xref: /freebsd/sys/dev/fxp/if_fxp.c (revision acd3428b7d3e94cef0e1881c868cb4b131d4ff41)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #ifdef HAVE_KERNEL_OPTION_HEADERS
38 #include "opt_device_polling.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/endian.h>
44 #include <sys/mbuf.h>
45 		/* #include <sys/mutex.h> */
46 #include <sys/kernel.h>
47 #include <sys/module.h>
48 #include <sys/socket.h>
49 #include <sys/sysctl.h>
50 
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 
55 #include <net/bpf.h>
56 #include <sys/sockio.h>
57 #include <sys/bus.h>
58 #include <machine/bus.h>
59 #include <sys/rman.h>
60 #include <machine/resource.h>
61 
62 #include <net/ethernet.h>
63 #include <net/if_arp.h>
64 
65 
66 #include <net/if_types.h>
67 #include <net/if_vlan_var.h>
68 
69 #ifdef FXP_IP_CSUM_WAR
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/ip.h>
73 #include <machine/in_cksum.h>
74 #endif
75 
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
78 
79 #include <dev/mii/mii.h>
80 #include <dev/mii/miivar.h>
81 
82 #include <dev/fxp/if_fxpreg.h>
83 #include <dev/fxp/if_fxpvar.h>
84 #include <dev/fxp/rcvbundl.h>
85 
86 MODULE_DEPEND(fxp, pci, 1, 1, 1);
87 MODULE_DEPEND(fxp, ether, 1, 1, 1);
88 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
89 #include "miibus_if.h"
90 
91 /*
92  * NOTE!  On the Alpha, we have an alignment constraint.  The
93  * card DMAs the packet immediately following the RFA.  However,
94  * the first thing in the packet is a 14-byte Ethernet header.
95  * This means that the packet is misaligned.  To compensate,
96  * we actually offset the RFA 2 bytes into the cluster.  This
97  * alignes the packet after the Ethernet header at a 32-bit
98  * boundary.  HOWEVER!  This means that the RFA is misaligned!
99  */
100 #define	RFA_ALIGNMENT_FUDGE	2
101 
102 /*
103  * Set initial transmit threshold at 64 (512 bytes). This is
104  * increased by 64 (512 bytes) at a time, to maximum of 192
105  * (1536 bytes), if an underrun occurs.
106  */
107 static int tx_threshold = 64;
108 
109 /*
110  * The configuration byte map has several undefined fields which
111  * must be one or must be zero.  Set up a template for these bits
112  * only, (assuming a 82557 chip) leaving the actual configuration
113  * to fxp_init.
114  *
115  * See struct fxp_cb_config for the bit definitions.
116  */
117 static u_char fxp_cb_config_template[] = {
118 	0x0, 0x0,		/* cb_status */
119 	0x0, 0x0,		/* cb_command */
120 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
121 	0x0,	/*  0 */
122 	0x0,	/*  1 */
123 	0x0,	/*  2 */
124 	0x0,	/*  3 */
125 	0x0,	/*  4 */
126 	0x0,	/*  5 */
127 	0x32,	/*  6 */
128 	0x0,	/*  7 */
129 	0x0,	/*  8 */
130 	0x0,	/*  9 */
131 	0x6,	/* 10 */
132 	0x0,	/* 11 */
133 	0x0,	/* 12 */
134 	0x0,	/* 13 */
135 	0xf2,	/* 14 */
136 	0x48,	/* 15 */
137 	0x0,	/* 16 */
138 	0x40,	/* 17 */
139 	0xf0,	/* 18 */
140 	0x0,	/* 19 */
141 	0x3f,	/* 20 */
142 	0x5	/* 21 */
143 };
144 
145 struct fxp_ident {
146 	uint16_t	devid;
147 	int16_t		revid;		/* -1 matches anything */
148 	char 		*name;
149 };
150 
151 /*
152  * Claim various Intel PCI device identifiers for this driver.  The
153  * sub-vendor and sub-device field are extensively used to identify
154  * particular variants, but we don't currently differentiate between
155  * them.
156  */
157 static struct fxp_ident fxp_ident_table[] = {
158     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
159     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
160     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
161     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
162     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
163     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
165     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
167     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
168     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
169     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
170     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
172     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
173     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
174     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
175     { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
176     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
177     { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
178     { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
179     { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
180     { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
181     { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
182     { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
183     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
184     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
185     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
186     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
187     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
188     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
189     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
190     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
191     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
192     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
193     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
194     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
195     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
196     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
197     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
198     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
199     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
200     { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
201     { 0,	-1,	NULL },
202 };
203 
204 #ifdef FXP_IP_CSUM_WAR
205 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
206 #else
207 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
208 #endif
209 
210 static int		fxp_probe(device_t dev);
211 static int		fxp_attach(device_t dev);
212 static int		fxp_detach(device_t dev);
213 static int		fxp_shutdown(device_t dev);
214 static int		fxp_suspend(device_t dev);
215 static int		fxp_resume(device_t dev);
216 
217 static void		fxp_intr(void *xsc);
218 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
219 			    uint8_t statack, int count);
220 static void 		fxp_init(void *xsc);
221 static void 		fxp_init_body(struct fxp_softc *sc);
222 static void 		fxp_tick(void *xsc);
223 static void 		fxp_start(struct ifnet *ifp);
224 static void 		fxp_start_body(struct ifnet *ifp);
225 static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
226 static void		fxp_stop(struct fxp_softc *sc);
227 static void 		fxp_release(struct fxp_softc *sc);
228 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
229 			    caddr_t data);
230 static void 		fxp_watchdog(struct ifnet *ifp);
231 static int		fxp_add_rfabuf(struct fxp_softc *sc,
232     			    struct fxp_rx *rxp);
233 static int		fxp_mc_addrs(struct fxp_softc *sc);
234 static void		fxp_mc_setup(struct fxp_softc *sc);
235 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
236 			    int autosize);
237 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
238 			    uint16_t data);
239 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
240 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
241 			    int offset, int words);
242 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
243 			    int offset, int words);
244 static int		fxp_ifmedia_upd(struct ifnet *ifp);
245 static void		fxp_ifmedia_sts(struct ifnet *ifp,
246 			    struct ifmediareq *ifmr);
247 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
248 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
249 			    struct ifmediareq *ifmr);
250 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
251 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
252 			    int value);
253 static void		fxp_load_ucode(struct fxp_softc *sc);
254 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
255 			    int low, int high);
256 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
257 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
258 static void 		fxp_scb_wait(struct fxp_softc *sc);
259 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
260 static void		fxp_dma_wait(struct fxp_softc *sc,
261     			    volatile uint16_t *status, bus_dma_tag_t dmat,
262 			    bus_dmamap_t map);
263 
264 static device_method_t fxp_methods[] = {
265 	/* Device interface */
266 	DEVMETHOD(device_probe,		fxp_probe),
267 	DEVMETHOD(device_attach,	fxp_attach),
268 	DEVMETHOD(device_detach,	fxp_detach),
269 	DEVMETHOD(device_shutdown,	fxp_shutdown),
270 	DEVMETHOD(device_suspend,	fxp_suspend),
271 	DEVMETHOD(device_resume,	fxp_resume),
272 
273 	/* MII interface */
274 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
275 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
276 
277 	{ 0, 0 }
278 };
279 
280 static driver_t fxp_driver = {
281 	"fxp",
282 	fxp_methods,
283 	sizeof(struct fxp_softc),
284 };
285 
286 static devclass_t fxp_devclass;
287 
288 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
289 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
290 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
291 
292 static struct resource_spec fxp_res_spec_mem[] = {
293 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
294 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
295 	{ -1, 0 }
296 };
297 
298 static struct resource_spec fxp_res_spec_io[] = {
299 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
300 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
301 	{ -1, 0 }
302 };
303 
304 /*
305  * Wait for the previous command to be accepted (but not necessarily
306  * completed).
307  */
308 static void
309 fxp_scb_wait(struct fxp_softc *sc)
310 {
311 	union {
312 		uint16_t w;
313 		uint8_t b[2];
314 	} flowctl;
315 	int i = 10000;
316 
317 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
318 		DELAY(2);
319 	if (i == 0) {
320 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
321 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
322 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
323 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
324 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
325 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
326 	}
327 }
328 
329 static void
330 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
331 {
332 
333 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
334 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
335 		fxp_scb_wait(sc);
336 	}
337 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
338 }
339 
340 static void
341 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
342     bus_dma_tag_t dmat, bus_dmamap_t map)
343 {
344 	int i = 10000;
345 
346 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
347 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
348 		DELAY(2);
349 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
350 	}
351 	if (i == 0)
352 		device_printf(sc->dev, "DMA timeout\n");
353 }
354 
355 /*
356  * Return identification string if this device is ours.
357  */
358 static int
359 fxp_probe(device_t dev)
360 {
361 	uint16_t devid;
362 	uint8_t revid;
363 	struct fxp_ident *ident;
364 
365 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
366 		devid = pci_get_device(dev);
367 		revid = pci_get_revid(dev);
368 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
369 			if (ident->devid == devid &&
370 			    (ident->revid == revid || ident->revid == -1)) {
371 				device_set_desc(dev, ident->name);
372 				return (BUS_PROBE_DEFAULT);
373 			}
374 		}
375 	}
376 	return (ENXIO);
377 }
378 
379 static void
380 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
381 {
382 	uint32_t *addr;
383 
384 	if (error)
385 		return;
386 
387 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
388 	addr = arg;
389 	*addr = segs->ds_addr;
390 }
391 
392 static int
393 fxp_attach(device_t dev)
394 {
395 	struct fxp_softc *sc;
396 	struct fxp_cb_tx *tcbp;
397 	struct fxp_tx *txp;
398 	struct fxp_rx *rxp;
399 	struct ifnet *ifp;
400 	uint32_t val;
401 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
402 	u_char eaddr[ETHER_ADDR_LEN];
403 	int i, prefer_iomap;
404 	int error;
405 
406 	error = 0;
407 	sc = device_get_softc(dev);
408 	sc->dev = dev;
409 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
410 	    MTX_DEF);
411 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
412 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
413 	    fxp_serial_ifmedia_sts);
414 
415 	ifp = sc->ifp = if_alloc(IFT_ETHER);
416 	if (ifp == NULL) {
417 		device_printf(dev, "can not if_alloc()\n");
418 		error = ENOSPC;
419 		goto fail;
420 	}
421 
422 	/*
423 	 * Enable bus mastering.
424 	 */
425 	pci_enable_busmaster(dev);
426 	val = pci_read_config(dev, PCIR_COMMAND, 2);
427 
428 	/*
429 	 * Figure out which we should try first - memory mapping or i/o mapping?
430 	 * We default to memory mapping. Then we accept an override from the
431 	 * command line. Then we check to see which one is enabled.
432 	 */
433 	prefer_iomap = 0;
434 	resource_int_value(device_get_name(dev), device_get_unit(dev),
435 	    "prefer_iomap", &prefer_iomap);
436 	if (prefer_iomap)
437 		sc->fxp_spec = fxp_res_spec_io;
438 	else
439 		sc->fxp_spec = fxp_res_spec_mem;
440 
441 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
442 	if (error) {
443 		if (sc->fxp_spec == fxp_res_spec_mem)
444 			sc->fxp_spec = fxp_res_spec_io;
445 		else
446 			sc->fxp_spec = fxp_res_spec_mem;
447 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
448 	}
449 	if (error) {
450 		device_printf(dev, "could not allocate resources\n");
451 		error = ENXIO;
452 		goto fail;
453 	}
454 
455 	if (bootverbose) {
456 		device_printf(dev, "using %s space register mapping\n",
457 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
458 	}
459 
460 	/*
461 	 * Reset to a stable state.
462 	 */
463 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
464 	DELAY(10);
465 
466 	/*
467 	 * Find out how large of an SEEPROM we have.
468 	 */
469 	fxp_autosize_eeprom(sc);
470 
471 	/*
472 	 * Find out the chip revision; lump all 82557 revs together.
473 	 */
474 	fxp_read_eeprom(sc, &data, 5, 1);
475 	if ((data >> 8) == 1)
476 		sc->revision = FXP_REV_82557;
477 	else
478 		sc->revision = pci_get_revid(dev);
479 
480 	/*
481 	 * Determine whether we must use the 503 serial interface.
482 	 */
483 	fxp_read_eeprom(sc, &data, 6, 1);
484 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
485 	    && (data & FXP_PHY_SERIAL_ONLY))
486 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
487 
488 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
489 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
490 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
491 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
492 	    "FXP driver receive interrupt microcode bundling delay");
493 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
494 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
495 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
496 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
497 	    "FXP driver receive interrupt microcode bundle size limit");
498 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
499 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
500 	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
501 	    "FXP RNR events");
502 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
503 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
504 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
505 	    "FXP flow control disabled");
506 
507 	/*
508 	 * Pull in device tunables.
509 	 */
510 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
511 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
512 	sc->tunable_noflow = 1;
513 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
514 	    "int_delay", &sc->tunable_int_delay);
515 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
516 	    "bundle_max", &sc->tunable_bundle_max);
517 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
518 	    "noflow", &sc->tunable_noflow);
519 	sc->rnr = 0;
520 
521 	/*
522 	 * Enable workarounds for certain chip revision deficiencies.
523 	 *
524 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
525 	 * some systems based a normal 82559 design, have a defect where
526 	 * the chip can cause a PCI protocol violation if it receives
527 	 * a CU_RESUME command when it is entering the IDLE state.  The
528 	 * workaround is to disable Dynamic Standby Mode, so the chip never
529 	 * deasserts CLKRUN#, and always remains in an active state.
530 	 *
531 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
532 	 */
533 	i = pci_get_device(dev);
534 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
535 	    sc->revision >= FXP_REV_82559_A0) {
536 		fxp_read_eeprom(sc, &data, 10, 1);
537 		if (data & 0x02) {			/* STB enable */
538 			uint16_t cksum;
539 			int i;
540 
541 			device_printf(dev,
542 			    "Disabling dynamic standby mode in EEPROM\n");
543 			data &= ~0x02;
544 			fxp_write_eeprom(sc, &data, 10, 1);
545 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
546 			cksum = 0;
547 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
548 				fxp_read_eeprom(sc, &data, i, 1);
549 				cksum += data;
550 			}
551 			i = (1 << sc->eeprom_size) - 1;
552 			cksum = 0xBABA - cksum;
553 			fxp_read_eeprom(sc, &data, i, 1);
554 			fxp_write_eeprom(sc, &cksum, i, 1);
555 			device_printf(dev,
556 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
557 			    i, data, cksum);
558 #if 1
559 			/*
560 			 * If the user elects to continue, try the software
561 			 * workaround, as it is better than nothing.
562 			 */
563 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
564 #endif
565 		}
566 	}
567 
568 	/*
569 	 * If we are not a 82557 chip, we can enable extended features.
570 	 */
571 	if (sc->revision != FXP_REV_82557) {
572 		/*
573 		 * If MWI is enabled in the PCI configuration, and there
574 		 * is a valid cacheline size (8 or 16 dwords), then tell
575 		 * the board to turn on MWI.
576 		 */
577 		if (val & PCIM_CMD_MWRICEN &&
578 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
579 			sc->flags |= FXP_FLAG_MWI_ENABLE;
580 
581 		/* turn on the extended TxCB feature */
582 		sc->flags |= FXP_FLAG_EXT_TXCB;
583 
584 		/* enable reception of long frames for VLAN */
585 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
586 	} else {
587 		/* a hack to get long VLAN frames on a 82557 */
588 		sc->flags |= FXP_FLAG_SAVE_BAD;
589 	}
590 
591 	/*
592 	 * Enable use of extended RFDs and TCBs for 82550
593 	 * and later chips. Note: we need extended TXCB support
594 	 * too, but that's already enabled by the code above.
595 	 * Be careful to do this only on the right devices.
596 	 */
597 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
598 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
599 	    || sc->revision == FXP_REV_82551_10) {
600 		sc->rfa_size = sizeof (struct fxp_rfa);
601 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
602 		sc->flags |= FXP_FLAG_EXT_RFA;
603 	} else {
604 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
605 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
606 	}
607 
608 	/*
609 	 * Allocate DMA tags and DMA safe memory.
610 	 */
611 	sc->maxtxseg = FXP_NTXSEG;
612 	if (sc->flags & FXP_FLAG_EXT_RFA)
613 		sc->maxtxseg--;
614 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
615 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
616 	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
617 	    &sc->fxp_mtag);
618 	if (error) {
619 		device_printf(dev, "could not allocate dma tag\n");
620 		goto fail;
621 	}
622 
623 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
624 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
625 	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
626 	    &sc->fxp_stag);
627 	if (error) {
628 		device_printf(dev, "could not allocate dma tag\n");
629 		goto fail;
630 	}
631 
632 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
633 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
634 	if (error)
635 		goto fail;
636 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
637 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
638 	if (error) {
639 		device_printf(dev, "could not map the stats buffer\n");
640 		goto fail;
641 	}
642 
643 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
644 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
645 	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
646 	if (error) {
647 		device_printf(dev, "could not allocate dma tag\n");
648 		goto fail;
649 	}
650 
651 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
652 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
653 	if (error)
654 		goto fail;
655 
656 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
657 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
658 	    &sc->fxp_desc.cbl_addr, 0);
659 	if (error) {
660 		device_printf(dev, "could not map DMA memory\n");
661 		goto fail;
662 	}
663 
664 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
665 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
666 	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
667 	    &sc->mcs_tag);
668 	if (error) {
669 		device_printf(dev, "could not allocate dma tag\n");
670 		goto fail;
671 	}
672 
673 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
674 	    BUS_DMA_NOWAIT, &sc->mcs_map);
675 	if (error)
676 		goto fail;
677 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
678 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
679 	if (error) {
680 		device_printf(dev, "can't map the multicast setup command\n");
681 		goto fail;
682 	}
683 
684 	/*
685 	 * Pre-allocate the TX DMA maps and setup the pointers to
686 	 * the TX command blocks.
687 	 */
688 	txp = sc->fxp_desc.tx_list;
689 	tcbp = sc->fxp_desc.cbl_list;
690 	for (i = 0; i < FXP_NTXCB; i++) {
691 		txp[i].tx_cb = tcbp + i;
692 		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
693 		if (error) {
694 			device_printf(dev, "can't create DMA map for TX\n");
695 			goto fail;
696 		}
697 	}
698 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
699 	if (error) {
700 		device_printf(dev, "can't create spare DMA map\n");
701 		goto fail;
702 	}
703 
704 	/*
705 	 * Pre-allocate our receive buffers.
706 	 */
707 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
708 	for (i = 0; i < FXP_NRFABUFS; i++) {
709 		rxp = &sc->fxp_desc.rx_list[i];
710 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
711 		if (error) {
712 			device_printf(dev, "can't create DMA map for RX\n");
713 			goto fail;
714 		}
715 		if (fxp_add_rfabuf(sc, rxp) != 0) {
716 			error = ENOMEM;
717 			goto fail;
718 		}
719 	}
720 
721 	/*
722 	 * Read MAC address.
723 	 */
724 	fxp_read_eeprom(sc, myea, 0, 3);
725 	eaddr[0] = myea[0] & 0xff;
726 	eaddr[1] = myea[0] >> 8;
727 	eaddr[2] = myea[1] & 0xff;
728 	eaddr[3] = myea[1] >> 8;
729 	eaddr[4] = myea[2] & 0xff;
730 	eaddr[5] = myea[2] >> 8;
731 	if (bootverbose) {
732 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
733 		    pci_get_vendor(dev), pci_get_device(dev),
734 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
735 		    pci_get_revid(dev));
736 		fxp_read_eeprom(sc, &data, 10, 1);
737 		device_printf(dev, "Dynamic Standby mode is %s\n",
738 		    data & 0x02 ? "enabled" : "disabled");
739 	}
740 
741 	/*
742 	 * If this is only a 10Mbps device, then there is no MII, and
743 	 * the PHY will use a serial interface instead.
744 	 *
745 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
746 	 * doesn't have a programming interface of any sort.  The
747 	 * media is sensed automatically based on how the link partner
748 	 * is configured.  This is, in essence, manual configuration.
749 	 */
750 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
751 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
752 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
753 	} else {
754 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
755 		    fxp_ifmedia_sts)) {
756 	                device_printf(dev, "MII without any PHY!\n");
757 			error = ENXIO;
758 			goto fail;
759 		}
760 	}
761 
762 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
763 	ifp->if_init = fxp_init;
764 	ifp->if_softc = sc;
765 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
766 	ifp->if_ioctl = fxp_ioctl;
767 	ifp->if_start = fxp_start;
768 	ifp->if_watchdog = fxp_watchdog;
769 
770 	ifp->if_capabilities = ifp->if_capenable = 0;
771 
772 	/* Enable checksum offload for 82550 or better chips */
773 	if (sc->flags & FXP_FLAG_EXT_RFA) {
774 		ifp->if_hwassist = FXP_CSUM_FEATURES;
775 		ifp->if_capabilities |= IFCAP_HWCSUM;
776 		ifp->if_capenable |= IFCAP_HWCSUM;
777 	}
778 
779 #ifdef DEVICE_POLLING
780 	/* Inform the world we support polling. */
781 	ifp->if_capabilities |= IFCAP_POLLING;
782 #endif
783 
784 	/*
785 	 * Attach the interface.
786 	 */
787 	ether_ifattach(ifp, eaddr);
788 
789 	/*
790 	 * Tell the upper layer(s) we support long frames.
791 	 * Must appear after the call to ether_ifattach() because
792 	 * ether_ifattach() sets ifi_hdrlen to the default value.
793 	 */
794 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
795 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
796 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
797 
798 	/*
799 	 * Let the system queue as many packets as we have available
800 	 * TX descriptors.
801 	 */
802 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
803 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
804 	IFQ_SET_READY(&ifp->if_snd);
805 
806 	/*
807 	 * Hook our interrupt after all initialization is complete.
808 	 */
809 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
810 			       fxp_intr, sc, &sc->ih);
811 	if (error) {
812 		device_printf(dev, "could not setup irq\n");
813 		ether_ifdetach(sc->ifp);
814 		goto fail;
815 	}
816 
817 fail:
818 	if (error)
819 		fxp_release(sc);
820 	return (error);
821 }
822 
823 /*
824  * Release all resources.  The softc lock should not be held and the
825  * interrupt should already be torn down.
826  */
827 static void
828 fxp_release(struct fxp_softc *sc)
829 {
830 	struct fxp_rx *rxp;
831 	struct fxp_tx *txp;
832 	int i;
833 
834 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
835 	KASSERT(sc->ih == NULL,
836 	    ("fxp_release() called with intr handle still active"));
837 	if (sc->miibus)
838 		device_delete_child(sc->dev, sc->miibus);
839 	bus_generic_detach(sc->dev);
840 	ifmedia_removeall(&sc->sc_media);
841 	if (sc->fxp_desc.cbl_list) {
842 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
843 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
844 		    sc->cbl_map);
845 	}
846 	if (sc->fxp_stats) {
847 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
848 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
849 	}
850 	if (sc->mcsp) {
851 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
852 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
853 	}
854 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
855 	if (sc->fxp_mtag) {
856 		for (i = 0; i < FXP_NRFABUFS; i++) {
857 			rxp = &sc->fxp_desc.rx_list[i];
858 			if (rxp->rx_mbuf != NULL) {
859 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
860 				    BUS_DMASYNC_POSTREAD);
861 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
862 				m_freem(rxp->rx_mbuf);
863 			}
864 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
865 		}
866 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
867 		for (i = 0; i < FXP_NTXCB; i++) {
868 			txp = &sc->fxp_desc.tx_list[i];
869 			if (txp->tx_mbuf != NULL) {
870 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
871 				    BUS_DMASYNC_POSTWRITE);
872 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
873 				m_freem(txp->tx_mbuf);
874 			}
875 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
876 		}
877 		bus_dma_tag_destroy(sc->fxp_mtag);
878 	}
879 	if (sc->fxp_stag)
880 		bus_dma_tag_destroy(sc->fxp_stag);
881 	if (sc->cbl_tag)
882 		bus_dma_tag_destroy(sc->cbl_tag);
883 	if (sc->mcs_tag)
884 		bus_dma_tag_destroy(sc->mcs_tag);
885 	if (sc->ifp)
886 		if_free(sc->ifp);
887 
888 	mtx_destroy(&sc->sc_mtx);
889 }
890 
891 /*
892  * Detach interface.
893  */
894 static int
895 fxp_detach(device_t dev)
896 {
897 	struct fxp_softc *sc = device_get_softc(dev);
898 
899 #ifdef DEVICE_POLLING
900 	if (sc->ifp->if_capenable & IFCAP_POLLING)
901 		ether_poll_deregister(sc->ifp);
902 #endif
903 
904 	FXP_LOCK(sc);
905 	sc->suspended = 1;	/* Do same thing as we do for suspend */
906 	/*
907 	 * Stop DMA and drop transmit queue, but disable interrupts first.
908 	 */
909 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
910 	fxp_stop(sc);
911 	FXP_UNLOCK(sc);
912 	callout_drain(&sc->stat_ch);
913 
914 	/*
915 	 * Close down routes etc.
916 	 */
917 	ether_ifdetach(sc->ifp);
918 
919 	/*
920 	 * Unhook interrupt before dropping lock. This is to prevent
921 	 * races with fxp_intr().
922 	 */
923 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
924 	sc->ih = NULL;
925 
926 	/* Release our allocated resources. */
927 	fxp_release(sc);
928 	return (0);
929 }
930 
931 /*
932  * Device shutdown routine. Called at system shutdown after sync. The
933  * main purpose of this routine is to shut off receiver DMA so that
934  * kernel memory doesn't get clobbered during warmboot.
935  */
936 static int
937 fxp_shutdown(device_t dev)
938 {
939 	struct fxp_softc *sc = device_get_softc(dev);
940 
941 	/*
942 	 * Make sure that DMA is disabled prior to reboot. Not doing
943 	 * do could allow DMA to corrupt kernel memory during the
944 	 * reboot before the driver initializes.
945 	 */
946 	FXP_LOCK(sc);
947 	fxp_stop(sc);
948 	FXP_UNLOCK(sc);
949 	return (0);
950 }
951 
952 /*
953  * Device suspend routine.  Stop the interface and save some PCI
954  * settings in case the BIOS doesn't restore them properly on
955  * resume.
956  */
957 static int
958 fxp_suspend(device_t dev)
959 {
960 	struct fxp_softc *sc = device_get_softc(dev);
961 
962 	FXP_LOCK(sc);
963 
964 	fxp_stop(sc);
965 
966 	sc->suspended = 1;
967 
968 	FXP_UNLOCK(sc);
969 	return (0);
970 }
971 
972 /*
973  * Device resume routine. re-enable busmastering, and restart the interface if
974  * appropriate.
975  */
976 static int
977 fxp_resume(device_t dev)
978 {
979 	struct fxp_softc *sc = device_get_softc(dev);
980 	struct ifnet *ifp = sc->ifp;
981 
982 	FXP_LOCK(sc);
983 
984 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
985 	DELAY(10);
986 
987 	/* reinitialize interface if necessary */
988 	if (ifp->if_flags & IFF_UP)
989 		fxp_init_body(sc);
990 
991 	sc->suspended = 0;
992 
993 	FXP_UNLOCK(sc);
994 	return (0);
995 }
996 
997 static void
998 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
999 {
1000 	uint16_t reg;
1001 	int x;
1002 
1003 	/*
1004 	 * Shift in data.
1005 	 */
1006 	for (x = 1 << (length - 1); x; x >>= 1) {
1007 		if (data & x)
1008 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1009 		else
1010 			reg = FXP_EEPROM_EECS;
1011 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1012 		DELAY(1);
1013 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1014 		DELAY(1);
1015 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1016 		DELAY(1);
1017 	}
1018 }
1019 
1020 /*
1021  * Read from the serial EEPROM. Basically, you manually shift in
1022  * the read opcode (one bit at a time) and then shift in the address,
1023  * and then you shift out the data (all of this one bit at a time).
1024  * The word size is 16 bits, so you have to provide the address for
1025  * every 16 bits of data.
1026  */
1027 static uint16_t
1028 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1029 {
1030 	uint16_t reg, data;
1031 	int x;
1032 
1033 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1034 	/*
1035 	 * Shift in read opcode.
1036 	 */
1037 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1038 	/*
1039 	 * Shift in address.
1040 	 */
1041 	data = 0;
1042 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1043 		if (offset & x)
1044 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1045 		else
1046 			reg = FXP_EEPROM_EECS;
1047 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1048 		DELAY(1);
1049 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1050 		DELAY(1);
1051 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1052 		DELAY(1);
1053 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1054 		data++;
1055 		if (autosize && reg == 0) {
1056 			sc->eeprom_size = data;
1057 			break;
1058 		}
1059 	}
1060 	/*
1061 	 * Shift out data.
1062 	 */
1063 	data = 0;
1064 	reg = FXP_EEPROM_EECS;
1065 	for (x = 1 << 15; x; x >>= 1) {
1066 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1067 		DELAY(1);
1068 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1069 			data |= x;
1070 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1071 		DELAY(1);
1072 	}
1073 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1074 	DELAY(1);
1075 
1076 	return (data);
1077 }
1078 
1079 static void
1080 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1081 {
1082 	int i;
1083 
1084 	/*
1085 	 * Erase/write enable.
1086 	 */
1087 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1088 	fxp_eeprom_shiftin(sc, 0x4, 3);
1089 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1090 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1091 	DELAY(1);
1092 	/*
1093 	 * Shift in write opcode, address, data.
1094 	 */
1095 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1096 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1097 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1098 	fxp_eeprom_shiftin(sc, data, 16);
1099 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1100 	DELAY(1);
1101 	/*
1102 	 * Wait for EEPROM to finish up.
1103 	 */
1104 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1105 	DELAY(1);
1106 	for (i = 0; i < 1000; i++) {
1107 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1108 			break;
1109 		DELAY(50);
1110 	}
1111 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1112 	DELAY(1);
1113 	/*
1114 	 * Erase/write disable.
1115 	 */
1116 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1117 	fxp_eeprom_shiftin(sc, 0x4, 3);
1118 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1119 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1120 	DELAY(1);
1121 }
1122 
1123 /*
1124  * From NetBSD:
1125  *
1126  * Figure out EEPROM size.
1127  *
1128  * 559's can have either 64-word or 256-word EEPROMs, the 558
1129  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1130  * talks about the existance of 16 to 256 word EEPROMs.
1131  *
1132  * The only known sizes are 64 and 256, where the 256 version is used
1133  * by CardBus cards to store CIS information.
1134  *
1135  * The address is shifted in msb-to-lsb, and after the last
1136  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1137  * after which follows the actual data. We try to detect this zero, by
1138  * probing the data-out bit in the EEPROM control register just after
1139  * having shifted in a bit. If the bit is zero, we assume we've
1140  * shifted enough address bits. The data-out should be tri-state,
1141  * before this, which should translate to a logical one.
1142  */
1143 static void
1144 fxp_autosize_eeprom(struct fxp_softc *sc)
1145 {
1146 
1147 	/* guess maximum size of 256 words */
1148 	sc->eeprom_size = 8;
1149 
1150 	/* autosize */
1151 	(void) fxp_eeprom_getword(sc, 0, 1);
1152 }
1153 
1154 static void
1155 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1156 {
1157 	int i;
1158 
1159 	for (i = 0; i < words; i++)
1160 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1161 }
1162 
1163 static void
1164 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1165 {
1166 	int i;
1167 
1168 	for (i = 0; i < words; i++)
1169 		fxp_eeprom_putword(sc, offset + i, data[i]);
1170 }
1171 
1172 /*
1173  * Grab the softc lock and call the real fxp_start_body() routine
1174  */
1175 static void
1176 fxp_start(struct ifnet *ifp)
1177 {
1178 	struct fxp_softc *sc = ifp->if_softc;
1179 
1180 	FXP_LOCK(sc);
1181 	fxp_start_body(ifp);
1182 	FXP_UNLOCK(sc);
1183 }
1184 
1185 /*
1186  * Start packet transmission on the interface.
1187  * This routine must be called with the softc lock held, and is an
1188  * internal entry point only.
1189  */
1190 static void
1191 fxp_start_body(struct ifnet *ifp)
1192 {
1193 	struct fxp_softc *sc = ifp->if_softc;
1194 	struct mbuf *mb_head;
1195 	int error, txqueued;
1196 
1197 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1198 
1199 	/*
1200 	 * See if we need to suspend xmit until the multicast filter
1201 	 * has been reprogrammed (which can only be done at the head
1202 	 * of the command chain).
1203 	 */
1204 	if (sc->need_mcsetup)
1205 		return;
1206 
1207 	/*
1208 	 * We're finished if there is nothing more to add to the list or if
1209 	 * we're all filled up with buffers to transmit.
1210 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1211 	 *       a NOP command when needed.
1212 	 */
1213 	txqueued = 0;
1214 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1215 	    sc->tx_queued < FXP_NTXCB - 1) {
1216 
1217 		/*
1218 		 * Grab a packet to transmit.
1219 		 */
1220 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1221 		if (mb_head == NULL)
1222 			break;
1223 
1224 		error = fxp_encap(sc, mb_head);
1225 		if (error)
1226 			break;
1227 		txqueued = 1;
1228 	}
1229 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1230 
1231 	/*
1232 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1233 	 * going again if suspended.
1234 	 */
1235 	if (txqueued) {
1236 		fxp_scb_wait(sc);
1237 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1238 	}
1239 }
1240 
1241 static int
1242 fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1243 {
1244 	struct ifnet *ifp;
1245 	struct mbuf *m;
1246 	struct fxp_tx *txp;
1247 	struct fxp_cb_tx *cbp;
1248 	bus_dma_segment_t segs[FXP_NTXSEG];
1249 	int chainlen, error, i, nseg;
1250 
1251 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1252 	ifp = sc->ifp;
1253 
1254 	/*
1255 	 * Get pointer to next available tx desc.
1256 	 */
1257 	txp = sc->fxp_desc.tx_last->tx_next;
1258 
1259 	/*
1260 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1261 	 * Ethernet Controller Family Open Source Software
1262 	 * Developer Manual says:
1263 	 *   Using software parsing is only allowed with legal
1264 	 *   TCP/IP or UDP/IP packets.
1265 	 *   ...
1266 	 *   For all other datagrams, hardware parsing must
1267 	 *   be used.
1268 	 * Software parsing appears to truncate ICMP and
1269 	 * fragmented UDP packets that contain one to three
1270 	 * bytes in the second (and final) mbuf of the packet.
1271 	 */
1272 	if (sc->flags & FXP_FLAG_EXT_RFA)
1273 		txp->tx_cb->ipcb_ip_activation_high =
1274 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1275 
1276 	/*
1277 	 * Deal with TCP/IP checksum offload. Note that
1278 	 * in order for TCP checksum offload to work,
1279 	 * the pseudo header checksum must have already
1280 	 * been computed and stored in the checksum field
1281 	 * in the TCP header. The stack should have
1282 	 * already done this for us.
1283 	 */
1284 	if (m_head->m_pkthdr.csum_flags) {
1285 		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1286 			txp->tx_cb->ipcb_ip_schedule =
1287 			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1288 			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1289 				txp->tx_cb->ipcb_ip_schedule |=
1290 				    FXP_IPCB_TCP_PACKET;
1291 		}
1292 
1293 #ifdef FXP_IP_CSUM_WAR
1294 		/*
1295 		 * XXX The 82550 chip appears to have trouble
1296 		 * dealing with IP header checksums in very small
1297 		 * datagrams, namely fragments from 1 to 3 bytes
1298 		 * in size. For example, say you want to transmit
1299 		 * a UDP packet of 1473 bytes. The packet will be
1300 		 * fragmented over two IP datagrams, the latter
1301 		 * containing only one byte of data. The 82550 will
1302 		 * botch the header checksum on the 1-byte fragment.
1303 		 * As long as the datagram contains 4 or more bytes
1304 		 * of data, you're ok.
1305 		 *
1306                  * The following code attempts to work around this
1307 		 * problem: if the datagram is less than 38 bytes
1308 		 * in size (14 bytes ether header, 20 bytes IP header,
1309 		 * plus 4 bytes of data), we punt and compute the IP
1310 		 * header checksum by hand. This workaround doesn't
1311 		 * work very well, however, since it can be fooled
1312 		 * by things like VLAN tags and IP options that make
1313 		 * the header sizes/offsets vary.
1314 		 */
1315 
1316 		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1317 			if (m_head->m_pkthdr.len < 38) {
1318 				struct ip *ip;
1319 				m_head->m_data += ETHER_HDR_LEN;
1320 				ip = mtod(mb_head, struct ip *);
1321 				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1322 				m_head->m_data -= ETHER_HDR_LEN;
1323 			} else {
1324 				txp->tx_cb->ipcb_ip_activation_high =
1325 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1326 				txp->tx_cb->ipcb_ip_schedule |=
1327 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1328 			}
1329 		}
1330 #endif
1331 	}
1332 
1333 	chainlen = 0;
1334 	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1335 		chainlen++;
1336 	if (chainlen > sc->maxtxseg) {
1337 		struct mbuf *mn;
1338 
1339 		/*
1340 		 * We ran out of segments. We have to recopy this
1341 		 * mbuf chain first. Bail out if we can't get the
1342 		 * new buffers.
1343 		 */
1344 		mn = m_defrag(m_head, M_DONTWAIT);
1345 		if (mn == NULL) {
1346 			m_freem(m_head);
1347 			return (-1);
1348 		} else {
1349 			m_head = mn;
1350 		}
1351 	}
1352 
1353 	/*
1354 	 * Go through each of the mbufs in the chain and initialize
1355 	 * the transmit buffer descriptors with the physical address
1356 	 * and size of the mbuf.
1357 	 */
1358 	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1359 	    m_head, segs, &nseg, 0);
1360 	if (error) {
1361 		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1362 		m_freem(m_head);
1363 		return (-1);
1364 	}
1365 
1366 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1367 
1368 	cbp = txp->tx_cb;
1369 	for (i = 0; i < nseg; i++) {
1370 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1371 		/*
1372 		 * If this is an 82550/82551, then we're using extended
1373 		 * TxCBs _and_ we're using checksum offload. This means
1374 		 * that the TxCB is really an IPCB. One major difference
1375 		 * between the two is that with plain extended TxCBs,
1376 		 * the bottom half of the TxCB contains two entries from
1377 		 * the TBD array, whereas IPCBs contain just one entry:
1378 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1379 		 * checksum offload control bits. So to make things work
1380 		 * right, we have to start filling in the TBD array
1381 		 * starting from a different place depending on whether
1382 		 * the chip is an 82550/82551 or not.
1383 		 */
1384 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1385 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1386 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1387 		} else {
1388 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1389 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1390 		}
1391 	}
1392 	cbp->tbd_number = nseg;
1393 
1394 	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1395 	txp->tx_mbuf = m_head;
1396 	txp->tx_cb->cb_status = 0;
1397 	txp->tx_cb->byte_count = 0;
1398 	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1399 		txp->tx_cb->cb_command =
1400 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1401 		    FXP_CB_COMMAND_S);
1402 	} else {
1403 		txp->tx_cb->cb_command =
1404 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1405 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1406 		/*
1407 		 * Set a 5 second timer just in case we don't hear
1408 		 * from the card again.
1409 		 */
1410 		ifp->if_timer = 5;
1411 	}
1412 	txp->tx_cb->tx_threshold = tx_threshold;
1413 
1414 	/*
1415 	 * Advance the end of list forward.
1416 	 */
1417 
1418 #ifdef __alpha__
1419 	/*
1420 	 * On platforms which can't access memory in 16-bit
1421 	 * granularities, we must prevent the card from DMA'ing
1422 	 * up the status while we update the command field.
1423 	 * This could cause us to overwrite the completion status.
1424 	 * XXX This is probably bogus and we're _not_ looking
1425 	 * for atomicity here.
1426 	 */
1427 	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1428 	    htole16(FXP_CB_COMMAND_S));
1429 #else
1430 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1431 #endif /*__alpha__*/
1432 	sc->fxp_desc.tx_last = txp;
1433 
1434 	/*
1435 	 * Advance the beginning of the list forward if there are
1436 	 * no other packets queued (when nothing is queued, tx_first
1437 	 * sits on the last TxCB that was sent out).
1438 	 */
1439 	if (sc->tx_queued == 0)
1440 		sc->fxp_desc.tx_first = txp;
1441 
1442 	sc->tx_queued++;
1443 
1444 	/*
1445 	 * Pass packet to bpf if there is a listener.
1446 	 */
1447 	BPF_MTAP(ifp, m_head);
1448 	return (0);
1449 }
1450 
1451 #ifdef DEVICE_POLLING
1452 static poll_handler_t fxp_poll;
1453 
1454 static void
1455 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1456 {
1457 	struct fxp_softc *sc = ifp->if_softc;
1458 	uint8_t statack;
1459 
1460 	FXP_LOCK(sc);
1461 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1462 		FXP_UNLOCK(sc);
1463 		return;
1464 	}
1465 
1466 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1467 	    FXP_SCB_STATACK_FR;
1468 	if (cmd == POLL_AND_CHECK_STATUS) {
1469 		uint8_t tmp;
1470 
1471 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1472 		if (tmp == 0xff || tmp == 0) {
1473 			FXP_UNLOCK(sc);
1474 			return; /* nothing to do */
1475 		}
1476 		tmp &= ~statack;
1477 		/* ack what we can */
1478 		if (tmp != 0)
1479 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1480 		statack |= tmp;
1481 	}
1482 	fxp_intr_body(sc, ifp, statack, count);
1483 	FXP_UNLOCK(sc);
1484 }
1485 #endif /* DEVICE_POLLING */
1486 
1487 /*
1488  * Process interface interrupts.
1489  */
1490 static void
1491 fxp_intr(void *xsc)
1492 {
1493 	struct fxp_softc *sc = xsc;
1494 	struct ifnet *ifp = sc->ifp;
1495 	uint8_t statack;
1496 
1497 	FXP_LOCK(sc);
1498 	if (sc->suspended) {
1499 		FXP_UNLOCK(sc);
1500 		return;
1501 	}
1502 
1503 #ifdef DEVICE_POLLING
1504 	if (ifp->if_capenable & IFCAP_POLLING) {
1505 		FXP_UNLOCK(sc);
1506 		return;
1507 	}
1508 #endif
1509 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1510 		/*
1511 		 * It should not be possible to have all bits set; the
1512 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1513 		 * all bits are set, this may indicate that the card has
1514 		 * been physically ejected, so ignore it.
1515 		 */
1516 		if (statack == 0xff) {
1517 			FXP_UNLOCK(sc);
1518 			return;
1519 		}
1520 
1521 		/*
1522 		 * First ACK all the interrupts in this pass.
1523 		 */
1524 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1525 		fxp_intr_body(sc, ifp, statack, -1);
1526 	}
1527 	FXP_UNLOCK(sc);
1528 }
1529 
1530 static void
1531 fxp_txeof(struct fxp_softc *sc)
1532 {
1533 	struct fxp_tx *txp;
1534 
1535 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1536 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1537 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1538 	    txp = txp->tx_next) {
1539 		if (txp->tx_mbuf != NULL) {
1540 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1541 			    BUS_DMASYNC_POSTWRITE);
1542 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1543 			m_freem(txp->tx_mbuf);
1544 			txp->tx_mbuf = NULL;
1545 			/* clear this to reset csum offload bits */
1546 			txp->tx_cb->tbd[0].tb_addr = 0;
1547 		}
1548 		sc->tx_queued--;
1549 	}
1550 	sc->fxp_desc.tx_first = txp;
1551 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1552 }
1553 
1554 static void
1555 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1556     int count)
1557 {
1558 	struct mbuf *m;
1559 	struct fxp_rx *rxp;
1560 	struct fxp_rfa *rfa;
1561 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1562 	int fxp_rc = 0;
1563 
1564 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1565 	if (rnr)
1566 		sc->rnr++;
1567 #ifdef DEVICE_POLLING
1568 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1569 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1570 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1571 		rnr = 1;
1572 	}
1573 #endif
1574 
1575 	/*
1576 	 * Free any finished transmit mbuf chains.
1577 	 *
1578 	 * Handle the CNA event likt a CXTNO event. It used to
1579 	 * be that this event (control unit not ready) was not
1580 	 * encountered, but it is now with the SMPng modifications.
1581 	 * The exact sequence of events that occur when the interface
1582 	 * is brought up are different now, and if this event
1583 	 * goes unhandled, the configuration/rxfilter setup sequence
1584 	 * can stall for several seconds. The result is that no
1585 	 * packets go out onto the wire for about 5 to 10 seconds
1586 	 * after the interface is ifconfig'ed for the first time.
1587 	 */
1588 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1589 		fxp_txeof(sc);
1590 
1591 		ifp->if_timer = 0;
1592 		if (sc->tx_queued == 0) {
1593 			if (sc->need_mcsetup)
1594 				fxp_mc_setup(sc);
1595 		}
1596 		/*
1597 		 * Try to start more packets transmitting.
1598 		 */
1599 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1600 			fxp_start_body(ifp);
1601 	}
1602 
1603 	/*
1604 	 * Just return if nothing happened on the receive side.
1605 	 */
1606 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1607 		return;
1608 
1609 	/*
1610 	 * Process receiver interrupts. If a no-resource (RNR)
1611 	 * condition exists, get whatever packets we can and
1612 	 * re-start the receiver.
1613 	 *
1614 	 * When using polling, we do not process the list to completion,
1615 	 * so when we get an RNR interrupt we must defer the restart
1616 	 * until we hit the last buffer with the C bit set.
1617 	 * If we run out of cycles and rfa_headm has the C bit set,
1618 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1619 	 * that the info will be used in the subsequent polling cycle.
1620 	 */
1621 	for (;;) {
1622 		rxp = sc->fxp_desc.rx_head;
1623 		m = rxp->rx_mbuf;
1624 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1625 		    RFA_ALIGNMENT_FUDGE);
1626 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1627 		    BUS_DMASYNC_POSTREAD);
1628 
1629 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1630 		if (count >= 0 && count-- == 0) {
1631 			if (rnr) {
1632 				/* Defer RNR processing until the next time. */
1633 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1634 				rnr = 0;
1635 			}
1636 			break;
1637 		}
1638 #endif /* DEVICE_POLLING */
1639 
1640 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1641 			break;
1642 
1643 		/*
1644 		 * Advance head forward.
1645 		 */
1646 		sc->fxp_desc.rx_head = rxp->rx_next;
1647 
1648 		/*
1649 		 * Add a new buffer to the receive chain.
1650 		 * If this fails, the old buffer is recycled
1651 		 * instead.
1652 		 */
1653 		fxp_rc = fxp_add_rfabuf(sc, rxp);
1654 		if (fxp_rc == 0) {
1655 			int total_len;
1656 
1657 			/*
1658 			 * Fetch packet length (the top 2 bits of
1659 			 * actual_size are flags set by the controller
1660 			 * upon completion), and drop the packet in case
1661 			 * of bogus length or CRC errors.
1662 			 */
1663 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1664 			if (total_len < sizeof(struct ether_header) ||
1665 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1666 				sc->rfa_size ||
1667 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1668 				m_freem(m);
1669 				continue;
1670 			}
1671 
1672                         /* Do IP checksum checking. */
1673 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1674 				if (rfa->rfax_csum_sts &
1675 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1676 					m->m_pkthdr.csum_flags |=
1677 					    CSUM_IP_CHECKED;
1678 				if (rfa->rfax_csum_sts &
1679 				    FXP_RFDX_CS_IP_CSUM_VALID)
1680 					m->m_pkthdr.csum_flags |=
1681 					    CSUM_IP_VALID;
1682 				if ((rfa->rfax_csum_sts &
1683 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1684 				    (rfa->rfax_csum_sts &
1685 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1686 					m->m_pkthdr.csum_flags |=
1687 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1688 					m->m_pkthdr.csum_data = 0xffff;
1689 				}
1690 			}
1691 
1692 			m->m_pkthdr.len = m->m_len = total_len;
1693 			m->m_pkthdr.rcvif = ifp;
1694 
1695 			/*
1696 			 * Drop locks before calling if_input() since it
1697 			 * may re-enter fxp_start() in the netisr case.
1698 			 * This would result in a lock reversal.  Better
1699 			 * performance might be obtained by chaining all
1700 			 * packets received, dropping the lock, and then
1701 			 * calling if_input() on each one.
1702 			 */
1703 			FXP_UNLOCK(sc);
1704 			(*ifp->if_input)(ifp, m);
1705 			FXP_LOCK(sc);
1706 		} else if (fxp_rc == ENOBUFS) {
1707 			rnr = 0;
1708 			break;
1709 		}
1710 	}
1711 	if (rnr) {
1712 		fxp_scb_wait(sc);
1713 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1714 		    sc->fxp_desc.rx_head->rx_addr);
1715 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1716 	}
1717 }
1718 
1719 /*
1720  * Update packet in/out/collision statistics. The i82557 doesn't
1721  * allow you to access these counters without doing a fairly
1722  * expensive DMA to get _all_ of the statistics it maintains, so
1723  * we do this operation here only once per second. The statistics
1724  * counters in the kernel are updated from the previous dump-stats
1725  * DMA and then a new dump-stats DMA is started. The on-chip
1726  * counters are zeroed when the DMA completes. If we can't start
1727  * the DMA immediately, we don't wait - we just prepare to read
1728  * them again next time.
1729  */
1730 static void
1731 fxp_tick(void *xsc)
1732 {
1733 	struct fxp_softc *sc = xsc;
1734 	struct ifnet *ifp = sc->ifp;
1735 	struct fxp_stats *sp = sc->fxp_stats;
1736 
1737 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1738 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1739 	ifp->if_opackets += le32toh(sp->tx_good);
1740 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1741 	if (sp->rx_good) {
1742 		ifp->if_ipackets += le32toh(sp->rx_good);
1743 		sc->rx_idle_secs = 0;
1744 	} else {
1745 		/*
1746 		 * Receiver's been idle for another second.
1747 		 */
1748 		sc->rx_idle_secs++;
1749 	}
1750 	ifp->if_ierrors +=
1751 	    le32toh(sp->rx_crc_errors) +
1752 	    le32toh(sp->rx_alignment_errors) +
1753 	    le32toh(sp->rx_rnr_errors) +
1754 	    le32toh(sp->rx_overrun_errors);
1755 	/*
1756 	 * If any transmit underruns occured, bump up the transmit
1757 	 * threshold by another 512 bytes (64 * 8).
1758 	 */
1759 	if (sp->tx_underruns) {
1760 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1761 		if (tx_threshold < 192)
1762 			tx_threshold += 64;
1763 	}
1764 
1765 	/*
1766 	 * Release any xmit buffers that have completed DMA. This isn't
1767 	 * strictly necessary to do here, but it's advantagous for mbufs
1768 	 * with external storage to be released in a timely manner rather
1769 	 * than being defered for a potentially long time. This limits
1770 	 * the delay to a maximum of one second.
1771 	 */
1772 	fxp_txeof(sc);
1773 
1774 	/*
1775 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1776 	 * then assume the receiver has locked up and attempt to clear
1777 	 * the condition by reprogramming the multicast filter. This is
1778 	 * a work-around for a bug in the 82557 where the receiver locks
1779 	 * up if it gets certain types of garbage in the syncronization
1780 	 * bits prior to the packet header. This bug is supposed to only
1781 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1782 	 * mode as well (perhaps due to a 10/100 speed transition).
1783 	 */
1784 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1785 		sc->rx_idle_secs = 0;
1786 		fxp_mc_setup(sc);
1787 	}
1788 	/*
1789 	 * If there is no pending command, start another stats
1790 	 * dump. Otherwise punt for now.
1791 	 */
1792 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1793 		/*
1794 		 * Start another stats dump.
1795 		 */
1796 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1797 		    BUS_DMASYNC_PREREAD);
1798 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1799 	} else {
1800 		/*
1801 		 * A previous command is still waiting to be accepted.
1802 		 * Just zero our copy of the stats and wait for the
1803 		 * next timer event to update them.
1804 		 */
1805 		sp->tx_good = 0;
1806 		sp->tx_underruns = 0;
1807 		sp->tx_total_collisions = 0;
1808 
1809 		sp->rx_good = 0;
1810 		sp->rx_crc_errors = 0;
1811 		sp->rx_alignment_errors = 0;
1812 		sp->rx_rnr_errors = 0;
1813 		sp->rx_overrun_errors = 0;
1814 	}
1815 	if (sc->miibus != NULL)
1816 		mii_tick(device_get_softc(sc->miibus));
1817 
1818 	/*
1819 	 * Schedule another timeout one second from now.
1820 	 */
1821 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1822 }
1823 
1824 /*
1825  * Stop the interface. Cancels the statistics updater and resets
1826  * the interface.
1827  */
1828 static void
1829 fxp_stop(struct fxp_softc *sc)
1830 {
1831 	struct ifnet *ifp = sc->ifp;
1832 	struct fxp_tx *txp;
1833 	int i;
1834 
1835 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1836 	ifp->if_timer = 0;
1837 
1838 	/*
1839 	 * Cancel stats updater.
1840 	 */
1841 	callout_stop(&sc->stat_ch);
1842 
1843 	/*
1844 	 * Issue software reset, which also unloads the microcode.
1845 	 */
1846 	sc->flags &= ~FXP_FLAG_UCODE;
1847 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1848 	DELAY(50);
1849 
1850 	/*
1851 	 * Release any xmit buffers.
1852 	 */
1853 	txp = sc->fxp_desc.tx_list;
1854 	if (txp != NULL) {
1855 		for (i = 0; i < FXP_NTXCB; i++) {
1856  			if (txp[i].tx_mbuf != NULL) {
1857 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1858 				    BUS_DMASYNC_POSTWRITE);
1859 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1860 				m_freem(txp[i].tx_mbuf);
1861 				txp[i].tx_mbuf = NULL;
1862 				/* clear this to reset csum offload bits */
1863 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1864 			}
1865 		}
1866 	}
1867 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1868 	sc->tx_queued = 0;
1869 }
1870 
1871 /*
1872  * Watchdog/transmission transmit timeout handler. Called when a
1873  * transmission is started on the interface, but no interrupt is
1874  * received before the timeout. This usually indicates that the
1875  * card has wedged for some reason.
1876  */
1877 static void
1878 fxp_watchdog(struct ifnet *ifp)
1879 {
1880 	struct fxp_softc *sc = ifp->if_softc;
1881 
1882 	FXP_LOCK(sc);
1883 	device_printf(sc->dev, "device timeout\n");
1884 	ifp->if_oerrors++;
1885 
1886 	fxp_init_body(sc);
1887 	FXP_UNLOCK(sc);
1888 }
1889 
1890 /*
1891  * Acquire locks and then call the real initialization function.  This
1892  * is necessary because ether_ioctl() calls if_init() and this would
1893  * result in mutex recursion if the mutex was held.
1894  */
1895 static void
1896 fxp_init(void *xsc)
1897 {
1898 	struct fxp_softc *sc = xsc;
1899 
1900 	FXP_LOCK(sc);
1901 	fxp_init_body(sc);
1902 	FXP_UNLOCK(sc);
1903 }
1904 
1905 /*
1906  * Perform device initialization. This routine must be called with the
1907  * softc lock held.
1908  */
1909 static void
1910 fxp_init_body(struct fxp_softc *sc)
1911 {
1912 	struct ifnet *ifp = sc->ifp;
1913 	struct fxp_cb_config *cbp;
1914 	struct fxp_cb_ias *cb_ias;
1915 	struct fxp_cb_tx *tcbp;
1916 	struct fxp_tx *txp;
1917 	struct fxp_cb_mcs *mcsp;
1918 	int i, prm;
1919 
1920 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1921 	/*
1922 	 * Cancel any pending I/O
1923 	 */
1924 	fxp_stop(sc);
1925 
1926 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1927 
1928 	/*
1929 	 * Initialize base of CBL and RFA memory. Loading with zero
1930 	 * sets it up for regular linear addressing.
1931 	 */
1932 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1933 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1934 
1935 	fxp_scb_wait(sc);
1936 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1937 
1938 	/*
1939 	 * Initialize base of dump-stats buffer.
1940 	 */
1941 	fxp_scb_wait(sc);
1942 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1943 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1944 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1945 
1946 	/*
1947 	 * Attempt to load microcode if requested.
1948 	 */
1949 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1950 		fxp_load_ucode(sc);
1951 
1952 	/*
1953 	 * Initialize the multicast address list.
1954 	 */
1955 	if (fxp_mc_addrs(sc)) {
1956 		mcsp = sc->mcsp;
1957 		mcsp->cb_status = 0;
1958 		mcsp->cb_command =
1959 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1960 		mcsp->link_addr = 0xffffffff;
1961 		/*
1962 	 	 * Start the multicast setup command.
1963 		 */
1964 		fxp_scb_wait(sc);
1965 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1966 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1967 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1968 		/* ...and wait for it to complete. */
1969 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1970 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1971 		    BUS_DMASYNC_POSTWRITE);
1972 	}
1973 
1974 	/*
1975 	 * We temporarily use memory that contains the TxCB list to
1976 	 * construct the config CB. The TxCB list memory is rebuilt
1977 	 * later.
1978 	 */
1979 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
1980 
1981 	/*
1982 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1983 	 * zero and must be one bits in this structure and this is the easiest
1984 	 * way to initialize them all to proper values.
1985 	 */
1986 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
1987 
1988 	cbp->cb_status =	0;
1989 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1990 	    FXP_CB_COMMAND_EL);
1991 	cbp->link_addr =	0xffffffff;	/* (no) next command */
1992 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
1993 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1994 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1995 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1996 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1997 	cbp->type_enable =	0;	/* actually reserved */
1998 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1999 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2000 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2001 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2002 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2003 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2004 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2005 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2006 	cbp->ci_int =		1;	/* interrupt on CU idle */
2007 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2008 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2009 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2010 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2011 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2012 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2013 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2014 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2015 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2016 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2017 	cbp->csma_dis =		0;	/* (don't) disable link */
2018 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2019 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2020 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2021 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2022 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2023 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2024 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2025 	cbp->loopback =		0;	/* (don't) loopback */
2026 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2027 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2028 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2029 	cbp->promiscuous =	prm;	/* promiscuous mode */
2030 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2031 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2032 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2033 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2034 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2035 
2036 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2037 	cbp->padding =		1;	/* (do) pad short tx packets */
2038 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2039 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2040 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2041 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2042 					/* must set wake_en in PMCSR also */
2043 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2044 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2045 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2046 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2047 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2048 
2049 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2050 		/*
2051 		 * The 82557 has no hardware flow control, the values
2052 		 * below are the defaults for the chip.
2053 		 */
2054 		cbp->fc_delay_lsb =	0;
2055 		cbp->fc_delay_msb =	0x40;
2056 		cbp->pri_fc_thresh =	3;
2057 		cbp->tx_fc_dis =	0;
2058 		cbp->rx_fc_restop =	0;
2059 		cbp->rx_fc_restart =	0;
2060 		cbp->fc_filter =	0;
2061 		cbp->pri_fc_loc =	1;
2062 	} else {
2063 		cbp->fc_delay_lsb =	0x1f;
2064 		cbp->fc_delay_msb =	0x01;
2065 		cbp->pri_fc_thresh =	3;
2066 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2067 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2068 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2069 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2070 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2071 	}
2072 
2073 	/*
2074 	 * Start the config command/DMA.
2075 	 */
2076 	fxp_scb_wait(sc);
2077 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2078 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2079 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2080 	/* ...and wait for it to complete. */
2081 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2082 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2083 
2084 	/*
2085 	 * Now initialize the station address. Temporarily use the TxCB
2086 	 * memory area like we did above for the config CB.
2087 	 */
2088 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2089 	cb_ias->cb_status = 0;
2090 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2091 	cb_ias->link_addr = 0xffffffff;
2092 	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2093 
2094 	/*
2095 	 * Start the IAS (Individual Address Setup) command/DMA.
2096 	 */
2097 	fxp_scb_wait(sc);
2098 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2099 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2100 	/* ...and wait for it to complete. */
2101 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2102 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2103 
2104 	/*
2105 	 * Initialize transmit control block (TxCB) list.
2106 	 */
2107 	txp = sc->fxp_desc.tx_list;
2108 	tcbp = sc->fxp_desc.cbl_list;
2109 	bzero(tcbp, FXP_TXCB_SZ);
2110 	for (i = 0; i < FXP_NTXCB; i++) {
2111 		txp[i].tx_mbuf = NULL;
2112 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2113 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2114 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2115 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2116 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2117 			tcbp[i].tbd_array_addr =
2118 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2119 		else
2120 			tcbp[i].tbd_array_addr =
2121 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2122 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2123 	}
2124 	/*
2125 	 * Set the suspend flag on the first TxCB and start the control
2126 	 * unit. It will execute the NOP and then suspend.
2127 	 */
2128 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2129 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2130 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2131 	sc->tx_queued = 1;
2132 
2133 	fxp_scb_wait(sc);
2134 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2135 
2136 	/*
2137 	 * Initialize receiver buffer area - RFA.
2138 	 */
2139 	fxp_scb_wait(sc);
2140 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2141 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2142 
2143 	/*
2144 	 * Set current media.
2145 	 */
2146 	if (sc->miibus != NULL)
2147 		mii_mediachg(device_get_softc(sc->miibus));
2148 
2149 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2150 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2151 
2152 	/*
2153 	 * Enable interrupts.
2154 	 */
2155 #ifdef DEVICE_POLLING
2156 	/*
2157 	 * ... but only do that if we are not polling. And because (presumably)
2158 	 * the default is interrupts on, we need to disable them explicitly!
2159 	 */
2160 	if (ifp->if_capenable & IFCAP_POLLING )
2161 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2162 	else
2163 #endif /* DEVICE_POLLING */
2164 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2165 
2166 	/*
2167 	 * Start stats updater.
2168 	 */
2169 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2170 }
2171 
2172 static int
2173 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2174 {
2175 
2176 	return (0);
2177 }
2178 
2179 static void
2180 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2181 {
2182 
2183 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2184 }
2185 
2186 /*
2187  * Change media according to request.
2188  */
2189 static int
2190 fxp_ifmedia_upd(struct ifnet *ifp)
2191 {
2192 	struct fxp_softc *sc = ifp->if_softc;
2193 	struct mii_data *mii;
2194 
2195 	mii = device_get_softc(sc->miibus);
2196 	FXP_LOCK(sc);
2197 	if (mii->mii_instance) {
2198 		struct mii_softc	*miisc;
2199 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2200 			mii_phy_reset(miisc);
2201 	}
2202 	mii_mediachg(mii);
2203 	FXP_UNLOCK(sc);
2204 	return (0);
2205 }
2206 
2207 /*
2208  * Notify the world which media we're using.
2209  */
2210 static void
2211 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2212 {
2213 	struct fxp_softc *sc = ifp->if_softc;
2214 	struct mii_data *mii;
2215 
2216 	mii = device_get_softc(sc->miibus);
2217 	FXP_LOCK(sc);
2218 	mii_pollstat(mii);
2219 	ifmr->ifm_active = mii->mii_media_active;
2220 	ifmr->ifm_status = mii->mii_media_status;
2221 
2222 	if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T &&
2223 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2224 		sc->cu_resume_bug = 1;
2225 	else
2226 		sc->cu_resume_bug = 0;
2227 	FXP_UNLOCK(sc);
2228 }
2229 
2230 /*
2231  * Add a buffer to the end of the RFA buffer list.
2232  * Return 0 if successful, 1 for failure. A failure results in
2233  * adding the 'oldm' (if non-NULL) on to the end of the list -
2234  * tossing out its old contents and recycling it.
2235  * The RFA struct is stuck at the beginning of mbuf cluster and the
2236  * data pointer is fixed up to point just past it.
2237  */
2238 static int
2239 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2240 {
2241 	struct mbuf *m;
2242 	struct fxp_rfa *rfa, *p_rfa;
2243 	struct fxp_rx *p_rx;
2244 	bus_dmamap_t tmp_map;
2245 	int error;
2246 
2247 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2248 	if (m == NULL)
2249 		return (ENOBUFS);
2250 
2251 	/*
2252 	 * Move the data pointer up so that the incoming data packet
2253 	 * will be 32-bit aligned.
2254 	 */
2255 	m->m_data += RFA_ALIGNMENT_FUDGE;
2256 
2257 	/*
2258 	 * Get a pointer to the base of the mbuf cluster and move
2259 	 * data start past it.
2260 	 */
2261 	rfa = mtod(m, struct fxp_rfa *);
2262 	m->m_data += sc->rfa_size;
2263 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2264 
2265 	rfa->rfa_status = 0;
2266 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2267 	rfa->actual_size = 0;
2268 
2269 	/*
2270 	 * Initialize the rest of the RFA.  Note that since the RFA
2271 	 * is misaligned, we cannot store values directly.  We're thus
2272 	 * using the le32enc() function which handles endianness and
2273 	 * is also alignment-safe.
2274 	 */
2275 	le32enc(&rfa->link_addr, 0xffffffff);
2276 	le32enc(&rfa->rbd_addr, 0xffffffff);
2277 
2278 	/* Map the RFA into DMA memory. */
2279 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2280 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2281 	    &rxp->rx_addr, 0);
2282 	if (error) {
2283 		m_freem(m);
2284 		return (error);
2285 	}
2286 
2287 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2288 	tmp_map = sc->spare_map;
2289 	sc->spare_map = rxp->rx_map;
2290 	rxp->rx_map = tmp_map;
2291 	rxp->rx_mbuf = m;
2292 
2293 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2294 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2295 
2296 	/*
2297 	 * If there are other buffers already on the list, attach this
2298 	 * one to the end by fixing up the tail to point to this one.
2299 	 */
2300 	if (sc->fxp_desc.rx_head != NULL) {
2301 		p_rx = sc->fxp_desc.rx_tail;
2302 		p_rfa = (struct fxp_rfa *)
2303 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2304 		p_rx->rx_next = rxp;
2305 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2306 		p_rfa->rfa_control = 0;
2307 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2308 		    BUS_DMASYNC_PREWRITE);
2309 	} else {
2310 		rxp->rx_next = NULL;
2311 		sc->fxp_desc.rx_head = rxp;
2312 	}
2313 	sc->fxp_desc.rx_tail = rxp;
2314 	return (0);
2315 }
2316 
2317 static volatile int
2318 fxp_miibus_readreg(device_t dev, int phy, int reg)
2319 {
2320 	struct fxp_softc *sc = device_get_softc(dev);
2321 	int count = 10000;
2322 	int value;
2323 
2324 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2325 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2326 
2327 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2328 	    && count--)
2329 		DELAY(10);
2330 
2331 	if (count <= 0)
2332 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2333 
2334 	return (value & 0xffff);
2335 }
2336 
2337 static void
2338 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2339 {
2340 	struct fxp_softc *sc = device_get_softc(dev);
2341 	int count = 10000;
2342 
2343 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2344 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2345 	    (value & 0xffff));
2346 
2347 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2348 	    count--)
2349 		DELAY(10);
2350 
2351 	if (count <= 0)
2352 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2353 }
2354 
2355 static int
2356 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2357 {
2358 	struct fxp_softc *sc = ifp->if_softc;
2359 	struct ifreq *ifr = (struct ifreq *)data;
2360 	struct mii_data *mii;
2361 	int flag, mask, error = 0;
2362 
2363 	switch (command) {
2364 	case SIOCSIFFLAGS:
2365 		FXP_LOCK(sc);
2366 		if (ifp->if_flags & IFF_ALLMULTI)
2367 			sc->flags |= FXP_FLAG_ALL_MCAST;
2368 		else
2369 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2370 
2371 		/*
2372 		 * If interface is marked up and not running, then start it.
2373 		 * If it is marked down and running, stop it.
2374 		 * XXX If it's up then re-initialize it. This is so flags
2375 		 * such as IFF_PROMISC are handled.
2376 		 */
2377 		if (ifp->if_flags & IFF_UP) {
2378 			fxp_init_body(sc);
2379 		} else {
2380 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2381 				fxp_stop(sc);
2382 		}
2383 		FXP_UNLOCK(sc);
2384 		break;
2385 
2386 	case SIOCADDMULTI:
2387 	case SIOCDELMULTI:
2388 		FXP_LOCK(sc);
2389 		if (ifp->if_flags & IFF_ALLMULTI)
2390 			sc->flags |= FXP_FLAG_ALL_MCAST;
2391 		else
2392 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2393 		/*
2394 		 * Multicast list has changed; set the hardware filter
2395 		 * accordingly.
2396 		 */
2397 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2398 			fxp_mc_setup(sc);
2399 		/*
2400 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2401 		 * again rather than else {}.
2402 		 */
2403 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2404 			fxp_init_body(sc);
2405 		FXP_UNLOCK(sc);
2406 		error = 0;
2407 		break;
2408 
2409 	case SIOCSIFMEDIA:
2410 	case SIOCGIFMEDIA:
2411 		if (sc->miibus != NULL) {
2412 			mii = device_get_softc(sc->miibus);
2413                         error = ifmedia_ioctl(ifp, ifr,
2414                             &mii->mii_media, command);
2415 		} else {
2416                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2417 		}
2418 		break;
2419 
2420 	case SIOCSIFCAP:
2421 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2422 #ifdef DEVICE_POLLING
2423 		if (mask & IFCAP_POLLING) {
2424 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2425 				error = ether_poll_register(fxp_poll, ifp);
2426 				if (error)
2427 					return(error);
2428 				FXP_LOCK(sc);
2429 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2430 				    FXP_SCB_INTR_DISABLE);
2431 				ifp->if_capenable |= IFCAP_POLLING;
2432 				FXP_UNLOCK(sc);
2433 			} else {
2434 				error = ether_poll_deregister(ifp);
2435 				/* Enable interrupts in any case */
2436 				FXP_LOCK(sc);
2437 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2438 				ifp->if_capenable &= ~IFCAP_POLLING;
2439 				FXP_UNLOCK(sc);
2440 			}
2441 		}
2442 #endif
2443 		if (mask & IFCAP_VLAN_MTU) {
2444 			FXP_LOCK(sc);
2445 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2446 			if (sc->revision != FXP_REV_82557)
2447 				flag = FXP_FLAG_LONG_PKT_EN;
2448 			else /* a hack to get long frames on the old chip */
2449 				flag = FXP_FLAG_SAVE_BAD;
2450 			sc->flags ^= flag;
2451 			if (ifp->if_flags & IFF_UP)
2452 				fxp_init_body(sc);
2453 			FXP_UNLOCK(sc);
2454 		}
2455 		break;
2456 
2457 	default:
2458 		error = ether_ioctl(ifp, command, data);
2459 	}
2460 	return (error);
2461 }
2462 
2463 /*
2464  * Fill in the multicast address list and return number of entries.
2465  */
2466 static int
2467 fxp_mc_addrs(struct fxp_softc *sc)
2468 {
2469 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2470 	struct ifnet *ifp = sc->ifp;
2471 	struct ifmultiaddr *ifma;
2472 	int nmcasts;
2473 
2474 	nmcasts = 0;
2475 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2476 		IF_ADDR_LOCK(ifp);
2477 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2478 			if (ifma->ifma_addr->sa_family != AF_LINK)
2479 				continue;
2480 			if (nmcasts >= MAXMCADDR) {
2481 				sc->flags |= FXP_FLAG_ALL_MCAST;
2482 				nmcasts = 0;
2483 				break;
2484 			}
2485 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2486 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2487 			nmcasts++;
2488 		}
2489 		IF_ADDR_UNLOCK(ifp);
2490 	}
2491 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2492 	return (nmcasts);
2493 }
2494 
2495 /*
2496  * Program the multicast filter.
2497  *
2498  * We have an artificial restriction that the multicast setup command
2499  * must be the first command in the chain, so we take steps to ensure
2500  * this. By requiring this, it allows us to keep up the performance of
2501  * the pre-initialized command ring (esp. link pointers) by not actually
2502  * inserting the mcsetup command in the ring - i.e. its link pointer
2503  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2504  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2505  * lead into the regular TxCB ring when it completes.
2506  *
2507  * This function must be called at splimp.
2508  */
2509 static void
2510 fxp_mc_setup(struct fxp_softc *sc)
2511 {
2512 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2513 	struct ifnet *ifp = sc->ifp;
2514 	struct fxp_tx *txp;
2515 	int count;
2516 
2517 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2518 	/*
2519 	 * If there are queued commands, we must wait until they are all
2520 	 * completed. If we are already waiting, then add a NOP command
2521 	 * with interrupt option so that we're notified when all commands
2522 	 * have been completed - fxp_start() ensures that no additional
2523 	 * TX commands will be added when need_mcsetup is true.
2524 	 */
2525 	if (sc->tx_queued) {
2526 		/*
2527 		 * need_mcsetup will be true if we are already waiting for the
2528 		 * NOP command to be completed (see below). In this case, bail.
2529 		 */
2530 		if (sc->need_mcsetup)
2531 			return;
2532 		sc->need_mcsetup = 1;
2533 
2534 		/*
2535 		 * Add a NOP command with interrupt so that we are notified
2536 		 * when all TX commands have been processed.
2537 		 */
2538 		txp = sc->fxp_desc.tx_last->tx_next;
2539 		txp->tx_mbuf = NULL;
2540 		txp->tx_cb->cb_status = 0;
2541 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2542 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2543 		/*
2544 		 * Advance the end of list forward.
2545 		 */
2546 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2547 		    htole16(~FXP_CB_COMMAND_S);
2548 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2549 		sc->fxp_desc.tx_last = txp;
2550 		sc->tx_queued++;
2551 		/*
2552 		 * Issue a resume in case the CU has just suspended.
2553 		 */
2554 		fxp_scb_wait(sc);
2555 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2556 		/*
2557 		 * Set a 5 second timer just in case we don't hear from the
2558 		 * card again.
2559 		 */
2560 		ifp->if_timer = 5;
2561 
2562 		return;
2563 	}
2564 	sc->need_mcsetup = 0;
2565 
2566 	/*
2567 	 * Initialize multicast setup descriptor.
2568 	 */
2569 	mcsp->cb_status = 0;
2570 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2571 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2572 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2573 	txp = &sc->fxp_desc.mcs_tx;
2574 	txp->tx_mbuf = NULL;
2575 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2576 	txp->tx_next = sc->fxp_desc.tx_list;
2577 	(void) fxp_mc_addrs(sc);
2578 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2579 	sc->tx_queued = 1;
2580 
2581 	/*
2582 	 * Wait until command unit is not active. This should never
2583 	 * be the case when nothing is queued, but make sure anyway.
2584 	 */
2585 	count = 100;
2586 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2587 	    FXP_SCB_CUS_ACTIVE && --count)
2588 		DELAY(10);
2589 	if (count == 0) {
2590 		device_printf(sc->dev, "command queue timeout\n");
2591 		return;
2592 	}
2593 
2594 	/*
2595 	 * Start the multicast setup command.
2596 	 */
2597 	fxp_scb_wait(sc);
2598 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2599 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2600 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2601 
2602 	ifp->if_timer = 2;
2603 	return;
2604 }
2605 
2606 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2607 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2608 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2609 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2610 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2611 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2612 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2613 
2614 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2615 
2616 struct ucode {
2617 	uint32_t	revision;
2618 	uint32_t	*ucode;
2619 	int		length;
2620 	u_short		int_delay_offset;
2621 	u_short		bundle_max_offset;
2622 } ucode_table[] = {
2623 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2624 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2625 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2626 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2627 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2628 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2629 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2630 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2631 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2632 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2633 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2634 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2635 	{ 0, NULL, 0, 0, 0 }
2636 };
2637 
2638 static void
2639 fxp_load_ucode(struct fxp_softc *sc)
2640 {
2641 	struct ucode *uc;
2642 	struct fxp_cb_ucode *cbp;
2643 	int i;
2644 
2645 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2646 		if (sc->revision == uc->revision)
2647 			break;
2648 	if (uc->ucode == NULL)
2649 		return;
2650 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2651 	cbp->cb_status = 0;
2652 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2653 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2654 	for (i = 0; i < uc->length; i++)
2655 		cbp->ucode[i] = htole32(uc->ucode[i]);
2656 	if (uc->int_delay_offset)
2657 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2658 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2659 	if (uc->bundle_max_offset)
2660 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2661 		    htole16(sc->tunable_bundle_max);
2662 	/*
2663 	 * Download the ucode to the chip.
2664 	 */
2665 	fxp_scb_wait(sc);
2666 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2667 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2668 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2669 	/* ...and wait for it to complete. */
2670 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2671 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2672 	device_printf(sc->dev,
2673 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2674 	    sc->tunable_int_delay,
2675 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2676 	sc->flags |= FXP_FLAG_UCODE;
2677 }
2678 
2679 static int
2680 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2681 {
2682 	int error, value;
2683 
2684 	value = *(int *)arg1;
2685 	error = sysctl_handle_int(oidp, &value, 0, req);
2686 	if (error || !req->newptr)
2687 		return (error);
2688 	if (value < low || value > high)
2689 		return (EINVAL);
2690 	*(int *)arg1 = value;
2691 	return (0);
2692 }
2693 
2694 /*
2695  * Interrupt delay is expressed in microseconds, a multiplier is used
2696  * to convert this to the appropriate clock ticks before using.
2697  */
2698 static int
2699 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2700 {
2701 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2702 }
2703 
2704 static int
2705 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2706 {
2707 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2708 }
2709