xref: /freebsd/sys/dev/fxp/if_fxp.c (revision aa64588d28258aef88cc33b8043112e8856948d0)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #ifdef HAVE_KERNEL_OPTION_HEADERS
38 #include "opt_device_polling.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/lock.h>
48 #include <sys/module.h>
49 #include <sys/mutex.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 
55 #include <net/bpf.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_vlan_var.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 
70 #include <machine/bus.h>
71 #include <machine/in_cksum.h>
72 #include <machine/resource.h>
73 
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 
80 #include <dev/fxp/if_fxpreg.h>
81 #include <dev/fxp/if_fxpvar.h>
82 #include <dev/fxp/rcvbundl.h>
83 
84 MODULE_DEPEND(fxp, pci, 1, 1, 1);
85 MODULE_DEPEND(fxp, ether, 1, 1, 1);
86 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
87 #include "miibus_if.h"
88 
89 /*
90  * NOTE!  On the Alpha, we have an alignment constraint.  The
91  * card DMAs the packet immediately following the RFA.  However,
92  * the first thing in the packet is a 14-byte Ethernet header.
93  * This means that the packet is misaligned.  To compensate,
94  * we actually offset the RFA 2 bytes into the cluster.  This
95  * alignes the packet after the Ethernet header at a 32-bit
96  * boundary.  HOWEVER!  This means that the RFA is misaligned!
97  */
98 #define	RFA_ALIGNMENT_FUDGE	2
99 
100 /*
101  * Set initial transmit threshold at 64 (512 bytes). This is
102  * increased by 64 (512 bytes) at a time, to maximum of 192
103  * (1536 bytes), if an underrun occurs.
104  */
105 static int tx_threshold = 64;
106 
107 /*
108  * The configuration byte map has several undefined fields which
109  * must be one or must be zero.  Set up a template for these bits.
110  * The actual configuration is performed in fxp_init.
111  *
112  * See struct fxp_cb_config for the bit definitions.
113  */
114 static u_char fxp_cb_config_template[] = {
115 	0x0, 0x0,		/* cb_status */
116 	0x0, 0x0,		/* cb_command */
117 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118 	0x0,	/*  0 */
119 	0x0,	/*  1 */
120 	0x0,	/*  2 */
121 	0x0,	/*  3 */
122 	0x0,	/*  4 */
123 	0x0,	/*  5 */
124 	0x32,	/*  6 */
125 	0x0,	/*  7 */
126 	0x0,	/*  8 */
127 	0x0,	/*  9 */
128 	0x6,	/* 10 */
129 	0x0,	/* 11 */
130 	0x0,	/* 12 */
131 	0x0,	/* 13 */
132 	0xf2,	/* 14 */
133 	0x48,	/* 15 */
134 	0x0,	/* 16 */
135 	0x40,	/* 17 */
136 	0xf0,	/* 18 */
137 	0x0,	/* 19 */
138 	0x3f,	/* 20 */
139 	0x5,	/* 21 */
140 	0x0,	/* 22 */
141 	0x0,	/* 23 */
142 	0x0,	/* 24 */
143 	0x0,	/* 25 */
144 	0x0,	/* 26 */
145 	0x0,	/* 27 */
146 	0x0,	/* 28 */
147 	0x0,	/* 29 */
148 	0x0,	/* 30 */
149 	0x0	/* 31 */
150 };
151 
152 /*
153  * Claim various Intel PCI device identifiers for this driver.  The
154  * sub-vendor and sub-device field are extensively used to identify
155  * particular variants, but we don't currently differentiate between
156  * them.
157  */
158 static struct fxp_ident fxp_ident_table[] = {
159     { 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
160     { 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
161     { 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
162     { 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
163     { 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164     { 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165     { 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166     { 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
167     { 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
168     { 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
169     { 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170     { 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
171     { 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
172     { 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
173     { 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
174     { 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
175     { 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
176     { 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
177     { 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
178     { 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
179     { 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
180     { 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
181     { 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
182     { 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
183     { 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
184     { 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
185     { 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
186     { 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
187     { 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
188     { 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
189     { 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
190     { 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
191     { 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
192     { 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
193     { 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
194     { 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
195     { 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
196     { 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
197     { 0x1229,	0x0d,	0, "Intel 82550 Pro/100 Ethernet" },
198     { 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
199     { 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
200     { 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
201     { 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
202     { 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
203     { 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
204     { 0,	-1,	0, NULL },
205 };
206 
207 #ifdef FXP_IP_CSUM_WAR
208 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
209 #else
210 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
211 #endif
212 
213 static int		fxp_probe(device_t dev);
214 static int		fxp_attach(device_t dev);
215 static int		fxp_detach(device_t dev);
216 static int		fxp_shutdown(device_t dev);
217 static int		fxp_suspend(device_t dev);
218 static int		fxp_resume(device_t dev);
219 
220 static struct fxp_ident	*fxp_find_ident(device_t dev);
221 static void		fxp_intr(void *xsc);
222 static void		fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp,
223 			    struct mbuf *m, uint16_t status, int pos);
224 static int		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
225 			    uint8_t statack, int count);
226 static void 		fxp_init(void *xsc);
227 static void 		fxp_init_body(struct fxp_softc *sc);
228 static void 		fxp_tick(void *xsc);
229 static void 		fxp_start(struct ifnet *ifp);
230 static void 		fxp_start_body(struct ifnet *ifp);
231 static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
232 static void		fxp_txeof(struct fxp_softc *sc);
233 static void		fxp_stop(struct fxp_softc *sc);
234 static void 		fxp_release(struct fxp_softc *sc);
235 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
236 			    caddr_t data);
237 static void 		fxp_watchdog(struct fxp_softc *sc);
238 static void		fxp_add_rfabuf(struct fxp_softc *sc,
239     			    struct fxp_rx *rxp);
240 static void		fxp_discard_rfabuf(struct fxp_softc *sc,
241     			    struct fxp_rx *rxp);
242 static int		fxp_new_rfabuf(struct fxp_softc *sc,
243     			    struct fxp_rx *rxp);
244 static int		fxp_mc_addrs(struct fxp_softc *sc);
245 static void		fxp_mc_setup(struct fxp_softc *sc);
246 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
247 			    int autosize);
248 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
249 			    uint16_t data);
250 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
251 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
252 			    int offset, int words);
253 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
254 			    int offset, int words);
255 static int		fxp_ifmedia_upd(struct ifnet *ifp);
256 static void		fxp_ifmedia_sts(struct ifnet *ifp,
257 			    struct ifmediareq *ifmr);
258 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
259 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
260 			    struct ifmediareq *ifmr);
261 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
262 static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
263 			    int value);
264 static void		fxp_load_ucode(struct fxp_softc *sc);
265 static void		fxp_update_stats(struct fxp_softc *sc);
266 static void		fxp_sysctl_node(struct fxp_softc *sc);
267 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
268 			    int low, int high);
269 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
270 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
271 static void 		fxp_scb_wait(struct fxp_softc *sc);
272 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
273 static void		fxp_dma_wait(struct fxp_softc *sc,
274     			    volatile uint16_t *status, bus_dma_tag_t dmat,
275 			    bus_dmamap_t map);
276 
277 static device_method_t fxp_methods[] = {
278 	/* Device interface */
279 	DEVMETHOD(device_probe,		fxp_probe),
280 	DEVMETHOD(device_attach,	fxp_attach),
281 	DEVMETHOD(device_detach,	fxp_detach),
282 	DEVMETHOD(device_shutdown,	fxp_shutdown),
283 	DEVMETHOD(device_suspend,	fxp_suspend),
284 	DEVMETHOD(device_resume,	fxp_resume),
285 
286 	/* MII interface */
287 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
288 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
289 
290 	{ 0, 0 }
291 };
292 
293 static driver_t fxp_driver = {
294 	"fxp",
295 	fxp_methods,
296 	sizeof(struct fxp_softc),
297 };
298 
299 static devclass_t fxp_devclass;
300 
301 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
302 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
303 
304 static struct resource_spec fxp_res_spec_mem[] = {
305 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
306 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
307 	{ -1, 0 }
308 };
309 
310 static struct resource_spec fxp_res_spec_io[] = {
311 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
312 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
313 	{ -1, 0 }
314 };
315 
316 /*
317  * Wait for the previous command to be accepted (but not necessarily
318  * completed).
319  */
320 static void
321 fxp_scb_wait(struct fxp_softc *sc)
322 {
323 	union {
324 		uint16_t w;
325 		uint8_t b[2];
326 	} flowctl;
327 	int i = 10000;
328 
329 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
330 		DELAY(2);
331 	if (i == 0) {
332 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
333 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
334 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
335 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
336 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
337 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
338 	}
339 }
340 
341 static void
342 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
343 {
344 
345 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
346 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
347 		fxp_scb_wait(sc);
348 	}
349 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
350 }
351 
352 static void
353 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
354     bus_dma_tag_t dmat, bus_dmamap_t map)
355 {
356 	int i;
357 
358 	for (i = 10000; i > 0; i--) {
359 		DELAY(2);
360 		bus_dmamap_sync(dmat, map,
361 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
362 		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
363 			break;
364 	}
365 	if (i == 0)
366 		device_printf(sc->dev, "DMA timeout\n");
367 }
368 
369 static struct fxp_ident *
370 fxp_find_ident(device_t dev)
371 {
372 	uint16_t devid;
373 	uint8_t revid;
374 	struct fxp_ident *ident;
375 
376 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
377 		devid = pci_get_device(dev);
378 		revid = pci_get_revid(dev);
379 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
380 			if (ident->devid == devid &&
381 			    (ident->revid == revid || ident->revid == -1)) {
382 				return (ident);
383 			}
384 		}
385 	}
386 	return (NULL);
387 }
388 
389 /*
390  * Return identification string if this device is ours.
391  */
392 static int
393 fxp_probe(device_t dev)
394 {
395 	struct fxp_ident *ident;
396 
397 	ident = fxp_find_ident(dev);
398 	if (ident != NULL) {
399 		device_set_desc(dev, ident->name);
400 		return (BUS_PROBE_DEFAULT);
401 	}
402 	return (ENXIO);
403 }
404 
405 static void
406 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
407 {
408 	uint32_t *addr;
409 
410 	if (error)
411 		return;
412 
413 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
414 	addr = arg;
415 	*addr = segs->ds_addr;
416 }
417 
418 static int
419 fxp_attach(device_t dev)
420 {
421 	struct fxp_softc *sc;
422 	struct fxp_cb_tx *tcbp;
423 	struct fxp_tx *txp;
424 	struct fxp_rx *rxp;
425 	struct ifnet *ifp;
426 	uint32_t val;
427 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
428 	u_char eaddr[ETHER_ADDR_LEN];
429 	int i, pmc, prefer_iomap;
430 	int error;
431 
432 	error = 0;
433 	sc = device_get_softc(dev);
434 	sc->dev = dev;
435 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
436 	    MTX_DEF);
437 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
438 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
439 	    fxp_serial_ifmedia_sts);
440 
441 	ifp = sc->ifp = if_alloc(IFT_ETHER);
442 	if (ifp == NULL) {
443 		device_printf(dev, "can not if_alloc()\n");
444 		error = ENOSPC;
445 		goto fail;
446 	}
447 
448 	/*
449 	 * Enable bus mastering.
450 	 */
451 	pci_enable_busmaster(dev);
452 	val = pci_read_config(dev, PCIR_COMMAND, 2);
453 
454 	/*
455 	 * Figure out which we should try first - memory mapping or i/o mapping?
456 	 * We default to memory mapping. Then we accept an override from the
457 	 * command line. Then we check to see which one is enabled.
458 	 */
459 	prefer_iomap = 0;
460 	resource_int_value(device_get_name(dev), device_get_unit(dev),
461 	    "prefer_iomap", &prefer_iomap);
462 	if (prefer_iomap)
463 		sc->fxp_spec = fxp_res_spec_io;
464 	else
465 		sc->fxp_spec = fxp_res_spec_mem;
466 
467 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
468 	if (error) {
469 		if (sc->fxp_spec == fxp_res_spec_mem)
470 			sc->fxp_spec = fxp_res_spec_io;
471 		else
472 			sc->fxp_spec = fxp_res_spec_mem;
473 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
474 	}
475 	if (error) {
476 		device_printf(dev, "could not allocate resources\n");
477 		error = ENXIO;
478 		goto fail;
479 	}
480 
481 	if (bootverbose) {
482 		device_printf(dev, "using %s space register mapping\n",
483 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
484 	}
485 
486 	/*
487 	 * Put CU/RU idle state and prepare full reset.
488 	 */
489 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
490 	DELAY(10);
491 	/* Full reset and disable interrupts. */
492 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
493 	DELAY(10);
494 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
495 
496 	/*
497 	 * Find out how large of an SEEPROM we have.
498 	 */
499 	fxp_autosize_eeprom(sc);
500 
501 	/*
502 	 * Find out the chip revision; lump all 82557 revs together.
503 	 */
504 	sc->ident = fxp_find_ident(dev);
505 	if (sc->ident->ich > 0) {
506 		/* Assume ICH controllers are 82559. */
507 		sc->revision = FXP_REV_82559_A0;
508 	} else {
509 		fxp_read_eeprom(sc, &data, 5, 1);
510 		if ((data >> 8) == 1)
511 			sc->revision = FXP_REV_82557;
512 		else
513 			sc->revision = pci_get_revid(dev);
514 	}
515 
516 	/*
517 	 * Check availability of WOL. 82559ER does not support WOL.
518 	 */
519 	if (sc->revision >= FXP_REV_82558_A4 &&
520 	    sc->revision != FXP_REV_82559S_A) {
521 		fxp_read_eeprom(sc, &data, 10, 1);
522 		if ((data & 0x20) != 0 &&
523 		    pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0)
524 			sc->flags |= FXP_FLAG_WOLCAP;
525 	}
526 
527 	/* Receiver lock-up workaround detection. */
528 	fxp_read_eeprom(sc, &data, 3, 1);
529 	if ((data & 0x03) != 0x03) {
530 		sc->flags |= FXP_FLAG_RXBUG;
531 		device_printf(dev, "Enabling Rx lock-up workaround\n");
532 	}
533 
534 	/*
535 	 * Determine whether we must use the 503 serial interface.
536 	 */
537 	fxp_read_eeprom(sc, &data, 6, 1);
538 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
539 	    && (data & FXP_PHY_SERIAL_ONLY))
540 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
541 
542 	fxp_sysctl_node(sc);
543 	/*
544 	 * Enable workarounds for certain chip revision deficiencies.
545 	 *
546 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
547 	 * some systems based a normal 82559 design, have a defect where
548 	 * the chip can cause a PCI protocol violation if it receives
549 	 * a CU_RESUME command when it is entering the IDLE state.  The
550 	 * workaround is to disable Dynamic Standby Mode, so the chip never
551 	 * deasserts CLKRUN#, and always remains in an active state.
552 	 *
553 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
554 	 */
555 	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
556 	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
557 		fxp_read_eeprom(sc, &data, 10, 1);
558 		if (data & 0x02) {			/* STB enable */
559 			uint16_t cksum;
560 			int i;
561 
562 			device_printf(dev,
563 			    "Disabling dynamic standby mode in EEPROM\n");
564 			data &= ~0x02;
565 			fxp_write_eeprom(sc, &data, 10, 1);
566 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
567 			cksum = 0;
568 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
569 				fxp_read_eeprom(sc, &data, i, 1);
570 				cksum += data;
571 			}
572 			i = (1 << sc->eeprom_size) - 1;
573 			cksum = 0xBABA - cksum;
574 			fxp_read_eeprom(sc, &data, i, 1);
575 			fxp_write_eeprom(sc, &cksum, i, 1);
576 			device_printf(dev,
577 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
578 			    i, data, cksum);
579 #if 1
580 			/*
581 			 * If the user elects to continue, try the software
582 			 * workaround, as it is better than nothing.
583 			 */
584 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
585 #endif
586 		}
587 	}
588 
589 	/*
590 	 * If we are not a 82557 chip, we can enable extended features.
591 	 */
592 	if (sc->revision != FXP_REV_82557) {
593 		/*
594 		 * If MWI is enabled in the PCI configuration, and there
595 		 * is a valid cacheline size (8 or 16 dwords), then tell
596 		 * the board to turn on MWI.
597 		 */
598 		if (val & PCIM_CMD_MWRICEN &&
599 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
600 			sc->flags |= FXP_FLAG_MWI_ENABLE;
601 
602 		/* turn on the extended TxCB feature */
603 		sc->flags |= FXP_FLAG_EXT_TXCB;
604 
605 		/* enable reception of long frames for VLAN */
606 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
607 	} else {
608 		/* a hack to get long VLAN frames on a 82557 */
609 		sc->flags |= FXP_FLAG_SAVE_BAD;
610 	}
611 
612 	/* For 82559 or later chips, Rx checksum offload is supported. */
613 	if (sc->revision >= FXP_REV_82559_A0) {
614 		/* 82559ER does not support Rx checksum offloading. */
615 		if (sc->ident->devid != 0x1209)
616 			sc->flags |= FXP_FLAG_82559_RXCSUM;
617 	}
618 	/*
619 	 * Enable use of extended RFDs and TCBs for 82550
620 	 * and later chips. Note: we need extended TXCB support
621 	 * too, but that's already enabled by the code above.
622 	 * Be careful to do this only on the right devices.
623 	 */
624 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
625 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
626 	    || sc->revision == FXP_REV_82551_10) {
627 		sc->rfa_size = sizeof (struct fxp_rfa);
628 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
629 		sc->flags |= FXP_FLAG_EXT_RFA;
630 		/* Use extended RFA instead of 82559 checksum mode. */
631 		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
632 	} else {
633 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
634 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
635 	}
636 
637 	/*
638 	 * Allocate DMA tags and DMA safe memory.
639 	 */
640 	sc->maxtxseg = FXP_NTXSEG;
641 	sc->maxsegsize = MCLBYTES;
642 	if (sc->flags & FXP_FLAG_EXT_RFA) {
643 		sc->maxtxseg--;
644 		sc->maxsegsize = FXP_TSO_SEGSIZE;
645 	}
646 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
647 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
648 	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
649 	    sc->maxtxseg, sc->maxsegsize, 0,
650 	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
651 	if (error) {
652 		device_printf(dev, "could not create TX DMA tag\n");
653 		goto fail;
654 	}
655 
656 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
657 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
658 	    MCLBYTES, 1, MCLBYTES, 0,
659 	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
660 	if (error) {
661 		device_printf(dev, "could not create RX DMA tag\n");
662 		goto fail;
663 	}
664 
665 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
666 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
667 	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
668 	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
669 	if (error) {
670 		device_printf(dev, "could not create stats DMA tag\n");
671 		goto fail;
672 	}
673 
674 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
675 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
676 	if (error) {
677 		device_printf(dev, "could not allocate stats DMA memory\n");
678 		goto fail;
679 	}
680 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
681 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
682 	if (error) {
683 		device_printf(dev, "could not load the stats DMA buffer\n");
684 		goto fail;
685 	}
686 
687 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
688 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
689 	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
690 	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
691 	if (error) {
692 		device_printf(dev, "could not create TxCB DMA tag\n");
693 		goto fail;
694 	}
695 
696 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
697 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
698 	if (error) {
699 		device_printf(dev, "could not allocate TxCB DMA memory\n");
700 		goto fail;
701 	}
702 
703 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
704 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
705 	    &sc->fxp_desc.cbl_addr, 0);
706 	if (error) {
707 		device_printf(dev, "could not load TxCB DMA buffer\n");
708 		goto fail;
709 	}
710 
711 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
712 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
713 	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
714 	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
715 	if (error) {
716 		device_printf(dev,
717 		    "could not create multicast setup DMA tag\n");
718 		goto fail;
719 	}
720 
721 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
722 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->mcs_map);
723 	if (error) {
724 		device_printf(dev,
725 		    "could not allocate multicast setup DMA memory\n");
726 		goto fail;
727 	}
728 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
729 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
730 	if (error) {
731 		device_printf(dev,
732 		    "can't load the multicast setup DMA buffer\n");
733 		goto fail;
734 	}
735 
736 	/*
737 	 * Pre-allocate the TX DMA maps and setup the pointers to
738 	 * the TX command blocks.
739 	 */
740 	txp = sc->fxp_desc.tx_list;
741 	tcbp = sc->fxp_desc.cbl_list;
742 	for (i = 0; i < FXP_NTXCB; i++) {
743 		txp[i].tx_cb = tcbp + i;
744 		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
745 		if (error) {
746 			device_printf(dev, "can't create DMA map for TX\n");
747 			goto fail;
748 		}
749 	}
750 	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
751 	if (error) {
752 		device_printf(dev, "can't create spare DMA map\n");
753 		goto fail;
754 	}
755 
756 	/*
757 	 * Pre-allocate our receive buffers.
758 	 */
759 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
760 	for (i = 0; i < FXP_NRFABUFS; i++) {
761 		rxp = &sc->fxp_desc.rx_list[i];
762 		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
763 		if (error) {
764 			device_printf(dev, "can't create DMA map for RX\n");
765 			goto fail;
766 		}
767 		if (fxp_new_rfabuf(sc, rxp) != 0) {
768 			error = ENOMEM;
769 			goto fail;
770 		}
771 		fxp_add_rfabuf(sc, rxp);
772 	}
773 
774 	/*
775 	 * Read MAC address.
776 	 */
777 	fxp_read_eeprom(sc, myea, 0, 3);
778 	eaddr[0] = myea[0] & 0xff;
779 	eaddr[1] = myea[0] >> 8;
780 	eaddr[2] = myea[1] & 0xff;
781 	eaddr[3] = myea[1] >> 8;
782 	eaddr[4] = myea[2] & 0xff;
783 	eaddr[5] = myea[2] >> 8;
784 	if (bootverbose) {
785 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
786 		    pci_get_vendor(dev), pci_get_device(dev),
787 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
788 		    pci_get_revid(dev));
789 		fxp_read_eeprom(sc, &data, 10, 1);
790 		device_printf(dev, "Dynamic Standby mode is %s\n",
791 		    data & 0x02 ? "enabled" : "disabled");
792 	}
793 
794 	/*
795 	 * If this is only a 10Mbps device, then there is no MII, and
796 	 * the PHY will use a serial interface instead.
797 	 *
798 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
799 	 * doesn't have a programming interface of any sort.  The
800 	 * media is sensed automatically based on how the link partner
801 	 * is configured.  This is, in essence, manual configuration.
802 	 */
803 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
804 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
805 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
806 	} else {
807 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
808 		    fxp_ifmedia_sts)) {
809 	                device_printf(dev, "MII without any PHY!\n");
810 			error = ENXIO;
811 			goto fail;
812 		}
813 	}
814 
815 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
816 	ifp->if_init = fxp_init;
817 	ifp->if_softc = sc;
818 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
819 	ifp->if_ioctl = fxp_ioctl;
820 	ifp->if_start = fxp_start;
821 
822 	ifp->if_capabilities = ifp->if_capenable = 0;
823 
824 	/* Enable checksum offload/TSO for 82550 or better chips */
825 	if (sc->flags & FXP_FLAG_EXT_RFA) {
826 		ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO;
827 		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
828 		ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4;
829 	}
830 
831 	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
832 		ifp->if_capabilities |= IFCAP_RXCSUM;
833 		ifp->if_capenable |= IFCAP_RXCSUM;
834 	}
835 
836 	if (sc->flags & FXP_FLAG_WOLCAP) {
837 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
838 		ifp->if_capenable |= IFCAP_WOL_MAGIC;
839 	}
840 
841 #ifdef DEVICE_POLLING
842 	/* Inform the world we support polling. */
843 	ifp->if_capabilities |= IFCAP_POLLING;
844 #endif
845 
846 	/*
847 	 * Attach the interface.
848 	 */
849 	ether_ifattach(ifp, eaddr);
850 
851 	/*
852 	 * Tell the upper layer(s) we support long frames.
853 	 * Must appear after the call to ether_ifattach() because
854 	 * ether_ifattach() sets ifi_hdrlen to the default value.
855 	 */
856 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
857 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
858 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
859 	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
860 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING |
861 		    IFCAP_VLAN_HWCSUM;
862 		ifp->if_capenable |= IFCAP_VLAN_HWTAGGING |
863 		    IFCAP_VLAN_HWCSUM;
864 	}
865 
866 	/*
867 	 * Let the system queue as many packets as we have available
868 	 * TX descriptors.
869 	 */
870 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
871 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
872 	IFQ_SET_READY(&ifp->if_snd);
873 
874 	/*
875 	 * Hook our interrupt after all initialization is complete.
876 	 */
877 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
878 			       NULL, fxp_intr, sc, &sc->ih);
879 	if (error) {
880 		device_printf(dev, "could not setup irq\n");
881 		ether_ifdetach(sc->ifp);
882 		goto fail;
883 	}
884 
885 	/*
886 	 * Configure hardware to reject magic frames otherwise
887 	 * system will hang on recipt of magic frames.
888 	 */
889 	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
890 		FXP_LOCK(sc);
891 		/* Clear wakeup events. */
892 		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
893 		fxp_init_body(sc);
894 		fxp_stop(sc);
895 		FXP_UNLOCK(sc);
896 	}
897 
898 fail:
899 	if (error)
900 		fxp_release(sc);
901 	return (error);
902 }
903 
904 /*
905  * Release all resources.  The softc lock should not be held and the
906  * interrupt should already be torn down.
907  */
908 static void
909 fxp_release(struct fxp_softc *sc)
910 {
911 	struct fxp_rx *rxp;
912 	struct fxp_tx *txp;
913 	int i;
914 
915 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
916 	KASSERT(sc->ih == NULL,
917 	    ("fxp_release() called with intr handle still active"));
918 	if (sc->miibus)
919 		device_delete_child(sc->dev, sc->miibus);
920 	bus_generic_detach(sc->dev);
921 	ifmedia_removeall(&sc->sc_media);
922 	if (sc->fxp_desc.cbl_list) {
923 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
924 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
925 		    sc->cbl_map);
926 	}
927 	if (sc->fxp_stats) {
928 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
929 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
930 	}
931 	if (sc->mcsp) {
932 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
933 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
934 	}
935 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
936 	if (sc->fxp_rxmtag) {
937 		for (i = 0; i < FXP_NRFABUFS; i++) {
938 			rxp = &sc->fxp_desc.rx_list[i];
939 			if (rxp->rx_mbuf != NULL) {
940 				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
941 				    BUS_DMASYNC_POSTREAD);
942 				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
943 				m_freem(rxp->rx_mbuf);
944 			}
945 			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
946 		}
947 		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
948 		bus_dma_tag_destroy(sc->fxp_rxmtag);
949 	}
950 	if (sc->fxp_txmtag) {
951 		for (i = 0; i < FXP_NTXCB; i++) {
952 			txp = &sc->fxp_desc.tx_list[i];
953 			if (txp->tx_mbuf != NULL) {
954 				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
955 				    BUS_DMASYNC_POSTWRITE);
956 				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
957 				m_freem(txp->tx_mbuf);
958 			}
959 			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
960 		}
961 		bus_dma_tag_destroy(sc->fxp_txmtag);
962 	}
963 	if (sc->fxp_stag)
964 		bus_dma_tag_destroy(sc->fxp_stag);
965 	if (sc->cbl_tag)
966 		bus_dma_tag_destroy(sc->cbl_tag);
967 	if (sc->mcs_tag)
968 		bus_dma_tag_destroy(sc->mcs_tag);
969 	if (sc->ifp)
970 		if_free(sc->ifp);
971 
972 	mtx_destroy(&sc->sc_mtx);
973 }
974 
975 /*
976  * Detach interface.
977  */
978 static int
979 fxp_detach(device_t dev)
980 {
981 	struct fxp_softc *sc = device_get_softc(dev);
982 
983 #ifdef DEVICE_POLLING
984 	if (sc->ifp->if_capenable & IFCAP_POLLING)
985 		ether_poll_deregister(sc->ifp);
986 #endif
987 
988 	FXP_LOCK(sc);
989 	/*
990 	 * Stop DMA and drop transmit queue, but disable interrupts first.
991 	 */
992 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
993 	fxp_stop(sc);
994 	FXP_UNLOCK(sc);
995 	callout_drain(&sc->stat_ch);
996 
997 	/*
998 	 * Close down routes etc.
999 	 */
1000 	ether_ifdetach(sc->ifp);
1001 
1002 	/*
1003 	 * Unhook interrupt before dropping lock. This is to prevent
1004 	 * races with fxp_intr().
1005 	 */
1006 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1007 	sc->ih = NULL;
1008 
1009 	/* Release our allocated resources. */
1010 	fxp_release(sc);
1011 	return (0);
1012 }
1013 
1014 /*
1015  * Device shutdown routine. Called at system shutdown after sync. The
1016  * main purpose of this routine is to shut off receiver DMA so that
1017  * kernel memory doesn't get clobbered during warmboot.
1018  */
1019 static int
1020 fxp_shutdown(device_t dev)
1021 {
1022 
1023 	/*
1024 	 * Make sure that DMA is disabled prior to reboot. Not doing
1025 	 * do could allow DMA to corrupt kernel memory during the
1026 	 * reboot before the driver initializes.
1027 	 */
1028 	return (fxp_suspend(dev));
1029 }
1030 
1031 /*
1032  * Device suspend routine.  Stop the interface and save some PCI
1033  * settings in case the BIOS doesn't restore them properly on
1034  * resume.
1035  */
1036 static int
1037 fxp_suspend(device_t dev)
1038 {
1039 	struct fxp_softc *sc = device_get_softc(dev);
1040 	struct ifnet *ifp;
1041 	int pmc;
1042 	uint16_t pmstat;
1043 
1044 	FXP_LOCK(sc);
1045 
1046 	ifp = sc->ifp;
1047 	if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) {
1048 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1049 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1050 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1051 			/* Request PME. */
1052 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1053 			sc->flags |= FXP_FLAG_WOL;
1054 			/* Reconfigure hardware to accept magic frames. */
1055 			fxp_init_body(sc);
1056 		}
1057 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1058 	}
1059 	fxp_stop(sc);
1060 
1061 	sc->suspended = 1;
1062 
1063 	FXP_UNLOCK(sc);
1064 	return (0);
1065 }
1066 
1067 /*
1068  * Device resume routine. re-enable busmastering, and restart the interface if
1069  * appropriate.
1070  */
1071 static int
1072 fxp_resume(device_t dev)
1073 {
1074 	struct fxp_softc *sc = device_get_softc(dev);
1075 	struct ifnet *ifp = sc->ifp;
1076 	int pmc;
1077 	uint16_t pmstat;
1078 
1079 	FXP_LOCK(sc);
1080 
1081 	if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) {
1082 		sc->flags &= ~FXP_FLAG_WOL;
1083 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1084 		/* Disable PME and clear PME status. */
1085 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1086 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1087 		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1088 			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1089 			    CSR_READ_1(sc, FXP_CSR_PMDR));
1090 	}
1091 
1092 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1093 	DELAY(10);
1094 
1095 	/* reinitialize interface if necessary */
1096 	if (ifp->if_flags & IFF_UP)
1097 		fxp_init_body(sc);
1098 
1099 	sc->suspended = 0;
1100 
1101 	FXP_UNLOCK(sc);
1102 	return (0);
1103 }
1104 
1105 static void
1106 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1107 {
1108 	uint16_t reg;
1109 	int x;
1110 
1111 	/*
1112 	 * Shift in data.
1113 	 */
1114 	for (x = 1 << (length - 1); x; x >>= 1) {
1115 		if (data & x)
1116 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1117 		else
1118 			reg = FXP_EEPROM_EECS;
1119 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1120 		DELAY(1);
1121 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1122 		DELAY(1);
1123 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1124 		DELAY(1);
1125 	}
1126 }
1127 
1128 /*
1129  * Read from the serial EEPROM. Basically, you manually shift in
1130  * the read opcode (one bit at a time) and then shift in the address,
1131  * and then you shift out the data (all of this one bit at a time).
1132  * The word size is 16 bits, so you have to provide the address for
1133  * every 16 bits of data.
1134  */
1135 static uint16_t
1136 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1137 {
1138 	uint16_t reg, data;
1139 	int x;
1140 
1141 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1142 	/*
1143 	 * Shift in read opcode.
1144 	 */
1145 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1146 	/*
1147 	 * Shift in address.
1148 	 */
1149 	data = 0;
1150 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1151 		if (offset & x)
1152 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1153 		else
1154 			reg = FXP_EEPROM_EECS;
1155 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1156 		DELAY(1);
1157 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1158 		DELAY(1);
1159 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1160 		DELAY(1);
1161 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1162 		data++;
1163 		if (autosize && reg == 0) {
1164 			sc->eeprom_size = data;
1165 			break;
1166 		}
1167 	}
1168 	/*
1169 	 * Shift out data.
1170 	 */
1171 	data = 0;
1172 	reg = FXP_EEPROM_EECS;
1173 	for (x = 1 << 15; x; x >>= 1) {
1174 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1175 		DELAY(1);
1176 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1177 			data |= x;
1178 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1179 		DELAY(1);
1180 	}
1181 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1182 	DELAY(1);
1183 
1184 	return (data);
1185 }
1186 
1187 static void
1188 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1189 {
1190 	int i;
1191 
1192 	/*
1193 	 * Erase/write enable.
1194 	 */
1195 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1196 	fxp_eeprom_shiftin(sc, 0x4, 3);
1197 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1198 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1199 	DELAY(1);
1200 	/*
1201 	 * Shift in write opcode, address, data.
1202 	 */
1203 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1204 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1205 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1206 	fxp_eeprom_shiftin(sc, data, 16);
1207 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1208 	DELAY(1);
1209 	/*
1210 	 * Wait for EEPROM to finish up.
1211 	 */
1212 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1213 	DELAY(1);
1214 	for (i = 0; i < 1000; i++) {
1215 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1216 			break;
1217 		DELAY(50);
1218 	}
1219 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1220 	DELAY(1);
1221 	/*
1222 	 * Erase/write disable.
1223 	 */
1224 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1225 	fxp_eeprom_shiftin(sc, 0x4, 3);
1226 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1227 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1228 	DELAY(1);
1229 }
1230 
1231 /*
1232  * From NetBSD:
1233  *
1234  * Figure out EEPROM size.
1235  *
1236  * 559's can have either 64-word or 256-word EEPROMs, the 558
1237  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1238  * talks about the existance of 16 to 256 word EEPROMs.
1239  *
1240  * The only known sizes are 64 and 256, where the 256 version is used
1241  * by CardBus cards to store CIS information.
1242  *
1243  * The address is shifted in msb-to-lsb, and after the last
1244  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1245  * after which follows the actual data. We try to detect this zero, by
1246  * probing the data-out bit in the EEPROM control register just after
1247  * having shifted in a bit. If the bit is zero, we assume we've
1248  * shifted enough address bits. The data-out should be tri-state,
1249  * before this, which should translate to a logical one.
1250  */
1251 static void
1252 fxp_autosize_eeprom(struct fxp_softc *sc)
1253 {
1254 
1255 	/* guess maximum size of 256 words */
1256 	sc->eeprom_size = 8;
1257 
1258 	/* autosize */
1259 	(void) fxp_eeprom_getword(sc, 0, 1);
1260 }
1261 
1262 static void
1263 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1264 {
1265 	int i;
1266 
1267 	for (i = 0; i < words; i++)
1268 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1269 }
1270 
1271 static void
1272 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1273 {
1274 	int i;
1275 
1276 	for (i = 0; i < words; i++)
1277 		fxp_eeprom_putword(sc, offset + i, data[i]);
1278 }
1279 
1280 /*
1281  * Grab the softc lock and call the real fxp_start_body() routine
1282  */
1283 static void
1284 fxp_start(struct ifnet *ifp)
1285 {
1286 	struct fxp_softc *sc = ifp->if_softc;
1287 
1288 	FXP_LOCK(sc);
1289 	fxp_start_body(ifp);
1290 	FXP_UNLOCK(sc);
1291 }
1292 
1293 /*
1294  * Start packet transmission on the interface.
1295  * This routine must be called with the softc lock held, and is an
1296  * internal entry point only.
1297  */
1298 static void
1299 fxp_start_body(struct ifnet *ifp)
1300 {
1301 	struct fxp_softc *sc = ifp->if_softc;
1302 	struct mbuf *mb_head;
1303 	int txqueued;
1304 
1305 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1306 
1307 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1308 	    IFF_DRV_RUNNING)
1309 		return;
1310 
1311 	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1312 		fxp_txeof(sc);
1313 	/*
1314 	 * We're finished if there is nothing more to add to the list or if
1315 	 * we're all filled up with buffers to transmit.
1316 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1317 	 *       a NOP command when needed.
1318 	 */
1319 	txqueued = 0;
1320 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1321 	    sc->tx_queued < FXP_NTXCB - 1) {
1322 
1323 		/*
1324 		 * Grab a packet to transmit.
1325 		 */
1326 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1327 		if (mb_head == NULL)
1328 			break;
1329 
1330 		if (fxp_encap(sc, &mb_head)) {
1331 			if (mb_head == NULL)
1332 				break;
1333 			IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
1334 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1335 		}
1336 		txqueued++;
1337 		/*
1338 		 * Pass packet to bpf if there is a listener.
1339 		 */
1340 		BPF_MTAP(ifp, mb_head);
1341 	}
1342 
1343 	/*
1344 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1345 	 * going again if suspended.
1346 	 */
1347 	if (txqueued > 0) {
1348 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1349 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1350 		fxp_scb_wait(sc);
1351 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1352 		/*
1353 		 * Set a 5 second timer just in case we don't hear
1354 		 * from the card again.
1355 		 */
1356 		sc->watchdog_timer = 5;
1357 	}
1358 }
1359 
1360 static int
1361 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1362 {
1363 	struct ifnet *ifp;
1364 	struct mbuf *m;
1365 	struct fxp_tx *txp;
1366 	struct fxp_cb_tx *cbp;
1367 	struct tcphdr *tcp;
1368 	bus_dma_segment_t segs[FXP_NTXSEG];
1369 	int error, i, nseg, tcp_payload;
1370 
1371 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1372 	ifp = sc->ifp;
1373 
1374 	tcp_payload = 0;
1375 	tcp = NULL;
1376 	/*
1377 	 * Get pointer to next available tx desc.
1378 	 */
1379 	txp = sc->fxp_desc.tx_last->tx_next;
1380 
1381 	/*
1382 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1383 	 * Ethernet Controller Family Open Source Software
1384 	 * Developer Manual says:
1385 	 *   Using software parsing is only allowed with legal
1386 	 *   TCP/IP or UDP/IP packets.
1387 	 *   ...
1388 	 *   For all other datagrams, hardware parsing must
1389 	 *   be used.
1390 	 * Software parsing appears to truncate ICMP and
1391 	 * fragmented UDP packets that contain one to three
1392 	 * bytes in the second (and final) mbuf of the packet.
1393 	 */
1394 	if (sc->flags & FXP_FLAG_EXT_RFA)
1395 		txp->tx_cb->ipcb_ip_activation_high =
1396 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1397 
1398 	m = *m_head;
1399 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1400 		/*
1401 		 * 82550/82551 requires ethernet/IP/TCP headers must be
1402 		 * contained in the first active transmit buffer.
1403 		 */
1404 		struct ether_header *eh;
1405 		struct ip *ip;
1406 		uint32_t ip_off, poff;
1407 
1408 		if (M_WRITABLE(*m_head) == 0) {
1409 			/* Get a writable copy. */
1410 			m = m_dup(*m_head, M_DONTWAIT);
1411 			m_freem(*m_head);
1412 			if (m == NULL) {
1413 				*m_head = NULL;
1414 				return (ENOBUFS);
1415 			}
1416 			*m_head = m;
1417 		}
1418 		ip_off = sizeof(struct ether_header);
1419 		m = m_pullup(*m_head, ip_off);
1420 		if (m == NULL) {
1421 			*m_head = NULL;
1422 			return (ENOBUFS);
1423 		}
1424 		eh = mtod(m, struct ether_header *);
1425 		/* Check the existence of VLAN tag. */
1426 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1427 			ip_off = sizeof(struct ether_vlan_header);
1428 			m = m_pullup(m, ip_off);
1429 			if (m == NULL) {
1430 				*m_head = NULL;
1431 				return (ENOBUFS);
1432 			}
1433 		}
1434 		m = m_pullup(m, ip_off + sizeof(struct ip));
1435 		if (m == NULL) {
1436 			*m_head = NULL;
1437 			return (ENOBUFS);
1438 		}
1439 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1440 		poff = ip_off + (ip->ip_hl << 2);
1441 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1442 		if (m == NULL) {
1443 			*m_head = NULL;
1444 			return (ENOBUFS);
1445 		}
1446 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1447 		m = m_pullup(m, poff + sizeof(struct tcphdr) + tcp->th_off);
1448 		if (m == NULL) {
1449 			*m_head = NULL;
1450 			return (ENOBUFS);
1451 		}
1452 
1453 		/*
1454 		 * Since 82550/82551 doesn't modify IP length and pseudo
1455 		 * checksum in the first frame driver should compute it.
1456 		 */
1457 		ip->ip_sum = 0;
1458 		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1459 		    (tcp->th_off << 2));
1460 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1461 		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1462 		    m->m_pkthdr.tso_segsz));
1463 		/* Compute total TCP payload. */
1464 		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1465 		tcp_payload -= tcp->th_off << 2;
1466 		*m_head = m;
1467 	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1468 		/*
1469 		 * Deal with TCP/IP checksum offload. Note that
1470 		 * in order for TCP checksum offload to work,
1471 		 * the pseudo header checksum must have already
1472 		 * been computed and stored in the checksum field
1473 		 * in the TCP header. The stack should have
1474 		 * already done this for us.
1475 		 */
1476 		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1477 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1478 			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1479 
1480 #ifdef FXP_IP_CSUM_WAR
1481 		/*
1482 		 * XXX The 82550 chip appears to have trouble
1483 		 * dealing with IP header checksums in very small
1484 		 * datagrams, namely fragments from 1 to 3 bytes
1485 		 * in size. For example, say you want to transmit
1486 		 * a UDP packet of 1473 bytes. The packet will be
1487 		 * fragmented over two IP datagrams, the latter
1488 		 * containing only one byte of data. The 82550 will
1489 		 * botch the header checksum on the 1-byte fragment.
1490 		 * As long as the datagram contains 4 or more bytes
1491 		 * of data, you're ok.
1492 		 *
1493                  * The following code attempts to work around this
1494 		 * problem: if the datagram is less than 38 bytes
1495 		 * in size (14 bytes ether header, 20 bytes IP header,
1496 		 * plus 4 bytes of data), we punt and compute the IP
1497 		 * header checksum by hand. This workaround doesn't
1498 		 * work very well, however, since it can be fooled
1499 		 * by things like VLAN tags and IP options that make
1500 		 * the header sizes/offsets vary.
1501 		 */
1502 
1503 		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1504 			if (m->m_pkthdr.len < 38) {
1505 				struct ip *ip;
1506 				m->m_data += ETHER_HDR_LEN;
1507 				ip = mtod(m, struct ip *);
1508 				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1509 				m->m_data -= ETHER_HDR_LEN;
1510 				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1511 			} else {
1512 				txp->tx_cb->ipcb_ip_activation_high =
1513 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1514 				txp->tx_cb->ipcb_ip_schedule |=
1515 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1516 			}
1517 		}
1518 #endif
1519 	}
1520 
1521 	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1522 	    segs, &nseg, 0);
1523 	if (error == EFBIG) {
1524 		m = m_collapse(*m_head, M_DONTWAIT, sc->maxtxseg);
1525 		if (m == NULL) {
1526 			m_freem(*m_head);
1527 			*m_head = NULL;
1528 			return (ENOMEM);
1529 		}
1530 		*m_head = m;
1531 		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1532 	    	    *m_head, segs, &nseg, 0);
1533 		if (error != 0) {
1534 			m_freem(*m_head);
1535 			*m_head = NULL;
1536 			return (ENOMEM);
1537 		}
1538 	} else if (error != 0)
1539 		return (error);
1540 	if (nseg == 0) {
1541 		m_freem(*m_head);
1542 		*m_head = NULL;
1543 		return (EIO);
1544 	}
1545 
1546 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1547 	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1548 
1549 	cbp = txp->tx_cb;
1550 	for (i = 0; i < nseg; i++) {
1551 		/*
1552 		 * If this is an 82550/82551, then we're using extended
1553 		 * TxCBs _and_ we're using checksum offload. This means
1554 		 * that the TxCB is really an IPCB. One major difference
1555 		 * between the two is that with plain extended TxCBs,
1556 		 * the bottom half of the TxCB contains two entries from
1557 		 * the TBD array, whereas IPCBs contain just one entry:
1558 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1559 		 * checksum offload control bits. So to make things work
1560 		 * right, we have to start filling in the TBD array
1561 		 * starting from a different place depending on whether
1562 		 * the chip is an 82550/82551 or not.
1563 		 */
1564 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1565 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1566 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1567 		} else {
1568 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1569 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1570 		}
1571 	}
1572 	if (sc->flags & FXP_FLAG_EXT_RFA) {
1573 		/* Configure dynamic TBD for 82550/82551. */
1574 		cbp->tbd_number = 0xFF;
1575 		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1576 	} else
1577 		cbp->tbd_number = nseg;
1578 	/* Configure TSO. */
1579 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1580 		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1581 		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1582 		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1583 		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1584 		    FXP_IPCB_TCP_PACKET |
1585 		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1586 	}
1587 	/* Configure VLAN hardware tag insertion. */
1588 	if ((m->m_flags & M_VLANTAG) != 0) {
1589 		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1590 		txp->tx_cb->ipcb_ip_activation_high |=
1591 		    FXP_IPCB_INSERTVLAN_ENABLE;
1592 	}
1593 
1594 	txp->tx_mbuf = m;
1595 	txp->tx_cb->cb_status = 0;
1596 	txp->tx_cb->byte_count = 0;
1597 	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1598 		txp->tx_cb->cb_command =
1599 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1600 		    FXP_CB_COMMAND_S);
1601 	else
1602 		txp->tx_cb->cb_command =
1603 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1604 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1605 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1606 		txp->tx_cb->tx_threshold = tx_threshold;
1607 
1608 	/*
1609 	 * Advance the end of list forward.
1610 	 */
1611 
1612 #ifdef __alpha__
1613 	/*
1614 	 * On platforms which can't access memory in 16-bit
1615 	 * granularities, we must prevent the card from DMA'ing
1616 	 * up the status while we update the command field.
1617 	 * This could cause us to overwrite the completion status.
1618 	 * XXX This is probably bogus and we're _not_ looking
1619 	 * for atomicity here.
1620 	 */
1621 	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1622 	    htole16(FXP_CB_COMMAND_S));
1623 #else
1624 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1625 #endif /*__alpha__*/
1626 	sc->fxp_desc.tx_last = txp;
1627 
1628 	/*
1629 	 * Advance the beginning of the list forward if there are
1630 	 * no other packets queued (when nothing is queued, tx_first
1631 	 * sits on the last TxCB that was sent out).
1632 	 */
1633 	if (sc->tx_queued == 0)
1634 		sc->fxp_desc.tx_first = txp;
1635 
1636 	sc->tx_queued++;
1637 
1638 	return (0);
1639 }
1640 
1641 #ifdef DEVICE_POLLING
1642 static poll_handler_t fxp_poll;
1643 
1644 static int
1645 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1646 {
1647 	struct fxp_softc *sc = ifp->if_softc;
1648 	uint8_t statack;
1649 	int rx_npkts = 0;
1650 
1651 	FXP_LOCK(sc);
1652 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1653 		FXP_UNLOCK(sc);
1654 		return (rx_npkts);
1655 	}
1656 
1657 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1658 	    FXP_SCB_STATACK_FR;
1659 	if (cmd == POLL_AND_CHECK_STATUS) {
1660 		uint8_t tmp;
1661 
1662 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1663 		if (tmp == 0xff || tmp == 0) {
1664 			FXP_UNLOCK(sc);
1665 			return (rx_npkts); /* nothing to do */
1666 		}
1667 		tmp &= ~statack;
1668 		/* ack what we can */
1669 		if (tmp != 0)
1670 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1671 		statack |= tmp;
1672 	}
1673 	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1674 	FXP_UNLOCK(sc);
1675 	return (rx_npkts);
1676 }
1677 #endif /* DEVICE_POLLING */
1678 
1679 /*
1680  * Process interface interrupts.
1681  */
1682 static void
1683 fxp_intr(void *xsc)
1684 {
1685 	struct fxp_softc *sc = xsc;
1686 	struct ifnet *ifp = sc->ifp;
1687 	uint8_t statack;
1688 
1689 	FXP_LOCK(sc);
1690 	if (sc->suspended) {
1691 		FXP_UNLOCK(sc);
1692 		return;
1693 	}
1694 
1695 #ifdef DEVICE_POLLING
1696 	if (ifp->if_capenable & IFCAP_POLLING) {
1697 		FXP_UNLOCK(sc);
1698 		return;
1699 	}
1700 #endif
1701 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1702 		/*
1703 		 * It should not be possible to have all bits set; the
1704 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1705 		 * all bits are set, this may indicate that the card has
1706 		 * been physically ejected, so ignore it.
1707 		 */
1708 		if (statack == 0xff) {
1709 			FXP_UNLOCK(sc);
1710 			return;
1711 		}
1712 
1713 		/*
1714 		 * First ACK all the interrupts in this pass.
1715 		 */
1716 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1717 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1718 			fxp_intr_body(sc, ifp, statack, -1);
1719 	}
1720 	FXP_UNLOCK(sc);
1721 }
1722 
1723 static void
1724 fxp_txeof(struct fxp_softc *sc)
1725 {
1726 	struct ifnet *ifp;
1727 	struct fxp_tx *txp;
1728 
1729 	ifp = sc->ifp;
1730 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1731 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1732 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1733 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1734 	    txp = txp->tx_next) {
1735 		if (txp->tx_mbuf != NULL) {
1736 			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1737 			    BUS_DMASYNC_POSTWRITE);
1738 			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1739 			m_freem(txp->tx_mbuf);
1740 			txp->tx_mbuf = NULL;
1741 			/* clear this to reset csum offload bits */
1742 			txp->tx_cb->tbd[0].tb_addr = 0;
1743 		}
1744 		sc->tx_queued--;
1745 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1746 	}
1747 	sc->fxp_desc.tx_first = txp;
1748 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1749 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1750 	if (sc->tx_queued == 0)
1751 		sc->watchdog_timer = 0;
1752 }
1753 
1754 static void
1755 fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m,
1756     uint16_t status, int pos)
1757 {
1758 	struct ether_header *eh;
1759 	struct ip *ip;
1760 	struct udphdr *uh;
1761 	int32_t hlen, len, pktlen, temp32;
1762 	uint16_t csum, *opts;
1763 
1764 	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1765 		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1766 			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1767 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1768 			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1769 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1770 			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1771 			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1772 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1773 				    CSUM_PSEUDO_HDR;
1774 				m->m_pkthdr.csum_data = 0xffff;
1775 			}
1776 		}
1777 		return;
1778 	}
1779 
1780 	pktlen = m->m_pkthdr.len;
1781 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1782 		return;
1783 	eh = mtod(m, struct ether_header *);
1784 	if (eh->ether_type != htons(ETHERTYPE_IP))
1785 		return;
1786 	ip = (struct ip *)(eh + 1);
1787 	if (ip->ip_v != IPVERSION)
1788 		return;
1789 
1790 	hlen = ip->ip_hl << 2;
1791 	pktlen -= sizeof(struct ether_header);
1792 	if (hlen < sizeof(struct ip))
1793 		return;
1794 	if (ntohs(ip->ip_len) < hlen)
1795 		return;
1796 	if (ntohs(ip->ip_len) != pktlen)
1797 		return;
1798 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1799 		return;	/* can't handle fragmented packet */
1800 
1801 	switch (ip->ip_p) {
1802 	case IPPROTO_TCP:
1803 		if (pktlen < (hlen + sizeof(struct tcphdr)))
1804 			return;
1805 		break;
1806 	case IPPROTO_UDP:
1807 		if (pktlen < (hlen + sizeof(struct udphdr)))
1808 			return;
1809 		uh = (struct udphdr *)((caddr_t)ip + hlen);
1810 		if (uh->uh_sum == 0)
1811 			return; /* no checksum */
1812 		break;
1813 	default:
1814 		return;
1815 	}
1816 	/* Extract computed checksum. */
1817 	csum = be16dec(mtod(m, char *) + pos);
1818 	/* checksum fixup for IP options */
1819 	len = hlen - sizeof(struct ip);
1820 	if (len > 0) {
1821 		opts = (uint16_t *)(ip + 1);
1822 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1823 			temp32 = csum - *opts;
1824 			temp32 = (temp32 >> 16) + (temp32 & 65535);
1825 			csum = temp32 & 65535;
1826 		}
1827 	}
1828 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1829 	m->m_pkthdr.csum_data = csum;
1830 }
1831 
1832 static int
1833 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1834     int count)
1835 {
1836 	struct mbuf *m;
1837 	struct fxp_rx *rxp;
1838 	struct fxp_rfa *rfa;
1839 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1840 	int rx_npkts;
1841 	uint16_t status;
1842 
1843 	rx_npkts = 0;
1844 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1845 
1846 	if (rnr)
1847 		sc->rnr++;
1848 #ifdef DEVICE_POLLING
1849 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1850 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1851 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1852 		rnr = 1;
1853 	}
1854 #endif
1855 
1856 	/*
1857 	 * Free any finished transmit mbuf chains.
1858 	 *
1859 	 * Handle the CNA event likt a CXTNO event. It used to
1860 	 * be that this event (control unit not ready) was not
1861 	 * encountered, but it is now with the SMPng modifications.
1862 	 * The exact sequence of events that occur when the interface
1863 	 * is brought up are different now, and if this event
1864 	 * goes unhandled, the configuration/rxfilter setup sequence
1865 	 * can stall for several seconds. The result is that no
1866 	 * packets go out onto the wire for about 5 to 10 seconds
1867 	 * after the interface is ifconfig'ed for the first time.
1868 	 */
1869 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1870 		fxp_txeof(sc);
1871 
1872 	/*
1873 	 * Try to start more packets transmitting.
1874 	 */
1875 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1876 		fxp_start_body(ifp);
1877 
1878 	/*
1879 	 * Just return if nothing happened on the receive side.
1880 	 */
1881 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1882 		return (rx_npkts);
1883 
1884 	/*
1885 	 * Process receiver interrupts. If a no-resource (RNR)
1886 	 * condition exists, get whatever packets we can and
1887 	 * re-start the receiver.
1888 	 *
1889 	 * When using polling, we do not process the list to completion,
1890 	 * so when we get an RNR interrupt we must defer the restart
1891 	 * until we hit the last buffer with the C bit set.
1892 	 * If we run out of cycles and rfa_headm has the C bit set,
1893 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1894 	 * that the info will be used in the subsequent polling cycle.
1895 	 */
1896 	for (;;) {
1897 		rxp = sc->fxp_desc.rx_head;
1898 		m = rxp->rx_mbuf;
1899 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1900 		    RFA_ALIGNMENT_FUDGE);
1901 		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1902 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1903 
1904 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1905 		if (count >= 0 && count-- == 0) {
1906 			if (rnr) {
1907 				/* Defer RNR processing until the next time. */
1908 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1909 				rnr = 0;
1910 			}
1911 			break;
1912 		}
1913 #endif /* DEVICE_POLLING */
1914 
1915 		status = le16toh(rfa->rfa_status);
1916 		if ((status & FXP_RFA_STATUS_C) == 0)
1917 			break;
1918 
1919 		if ((status & FXP_RFA_STATUS_RNR) != 0)
1920 			rnr++;
1921 		/*
1922 		 * Advance head forward.
1923 		 */
1924 		sc->fxp_desc.rx_head = rxp->rx_next;
1925 
1926 		/*
1927 		 * Add a new buffer to the receive chain.
1928 		 * If this fails, the old buffer is recycled
1929 		 * instead.
1930 		 */
1931 		if (fxp_new_rfabuf(sc, rxp) == 0) {
1932 			int total_len;
1933 
1934 			/*
1935 			 * Fetch packet length (the top 2 bits of
1936 			 * actual_size are flags set by the controller
1937 			 * upon completion), and drop the packet in case
1938 			 * of bogus length or CRC errors.
1939 			 */
1940 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1941 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1942 			    (ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1943 				/* Adjust for appended checksum bytes. */
1944 				total_len -= 2;
1945 			}
1946 			if (total_len < sizeof(struct ether_header) ||
1947 			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1948 			    sc->rfa_size) ||
1949 			    status & (FXP_RFA_STATUS_CRC |
1950 			    FXP_RFA_STATUS_ALIGN)) {
1951 				m_freem(m);
1952 				fxp_add_rfabuf(sc, rxp);
1953 				continue;
1954 			}
1955 
1956 			m->m_pkthdr.len = m->m_len = total_len;
1957 			m->m_pkthdr.rcvif = ifp;
1958 
1959                         /* Do IP checksum checking. */
1960 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1961 				fxp_rxcsum(sc, ifp, m, status, total_len);
1962 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1963 			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1964 				m->m_pkthdr.ether_vtag =
1965 				    ntohs(rfa->rfax_vlan_id);
1966 				m->m_flags |= M_VLANTAG;
1967 			}
1968 			/*
1969 			 * Drop locks before calling if_input() since it
1970 			 * may re-enter fxp_start() in the netisr case.
1971 			 * This would result in a lock reversal.  Better
1972 			 * performance might be obtained by chaining all
1973 			 * packets received, dropping the lock, and then
1974 			 * calling if_input() on each one.
1975 			 */
1976 			FXP_UNLOCK(sc);
1977 			(*ifp->if_input)(ifp, m);
1978 			FXP_LOCK(sc);
1979 			rx_npkts++;
1980 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1981 				return (rx_npkts);
1982 		} else {
1983 			/* Reuse RFA and loaded DMA map. */
1984 			ifp->if_iqdrops++;
1985 			fxp_discard_rfabuf(sc, rxp);
1986 		}
1987 		fxp_add_rfabuf(sc, rxp);
1988 	}
1989 	if (rnr) {
1990 		fxp_scb_wait(sc);
1991 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1992 		    sc->fxp_desc.rx_head->rx_addr);
1993 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1994 	}
1995 	return (rx_npkts);
1996 }
1997 
1998 static void
1999 fxp_update_stats(struct fxp_softc *sc)
2000 {
2001 	struct ifnet *ifp = sc->ifp;
2002 	struct fxp_stats *sp = sc->fxp_stats;
2003 	struct fxp_hwstats *hsp;
2004 	uint32_t *status;
2005 
2006 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2007 
2008 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2009 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2010 	/* Update statistical counters. */
2011 	if (sc->revision >= FXP_REV_82559_A0)
2012 		status = &sp->completion_status;
2013 	else if (sc->revision >= FXP_REV_82558_A4)
2014 		status = (uint32_t *)&sp->tx_tco;
2015 	else
2016 		status = &sp->tx_pause;
2017 	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2018 		hsp = &sc->fxp_hwstats;
2019 		hsp->tx_good += le32toh(sp->tx_good);
2020 		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2021 		hsp->tx_latecols += le32toh(sp->tx_latecols);
2022 		hsp->tx_underruns += le32toh(sp->tx_underruns);
2023 		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2024 		hsp->tx_deffered += le32toh(sp->tx_deffered);
2025 		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2026 		hsp->tx_multiple_collisions +=
2027 		    le32toh(sp->tx_multiple_collisions);
2028 		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2029 		hsp->rx_good += le32toh(sp->rx_good);
2030 		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2031 		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2032 		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2033 		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2034 		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2035 		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2036 		hsp->tx_pause += le32toh(sp->tx_pause);
2037 		hsp->rx_pause += le32toh(sp->rx_pause);
2038 		hsp->rx_controls += le32toh(sp->rx_controls);
2039 		hsp->tx_tco += le16toh(sp->tx_tco);
2040 		hsp->rx_tco += le16toh(sp->rx_tco);
2041 
2042 		ifp->if_opackets += le32toh(sp->tx_good);
2043 		ifp->if_collisions += le32toh(sp->tx_total_collisions);
2044 		if (sp->rx_good) {
2045 			ifp->if_ipackets += le32toh(sp->rx_good);
2046 			sc->rx_idle_secs = 0;
2047 		} else if (sc->flags & FXP_FLAG_RXBUG) {
2048 			/*
2049 			 * Receiver's been idle for another second.
2050 			 */
2051 			sc->rx_idle_secs++;
2052 		}
2053 		ifp->if_ierrors +=
2054 		    le32toh(sp->rx_crc_errors) +
2055 		    le32toh(sp->rx_alignment_errors) +
2056 		    le32toh(sp->rx_rnr_errors) +
2057 		    le32toh(sp->rx_overrun_errors);
2058 		/*
2059 		 * If any transmit underruns occured, bump up the transmit
2060 		 * threshold by another 512 bytes (64 * 8).
2061 		 */
2062 		if (sp->tx_underruns) {
2063 			ifp->if_oerrors += le32toh(sp->tx_underruns);
2064 			if (tx_threshold < 192)
2065 				tx_threshold += 64;
2066 		}
2067 		*status = 0;
2068 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2069 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2070 	}
2071 }
2072 
2073 /*
2074  * Update packet in/out/collision statistics. The i82557 doesn't
2075  * allow you to access these counters without doing a fairly
2076  * expensive DMA to get _all_ of the statistics it maintains, so
2077  * we do this operation here only once per second. The statistics
2078  * counters in the kernel are updated from the previous dump-stats
2079  * DMA and then a new dump-stats DMA is started. The on-chip
2080  * counters are zeroed when the DMA completes. If we can't start
2081  * the DMA immediately, we don't wait - we just prepare to read
2082  * them again next time.
2083  */
2084 static void
2085 fxp_tick(void *xsc)
2086 {
2087 	struct fxp_softc *sc = xsc;
2088 	struct ifnet *ifp = sc->ifp;
2089 
2090 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2091 
2092 	/* Update statistical counters. */
2093 	fxp_update_stats(sc);
2094 
2095 	/*
2096 	 * Release any xmit buffers that have completed DMA. This isn't
2097 	 * strictly necessary to do here, but it's advantagous for mbufs
2098 	 * with external storage to be released in a timely manner rather
2099 	 * than being defered for a potentially long time. This limits
2100 	 * the delay to a maximum of one second.
2101 	 */
2102 	fxp_txeof(sc);
2103 
2104 	/*
2105 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2106 	 * then assume the receiver has locked up and attempt to clear
2107 	 * the condition by reprogramming the multicast filter. This is
2108 	 * a work-around for a bug in the 82557 where the receiver locks
2109 	 * up if it gets certain types of garbage in the syncronization
2110 	 * bits prior to the packet header. This bug is supposed to only
2111 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2112 	 * mode as well (perhaps due to a 10/100 speed transition).
2113 	 */
2114 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2115 		sc->rx_idle_secs = 0;
2116 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2117 			fxp_init_body(sc);
2118 		return;
2119 	}
2120 	/*
2121 	 * If there is no pending command, start another stats
2122 	 * dump. Otherwise punt for now.
2123 	 */
2124 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2125 		/*
2126 		 * Start another stats dump.
2127 		 */
2128 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2129 	}
2130 	if (sc->miibus != NULL)
2131 		mii_tick(device_get_softc(sc->miibus));
2132 
2133 	/*
2134 	 * Check that chip hasn't hung.
2135 	 */
2136 	fxp_watchdog(sc);
2137 
2138 	/*
2139 	 * Schedule another timeout one second from now.
2140 	 */
2141 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2142 }
2143 
2144 /*
2145  * Stop the interface. Cancels the statistics updater and resets
2146  * the interface.
2147  */
2148 static void
2149 fxp_stop(struct fxp_softc *sc)
2150 {
2151 	struct ifnet *ifp = sc->ifp;
2152 	struct fxp_tx *txp;
2153 	int i;
2154 
2155 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2156 	sc->watchdog_timer = 0;
2157 
2158 	/*
2159 	 * Cancel stats updater.
2160 	 */
2161 	callout_stop(&sc->stat_ch);
2162 
2163 	/*
2164 	 * Preserve PCI configuration, configure, IA/multicast
2165 	 * setup and put RU and CU into idle state.
2166 	 */
2167 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2168 	DELAY(50);
2169 	/* Disable interrupts. */
2170 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2171 
2172 	fxp_update_stats(sc);
2173 
2174 	/*
2175 	 * Release any xmit buffers.
2176 	 */
2177 	txp = sc->fxp_desc.tx_list;
2178 	if (txp != NULL) {
2179 		for (i = 0; i < FXP_NTXCB; i++) {
2180  			if (txp[i].tx_mbuf != NULL) {
2181 				bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2182 				    BUS_DMASYNC_POSTWRITE);
2183 				bus_dmamap_unload(sc->fxp_txmtag,
2184 				    txp[i].tx_map);
2185 				m_freem(txp[i].tx_mbuf);
2186 				txp[i].tx_mbuf = NULL;
2187 				/* clear this to reset csum offload bits */
2188 				txp[i].tx_cb->tbd[0].tb_addr = 0;
2189 			}
2190 		}
2191 	}
2192 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2193 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2194 	sc->tx_queued = 0;
2195 }
2196 
2197 /*
2198  * Watchdog/transmission transmit timeout handler. Called when a
2199  * transmission is started on the interface, but no interrupt is
2200  * received before the timeout. This usually indicates that the
2201  * card has wedged for some reason.
2202  */
2203 static void
2204 fxp_watchdog(struct fxp_softc *sc)
2205 {
2206 
2207 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2208 
2209 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2210 		return;
2211 
2212 	device_printf(sc->dev, "device timeout\n");
2213 	sc->ifp->if_oerrors++;
2214 
2215 	fxp_init_body(sc);
2216 }
2217 
2218 /*
2219  * Acquire locks and then call the real initialization function.  This
2220  * is necessary because ether_ioctl() calls if_init() and this would
2221  * result in mutex recursion if the mutex was held.
2222  */
2223 static void
2224 fxp_init(void *xsc)
2225 {
2226 	struct fxp_softc *sc = xsc;
2227 
2228 	FXP_LOCK(sc);
2229 	fxp_init_body(sc);
2230 	FXP_UNLOCK(sc);
2231 }
2232 
2233 /*
2234  * Perform device initialization. This routine must be called with the
2235  * softc lock held.
2236  */
2237 static void
2238 fxp_init_body(struct fxp_softc *sc)
2239 {
2240 	struct ifnet *ifp = sc->ifp;
2241 	struct fxp_cb_config *cbp;
2242 	struct fxp_cb_ias *cb_ias;
2243 	struct fxp_cb_tx *tcbp;
2244 	struct fxp_tx *txp;
2245 	int i, prm;
2246 
2247 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2248 	/*
2249 	 * Cancel any pending I/O
2250 	 */
2251 	fxp_stop(sc);
2252 
2253 	/*
2254 	 * Issue software reset, which also unloads the microcode.
2255 	 */
2256 	sc->flags &= ~FXP_FLAG_UCODE;
2257 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2258 	DELAY(50);
2259 
2260 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2261 
2262 	/*
2263 	 * Initialize base of CBL and RFA memory. Loading with zero
2264 	 * sets it up for regular linear addressing.
2265 	 */
2266 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2267 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2268 
2269 	fxp_scb_wait(sc);
2270 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2271 
2272 	/*
2273 	 * Initialize base of dump-stats buffer.
2274 	 */
2275 	fxp_scb_wait(sc);
2276 	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2277 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2278 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2279 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2280 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2281 
2282 	/*
2283 	 * Attempt to load microcode if requested.
2284 	 * For ICH based controllers do not load microcode.
2285 	 */
2286 	if (sc->ident->ich == 0) {
2287 		if (ifp->if_flags & IFF_LINK0 &&
2288 		    (sc->flags & FXP_FLAG_UCODE) == 0)
2289 			fxp_load_ucode(sc);
2290 	}
2291 
2292 	/*
2293 	 * Set IFF_ALLMULTI status. It's needed in configure action
2294 	 * command.
2295 	 */
2296 	fxp_mc_addrs(sc);
2297 
2298 	/*
2299 	 * We temporarily use memory that contains the TxCB list to
2300 	 * construct the config CB. The TxCB list memory is rebuilt
2301 	 * later.
2302 	 */
2303 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2304 
2305 	/*
2306 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2307 	 * zero and must be one bits in this structure and this is the easiest
2308 	 * way to initialize them all to proper values.
2309 	 */
2310 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2311 
2312 	cbp->cb_status =	0;
2313 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2314 	    FXP_CB_COMMAND_EL);
2315 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2316 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2317 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2318 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2319 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2320 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2321 	cbp->type_enable =	0;	/* actually reserved */
2322 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2323 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2324 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2325 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2326 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2327 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2328 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2329 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2330 	cbp->ci_int =		1;	/* interrupt on CU idle */
2331 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2332 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2333 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2334 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2335 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2336 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2337 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2338 	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2339 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2340 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2341 	cbp->csma_dis =		0;	/* (don't) disable link */
2342 	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2343 	    (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0;
2344 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2345 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2346 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2347 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2348 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2349 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2350 	cbp->loopback =		0;	/* (don't) loopback */
2351 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2352 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2353 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2354 	cbp->promiscuous =	prm;	/* promiscuous mode */
2355 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2356 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2357 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2358 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2359 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2360 
2361 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2362 	cbp->padding =		1;	/* (do) pad short tx packets */
2363 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2364 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2365 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2366 	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2367 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2368 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2369 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2370 	cbp->mc_all =		ifp->if_flags & IFF_ALLMULTI ? 1 : prm;
2371 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2372 	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2373 	    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2374 
2375 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2376 		/*
2377 		 * The 82557 has no hardware flow control, the values
2378 		 * below are the defaults for the chip.
2379 		 */
2380 		cbp->fc_delay_lsb =	0;
2381 		cbp->fc_delay_msb =	0x40;
2382 		cbp->pri_fc_thresh =	3;
2383 		cbp->tx_fc_dis =	0;
2384 		cbp->rx_fc_restop =	0;
2385 		cbp->rx_fc_restart =	0;
2386 		cbp->fc_filter =	0;
2387 		cbp->pri_fc_loc =	1;
2388 	} else {
2389 		cbp->fc_delay_lsb =	0x1f;
2390 		cbp->fc_delay_msb =	0x01;
2391 		cbp->pri_fc_thresh =	3;
2392 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2393 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2394 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2395 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2396 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2397 	}
2398 
2399 	/* Enable 82558 and 82559 extended statistics functionality. */
2400 	if (sc->revision >= FXP_REV_82558_A4) {
2401 		if (sc->revision >= FXP_REV_82559_A0) {
2402 			/*
2403 			 * Extend configuration table size to 32
2404 			 * to include TCO configuration.
2405 			 */
2406 			cbp->byte_count = 32;
2407 			cbp->ext_stats_dis = 1;
2408 			/* Enable TCO stats. */
2409 			cbp->tno_int_or_tco_en = 1;
2410 			cbp->gamla_rx = 1;
2411 		} else
2412 			cbp->ext_stats_dis = 0;
2413 	}
2414 
2415 	/*
2416 	 * Start the config command/DMA.
2417 	 */
2418 	fxp_scb_wait(sc);
2419 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2420 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2421 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2422 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2423 	/* ...and wait for it to complete. */
2424 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2425 
2426 	/*
2427 	 * Now initialize the station address. Temporarily use the TxCB
2428 	 * memory area like we did above for the config CB.
2429 	 */
2430 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2431 	cb_ias->cb_status = 0;
2432 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2433 	cb_ias->link_addr = 0xffffffff;
2434 	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2435 
2436 	/*
2437 	 * Start the IAS (Individual Address Setup) command/DMA.
2438 	 */
2439 	fxp_scb_wait(sc);
2440 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2441 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2442 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2443 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2444 	/* ...and wait for it to complete. */
2445 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2446 
2447 	/*
2448 	 * Initialize the multicast address list.
2449 	 */
2450 	fxp_mc_setup(sc);
2451 
2452 	/*
2453 	 * Initialize transmit control block (TxCB) list.
2454 	 */
2455 	txp = sc->fxp_desc.tx_list;
2456 	tcbp = sc->fxp_desc.cbl_list;
2457 	bzero(tcbp, FXP_TXCB_SZ);
2458 	for (i = 0; i < FXP_NTXCB; i++) {
2459 		txp[i].tx_mbuf = NULL;
2460 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2461 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2462 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2463 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2464 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2465 			tcbp[i].tbd_array_addr =
2466 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2467 		else
2468 			tcbp[i].tbd_array_addr =
2469 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2470 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2471 	}
2472 	/*
2473 	 * Set the suspend flag on the first TxCB and start the control
2474 	 * unit. It will execute the NOP and then suspend.
2475 	 */
2476 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2477 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2478 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2479 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2480 	sc->tx_queued = 1;
2481 
2482 	fxp_scb_wait(sc);
2483 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2484 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2485 
2486 	/*
2487 	 * Initialize receiver buffer area - RFA.
2488 	 */
2489 	fxp_scb_wait(sc);
2490 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2491 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2492 
2493 	/*
2494 	 * Set current media.
2495 	 */
2496 	if (sc->miibus != NULL)
2497 		mii_mediachg(device_get_softc(sc->miibus));
2498 
2499 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2500 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2501 
2502 	/*
2503 	 * Enable interrupts.
2504 	 */
2505 #ifdef DEVICE_POLLING
2506 	/*
2507 	 * ... but only do that if we are not polling. And because (presumably)
2508 	 * the default is interrupts on, we need to disable them explicitly!
2509 	 */
2510 	if (ifp->if_capenable & IFCAP_POLLING )
2511 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2512 	else
2513 #endif /* DEVICE_POLLING */
2514 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2515 
2516 	/*
2517 	 * Start stats updater.
2518 	 */
2519 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2520 }
2521 
2522 static int
2523 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2524 {
2525 
2526 	return (0);
2527 }
2528 
2529 static void
2530 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2531 {
2532 
2533 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2534 }
2535 
2536 /*
2537  * Change media according to request.
2538  */
2539 static int
2540 fxp_ifmedia_upd(struct ifnet *ifp)
2541 {
2542 	struct fxp_softc *sc = ifp->if_softc;
2543 	struct mii_data *mii;
2544 
2545 	mii = device_get_softc(sc->miibus);
2546 	FXP_LOCK(sc);
2547 	if (mii->mii_instance) {
2548 		struct mii_softc	*miisc;
2549 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2550 			mii_phy_reset(miisc);
2551 	}
2552 	mii_mediachg(mii);
2553 	FXP_UNLOCK(sc);
2554 	return (0);
2555 }
2556 
2557 /*
2558  * Notify the world which media we're using.
2559  */
2560 static void
2561 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2562 {
2563 	struct fxp_softc *sc = ifp->if_softc;
2564 	struct mii_data *mii;
2565 
2566 	mii = device_get_softc(sc->miibus);
2567 	FXP_LOCK(sc);
2568 	mii_pollstat(mii);
2569 	ifmr->ifm_active = mii->mii_media_active;
2570 	ifmr->ifm_status = mii->mii_media_status;
2571 
2572 	if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T &&
2573 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2574 		sc->cu_resume_bug = 1;
2575 	else
2576 		sc->cu_resume_bug = 0;
2577 	FXP_UNLOCK(sc);
2578 }
2579 
2580 /*
2581  * Add a buffer to the end of the RFA buffer list.
2582  * Return 0 if successful, 1 for failure. A failure results in
2583  * reusing the RFA buffer.
2584  * The RFA struct is stuck at the beginning of mbuf cluster and the
2585  * data pointer is fixed up to point just past it.
2586  */
2587 static int
2588 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2589 {
2590 	struct mbuf *m;
2591 	struct fxp_rfa *rfa;
2592 	bus_dmamap_t tmp_map;
2593 	int error;
2594 
2595 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2596 	if (m == NULL)
2597 		return (ENOBUFS);
2598 
2599 	/*
2600 	 * Move the data pointer up so that the incoming data packet
2601 	 * will be 32-bit aligned.
2602 	 */
2603 	m->m_data += RFA_ALIGNMENT_FUDGE;
2604 
2605 	/*
2606 	 * Get a pointer to the base of the mbuf cluster and move
2607 	 * data start past it.
2608 	 */
2609 	rfa = mtod(m, struct fxp_rfa *);
2610 	m->m_data += sc->rfa_size;
2611 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2612 
2613 	rfa->rfa_status = 0;
2614 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2615 	rfa->actual_size = 0;
2616 	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2617 	    sc->rfa_size;
2618 
2619 	/*
2620 	 * Initialize the rest of the RFA.  Note that since the RFA
2621 	 * is misaligned, we cannot store values directly.  We're thus
2622 	 * using the le32enc() function which handles endianness and
2623 	 * is also alignment-safe.
2624 	 */
2625 	le32enc(&rfa->link_addr, 0xffffffff);
2626 	le32enc(&rfa->rbd_addr, 0xffffffff);
2627 
2628 	/* Map the RFA into DMA memory. */
2629 	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2630 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2631 	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2632 	if (error) {
2633 		m_freem(m);
2634 		return (error);
2635 	}
2636 
2637 	if (rxp->rx_mbuf != NULL)
2638 		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2639 	tmp_map = sc->spare_map;
2640 	sc->spare_map = rxp->rx_map;
2641 	rxp->rx_map = tmp_map;
2642 	rxp->rx_mbuf = m;
2643 
2644 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2645 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2646 	return (0);
2647 }
2648 
2649 static void
2650 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2651 {
2652 	struct fxp_rfa *p_rfa;
2653 	struct fxp_rx *p_rx;
2654 
2655 	/*
2656 	 * If there are other buffers already on the list, attach this
2657 	 * one to the end by fixing up the tail to point to this one.
2658 	 */
2659 	if (sc->fxp_desc.rx_head != NULL) {
2660 		p_rx = sc->fxp_desc.rx_tail;
2661 		p_rfa = (struct fxp_rfa *)
2662 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2663 		p_rx->rx_next = rxp;
2664 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2665 		p_rfa->rfa_control = 0;
2666 		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2667 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2668 	} else {
2669 		rxp->rx_next = NULL;
2670 		sc->fxp_desc.rx_head = rxp;
2671 	}
2672 	sc->fxp_desc.rx_tail = rxp;
2673 }
2674 
2675 static void
2676 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2677 {
2678 	struct mbuf *m;
2679 	struct fxp_rfa *rfa;
2680 
2681 	m = rxp->rx_mbuf;
2682 	m->m_data = m->m_ext.ext_buf;
2683 	/*
2684 	 * Move the data pointer up so that the incoming data packet
2685 	 * will be 32-bit aligned.
2686 	 */
2687 	m->m_data += RFA_ALIGNMENT_FUDGE;
2688 
2689 	/*
2690 	 * Get a pointer to the base of the mbuf cluster and move
2691 	 * data start past it.
2692 	 */
2693 	rfa = mtod(m, struct fxp_rfa *);
2694 	m->m_data += sc->rfa_size;
2695 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2696 
2697 	rfa->rfa_status = 0;
2698 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2699 	rfa->actual_size = 0;
2700 
2701 	/*
2702 	 * Initialize the rest of the RFA.  Note that since the RFA
2703 	 * is misaligned, we cannot store values directly.  We're thus
2704 	 * using the le32enc() function which handles endianness and
2705 	 * is also alignment-safe.
2706 	 */
2707 	le32enc(&rfa->link_addr, 0xffffffff);
2708 	le32enc(&rfa->rbd_addr, 0xffffffff);
2709 
2710 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2711 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2712 }
2713 
2714 static int
2715 fxp_miibus_readreg(device_t dev, int phy, int reg)
2716 {
2717 	struct fxp_softc *sc = device_get_softc(dev);
2718 	int count = 10000;
2719 	int value;
2720 
2721 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2722 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2723 
2724 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2725 	    && count--)
2726 		DELAY(10);
2727 
2728 	if (count <= 0)
2729 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2730 
2731 	return (value & 0xffff);
2732 }
2733 
2734 static int
2735 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2736 {
2737 	struct fxp_softc *sc = device_get_softc(dev);
2738 	int count = 10000;
2739 
2740 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2741 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2742 	    (value & 0xffff));
2743 
2744 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2745 	    count--)
2746 		DELAY(10);
2747 
2748 	if (count <= 0)
2749 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2750 	return (0);
2751 }
2752 
2753 static int
2754 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2755 {
2756 	struct fxp_softc *sc = ifp->if_softc;
2757 	struct ifreq *ifr = (struct ifreq *)data;
2758 	struct mii_data *mii;
2759 	int flag, mask, error = 0, reinit;
2760 
2761 	switch (command) {
2762 	case SIOCSIFFLAGS:
2763 		FXP_LOCK(sc);
2764 		/*
2765 		 * If interface is marked up and not running, then start it.
2766 		 * If it is marked down and running, stop it.
2767 		 * XXX If it's up then re-initialize it. This is so flags
2768 		 * such as IFF_PROMISC are handled.
2769 		 */
2770 		if (ifp->if_flags & IFF_UP) {
2771 			if (((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) &&
2772 			    ((ifp->if_flags ^ sc->if_flags) &
2773 			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0)
2774 				fxp_init_body(sc);
2775 			else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2776 				fxp_init_body(sc);
2777 		} else {
2778 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2779 				fxp_stop(sc);
2780 		}
2781 		sc->if_flags = ifp->if_flags;
2782 		FXP_UNLOCK(sc);
2783 		break;
2784 
2785 	case SIOCADDMULTI:
2786 	case SIOCDELMULTI:
2787 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2788 			fxp_init(sc);
2789 		break;
2790 
2791 	case SIOCSIFMEDIA:
2792 	case SIOCGIFMEDIA:
2793 		if (sc->miibus != NULL) {
2794 			mii = device_get_softc(sc->miibus);
2795                         error = ifmedia_ioctl(ifp, ifr,
2796                             &mii->mii_media, command);
2797 		} else {
2798                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2799 		}
2800 		break;
2801 
2802 	case SIOCSIFCAP:
2803 		reinit = 0;
2804 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2805 #ifdef DEVICE_POLLING
2806 		if (mask & IFCAP_POLLING) {
2807 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2808 				error = ether_poll_register(fxp_poll, ifp);
2809 				if (error)
2810 					return(error);
2811 				FXP_LOCK(sc);
2812 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2813 				    FXP_SCB_INTR_DISABLE);
2814 				ifp->if_capenable |= IFCAP_POLLING;
2815 				FXP_UNLOCK(sc);
2816 			} else {
2817 				error = ether_poll_deregister(ifp);
2818 				/* Enable interrupts in any case */
2819 				FXP_LOCK(sc);
2820 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2821 				ifp->if_capenable &= ~IFCAP_POLLING;
2822 				FXP_UNLOCK(sc);
2823 			}
2824 		}
2825 #endif
2826 		FXP_LOCK(sc);
2827 		if ((mask & IFCAP_TXCSUM) != 0 &&
2828 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2829 			ifp->if_capenable ^= IFCAP_TXCSUM;
2830 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2831 				ifp->if_hwassist |= FXP_CSUM_FEATURES;
2832 			else
2833 				ifp->if_hwassist &= ~FXP_CSUM_FEATURES;
2834 		}
2835 		if ((mask & IFCAP_RXCSUM) != 0 &&
2836 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
2837 			ifp->if_capenable ^= IFCAP_RXCSUM;
2838 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2839 				reinit++;
2840 		}
2841 		if ((mask & IFCAP_TSO4) != 0 &&
2842 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2843 			ifp->if_capenable ^= IFCAP_TSO4;
2844 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2845 				ifp->if_hwassist |= CSUM_TSO;
2846 			else
2847 				ifp->if_hwassist &= ~CSUM_TSO;
2848 		}
2849 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2850 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2851 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2852 		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2853 		    (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) {
2854 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2855 			if (sc->revision != FXP_REV_82557)
2856 				flag = FXP_FLAG_LONG_PKT_EN;
2857 			else /* a hack to get long frames on the old chip */
2858 				flag = FXP_FLAG_SAVE_BAD;
2859 			sc->flags ^= flag;
2860 			if (ifp->if_flags & IFF_UP)
2861 				reinit++;
2862 		}
2863 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2864 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2865 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2866 				reinit++;
2867 		}
2868 		if (reinit > 0 && ifp->if_flags & IFF_UP)
2869 			fxp_init_body(sc);
2870 		FXP_UNLOCK(sc);
2871 		VLAN_CAPABILITIES(ifp);
2872 		break;
2873 
2874 	default:
2875 		error = ether_ioctl(ifp, command, data);
2876 	}
2877 	return (error);
2878 }
2879 
2880 /*
2881  * Fill in the multicast address list and return number of entries.
2882  */
2883 static int
2884 fxp_mc_addrs(struct fxp_softc *sc)
2885 {
2886 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2887 	struct ifnet *ifp = sc->ifp;
2888 	struct ifmultiaddr *ifma;
2889 	int nmcasts;
2890 
2891 	nmcasts = 0;
2892 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2893 		if_maddr_rlock(ifp);
2894 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2895 			if (ifma->ifma_addr->sa_family != AF_LINK)
2896 				continue;
2897 			if (nmcasts >= MAXMCADDR) {
2898 				ifp->if_flags |= IFF_ALLMULTI;
2899 				nmcasts = 0;
2900 				break;
2901 			}
2902 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2903 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2904 			nmcasts++;
2905 		}
2906 		if_maddr_runlock(ifp);
2907 	}
2908 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2909 	return (nmcasts);
2910 }
2911 
2912 /*
2913  * Program the multicast filter.
2914  *
2915  * We have an artificial restriction that the multicast setup command
2916  * must be the first command in the chain, so we take steps to ensure
2917  * this. By requiring this, it allows us to keep up the performance of
2918  * the pre-initialized command ring (esp. link pointers) by not actually
2919  * inserting the mcsetup command in the ring - i.e. its link pointer
2920  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2921  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2922  * lead into the regular TxCB ring when it completes.
2923  */
2924 static void
2925 fxp_mc_setup(struct fxp_softc *sc)
2926 {
2927 	struct fxp_cb_mcs *mcsp;
2928 	int count;
2929 
2930 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2931 
2932 	mcsp = sc->mcsp;
2933 	mcsp->cb_status = 0;
2934 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2935 	mcsp->link_addr = 0xffffffff;
2936 	fxp_mc_addrs(sc);
2937 
2938 	/*
2939 	 * Wait until command unit is idle. This should never be the
2940 	 * case when nothing is queued, but make sure anyway.
2941 	 */
2942 	count = 100;
2943 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
2944 	    FXP_SCB_CUS_IDLE && --count)
2945 		DELAY(10);
2946 	if (count == 0) {
2947 		device_printf(sc->dev, "command queue timeout\n");
2948 		return;
2949 	}
2950 
2951 	/*
2952 	 * Start the multicast setup command.
2953 	 */
2954 	fxp_scb_wait(sc);
2955 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2956 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2957 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2958 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2959 	/* ...and wait for it to complete. */
2960 	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2961 }
2962 
2963 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2964 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2965 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2966 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2967 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2968 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2969 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2970 
2971 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2972 
2973 struct ucode {
2974 	uint32_t	revision;
2975 	uint32_t	*ucode;
2976 	int		length;
2977 	u_short		int_delay_offset;
2978 	u_short		bundle_max_offset;
2979 } ucode_table[] = {
2980 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2981 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2982 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2983 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2984 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2985 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2986 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2987 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2988 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2989 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2990 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2991 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2992 	{ 0, NULL, 0, 0, 0 }
2993 };
2994 
2995 static void
2996 fxp_load_ucode(struct fxp_softc *sc)
2997 {
2998 	struct ucode *uc;
2999 	struct fxp_cb_ucode *cbp;
3000 	int i;
3001 
3002 	for (uc = ucode_table; uc->ucode != NULL; uc++)
3003 		if (sc->revision == uc->revision)
3004 			break;
3005 	if (uc->ucode == NULL)
3006 		return;
3007 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3008 	cbp->cb_status = 0;
3009 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3010 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3011 	for (i = 0; i < uc->length; i++)
3012 		cbp->ucode[i] = htole32(uc->ucode[i]);
3013 	if (uc->int_delay_offset)
3014 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3015 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3016 	if (uc->bundle_max_offset)
3017 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3018 		    htole16(sc->tunable_bundle_max);
3019 	/*
3020 	 * Download the ucode to the chip.
3021 	 */
3022 	fxp_scb_wait(sc);
3023 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3024 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3025 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3026 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3027 	/* ...and wait for it to complete. */
3028 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3029 	device_printf(sc->dev,
3030 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3031 	    sc->tunable_int_delay,
3032 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3033 	sc->flags |= FXP_FLAG_UCODE;
3034 }
3035 
3036 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3037 	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3038 
3039 static void
3040 fxp_sysctl_node(struct fxp_softc *sc)
3041 {
3042 	struct sysctl_ctx_list *ctx;
3043 	struct sysctl_oid_list *child, *parent;
3044 	struct sysctl_oid *tree;
3045 	struct fxp_hwstats *hsp;
3046 
3047 	ctx = device_get_sysctl_ctx(sc->dev);
3048 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3049 
3050 	SYSCTL_ADD_PROC(ctx, child,
3051 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
3052 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3053 	    "FXP driver receive interrupt microcode bundling delay");
3054 	SYSCTL_ADD_PROC(ctx, child,
3055 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
3056 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3057 	    "FXP driver receive interrupt microcode bundle size limit");
3058 	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3059 	    "FXP RNR events");
3060 	SYSCTL_ADD_INT(ctx, child,
3061 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
3062 	    "FXP flow control disabled");
3063 
3064 	/*
3065 	 * Pull in device tunables.
3066 	 */
3067 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3068 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3069 	sc->tunable_noflow = 1;
3070 	(void) resource_int_value(device_get_name(sc->dev),
3071 	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3072 	(void) resource_int_value(device_get_name(sc->dev),
3073 	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3074 	(void) resource_int_value(device_get_name(sc->dev),
3075 	    device_get_unit(sc->dev), "noflow", &sc->tunable_noflow);
3076 	sc->rnr = 0;
3077 
3078 	hsp = &sc->fxp_hwstats;
3079 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3080 	    NULL, "FXP statistics");
3081 	parent = SYSCTL_CHILDREN(tree);
3082 
3083 	/* Rx MAC statistics. */
3084 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3085 	    NULL, "Rx MAC statistics");
3086 	child = SYSCTL_CHILDREN(tree);
3087 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3088 	    &hsp->rx_good, "Good frames");
3089 	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3090 	    &hsp->rx_crc_errors, "CRC errors");
3091 	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3092 	    &hsp->rx_alignment_errors, "Alignment errors");
3093 	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3094 	    &hsp->rx_rnr_errors, "RNR errors");
3095 	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3096 	    &hsp->rx_overrun_errors, "Overrun errors");
3097 	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3098 	    &hsp->rx_cdt_errors, "Collision detect errors");
3099 	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3100 	    &hsp->rx_shortframes, "Short frame errors");
3101 	if (sc->revision >= FXP_REV_82558_A4) {
3102 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3103 		    &hsp->rx_pause, "Pause frames");
3104 		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3105 		    &hsp->rx_controls, "Unsupported control frames");
3106 	}
3107 	if (sc->revision >= FXP_REV_82559_A0)
3108 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3109 		    &hsp->rx_tco, "TCO frames");
3110 
3111 	/* Tx MAC statistics. */
3112 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3113 	    NULL, "Tx MAC statistics");
3114 	child = SYSCTL_CHILDREN(tree);
3115 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3116 	    &hsp->tx_good, "Good frames");
3117 	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3118 	    &hsp->tx_maxcols, "Maximum collisions errors");
3119 	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3120 	    &hsp->tx_latecols, "Late collisions errors");
3121 	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3122 	    &hsp->tx_underruns, "Underrun errors");
3123 	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3124 	    &hsp->tx_lostcrs, "Lost carrier sense");
3125 	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3126 	    &hsp->tx_deffered, "Deferred");
3127 	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3128 	    &hsp->tx_single_collisions, "Single collisions");
3129 	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3130 	    &hsp->tx_multiple_collisions, "Multiple collisions");
3131 	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3132 	    &hsp->tx_total_collisions, "Total collisions");
3133 	if (sc->revision >= FXP_REV_82558_A4)
3134 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3135 		    &hsp->tx_pause, "Pause frames");
3136 	if (sc->revision >= FXP_REV_82559_A0)
3137 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3138 		    &hsp->tx_tco, "TCO frames");
3139 }
3140 
3141 #undef FXP_SYSCTL_STAT_ADD
3142 
3143 static int
3144 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3145 {
3146 	int error, value;
3147 
3148 	value = *(int *)arg1;
3149 	error = sysctl_handle_int(oidp, &value, 0, req);
3150 	if (error || !req->newptr)
3151 		return (error);
3152 	if (value < low || value > high)
3153 		return (EINVAL);
3154 	*(int *)arg1 = value;
3155 	return (0);
3156 }
3157 
3158 /*
3159  * Interrupt delay is expressed in microseconds, a multiplier is used
3160  * to convert this to the appropriate clock ticks before using.
3161  */
3162 static int
3163 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3164 {
3165 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3166 }
3167 
3168 static int
3169 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3170 {
3171 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3172 }
3173