zeroed when the DMA completes. If we can't start
2115  * the DMA immediately, we don't wait - we just prepare to read
2116  * them again next time.
2117  */
2118 static void
2119 fxp_tick(void *xsc)
2120 {
2121 	struct fxp_softc *sc = xsc;
2122 	if_t ifp = sc->ifp;
2123 
2124 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2125 
2126 	/* Update statistical counters. */
2127 	fxp_update_stats(sc);
2128 
2129 	/*
2130 	 * Release any xmit buffers that have completed DMA. This isn't
2131 	 * strictly necessary to do here, but it's advantagous for mbufs
2132 	 * with external storage to be released in a timely manner rather
2133 	 * than being defered for a potentially long time. This limits
2134 	 * the delay to a maximum of one second.
2135 	 */
2136 	fxp_txeof(sc);
2137 
2138 	/*
2139 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2140 	 * then assume the receiver has locked up and attempt to clear
2141 	 * the condition by reprogramming the multicast filter. This is
2142 	 * a work-around for a bug in the 82557 where the receiver locks
2143 	 * up if it gets certain types of garbage in the synchronization
2144 	 * bits prior to the packet header. This bug is supposed to only
2145 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2146 	 * mode as well (perhaps due to a 10/100 speed transition).
2147 	 */
2148 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2149 		sc->rx_idle_secs = 0;
2150 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2151 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2152 			fxp_init_body(sc, 1);
2153 		}
2154 		return;
2155 	}
2156 	/*
2157 	 * If there is no pending command, start another stats
2158 	 * dump. Otherwise punt for now.
2159 	 */
2160 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2161 		/*
2162 		 * Start another stats dump.
2163 		 */
2164 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2165 	}
2166 	if (sc->miibus != NULL)
2167 		mii_tick(device_get_softc(sc->miibus));
2168 
2169 	/*
2170 	 * Check that chip hasn't hung.
2171 	 */
2172 	fxp_watchdog(sc);
2173 
2174 	/*
2175 	 * Schedule another timeout one second from now.
2176 	 */
2177 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2178 }
2179 
2180 /*
2181  * Stop the interface. Cancels the statistics updater and resets
2182  * the interface.
2183  */
2184 static void
2185 fxp_stop(struct fxp_softc *sc)
2186 {
2187 	if_t ifp = sc->ifp;
2188 	struct fxp_tx *txp;
2189 	int i;
2190 
2191 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2192 	sc->watchdog_timer = 0;
2193 
2194 	/*
2195 	 * Cancel stats updater.
2196 	 */
2197 	callout_stop(&sc->stat_ch);
2198 
2199 	/*
2200 	 * Preserve PCI configuration, configure, IA/multicast
2201 	 * setup and put RU and CU into idle state.
2202 	 */
2203 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2204 	DELAY(50);
2205 	/* Disable interrupts. */
2206 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2207 
2208 	fxp_update_stats(sc);
2209 
2210 	/*
2211 	 * Release any xmit buffers.
2212 	 */
2213 	txp = sc->fxp_desc.tx_list;
2214 	for (i = 0; i < FXP_NTXCB; i++) {
2215 		if (txp[i].tx_mbuf != NULL) {
2216 			bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2217 			    BUS_DMASYNC_POSTWRITE);
2218 			bus_dmamap_unload(sc->fxp_txmtag, txp[i].tx_map);
2219 			m_freem(txp[i].tx_mbuf);
2220 			txp[i].tx_mbuf = NULL;
2221 			/* clear this to reset csum offload bits */
2222 			txp[i].tx_cb->tbd[0].tb_addr = 0;
2223 		}
2224 	}
2225 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2226 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2227 	sc->tx_queued = 0;
2228 }
2229 
2230 /*
2231  * Watchdog/transmission transmit timeout handler. Called when a
2232  * transmission is started on the interface, but no interrupt is
2233  * received before the timeout. This usually indicates that the
2234  * card has wedged for some reason.
2235  */
2236 static void
2237 fxp_watchdog(struct fxp_softc *sc)
2238 {
2239 	if_t ifp = sc->ifp;
2240 
2241 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2242 
2243 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2244 		return;
2245 
2246 	device_printf(sc->dev, "device timeout\n");
2247 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2248 
2249 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2250 	fxp_init_body(sc, 1);
2251 }
2252 
2253 /*
2254  * Acquire locks and then call the real initialization function.  This
2255  * is necessary because ether_ioctl() calls if_init() and this would
2256  * result in mutex recursion if the mutex was held.
2257  */
2258 static void
2259 fxp_init(void *xsc)
2260 {
2261 	struct fxp_softc *sc = xsc;
2262 
2263 	FXP_LOCK(sc);
2264 	fxp_init_body(sc, 1);
2265 	FXP_UNLOCK(sc);
2266 }
2267 
2268 /*
2269  * Perform device initialization. This routine must be called with the
2270  * softc lock held.
2271  */
2272 static void
2273 fxp_init_body(struct fxp_softc *sc, int setmedia)
2274 {
2275 	if_t ifp = sc->ifp;
2276 	struct mii_data *mii;
2277 	struct fxp_cb_config *cbp;
2278 	struct fxp_cb_ias *cb_ias;
2279 	struct fxp_cb_tx *tcbp;
2280 	struct fxp_tx *txp;
2281 	int i, prm;
2282 
2283 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2284 
2285 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2286 		return;
2287 
2288 	/*
2289 	 * Cancel any pending I/O
2290 	 */
2291 	fxp_stop(sc);
2292 
2293 	/*
2294 	 * Issue software reset, which also unloads the microcode.
2295 	 */
2296 	sc->flags &= ~FXP_FLAG_UCODE;
2297 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2298 	DELAY(50);
2299 
2300 	prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0;
2301 
2302 	/*
2303 	 * Initialize base of CBL and RFA memory. Loading with zero
2304 	 * sets it up for regular linear addressing.
2305 	 */
2306 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2307 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2308 
2309 	fxp_scb_wait(sc);
2310 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2311 
2312 	/*
2313 	 * Initialize base of dump-stats buffer.
2314 	 */
2315 	fxp_scb_wait(sc);
2316 	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2317 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2318 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2319 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2320 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2321 
2322 	/*
2323 	 * Attempt to load microcode if requested.
2324 	 * For ICH based controllers do not load microcode.
2325 	 */
2326 	if (sc->ident->ich == 0) {
2327 		if (if_getflags(ifp) & IFF_LINK0 &&
2328 		    (sc->flags & FXP_FLAG_UCODE) == 0)
2329 			fxp_load_ucode(sc);
2330 	}
2331 
2332 	/*
2333 	 * Set IFF_ALLMULTI status. It's needed in configure action
2334 	 * command.
2335 	 */
2336 	fxp_mc_addrs(sc);
2337 
2338 	/*
2339 	 * We temporarily use memory that contains the TxCB list to
2340 	 * construct the config CB. The TxCB list memory is rebuilt
2341 	 * later.
2342 	 */
2343 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2344 
2345 	/*
2346 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2347 	 * zero and must be one bits in this structure and this is the easiest
2348 	 * way to initialize them all to proper values.
2349 	 */
2350 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2351 
2352 	cbp->cb_status =	0;
2353 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2354 	    FXP_CB_COMMAND_EL);
2355 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2356 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2357 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2358 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2359 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2360 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2361 	cbp->type_enable =	0;	/* actually reserved */
2362 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2363 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2364 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2365 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2366 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2367 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2368 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2369 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2370 	cbp->ci_int =		1;	/* interrupt on CU idle */
2371 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2372 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2373 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2374 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2375 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2376 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2377 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2378 	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2379 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2380 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2381 	cbp->csma_dis =		0;	/* (don't) disable link */
2382 	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2383 	    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0;
2384 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2385 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2386 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2387 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2388 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2389 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2390 	cbp->loopback =		0;	/* (don't) loopback */
2391 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2392 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2393 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2394 	cbp->promiscuous =	prm;	/* promiscuous mode */
2395 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2396 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2397 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2398 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2399 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2400 
2401 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2402 	cbp->padding =		1;	/* (do) pad short tx packets */
2403 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2404 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2405 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2406 	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2407 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2408 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2409 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2410 	cbp->mc_all =		if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm;
2411 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2412 	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2413 	    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2414 
2415 	if (sc->revision == FXP_REV_82557) {
2416 		/*
2417 		 * The 82557 has no hardware flow control, the values
2418 		 * below are the defaults for the chip.
2419 		 */
2420 		cbp->fc_delay_lsb =	0;
2421 		cbp->fc_delay_msb =	0x40;
2422 		cbp->pri_fc_thresh =	3;
2423 		cbp->tx_fc_dis =	0;
2424 		cbp->rx_fc_restop =	0;
2425 		cbp->rx_fc_restart =	0;
2426 		cbp->fc_filter =	0;
2427 		cbp->pri_fc_loc =	1;
2428 	} else {
2429 		/* Set pause RX FIFO threshold to 1KB. */
2430 		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2431 		/* Set pause time. */
2432 		cbp->fc_delay_lsb =	0xff;
2433 		cbp->fc_delay_msb =	0xff;
2434 		cbp->pri_fc_thresh =	3;
2435 		mii = device_get_softc(sc->miibus);
2436 		if ((IFM_OPTIONS(mii->mii_media_active) &
2437 		    IFM_ETH_TXPAUSE) != 0)
2438 			/* enable transmit FC */
2439 			cbp->tx_fc_dis = 0;
2440 		else
2441 			/* disable transmit FC */
2442 			cbp->tx_fc_dis = 1;
2443 		if ((IFM_OPTIONS(mii->mii_media_active) &
2444 		    IFM_ETH_RXPAUSE) != 0) {
2445 			/* enable FC restart/restop frames */
2446 			cbp->rx_fc_restart = 1;
2447 			cbp->rx_fc_restop = 1;
2448 		} else {
2449 			/* disable FC restart/restop frames */
2450 			cbp->rx_fc_restart = 0;
2451 			cbp->rx_fc_restop = 0;
2452 		}
2453 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2454 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2455 	}
2456 
2457 	/* Enable 82558 and 82559 extended statistics functionality. */
2458 	if (sc->revision >= FXP_REV_82558_A4) {
2459 		if (sc->revision >= FXP_REV_82559_A0) {
2460 			/*
2461 			 * Extend configuration table size to 32
2462 			 * to include TCO configuration.
2463 			 */
2464 			cbp->byte_count = 32;
2465 			cbp->ext_stats_dis = 1;
2466 			/* Enable TCO stats. */
2467 			cbp->tno_int_or_tco_en = 1;
2468 			cbp->gamla_rx = 1;
2469 		} else
2470 			cbp->ext_stats_dis = 0;
2471 	}
2472 
2473 	/*
2474 	 * Start the config command/DMA.
2475 	 */
2476 	fxp_scb_wait(sc);
2477 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2478 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2479 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2480 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2481 	/* ...and wait for it to complete. */
2482 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2483 
2484 	/*
2485 	 * Now initialize the station address. Temporarily use the TxCB
2486 	 * memory area like we did above for the config CB.
2487 	 */
2488 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2489 	cb_ias->cb_status = 0;
2490 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2491 	cb_ias->link_addr = 0xffffffff;
2492 	bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2493 
2494 	/*
2495 	 * Start the IAS (Individual Address Setup) command/DMA.
2496 	 */
2497 	fxp_scb_wait(sc);
2498 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2499 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2500 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2501 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2502 	/* ...and wait for it to complete. */
2503 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2504 
2505 	/*
2506 	 * Initialize the multicast address list.
2507 	 */
2508 	fxp_mc_setup(sc);
2509 
2510 	/*
2511 	 * Initialize transmit control block (TxCB) list.
2512 	 */
2513 	txp = sc->fxp_desc.tx_list;
2514 	tcbp = sc->fxp_desc.cbl_list;
2515 	bzero(tcbp, FXP_TXCB_SZ);
2516 	for (i = 0; i < FXP_NTXCB; i++) {
2517 		txp[i].tx_mbuf = NULL;
2518 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2519 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2520 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2521 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2522 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2523 			tcbp[i].tbd_array_addr =
2524 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2525 		else
2526 			tcbp[i].tbd_array_addr =
2527 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2528 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2529 	}
2530 	/*
2531 	 * Set the suspend flag on the first TxCB and start the control
2532 	 * unit. It will execute the NOP and then suspend.
2533 	 */
2534 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2535 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2536 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2537 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2538 	sc->tx_queued = 1;
2539 
2540 	fxp_scb_wait(sc);
2541 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2542 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2543 
2544 	/*
2545 	 * Initialize receiver buffer area - RFA.
2546 	 */
2547 	fxp_scb_wait(sc);
2548 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2549 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2550 
2551 	if (sc->miibus != NULL && setmedia != 0)
2552 		mii_mediachg(device_get_softc(sc->miibus));
2553 
2554 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2555 
2556 	/*
2557 	 * Enable interrupts.
2558 	 */
2559 #ifdef DEVICE_POLLING
2560 	/*
2561 	 * ... but only do that if we are not polling. And because (presumably)
2562 	 * the default is interrupts on, we need to disable them explicitly!
2563 	 */
2564 	if (if_getcapenable(ifp) & IFCAP_POLLING )
2565 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2566 	else
2567 #endif /* DEVICE_POLLING */
2568 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2569 
2570 	/*
2571 	 * Start stats updater.
2572 	 */
2573 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2574 }
2575 
2576 static int
2577 fxp_serial_ifmedia_upd(if_t ifp)
2578 {
2579 
2580 	return (0);
2581 }
2582 
2583 static void
2584 fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2585 {
2586 
2587 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2588 }
2589 
2590 /*
2591  * Change media according to request.
2592  */
2593 static int
2594 fxp_ifmedia_upd(if_t ifp)
2595 {
2596 	struct fxp_softc *sc = if_getsoftc(ifp);
2597 	struct mii_data *mii;
2598 	struct mii_softc	*miisc;
2599 
2600 	mii = device_get_softc(sc->miibus);
2601 	FXP_LOCK(sc);
2602 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2603 		PHY_RESET(miisc);
2604 	mii_mediachg(mii);
2605 	FXP_UNLOCK(sc);
2606 	return (0);
2607 }
2608 
2609 /*
2610  * Notify the world which media we're using.
2611  */
2612 static void
2613 fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2614 {
2615 	struct fxp_softc *sc = if_getsoftc(ifp);
2616 	struct mii_data *mii;
2617 
2618 	mii = device_get_softc(sc->miibus);
2619 	FXP_LOCK(sc);
2620 	mii_pollstat(mii);
2621 	ifmr->ifm_active = mii->mii_media_active;
2622 	ifmr->ifm_status = mii->mii_media_status;
2623 	FXP_UNLOCK(sc);
2624 }
2625 
2626 /*
2627  * Add a buffer to the end of the RFA buffer list.
2628  * Return 0 if successful, 1 for failure. A failure results in
2629  * reusing the RFA buffer.
2630  * The RFA struct is stuck at the beginning of mbuf cluster and the
2631  * data pointer is fixed up to point just past it.
2632  */
2633 static int
2634 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2635 {
2636 	struct mbuf *m;
2637 	struct fxp_rfa *rfa;
2638 	bus_dmamap_t tmp_map;
2639 	int error;
2640 
2641 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2642 	if (m == NULL)
2643 		return (ENOBUFS);
2644 
2645 	/*
2646 	 * Move the data pointer up so that the incoming data packet
2647 	 * will be 32-bit aligned.
2648 	 */
2649 	m->m_data += RFA_ALIGNMENT_FUDGE;
2650 
2651 	/*
2652 	 * Get a pointer to the base of the mbuf cluster and move
2653 	 * data start past it.
2654 	 */
2655 	rfa = mtod(m, struct fxp_rfa *);
2656 	m->m_data += sc->rfa_size;
2657 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2658 
2659 	rfa->rfa_status = 0;
2660 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2661 	rfa->actual_size = 0;
2662 	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2663 	    sc->rfa_size;
2664 
2665 	/*
2666 	 * Initialize the rest of the RFA.  Note that since the RFA
2667 	 * is misaligned, we cannot store values directly.  We're thus
2668 	 * using the le32enc() function which handles endianness and
2669 	 * is also alignment-safe.
2670 	 */
2671 	le32enc(&rfa->link_addr, 0xffffffff);
2672 	le32enc(&rfa->rbd_addr, 0xffffffff);
2673 
2674 	/* Map the RFA into DMA memory. */
2675 	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2676 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2677 	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2678 	if (error) {
2679 		m_freem(m);
2680 		return (error);
2681 	}
2682 
2683 	if (rxp->rx_mbuf != NULL)
2684 		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2685 	tmp_map = sc->spare_map;
2686 	sc->spare_map = rxp->rx_map;
2687 	rxp->rx_map = tmp_map;
2688 	rxp->rx_mbuf = m;
2689 
2690 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2691 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2692 	return (0);
2693 }
2694 
2695 static void
2696 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2697 {
2698 	struct fxp_rfa *p_rfa;
2699 	struct fxp_rx *p_rx;
2700 
2701 	/*
2702 	 * If there are other buffers already on the list, attach this
2703 	 * one to the end by fixing up the tail to point to this one.
2704 	 */
2705 	if (sc->fxp_desc.rx_head != NULL) {
2706 		p_rx = sc->fxp_desc.rx_tail;
2707 		p_rfa = (struct fxp_rfa *)
2708 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2709 		p_rx->rx_next = rxp;
2710 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2711 		p_rfa->rfa_control = 0;
2712 		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2713 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2714 	} else {
2715 		rxp->rx_next = NULL;
2716 		sc->fxp_desc.rx_head = rxp;
2717 	}
2718 	sc->fxp_desc.rx_tail = rxp;
2719 }
2720 
2721 static void
2722 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2723 {
2724 	struct mbuf *m;
2725 	struct fxp_rfa *rfa;
2726 
2727 	m = rxp->rx_mbuf;
2728 	m->m_data = m->m_ext.ext_buf;
2729 	/*
2730 	 * Move the data pointer up so that the incoming data packet
2731 	 * will be 32-bit aligned.
2732 	 */
2733 	m->m_data += RFA_ALIGNMENT_FUDGE;
2734 
2735 	/*
2736 	 * Get a pointer to the base of the mbuf cluster and move
2737 	 * data start past it.
2738 	 */
2739 	rfa = mtod(m, struct fxp_rfa *);
2740 	m->m_data += sc->rfa_size;
2741 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2742 
2743 	rfa->rfa_status = 0;
2744 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2745 	rfa->actual_size = 0;
2746 
2747 	/*
2748 	 * Initialize the rest of the RFA.  Note that since the RFA
2749 	 * is misaligned, we cannot store values directly.  We're thus
2750 	 * using the le32enc() function which handles endianness and
2751 	 * is also alignment-safe.
2752 	 */
2753 	le32enc(&rfa->link_addr, 0xffffffff);
2754 	le32enc(&rfa->rbd_addr, 0xffffffff);
2755 
2756 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2757 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2758 }
2759 
2760 static int
2761 fxp_miibus_readreg(device_t dev, int phy, int reg)
2762 {
2763 	struct fxp_softc *sc = device_get_softc(dev);
2764 	int count = 10000;
2765 	int value;
2766 
2767 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2768 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2769 
2770 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2771 	    && count--)
2772 		DELAY(10);
2773 
2774 	if (count <= 0)
2775 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2776 
2777 	return (value & 0xffff);
2778 }
2779 
2780 static int
2781 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2782 {
2783 	struct fxp_softc *sc = device_get_softc(dev);
2784 	int count = 10000;
2785 
2786 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2787 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2788 	    (value & 0xffff));
2789 
2790 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2791 	    count--)
2792 		DELAY(10);
2793 
2794 	if (count <= 0)
2795 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2796 	return (0);
2797 }
2798 
2799 static void
2800 fxp_miibus_statchg(device_t dev)
2801 {
2802 	struct fxp_softc *sc;
2803 	struct mii_data *mii;
2804 	if_t ifp;
2805 
2806 	sc = device_get_softc(dev);
2807 	mii = device_get_softc(sc->miibus);
2808 	ifp = sc->ifp;
2809 	if (mii == NULL || ifp == (void *)NULL ||
2810 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
2811 	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2812 	    (IFM_AVALID | IFM_ACTIVE))
2813 		return;
2814 
2815 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2816 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2817 		sc->cu_resume_bug = 1;
2818 	else
2819 		sc->cu_resume_bug = 0;
2820 	/*
2821 	 * Call fxp_init_body in order to adjust the flow control settings.
2822 	 * Note that the 82557 doesn't support hardware flow control.
2823 	 */
2824 	if (sc->revision == FXP_REV_82557)
2825 		return;
2826 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2827 	fxp_init_body(sc, 0);
2828 }
2829 
2830 static int
2831 fxp_ioctl(if_t ifp, u_long command, caddr_t data)
2832 {
2833 	struct fxp_softc *sc = if_getsoftc(ifp);
2834 	struct ifreq *ifr = (struct ifreq *)data;
2835 	struct mii_data *mii;
2836 	int flag, mask, error = 0, reinit;
2837 
2838 	switch (command) {
2839 	case SIOCSIFFLAGS:
2840 		FXP_LOCK(sc);
2841 		/*
2842 		 * If interface is marked up and not running, then start it.
2843 		 * If it is marked down and running, stop it.
2844 		 * XXX If it's up then re-initialize it. This is so flags
2845 		 * such as IFF_PROMISC are handled.
2846 		 */
2847 		if (if_getflags(ifp) & IFF_UP) {
2848 			if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) &&
2849 			    ((if_getflags(ifp) ^ sc->if_flags) &
2850 			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) {
2851 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2852 				fxp_init_body(sc, 0);
2853 			} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2854 				fxp_init_body(sc, 1);
2855 		} else {
2856 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2857 				fxp_stop(sc);
2858 		}
2859 		sc->if_flags = if_getflags(ifp);
2860 		FXP_UNLOCK(sc);
2861 		break;
2862 
2863 	case SIOCADDMULTI:
2864 	case SIOCDELMULTI:
2865 		FXP_LOCK(sc);
2866 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2867 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2868 			fxp_init_body(sc, 0);
2869 		}
2870 		FXP_UNLOCK(sc);
2871 		break;
2872 
2873 	case SIOCSIFMEDIA:
2874 	case SIOCGIFMEDIA:
2875 		if (sc->miibus != NULL) {
2876 			mii = device_get_softc(sc->miibus);
2877                         error = ifmedia_ioctl(ifp, ifr,
2878                             &mii->mii_media, command);
2879 		} else {
2880                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2881 		}
2882 		break;
2883 
2884 	case SIOCSIFCAP:
2885 		reinit = 0;
2886 		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
2887 #ifdef DEVICE_POLLING
2888 		if (mask & IFCAP_POLLING) {
2889 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2890 				error = ether_poll_register(fxp_poll, ifp);
2891 				if (error)
2892 					return(error);
2893 				FXP_LOCK(sc);
2894 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2895 				    FXP_SCB_INTR_DISABLE);
2896 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2897 				FXP_UNLOCK(sc);
2898 			} else {
2899 				error = ether_poll_deregister(ifp);
2900 				/* Enable interrupts in any case */
2901 				FXP_LOCK(sc);
2902 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2903 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2904 				FXP_UNLOCK(sc);
2905 			}
2906 		}
2907 #endif
2908 		FXP_LOCK(sc);
2909 		if ((mask & IFCAP_TXCSUM) != 0 &&
2910 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2911 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2912 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2913 				if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0);
2914 			else
2915 				if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES);
2916 		}
2917 		if ((mask & IFCAP_RXCSUM) != 0 &&
2918 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
2919 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2920 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2921 				reinit++;
2922 		}
2923 		if ((mask & IFCAP_TSO4) != 0 &&
2924 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
2925 			if_togglecapenable(ifp, IFCAP_TSO4);
2926 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
2927 				if_sethwassistbits(ifp, CSUM_TSO, 0);
2928 			else
2929 				if_sethwassistbits(ifp, 0, CSUM_TSO);
2930 		}
2931 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2932 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2933 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2934 		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2935 		    (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) {
2936 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
2937 			if (sc->revision != FXP_REV_82557)
2938 				flag = FXP_FLAG_LONG_PKT_EN;
2939 			else /* a hack to get long frames on the old chip */
2940 				flag = FXP_FLAG_SAVE_BAD;
2941 			sc->flags ^= flag;
2942 			if (if_getflags(ifp) & IFF_UP)
2943 				reinit++;
2944 		}
2945 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2946 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2947 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2948 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2949 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2950 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2951 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2952 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2953 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2954 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2955 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO |
2956 				    IFCAP_VLAN_HWCSUM);
2957 			reinit++;
2958 		}
2959 		if (reinit > 0 &&
2960 		    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2961 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2962 			fxp_init_body(sc, 0);
2963 		}
2964 		FXP_UNLOCK(sc);
2965 		if_vlancap(ifp);
2966 		break;
2967 
2968 	default:
2969 		error = ether_ioctl(ifp, command, data);
2970 	}
2971 	return (error);
2972 }
2973 
2974 static u_int
2975 fxp_setup_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2976 {
2977 	struct fxp_softc *sc = arg;
2978 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2979 
2980 	if (mcsp->mc_cnt < MAXMCADDR)
2981 		bcopy(LLADDR(sdl), mcsp->mc_addr[mcsp->mc_cnt * ETHER_ADDR_LEN],
2982 		    ETHER_ADDR_LEN);
2983 	mcsp->mc_cnt++;
2984 	return (1);
2985 }
2986 
2987 /*
2988  * Fill in the multicast address list and return number of entries.
2989  */
2990 static void
2991 fxp_mc_addrs(struct fxp_softc *sc)
2992 {
2993 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2994 	if_t ifp = sc->ifp;
2995 
2996 	if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) {
2997 		mcsp->mc_cnt = 0;
2998 		if_foreach_llmaddr(sc->ifp, fxp_setup_maddr, sc);
2999 		if (mcsp->mc_cnt >= MAXMCADDR) {
3000 			if_setflagbits(ifp, IFF_ALLMULTI, 0);
3001 			mcsp->mc_cnt = 0;
3002 		}
3003 	}
3004 	mcsp->mc_cnt = htole16(mcsp->mc_cnt * ETHER_ADDR_LEN);
3005 }
3006 
3007 /*
3008  * Program the multicast filter.
3009  *
3010  * We have an artificial restriction that the multicast setup command
3011  * must be the first command in the chain, so we take steps to ensure
3012  * this. By requiring this, it allows us to keep up the performance of
3013  * the pre-initialized command ring (esp. link pointers) by not actually
3014  * inserting the mcsetup command in the ring - i.e. its link pointer
3015  * points to the TxCB ring, but the mcsetup descriptor itself is not part
3016  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
3017  * lead into the regular TxCB ring when it completes.
3018  */
3019 static void
3020 fxp_mc_setup(struct fxp_softc *sc)
3021 {
3022 	struct fxp_cb_mcs *mcsp;
3023 	int count;
3024 
3025 	FXP_LOCK_ASSERT(sc, MA_OWNED);
3026 
3027 	mcsp = sc->mcsp;
3028 	mcsp->cb_status = 0;
3029 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3030 	mcsp->link_addr = 0xffffffff;
3031 	fxp_mc_addrs(sc);
3032 
3033 	/*
3034 	 * Wait until command unit is idle. This should never be the
3035 	 * case when nothing is queued, but make sure anyway.
3036 	 */
3037 	count = 100;
3038 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3039 	    FXP_SCB_CUS_IDLE && --count)
3040 		DELAY(10);
3041 	if (count == 0) {
3042 		device_printf(sc->dev, "command queue timeout\n");
3043 		return;
3044 	}
3045 
3046 	/*
3047 	 * Start the multicast setup command.
3048 	 */
3049 	fxp_scb_wait(sc);
3050 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3051 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3052 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3053 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3054 	/* ...and wait for it to complete. */
3055 	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3056 }
3057 
3058 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3059 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3060 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3061 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3062 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3063 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3064 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3065 
3066 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3067 
3068 static const struct ucode {
3069 	uint32_t	revision;
3070 	uint32_t	*ucode;
3071 	int		length;
3072 	u_short		int_delay_offset;
3073 	u_short		bundle_max_offset;
3074 } ucode_table[] = {
3075 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3076 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3077 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3078 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3079 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3080 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3081 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3082 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3083 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3084 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3085 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3086 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3087 	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3088 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3089 	{ 0, NULL, 0, 0, 0 }
3090 };
3091 
3092 static void
3093 fxp_load_ucode(struct fxp_softc *sc)
3094 {
3095 	const struct ucode *uc;
3096 	struct fxp_cb_ucode *cbp;
3097 	int i;
3098 
3099 	if (sc->flags & FXP_FLAG_NO_UCODE)
3100 		return;
3101 
3102 	for (uc = ucode_table; uc->ucode != NULL; uc++)
3103 		if (sc->revision == uc->revision)
3104 			break;
3105 	if (uc->ucode == NULL)
3106 		return;
3107 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3108 	cbp->cb_status = 0;
3109 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3110 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3111 	for (i = 0; i < uc->length; i++)
3112 		cbp->ucode[i] = htole32(uc->ucode[i]);
3113 	if (uc->int_delay_offset)
3114 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3115 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3116 	if (uc->bundle_max_offset)
3117 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3118 		    htole16(sc->tunable_bundle_max);
3119 	/*
3120 	 * Download the ucode to the chip.
3121 	 */
3122 	fxp_scb_wait(sc);
3123 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3124 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3125 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3126 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3127 	/* ...and wait for it to complete. */
3128 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3129 	device_printf(sc->dev,
3130 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3131 	    sc->tunable_int_delay,
3132 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3133 	sc->flags |= FXP_FLAG_UCODE;
3134 	bzero(cbp, FXP_TXCB_SZ);
3135 }
3136 
3137 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3138 	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3139 
3140 static void
3141 fxp_sysctl_node(struct fxp_softc *sc)
3142 {
3143 	struct sysctl_ctx_list *ctx;
3144 	struct sysctl_oid_list *child, *parent;
3145 	struct sysctl_oid *tree;
3146 	struct fxp_hwstats *hsp;
3147 
3148 	ctx = device_get_sysctl_ctx(sc->dev);
3149 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3150 
3151 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_delay",
3152 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
3153 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3154 	    "FXP driver receive interrupt microcode bundling delay");
3155 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "bundle_max",
3156 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
3157 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3158 	    "FXP driver receive interrupt microcode bundle size limit");
3159 	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3160 	    "FXP RNR events");
3161 
3162 	/*
3163 	 * Pull in device tunables.
3164 	 */
3165 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3166 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3167 	(void) resource_int_value(device_get_name(sc->dev),
3168 	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3169 	(void) resource_int_value(device_get_name(sc->dev),
3170 	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3171 	sc->rnr = 0;
3172 
3173 	hsp = &sc->fxp_hwstats;
3174 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
3175 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "FXP statistics");
3176 	parent = SYSCTL_CHILDREN(tree);
3177 
3178 	/* Rx MAC statistics. */
3179 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
3180 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
3181 	child = SYSCTL_CHILDREN(tree);
3182 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3183 	    &hsp->rx_good, "Good frames");
3184 	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3185 	    &hsp->rx_crc_errors, "CRC errors");
3186 	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3187 	    &hsp->rx_alignment_errors, "Alignment errors");
3188 	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3189 	    &hsp->rx_rnr_errors, "RNR errors");
3190 	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3191 	    &hsp->rx_overrun_errors, "Overrun errors");
3192 	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3193 	    &hsp->rx_cdt_errors, "Collision detect errors");
3194 	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3195 	    &hsp->rx_shortframes, "Short frame errors");
3196 	if (sc->revision >= FXP_REV_82558_A4) {
3197 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3198 		    &hsp->rx_pause, "Pause frames");
3199 		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3200 		    &hsp->rx_controls, "Unsupported control frames");
3201 	}
3202 	if (sc->revision >= FXP_REV_82559_A0)
3203 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3204 		    &hsp->rx_tco, "TCO frames");
3205 
3206 	/* Tx MAC statistics. */
3207 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
3208 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
3209 	child = SYSCTL_CHILDREN(tree);
3210 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3211 	    &hsp->tx_good, "Good frames");
3212 	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3213 	    &hsp->tx_maxcols, "Maximum collisions errors");
3214 	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3215 	    &hsp->tx_latecols, "Late collisions errors");
3216 	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3217 	    &hsp->tx_underruns, "Underrun errors");
3218 	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3219 	    &hsp->tx_lostcrs, "Lost carrier sense");
3220 	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3221 	    &hsp->tx_deffered, "Deferred");
3222 	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3223 	    &hsp->tx_single_collisions, "Single collisions");
3224 	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3225 	    &hsp->tx_multiple_collisions, "Multiple collisions");
3226 	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3227 	    &hsp->tx_total_collisions, "Total collisions");
3228 	if (sc->revision >= FXP_REV_82558_A4)
3229 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3230 		    &hsp->tx_pause, "Pause frames");
3231 	if (sc->revision >= FXP_REV_82559_A0)
3232 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3233 		    &hsp->tx_tco, "TCO frames");
3234 }
3235 
3236 #undef FXP_SYSCTL_STAT_ADD
3237 
3238 static int
3239 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3240 {
3241 	int error, value;
3242 
3243 	value = *(int *)arg1;
3244 	error = sysctl_handle_int(oidp, &value, 0, req);
3245 	if (error || !req->newptr)
3246 		return (error);
3247 	if (value < low || value > high)
3248 		return (EINVAL);
3249 	*(int *)arg1 = value;
3250 	return (0);
3251 }
3252 
3253 /*
3254  * Interrupt delay is expressed in microseconds, a multiplier is used
3255  * to convert this to the appropriate clock ticks before using.
3256  */
3257 static int
3258 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3259 {
3260 
3261 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3262 }
3263 
3264 static int
3265 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3266 {
3267 
3268 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3269 }
3270