xref: /freebsd/sys/dev/fxp/if_fxp.c (revision aa24f48b361effe51163877d84f1b70d32b77e04)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #ifdef HAVE_KERNEL_OPTION_HEADERS
38 #include "opt_device_polling.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/module.h>
50 #include <sys/mutex.h>
51 #include <sys/rman.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 
56 #include <net/bpf.h>
57 #include <net/ethernet.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_arp.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_types.h>
64 #include <net/if_vlan_var.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/tcp.h>
70 #include <netinet/udp.h>
71 
72 #include <machine/bus.h>
73 #include <machine/in_cksum.h>
74 #include <machine/resource.h>
75 
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
78 
79 #include <dev/mii/mii.h>
80 #include <dev/mii/miivar.h>
81 
82 #include <dev/fxp/if_fxpreg.h>
83 #include <dev/fxp/if_fxpvar.h>
84 #include <dev/fxp/rcvbundl.h>
85 
86 MODULE_DEPEND(fxp, pci, 1, 1, 1);
87 MODULE_DEPEND(fxp, ether, 1, 1, 1);
88 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
89 #include "miibus_if.h"
90 
91 /*
92  * NOTE!  On !x86 we typically have an alignment constraint.  The
93  * card DMAs the packet immediately following the RFA.  However,
94  * the first thing in the packet is a 14-byte Ethernet header.
95  * This means that the packet is misaligned.  To compensate,
96  * we actually offset the RFA 2 bytes into the cluster.  This
97  * alignes the packet after the Ethernet header at a 32-bit
98  * boundary.  HOWEVER!  This means that the RFA is misaligned!
99  */
100 #define	RFA_ALIGNMENT_FUDGE	2
101 
102 /*
103  * Set initial transmit threshold at 64 (512 bytes). This is
104  * increased by 64 (512 bytes) at a time, to maximum of 192
105  * (1536 bytes), if an underrun occurs.
106  */
107 static int tx_threshold = 64;
108 
109 /*
110  * The configuration byte map has several undefined fields which
111  * must be one or must be zero.  Set up a template for these bits.
112  * The actual configuration is performed in fxp_init_body.
113  *
114  * See struct fxp_cb_config for the bit definitions.
115  */
116 static const u_char fxp_cb_config_template[] = {
117 	0x0, 0x0,		/* cb_status */
118 	0x0, 0x0,		/* cb_command */
119 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
120 	0x0,	/*  0 */
121 	0x0,	/*  1 */
122 	0x0,	/*  2 */
123 	0x0,	/*  3 */
124 	0x0,	/*  4 */
125 	0x0,	/*  5 */
126 	0x32,	/*  6 */
127 	0x0,	/*  7 */
128 	0x0,	/*  8 */
129 	0x0,	/*  9 */
130 	0x6,	/* 10 */
131 	0x0,	/* 11 */
132 	0x0,	/* 12 */
133 	0x0,	/* 13 */
134 	0xf2,	/* 14 */
135 	0x48,	/* 15 */
136 	0x0,	/* 16 */
137 	0x40,	/* 17 */
138 	0xf0,	/* 18 */
139 	0x0,	/* 19 */
140 	0x3f,	/* 20 */
141 	0x5,	/* 21 */
142 	0x0,	/* 22 */
143 	0x0,	/* 23 */
144 	0x0,	/* 24 */
145 	0x0,	/* 25 */
146 	0x0,	/* 26 */
147 	0x0,	/* 27 */
148 	0x0,	/* 28 */
149 	0x0,	/* 29 */
150 	0x0,	/* 30 */
151 	0x0	/* 31 */
152 };
153 
154 /*
155  * Claim various Intel PCI device identifiers for this driver.  The
156  * sub-vendor and sub-device field are extensively used to identify
157  * particular variants, but we don't currently differentiate between
158  * them.
159  */
160 static const struct fxp_ident fxp_ident_table[] = {
161     { 0x8086, 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
162     { 0x8086, 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
163     { 0x8086, 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
164     { 0x8086, 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
165     { 0x8086, 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
166     { 0x8086, 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
167     { 0x8086, 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
168     { 0x8086, 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
169     { 0x8086, 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
170     { 0x8086, 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
171     { 0x8086, 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
172     { 0x8086, 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
173     { 0x8086, 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
174     { 0x8086, 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
175     { 0x8086, 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
176     { 0x8086, 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
177     { 0x8086, 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
178     { 0x8086, 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
179     { 0x8086, 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
180     { 0x8086, 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
181     { 0x8086, 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
182     { 0x8086, 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
183     { 0x8086, 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
184     { 0x8086, 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
185     { 0x8086, 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
186     { 0x8086, 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
187     { 0x8086, 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
188     { 0x8086, 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
189     { 0x8086, 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
190     { 0x8086, 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
191     { 0x8086, 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
192     { 0x8086, 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
193     { 0x8086, 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
194     { 0x8086, 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
195     { 0x8086, 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
196     { 0x8086, 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
197     { 0x8086, 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
198     { 0x8086, 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
199     { 0x8086, 0x1229,	0x0d,	0, "Intel 82550C Pro/100 Ethernet" },
200     { 0x8086, 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
201     { 0x8086, 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
202     { 0x8086, 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
203     { 0x8086, 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
204     { 0x8086, 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
205     { 0x8086, 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
206     { 0,      0,	-1,	0, NULL },
207 };
208 
209 #ifdef FXP_IP_CSUM_WAR
210 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
211 #else
212 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
213 #endif
214 
215 static int		fxp_probe(device_t dev);
216 static int		fxp_attach(device_t dev);
217 static int		fxp_detach(device_t dev);
218 static int		fxp_shutdown(device_t dev);
219 static int		fxp_suspend(device_t dev);
220 static int		fxp_resume(device_t dev);
221 
222 static const struct fxp_ident *fxp_find_ident(device_t dev);
223 static void		fxp_intr(void *xsc);
224 static void		fxp_rxcsum(struct fxp_softc *sc, if_t ifp,
225 			    struct mbuf *m, uint16_t status, int pos);
226 static int		fxp_intr_body(struct fxp_softc *sc, if_t ifp,
227 			    uint8_t statack, int count);
228 static void 		fxp_init(void *xsc);
229 static void 		fxp_init_body(struct fxp_softc *sc, int);
230 static void 		fxp_tick(void *xsc);
231 static void 		fxp_start(if_t ifp);
232 static void 		fxp_start_body(if_t ifp);
233 static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
234 static void		fxp_txeof(struct fxp_softc *sc);
235 static void		fxp_stop(struct fxp_softc *sc);
236 static void 		fxp_release(struct fxp_softc *sc);
237 static int		fxp_ioctl(if_t ifp, u_long command,
238 			    caddr_t data);
239 static void 		fxp_watchdog(struct fxp_softc *sc);
240 static void		fxp_add_rfabuf(struct fxp_softc *sc,
241 			    struct fxp_rx *rxp);
242 static void		fxp_discard_rfabuf(struct fxp_softc *sc,
243 			    struct fxp_rx *rxp);
244 static int		fxp_new_rfabuf(struct fxp_softc *sc,
245 			    struct fxp_rx *rxp);
246 static int		fxp_mc_addrs(struct fxp_softc *sc);
247 static void		fxp_mc_setup(struct fxp_softc *sc);
248 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
249 			    int autosize);
250 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
251 			    uint16_t data);
252 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
253 static void		fxp_load_eeprom(struct fxp_softc *sc);
254 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
255 			    int offset, int words);
256 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
257 			    int offset, int words);
258 static int		fxp_ifmedia_upd(if_t ifp);
259 static void		fxp_ifmedia_sts(if_t ifp,
260 			    struct ifmediareq *ifmr);
261 static int		fxp_serial_ifmedia_upd(if_t ifp);
262 static void		fxp_serial_ifmedia_sts(if_t ifp,
263 			    struct ifmediareq *ifmr);
264 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
265 static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
266 			    int value);
267 static void		fxp_miibus_statchg(device_t dev);
268 static void		fxp_load_ucode(struct fxp_softc *sc);
269 static void		fxp_update_stats(struct fxp_softc *sc);
270 static void		fxp_sysctl_node(struct fxp_softc *sc);
271 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
272 			    int low, int high);
273 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
274 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
275 static void 		fxp_scb_wait(struct fxp_softc *sc);
276 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
277 static void		fxp_dma_wait(struct fxp_softc *sc,
278 			    volatile uint16_t *status, bus_dma_tag_t dmat,
279 			    bus_dmamap_t map);
280 
281 static device_method_t fxp_methods[] = {
282 	/* Device interface */
283 	DEVMETHOD(device_probe,		fxp_probe),
284 	DEVMETHOD(device_attach,	fxp_attach),
285 	DEVMETHOD(device_detach,	fxp_detach),
286 	DEVMETHOD(device_shutdown,	fxp_shutdown),
287 	DEVMETHOD(device_suspend,	fxp_suspend),
288 	DEVMETHOD(device_resume,	fxp_resume),
289 
290 	/* MII interface */
291 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
292 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
293 	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
294 
295 	DEVMETHOD_END
296 };
297 
298 static driver_t fxp_driver = {
299 	"fxp",
300 	fxp_methods,
301 	sizeof(struct fxp_softc),
302 };
303 
304 static devclass_t fxp_devclass;
305 
306 DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, fxp_devclass, NULL, NULL,
307     SI_ORDER_ANY);
308 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
309 
310 static struct resource_spec fxp_res_spec_mem[] = {
311 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
312 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
313 	{ -1, 0 }
314 };
315 
316 static struct resource_spec fxp_res_spec_io[] = {
317 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
318 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
319 	{ -1, 0 }
320 };
321 
322 /*
323  * Wait for the previous command to be accepted (but not necessarily
324  * completed).
325  */
326 static void
327 fxp_scb_wait(struct fxp_softc *sc)
328 {
329 	union {
330 		uint16_t w;
331 		uint8_t b[2];
332 	} flowctl;
333 	int i = 10000;
334 
335 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
336 		DELAY(2);
337 	if (i == 0) {
338 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
339 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
340 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
341 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
342 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
343 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
344 	}
345 }
346 
347 static void
348 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
349 {
350 
351 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
352 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
353 		fxp_scb_wait(sc);
354 	}
355 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
356 }
357 
358 static void
359 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
360     bus_dma_tag_t dmat, bus_dmamap_t map)
361 {
362 	int i;
363 
364 	for (i = 10000; i > 0; i--) {
365 		DELAY(2);
366 		bus_dmamap_sync(dmat, map,
367 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
368 		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
369 			break;
370 	}
371 	if (i == 0)
372 		device_printf(sc->dev, "DMA timeout\n");
373 }
374 
375 static const struct fxp_ident *
376 fxp_find_ident(device_t dev)
377 {
378 	uint16_t vendor;
379 	uint16_t device;
380 	uint8_t revid;
381 	const struct fxp_ident *ident;
382 
383 	vendor = pci_get_vendor(dev);
384 	device = pci_get_device(dev);
385 	revid = pci_get_revid(dev);
386 	for (ident = fxp_ident_table; ident->name != NULL; ident++) {
387 		if (ident->vendor == vendor && ident->device == device &&
388 		    (ident->revid == revid || ident->revid == -1)) {
389 			return (ident);
390 		}
391 	}
392 	return (NULL);
393 }
394 
395 /*
396  * Return identification string if this device is ours.
397  */
398 static int
399 fxp_probe(device_t dev)
400 {
401 	const struct fxp_ident *ident;
402 
403 	ident = fxp_find_ident(dev);
404 	if (ident != NULL) {
405 		device_set_desc(dev, ident->name);
406 		return (BUS_PROBE_DEFAULT);
407 	}
408 	return (ENXIO);
409 }
410 
411 static void
412 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
413 {
414 	uint32_t *addr;
415 
416 	if (error)
417 		return;
418 
419 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
420 	addr = arg;
421 	*addr = segs->ds_addr;
422 }
423 
424 static int
425 fxp_attach(device_t dev)
426 {
427 	struct fxp_softc *sc;
428 	struct fxp_cb_tx *tcbp;
429 	struct fxp_tx *txp;
430 	struct fxp_rx *rxp;
431 	if_t ifp;
432 	uint32_t val;
433 	uint16_t data;
434 	u_char eaddr[ETHER_ADDR_LEN];
435 	int error, flags, i, pmc, prefer_iomap;
436 
437 	error = 0;
438 	sc = device_get_softc(dev);
439 	sc->dev = dev;
440 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
441 	    MTX_DEF);
442 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
443 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
444 	    fxp_serial_ifmedia_sts);
445 
446 	ifp = sc->ifp = if_gethandle(IFT_ETHER);
447 	if (ifp == (void *)NULL) {
448 		device_printf(dev, "can not if_alloc()\n");
449 		error = ENOSPC;
450 		goto fail;
451 	}
452 
453 	/*
454 	 * Enable bus mastering.
455 	 */
456 	pci_enable_busmaster(dev);
457 
458 	/*
459 	 * Figure out which we should try first - memory mapping or i/o mapping?
460 	 * We default to memory mapping. Then we accept an override from the
461 	 * command line. Then we check to see which one is enabled.
462 	 */
463 	prefer_iomap = 0;
464 	resource_int_value(device_get_name(dev), device_get_unit(dev),
465 	    "prefer_iomap", &prefer_iomap);
466 	if (prefer_iomap)
467 		sc->fxp_spec = fxp_res_spec_io;
468 	else
469 		sc->fxp_spec = fxp_res_spec_mem;
470 
471 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
472 	if (error) {
473 		if (sc->fxp_spec == fxp_res_spec_mem)
474 			sc->fxp_spec = fxp_res_spec_io;
475 		else
476 			sc->fxp_spec = fxp_res_spec_mem;
477 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
478 	}
479 	if (error) {
480 		device_printf(dev, "could not allocate resources\n");
481 		error = ENXIO;
482 		goto fail;
483 	}
484 
485 	if (bootverbose) {
486 		device_printf(dev, "using %s space register mapping\n",
487 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
488 	}
489 
490 	/*
491 	 * Put CU/RU idle state and prepare full reset.
492 	 */
493 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
494 	DELAY(10);
495 	/* Full reset and disable interrupts. */
496 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
497 	DELAY(10);
498 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
499 
500 	/*
501 	 * Find out how large of an SEEPROM we have.
502 	 */
503 	fxp_autosize_eeprom(sc);
504 	fxp_load_eeprom(sc);
505 
506 	/*
507 	 * Find out the chip revision; lump all 82557 revs together.
508 	 */
509 	sc->ident = fxp_find_ident(dev);
510 	if (sc->ident->ich > 0) {
511 		/* Assume ICH controllers are 82559. */
512 		sc->revision = FXP_REV_82559_A0;
513 	} else {
514 		data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
515 		if ((data >> 8) == 1)
516 			sc->revision = FXP_REV_82557;
517 		else
518 			sc->revision = pci_get_revid(dev);
519 	}
520 
521 	/*
522 	 * Check availability of WOL. 82559ER does not support WOL.
523 	 */
524 	if (sc->revision >= FXP_REV_82558_A4 &&
525 	    sc->revision != FXP_REV_82559S_A) {
526 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
527 		if ((data & 0x20) != 0 &&
528 		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
529 			sc->flags |= FXP_FLAG_WOLCAP;
530 	}
531 
532 	if (sc->revision == FXP_REV_82550_C) {
533 		/*
534 		 * 82550C with server extension requires microcode to
535 		 * receive fragmented UDP datagrams.  However if the
536 		 * microcode is used for client-only featured 82550C
537 		 * it locks up controller.
538 		 */
539 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
540 		if ((data & 0x0400) == 0)
541 			sc->flags |= FXP_FLAG_NO_UCODE;
542 	}
543 
544 	/* Receiver lock-up workaround detection. */
545 	if (sc->revision < FXP_REV_82558_A4) {
546 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
547 		if ((data & 0x03) != 0x03) {
548 			sc->flags |= FXP_FLAG_RXBUG;
549 			device_printf(dev, "Enabling Rx lock-up workaround\n");
550 		}
551 	}
552 
553 	/*
554 	 * Determine whether we must use the 503 serial interface.
555 	 */
556 	data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
557 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
558 	    && (data & FXP_PHY_SERIAL_ONLY))
559 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
560 
561 	fxp_sysctl_node(sc);
562 	/*
563 	 * Enable workarounds for certain chip revision deficiencies.
564 	 *
565 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
566 	 * some systems based a normal 82559 design, have a defect where
567 	 * the chip can cause a PCI protocol violation if it receives
568 	 * a CU_RESUME command when it is entering the IDLE state.  The
569 	 * workaround is to disable Dynamic Standby Mode, so the chip never
570 	 * deasserts CLKRUN#, and always remains in an active state.
571 	 *
572 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
573 	 */
574 	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
575 	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
576 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
577 		if (data & 0x02) {			/* STB enable */
578 			uint16_t cksum;
579 			int i;
580 
581 			device_printf(dev,
582 			    "Disabling dynamic standby mode in EEPROM\n");
583 			data &= ~0x02;
584 			sc->eeprom[FXP_EEPROM_MAP_ID] = data;
585 			fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
586 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
587 			cksum = 0;
588 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
589 				cksum += sc->eeprom[i];
590 			i = (1 << sc->eeprom_size) - 1;
591 			cksum = 0xBABA - cksum;
592 			fxp_write_eeprom(sc, &cksum, i, 1);
593 			device_printf(dev,
594 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
595 			    i, sc->eeprom[i], cksum);
596 			sc->eeprom[i] = cksum;
597 			/*
598 			 * If the user elects to continue, try the software
599 			 * workaround, as it is better than nothing.
600 			 */
601 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
602 		}
603 	}
604 
605 	/*
606 	 * If we are not a 82557 chip, we can enable extended features.
607 	 */
608 	if (sc->revision != FXP_REV_82557) {
609 		/*
610 		 * If MWI is enabled in the PCI configuration, and there
611 		 * is a valid cacheline size (8 or 16 dwords), then tell
612 		 * the board to turn on MWI.
613 		 */
614 		val = pci_read_config(dev, PCIR_COMMAND, 2);
615 		if (val & PCIM_CMD_MWRICEN &&
616 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
617 			sc->flags |= FXP_FLAG_MWI_ENABLE;
618 
619 		/* turn on the extended TxCB feature */
620 		sc->flags |= FXP_FLAG_EXT_TXCB;
621 
622 		/* enable reception of long frames for VLAN */
623 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
624 	} else {
625 		/* a hack to get long VLAN frames on a 82557 */
626 		sc->flags |= FXP_FLAG_SAVE_BAD;
627 	}
628 
629 	/* For 82559 or later chips, Rx checksum offload is supported. */
630 	if (sc->revision >= FXP_REV_82559_A0) {
631 		/* 82559ER does not support Rx checksum offloading. */
632 		if (sc->ident->device != 0x1209)
633 			sc->flags |= FXP_FLAG_82559_RXCSUM;
634 	}
635 	/*
636 	 * Enable use of extended RFDs and TCBs for 82550
637 	 * and later chips. Note: we need extended TXCB support
638 	 * too, but that's already enabled by the code above.
639 	 * Be careful to do this only on the right devices.
640 	 */
641 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
642 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
643 	    || sc->revision == FXP_REV_82551_10) {
644 		sc->rfa_size = sizeof (struct fxp_rfa);
645 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
646 		sc->flags |= FXP_FLAG_EXT_RFA;
647 		/* Use extended RFA instead of 82559 checksum mode. */
648 		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
649 	} else {
650 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
651 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
652 	}
653 
654 	/*
655 	 * Allocate DMA tags and DMA safe memory.
656 	 */
657 	sc->maxtxseg = FXP_NTXSEG;
658 	sc->maxsegsize = MCLBYTES;
659 	if (sc->flags & FXP_FLAG_EXT_RFA) {
660 		sc->maxtxseg--;
661 		sc->maxsegsize = FXP_TSO_SEGSIZE;
662 	}
663 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
664 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
665 	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
666 	    sc->maxtxseg, sc->maxsegsize, 0,
667 	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
668 	if (error) {
669 		device_printf(dev, "could not create TX DMA tag\n");
670 		goto fail;
671 	}
672 
673 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
674 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
675 	    MCLBYTES, 1, MCLBYTES, 0,
676 	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
677 	if (error) {
678 		device_printf(dev, "could not create RX DMA tag\n");
679 		goto fail;
680 	}
681 
682 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
683 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
684 	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
685 	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
686 	if (error) {
687 		device_printf(dev, "could not create stats DMA tag\n");
688 		goto fail;
689 	}
690 
691 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
692 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
693 	if (error) {
694 		device_printf(dev, "could not allocate stats DMA memory\n");
695 		goto fail;
696 	}
697 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
698 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
699 	    BUS_DMA_NOWAIT);
700 	if (error) {
701 		device_printf(dev, "could not load the stats DMA buffer\n");
702 		goto fail;
703 	}
704 
705 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
706 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
707 	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
708 	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
709 	if (error) {
710 		device_printf(dev, "could not create TxCB DMA tag\n");
711 		goto fail;
712 	}
713 
714 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
715 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
716 	if (error) {
717 		device_printf(dev, "could not allocate TxCB DMA memory\n");
718 		goto fail;
719 	}
720 
721 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
722 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
723 	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
724 	if (error) {
725 		device_printf(dev, "could not load TxCB DMA buffer\n");
726 		goto fail;
727 	}
728 
729 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
730 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
731 	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
732 	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
733 	if (error) {
734 		device_printf(dev,
735 		    "could not create multicast setup DMA tag\n");
736 		goto fail;
737 	}
738 
739 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
740 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
741 	if (error) {
742 		device_printf(dev,
743 		    "could not allocate multicast setup DMA memory\n");
744 		goto fail;
745 	}
746 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
747 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
748 	    BUS_DMA_NOWAIT);
749 	if (error) {
750 		device_printf(dev,
751 		    "can't load the multicast setup DMA buffer\n");
752 		goto fail;
753 	}
754 
755 	/*
756 	 * Pre-allocate the TX DMA maps and setup the pointers to
757 	 * the TX command blocks.
758 	 */
759 	txp = sc->fxp_desc.tx_list;
760 	tcbp = sc->fxp_desc.cbl_list;
761 	for (i = 0; i < FXP_NTXCB; i++) {
762 		txp[i].tx_cb = tcbp + i;
763 		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
764 		if (error) {
765 			device_printf(dev, "can't create DMA map for TX\n");
766 			goto fail;
767 		}
768 	}
769 	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
770 	if (error) {
771 		device_printf(dev, "can't create spare DMA map\n");
772 		goto fail;
773 	}
774 
775 	/*
776 	 * Pre-allocate our receive buffers.
777 	 */
778 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
779 	for (i = 0; i < FXP_NRFABUFS; i++) {
780 		rxp = &sc->fxp_desc.rx_list[i];
781 		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
782 		if (error) {
783 			device_printf(dev, "can't create DMA map for RX\n");
784 			goto fail;
785 		}
786 		if (fxp_new_rfabuf(sc, rxp) != 0) {
787 			error = ENOMEM;
788 			goto fail;
789 		}
790 		fxp_add_rfabuf(sc, rxp);
791 	}
792 
793 	/*
794 	 * Read MAC address.
795 	 */
796 	eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
797 	eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
798 	eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
799 	eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
800 	eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
801 	eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
802 	if (bootverbose) {
803 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
804 		    pci_get_vendor(dev), pci_get_device(dev),
805 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
806 		    pci_get_revid(dev));
807 		device_printf(dev, "Dynamic Standby mode is %s\n",
808 		    sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
809 		    "disabled");
810 	}
811 
812 	/*
813 	 * If this is only a 10Mbps device, then there is no MII, and
814 	 * the PHY will use a serial interface instead.
815 	 *
816 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
817 	 * doesn't have a programming interface of any sort.  The
818 	 * media is sensed automatically based on how the link partner
819 	 * is configured.  This is, in essence, manual configuration.
820 	 */
821 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
822 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
823 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
824 	} else {
825 		/*
826 		 * i82557 wedge when isolating all of their PHYs.
827 		 */
828 		flags = MIIF_NOISOLATE;
829 		if (sc->revision >= FXP_REV_82558_A4)
830 			flags |= MIIF_DOPAUSE;
831 		error = mii_attach(dev, &sc->miibus, ifp,
832 		    (ifm_change_cb_t)fxp_ifmedia_upd,
833 		    (ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK,
834 		    MII_PHY_ANY, MII_OFFSET_ANY, flags);
835 		if (error != 0) {
836 			device_printf(dev, "attaching PHYs failed\n");
837 			goto fail;
838 		}
839 	}
840 
841 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
842 	if_setdev(ifp, dev);
843 	if_setinitfn(ifp, fxp_init);
844 	if_setsoftc(ifp, sc);
845 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
846 	if_setioctlfn(ifp, fxp_ioctl);
847 	if_setstartfn(ifp, fxp_start);
848 
849 	if_setcapabilities(ifp, 0);
850 	if_setcapenable(ifp, 0);
851 
852 	/* Enable checksum offload/TSO for 82550 or better chips */
853 	if (sc->flags & FXP_FLAG_EXT_RFA) {
854 		if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO);
855 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
856 		if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
857 	}
858 
859 	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
860 		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
861 		if_setcapenablebit(ifp, IFCAP_RXCSUM, 0);
862 	}
863 
864 	if (sc->flags & FXP_FLAG_WOLCAP) {
865 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
866 		if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0);
867 	}
868 
869 #ifdef DEVICE_POLLING
870 	/* Inform the world we support polling. */
871 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
872 #endif
873 
874 	/*
875 	 * Attach the interface.
876 	 */
877 	ether_ifattach(ifp, eaddr);
878 
879 	/*
880 	 * Tell the upper layer(s) we support long frames.
881 	 * Must appear after the call to ether_ifattach() because
882 	 * ether_ifattach() sets ifi_hdrlen to the default value.
883 	 */
884 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
885 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
886 	if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
887 	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
888 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING |
889 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
890 		if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING |
891 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
892 	}
893 
894 	/*
895 	 * Let the system queue as many packets as we have available
896 	 * TX descriptors.
897 	 */
898 	if_setsendqlen(ifp, FXP_NTXCB - 1);
899 	if_setsendqready(ifp);
900 
901 	/*
902 	 * Hook our interrupt after all initialization is complete.
903 	 */
904 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
905 			       NULL, fxp_intr, sc, &sc->ih);
906 	if (error) {
907 		device_printf(dev, "could not setup irq\n");
908 		ether_ifdetach(sc->ifp);
909 		goto fail;
910 	}
911 
912 	/*
913 	 * Configure hardware to reject magic frames otherwise
914 	 * system will hang on recipt of magic frames.
915 	 */
916 	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
917 		FXP_LOCK(sc);
918 		/* Clear wakeup events. */
919 		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
920 		fxp_init_body(sc, 0);
921 		fxp_stop(sc);
922 		FXP_UNLOCK(sc);
923 	}
924 
925 fail:
926 	if (error)
927 		fxp_release(sc);
928 	return (error);
929 }
930 
931 /*
932  * Release all resources.  The softc lock should not be held and the
933  * interrupt should already be torn down.
934  */
935 static void
936 fxp_release(struct fxp_softc *sc)
937 {
938 	struct fxp_rx *rxp;
939 	struct fxp_tx *txp;
940 	int i;
941 
942 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
943 	KASSERT(sc->ih == NULL,
944 	    ("fxp_release() called with intr handle still active"));
945 	if (sc->miibus)
946 		device_delete_child(sc->dev, sc->miibus);
947 	bus_generic_detach(sc->dev);
948 	ifmedia_removeall(&sc->sc_media);
949 	if (sc->fxp_desc.cbl_list) {
950 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
951 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
952 		    sc->cbl_map);
953 	}
954 	if (sc->fxp_stats) {
955 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
956 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
957 	}
958 	if (sc->mcsp) {
959 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
960 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
961 	}
962 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
963 	if (sc->fxp_rxmtag) {
964 		for (i = 0; i < FXP_NRFABUFS; i++) {
965 			rxp = &sc->fxp_desc.rx_list[i];
966 			if (rxp->rx_mbuf != NULL) {
967 				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
968 				    BUS_DMASYNC_POSTREAD);
969 				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
970 				m_freem(rxp->rx_mbuf);
971 			}
972 			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
973 		}
974 		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
975 		bus_dma_tag_destroy(sc->fxp_rxmtag);
976 	}
977 	if (sc->fxp_txmtag) {
978 		for (i = 0; i < FXP_NTXCB; i++) {
979 			txp = &sc->fxp_desc.tx_list[i];
980 			if (txp->tx_mbuf != NULL) {
981 				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
982 				    BUS_DMASYNC_POSTWRITE);
983 				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
984 				m_freem(txp->tx_mbuf);
985 			}
986 			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
987 		}
988 		bus_dma_tag_destroy(sc->fxp_txmtag);
989 	}
990 	if (sc->fxp_stag)
991 		bus_dma_tag_destroy(sc->fxp_stag);
992 	if (sc->cbl_tag)
993 		bus_dma_tag_destroy(sc->cbl_tag);
994 	if (sc->mcs_tag)
995 		bus_dma_tag_destroy(sc->mcs_tag);
996 	if (sc->ifp)
997 		if_free(sc->ifp);
998 
999 	mtx_destroy(&sc->sc_mtx);
1000 }
1001 
1002 /*
1003  * Detach interface.
1004  */
1005 static int
1006 fxp_detach(device_t dev)
1007 {
1008 	struct fxp_softc *sc = device_get_softc(dev);
1009 
1010 #ifdef DEVICE_POLLING
1011 	if (if_getcapenable(sc->ifp) & IFCAP_POLLING)
1012 		ether_poll_deregister(sc->ifp);
1013 #endif
1014 
1015 	FXP_LOCK(sc);
1016 	/*
1017 	 * Stop DMA and drop transmit queue, but disable interrupts first.
1018 	 */
1019 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1020 	fxp_stop(sc);
1021 	FXP_UNLOCK(sc);
1022 	callout_drain(&sc->stat_ch);
1023 
1024 	/*
1025 	 * Close down routes etc.
1026 	 */
1027 	ether_ifdetach(sc->ifp);
1028 
1029 	/*
1030 	 * Unhook interrupt before dropping lock. This is to prevent
1031 	 * races with fxp_intr().
1032 	 */
1033 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1034 	sc->ih = NULL;
1035 
1036 	/* Release our allocated resources. */
1037 	fxp_release(sc);
1038 	return (0);
1039 }
1040 
1041 /*
1042  * Device shutdown routine. Called at system shutdown after sync. The
1043  * main purpose of this routine is to shut off receiver DMA so that
1044  * kernel memory doesn't get clobbered during warmboot.
1045  */
1046 static int
1047 fxp_shutdown(device_t dev)
1048 {
1049 
1050 	/*
1051 	 * Make sure that DMA is disabled prior to reboot. Not doing
1052 	 * do could allow DMA to corrupt kernel memory during the
1053 	 * reboot before the driver initializes.
1054 	 */
1055 	return (fxp_suspend(dev));
1056 }
1057 
1058 /*
1059  * Device suspend routine.  Stop the interface and save some PCI
1060  * settings in case the BIOS doesn't restore them properly on
1061  * resume.
1062  */
1063 static int
1064 fxp_suspend(device_t dev)
1065 {
1066 	struct fxp_softc *sc = device_get_softc(dev);
1067 	if_t ifp;
1068 	int pmc;
1069 	uint16_t pmstat;
1070 
1071 	FXP_LOCK(sc);
1072 
1073 	ifp = sc->ifp;
1074 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1075 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1076 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1077 		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1078 			/* Request PME. */
1079 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1080 			sc->flags |= FXP_FLAG_WOL;
1081 			/* Reconfigure hardware to accept magic frames. */
1082 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1083 			fxp_init_body(sc, 0);
1084 		}
1085 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1086 	}
1087 	fxp_stop(sc);
1088 
1089 	sc->suspended = 1;
1090 
1091 	FXP_UNLOCK(sc);
1092 	return (0);
1093 }
1094 
1095 /*
1096  * Device resume routine. re-enable busmastering, and restart the interface if
1097  * appropriate.
1098  */
1099 static int
1100 fxp_resume(device_t dev)
1101 {
1102 	struct fxp_softc *sc = device_get_softc(dev);
1103 	if_t ifp = sc->ifp;
1104 	int pmc;
1105 	uint16_t pmstat;
1106 
1107 	FXP_LOCK(sc);
1108 
1109 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1110 		sc->flags &= ~FXP_FLAG_WOL;
1111 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1112 		/* Disable PME and clear PME status. */
1113 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1114 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1115 		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1116 			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1117 			    CSR_READ_1(sc, FXP_CSR_PMDR));
1118 	}
1119 
1120 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1121 	DELAY(10);
1122 
1123 	/* reinitialize interface if necessary */
1124 	if (if_getflags(ifp) & IFF_UP)
1125 		fxp_init_body(sc, 1);
1126 
1127 	sc->suspended = 0;
1128 
1129 	FXP_UNLOCK(sc);
1130 	return (0);
1131 }
1132 
1133 static void
1134 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1135 {
1136 	uint16_t reg;
1137 	int x;
1138 
1139 	/*
1140 	 * Shift in data.
1141 	 */
1142 	for (x = 1 << (length - 1); x; x >>= 1) {
1143 		if (data & x)
1144 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1145 		else
1146 			reg = FXP_EEPROM_EECS;
1147 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1148 		DELAY(1);
1149 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1150 		DELAY(1);
1151 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1152 		DELAY(1);
1153 	}
1154 }
1155 
1156 /*
1157  * Read from the serial EEPROM. Basically, you manually shift in
1158  * the read opcode (one bit at a time) and then shift in the address,
1159  * and then you shift out the data (all of this one bit at a time).
1160  * The word size is 16 bits, so you have to provide the address for
1161  * every 16 bits of data.
1162  */
1163 static uint16_t
1164 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1165 {
1166 	uint16_t reg, data;
1167 	int x;
1168 
1169 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1170 	/*
1171 	 * Shift in read opcode.
1172 	 */
1173 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1174 	/*
1175 	 * Shift in address.
1176 	 */
1177 	data = 0;
1178 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1179 		if (offset & x)
1180 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1181 		else
1182 			reg = FXP_EEPROM_EECS;
1183 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1184 		DELAY(1);
1185 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1186 		DELAY(1);
1187 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1188 		DELAY(1);
1189 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1190 		data++;
1191 		if (autosize && reg == 0) {
1192 			sc->eeprom_size = data;
1193 			break;
1194 		}
1195 	}
1196 	/*
1197 	 * Shift out data.
1198 	 */
1199 	data = 0;
1200 	reg = FXP_EEPROM_EECS;
1201 	for (x = 1 << 15; x; x >>= 1) {
1202 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1203 		DELAY(1);
1204 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1205 			data |= x;
1206 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1207 		DELAY(1);
1208 	}
1209 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1210 	DELAY(1);
1211 
1212 	return (data);
1213 }
1214 
1215 static void
1216 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1217 {
1218 	int i;
1219 
1220 	/*
1221 	 * Erase/write enable.
1222 	 */
1223 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1224 	fxp_eeprom_shiftin(sc, 0x4, 3);
1225 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1226 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1227 	DELAY(1);
1228 	/*
1229 	 * Shift in write opcode, address, data.
1230 	 */
1231 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1232 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1233 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1234 	fxp_eeprom_shiftin(sc, data, 16);
1235 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1236 	DELAY(1);
1237 	/*
1238 	 * Wait for EEPROM to finish up.
1239 	 */
1240 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1241 	DELAY(1);
1242 	for (i = 0; i < 1000; i++) {
1243 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1244 			break;
1245 		DELAY(50);
1246 	}
1247 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1248 	DELAY(1);
1249 	/*
1250 	 * Erase/write disable.
1251 	 */
1252 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1253 	fxp_eeprom_shiftin(sc, 0x4, 3);
1254 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1255 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1256 	DELAY(1);
1257 }
1258 
1259 /*
1260  * From NetBSD:
1261  *
1262  * Figure out EEPROM size.
1263  *
1264  * 559's can have either 64-word or 256-word EEPROMs, the 558
1265  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1266  * talks about the existence of 16 to 256 word EEPROMs.
1267  *
1268  * The only known sizes are 64 and 256, where the 256 version is used
1269  * by CardBus cards to store CIS information.
1270  *
1271  * The address is shifted in msb-to-lsb, and after the last
1272  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1273  * after which follows the actual data. We try to detect this zero, by
1274  * probing the data-out bit in the EEPROM control register just after
1275  * having shifted in a bit. If the bit is zero, we assume we've
1276  * shifted enough address bits. The data-out should be tri-state,
1277  * before this, which should translate to a logical one.
1278  */
1279 static void
1280 fxp_autosize_eeprom(struct fxp_softc *sc)
1281 {
1282 
1283 	/* guess maximum size of 256 words */
1284 	sc->eeprom_size = 8;
1285 
1286 	/* autosize */
1287 	(void) fxp_eeprom_getword(sc, 0, 1);
1288 }
1289 
1290 static void
1291 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1292 {
1293 	int i;
1294 
1295 	for (i = 0; i < words; i++)
1296 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1297 }
1298 
1299 static void
1300 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1301 {
1302 	int i;
1303 
1304 	for (i = 0; i < words; i++)
1305 		fxp_eeprom_putword(sc, offset + i, data[i]);
1306 }
1307 
1308 static void
1309 fxp_load_eeprom(struct fxp_softc *sc)
1310 {
1311 	int i;
1312 	uint16_t cksum;
1313 
1314 	fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1315 	cksum = 0;
1316 	for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1317 		cksum += sc->eeprom[i];
1318 	cksum = 0xBABA - cksum;
1319 	if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1320 		device_printf(sc->dev,
1321 		    "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1322 		    cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1323 }
1324 
1325 /*
1326  * Grab the softc lock and call the real fxp_start_body() routine
1327  */
1328 static void
1329 fxp_start(if_t ifp)
1330 {
1331 	struct fxp_softc *sc = if_getsoftc(ifp);
1332 
1333 	FXP_LOCK(sc);
1334 	fxp_start_body(ifp);
1335 	FXP_UNLOCK(sc);
1336 }
1337 
1338 /*
1339  * Start packet transmission on the interface.
1340  * This routine must be called with the softc lock held, and is an
1341  * internal entry point only.
1342  */
1343 static void
1344 fxp_start_body(if_t ifp)
1345 {
1346 	struct fxp_softc *sc = if_getsoftc(ifp);
1347 	struct mbuf *mb_head;
1348 	int txqueued;
1349 
1350 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1351 
1352 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1353 	    IFF_DRV_RUNNING)
1354 		return;
1355 
1356 	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1357 		fxp_txeof(sc);
1358 	/*
1359 	 * We're finished if there is nothing more to add to the list or if
1360 	 * we're all filled up with buffers to transmit.
1361 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1362 	 *       a NOP command when needed.
1363 	 */
1364 	txqueued = 0;
1365 	while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) {
1366 
1367 		/*
1368 		 * Grab a packet to transmit.
1369 		 */
1370 		mb_head = if_dequeue(ifp);
1371 		if (mb_head == NULL)
1372 			break;
1373 
1374 		if (fxp_encap(sc, &mb_head)) {
1375 			if (mb_head == NULL)
1376 				break;
1377 			if_sendq_prepend(ifp, mb_head);
1378 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1379 		}
1380 		txqueued++;
1381 		/*
1382 		 * Pass packet to bpf if there is a listener.
1383 		 */
1384 		if_bpfmtap(ifp, mb_head);
1385 	}
1386 
1387 	/*
1388 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1389 	 * going again if suspended.
1390 	 */
1391 	if (txqueued > 0) {
1392 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1393 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1394 		fxp_scb_wait(sc);
1395 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1396 		/*
1397 		 * Set a 5 second timer just in case we don't hear
1398 		 * from the card again.
1399 		 */
1400 		sc->watchdog_timer = 5;
1401 	}
1402 }
1403 
1404 static int
1405 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1406 {
1407 	if_t ifp;
1408 	struct mbuf *m;
1409 	struct fxp_tx *txp;
1410 	struct fxp_cb_tx *cbp;
1411 	struct tcphdr *tcp;
1412 	bus_dma_segment_t segs[FXP_NTXSEG];
1413 	int error, i, nseg, tcp_payload;
1414 
1415 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1416 	ifp = sc->ifp;
1417 
1418 	tcp_payload = 0;
1419 	tcp = NULL;
1420 	/*
1421 	 * Get pointer to next available tx desc.
1422 	 */
1423 	txp = sc->fxp_desc.tx_last->tx_next;
1424 
1425 	/*
1426 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1427 	 * Ethernet Controller Family Open Source Software
1428 	 * Developer Manual says:
1429 	 *   Using software parsing is only allowed with legal
1430 	 *   TCP/IP or UDP/IP packets.
1431 	 *   ...
1432 	 *   For all other datagrams, hardware parsing must
1433 	 *   be used.
1434 	 * Software parsing appears to truncate ICMP and
1435 	 * fragmented UDP packets that contain one to three
1436 	 * bytes in the second (and final) mbuf of the packet.
1437 	 */
1438 	if (sc->flags & FXP_FLAG_EXT_RFA)
1439 		txp->tx_cb->ipcb_ip_activation_high =
1440 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1441 
1442 	m = *m_head;
1443 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1444 		/*
1445 		 * 82550/82551 requires ethernet/IP/TCP headers must be
1446 		 * contained in the first active transmit buffer.
1447 		 */
1448 		struct ether_header *eh;
1449 		struct ip *ip;
1450 		uint32_t ip_off, poff;
1451 
1452 		if (M_WRITABLE(*m_head) == 0) {
1453 			/* Get a writable copy. */
1454 			m = m_dup(*m_head, M_NOWAIT);
1455 			m_freem(*m_head);
1456 			if (m == NULL) {
1457 				*m_head = NULL;
1458 				return (ENOBUFS);
1459 			}
1460 			*m_head = m;
1461 		}
1462 		ip_off = sizeof(struct ether_header);
1463 		m = m_pullup(*m_head, ip_off);
1464 		if (m == NULL) {
1465 			*m_head = NULL;
1466 			return (ENOBUFS);
1467 		}
1468 		eh = mtod(m, struct ether_header *);
1469 		/* Check the existence of VLAN tag. */
1470 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1471 			ip_off = sizeof(struct ether_vlan_header);
1472 			m = m_pullup(m, ip_off);
1473 			if (m == NULL) {
1474 				*m_head = NULL;
1475 				return (ENOBUFS);
1476 			}
1477 		}
1478 		m = m_pullup(m, ip_off + sizeof(struct ip));
1479 		if (m == NULL) {
1480 			*m_head = NULL;
1481 			return (ENOBUFS);
1482 		}
1483 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1484 		poff = ip_off + (ip->ip_hl << 2);
1485 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1486 		if (m == NULL) {
1487 			*m_head = NULL;
1488 			return (ENOBUFS);
1489 		}
1490 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1491 		m = m_pullup(m, poff + (tcp->th_off << 2));
1492 		if (m == NULL) {
1493 			*m_head = NULL;
1494 			return (ENOBUFS);
1495 		}
1496 
1497 		/*
1498 		 * Since 82550/82551 doesn't modify IP length and pseudo
1499 		 * checksum in the first frame driver should compute it.
1500 		 */
1501 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1502 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1503 		ip->ip_sum = 0;
1504 		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1505 		    (tcp->th_off << 2));
1506 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1507 		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1508 		    m->m_pkthdr.tso_segsz));
1509 		/* Compute total TCP payload. */
1510 		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1511 		tcp_payload -= tcp->th_off << 2;
1512 		*m_head = m;
1513 	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1514 		/*
1515 		 * Deal with TCP/IP checksum offload. Note that
1516 		 * in order for TCP checksum offload to work,
1517 		 * the pseudo header checksum must have already
1518 		 * been computed and stored in the checksum field
1519 		 * in the TCP header. The stack should have
1520 		 * already done this for us.
1521 		 */
1522 		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1523 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1524 			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1525 
1526 #ifdef FXP_IP_CSUM_WAR
1527 		/*
1528 		 * XXX The 82550 chip appears to have trouble
1529 		 * dealing with IP header checksums in very small
1530 		 * datagrams, namely fragments from 1 to 3 bytes
1531 		 * in size. For example, say you want to transmit
1532 		 * a UDP packet of 1473 bytes. The packet will be
1533 		 * fragmented over two IP datagrams, the latter
1534 		 * containing only one byte of data. The 82550 will
1535 		 * botch the header checksum on the 1-byte fragment.
1536 		 * As long as the datagram contains 4 or more bytes
1537 		 * of data, you're ok.
1538 		 *
1539                  * The following code attempts to work around this
1540 		 * problem: if the datagram is less than 38 bytes
1541 		 * in size (14 bytes ether header, 20 bytes IP header,
1542 		 * plus 4 bytes of data), we punt and compute the IP
1543 		 * header checksum by hand. This workaround doesn't
1544 		 * work very well, however, since it can be fooled
1545 		 * by things like VLAN tags and IP options that make
1546 		 * the header sizes/offsets vary.
1547 		 */
1548 
1549 		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1550 			if (m->m_pkthdr.len < 38) {
1551 				struct ip *ip;
1552 				m->m_data += ETHER_HDR_LEN;
1553 				ip = mtod(m, struct ip *);
1554 				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1555 				m->m_data -= ETHER_HDR_LEN;
1556 				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1557 			} else {
1558 				txp->tx_cb->ipcb_ip_activation_high =
1559 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1560 				txp->tx_cb->ipcb_ip_schedule |=
1561 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1562 			}
1563 		}
1564 #endif
1565 	}
1566 
1567 	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1568 	    segs, &nseg, 0);
1569 	if (error == EFBIG) {
1570 		m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg);
1571 		if (m == NULL) {
1572 			m_freem(*m_head);
1573 			*m_head = NULL;
1574 			return (ENOMEM);
1575 		}
1576 		*m_head = m;
1577 		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1578 		    *m_head, segs, &nseg, 0);
1579 		if (error != 0) {
1580 			m_freem(*m_head);
1581 			*m_head = NULL;
1582 			return (ENOMEM);
1583 		}
1584 	} else if (error != 0)
1585 		return (error);
1586 	if (nseg == 0) {
1587 		m_freem(*m_head);
1588 		*m_head = NULL;
1589 		return (EIO);
1590 	}
1591 
1592 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1593 	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1594 
1595 	cbp = txp->tx_cb;
1596 	for (i = 0; i < nseg; i++) {
1597 		/*
1598 		 * If this is an 82550/82551, then we're using extended
1599 		 * TxCBs _and_ we're using checksum offload. This means
1600 		 * that the TxCB is really an IPCB. One major difference
1601 		 * between the two is that with plain extended TxCBs,
1602 		 * the bottom half of the TxCB contains two entries from
1603 		 * the TBD array, whereas IPCBs contain just one entry:
1604 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1605 		 * checksum offload control bits. So to make things work
1606 		 * right, we have to start filling in the TBD array
1607 		 * starting from a different place depending on whether
1608 		 * the chip is an 82550/82551 or not.
1609 		 */
1610 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1611 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1612 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1613 		} else {
1614 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1615 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1616 		}
1617 	}
1618 	if (sc->flags & FXP_FLAG_EXT_RFA) {
1619 		/* Configure dynamic TBD for 82550/82551. */
1620 		cbp->tbd_number = 0xFF;
1621 		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1622 	} else
1623 		cbp->tbd_number = nseg;
1624 	/* Configure TSO. */
1625 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1626 		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1627 		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1628 		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1629 		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1630 		    FXP_IPCB_TCP_PACKET |
1631 		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1632 	}
1633 	/* Configure VLAN hardware tag insertion. */
1634 	if ((m->m_flags & M_VLANTAG) != 0) {
1635 		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1636 		txp->tx_cb->ipcb_ip_activation_high |=
1637 		    FXP_IPCB_INSERTVLAN_ENABLE;
1638 	}
1639 
1640 	txp->tx_mbuf = m;
1641 	txp->tx_cb->cb_status = 0;
1642 	txp->tx_cb->byte_count = 0;
1643 	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1644 		txp->tx_cb->cb_command =
1645 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1646 		    FXP_CB_COMMAND_S);
1647 	else
1648 		txp->tx_cb->cb_command =
1649 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1650 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1651 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1652 		txp->tx_cb->tx_threshold = tx_threshold;
1653 
1654 	/*
1655 	 * Advance the end of list forward.
1656 	 */
1657 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1658 	sc->fxp_desc.tx_last = txp;
1659 
1660 	/*
1661 	 * Advance the beginning of the list forward if there are
1662 	 * no other packets queued (when nothing is queued, tx_first
1663 	 * sits on the last TxCB that was sent out).
1664 	 */
1665 	if (sc->tx_queued == 0)
1666 		sc->fxp_desc.tx_first = txp;
1667 
1668 	sc->tx_queued++;
1669 
1670 	return (0);
1671 }
1672 
1673 #ifdef DEVICE_POLLING
1674 static poll_handler_t fxp_poll;
1675 
1676 static int
1677 fxp_poll(if_t ifp, enum poll_cmd cmd, int count)
1678 {
1679 	struct fxp_softc *sc = if_getsoftc(ifp);
1680 	uint8_t statack;
1681 	int rx_npkts = 0;
1682 
1683 	FXP_LOCK(sc);
1684 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1685 		FXP_UNLOCK(sc);
1686 		return (rx_npkts);
1687 	}
1688 
1689 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1690 	    FXP_SCB_STATACK_FR;
1691 	if (cmd == POLL_AND_CHECK_STATUS) {
1692 		uint8_t tmp;
1693 
1694 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1695 		if (tmp == 0xff || tmp == 0) {
1696 			FXP_UNLOCK(sc);
1697 			return (rx_npkts); /* nothing to do */
1698 		}
1699 		tmp &= ~statack;
1700 		/* ack what we can */
1701 		if (tmp != 0)
1702 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1703 		statack |= tmp;
1704 	}
1705 	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1706 	FXP_UNLOCK(sc);
1707 	return (rx_npkts);
1708 }
1709 #endif /* DEVICE_POLLING */
1710 
1711 /*
1712  * Process interface interrupts.
1713  */
1714 static void
1715 fxp_intr(void *xsc)
1716 {
1717 	struct fxp_softc *sc = xsc;
1718 	if_t ifp = sc->ifp;
1719 	uint8_t statack;
1720 
1721 	FXP_LOCK(sc);
1722 	if (sc->suspended) {
1723 		FXP_UNLOCK(sc);
1724 		return;
1725 	}
1726 
1727 #ifdef DEVICE_POLLING
1728 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
1729 		FXP_UNLOCK(sc);
1730 		return;
1731 	}
1732 #endif
1733 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1734 		/*
1735 		 * It should not be possible to have all bits set; the
1736 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1737 		 * all bits are set, this may indicate that the card has
1738 		 * been physically ejected, so ignore it.
1739 		 */
1740 		if (statack == 0xff) {
1741 			FXP_UNLOCK(sc);
1742 			return;
1743 		}
1744 
1745 		/*
1746 		 * First ACK all the interrupts in this pass.
1747 		 */
1748 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1749 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1750 			fxp_intr_body(sc, ifp, statack, -1);
1751 	}
1752 	FXP_UNLOCK(sc);
1753 }
1754 
1755 static void
1756 fxp_txeof(struct fxp_softc *sc)
1757 {
1758 	if_t ifp;
1759 	struct fxp_tx *txp;
1760 
1761 	ifp = sc->ifp;
1762 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1763 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1764 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1765 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1766 	    txp = txp->tx_next) {
1767 		if (txp->tx_mbuf != NULL) {
1768 			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1769 			    BUS_DMASYNC_POSTWRITE);
1770 			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1771 			m_freem(txp->tx_mbuf);
1772 			txp->tx_mbuf = NULL;
1773 			/* clear this to reset csum offload bits */
1774 			txp->tx_cb->tbd[0].tb_addr = 0;
1775 		}
1776 		sc->tx_queued--;
1777 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1778 	}
1779 	sc->fxp_desc.tx_first = txp;
1780 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1781 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1782 	if (sc->tx_queued == 0)
1783 		sc->watchdog_timer = 0;
1784 }
1785 
1786 static void
1787 fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m,
1788     uint16_t status, int pos)
1789 {
1790 	struct ether_header *eh;
1791 	struct ip *ip;
1792 	struct udphdr *uh;
1793 	int32_t hlen, len, pktlen, temp32;
1794 	uint16_t csum, *opts;
1795 
1796 	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1797 		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1798 			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1799 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1800 			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1801 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1802 			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1803 			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1804 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1805 				    CSUM_PSEUDO_HDR;
1806 				m->m_pkthdr.csum_data = 0xffff;
1807 			}
1808 		}
1809 		return;
1810 	}
1811 
1812 	pktlen = m->m_pkthdr.len;
1813 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1814 		return;
1815 	eh = mtod(m, struct ether_header *);
1816 	if (eh->ether_type != htons(ETHERTYPE_IP))
1817 		return;
1818 	ip = (struct ip *)(eh + 1);
1819 	if (ip->ip_v != IPVERSION)
1820 		return;
1821 
1822 	hlen = ip->ip_hl << 2;
1823 	pktlen -= sizeof(struct ether_header);
1824 	if (hlen < sizeof(struct ip))
1825 		return;
1826 	if (ntohs(ip->ip_len) < hlen)
1827 		return;
1828 	if (ntohs(ip->ip_len) != pktlen)
1829 		return;
1830 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1831 		return;	/* can't handle fragmented packet */
1832 
1833 	switch (ip->ip_p) {
1834 	case IPPROTO_TCP:
1835 		if (pktlen < (hlen + sizeof(struct tcphdr)))
1836 			return;
1837 		break;
1838 	case IPPROTO_UDP:
1839 		if (pktlen < (hlen + sizeof(struct udphdr)))
1840 			return;
1841 		uh = (struct udphdr *)((caddr_t)ip + hlen);
1842 		if (uh->uh_sum == 0)
1843 			return; /* no checksum */
1844 		break;
1845 	default:
1846 		return;
1847 	}
1848 	/* Extract computed checksum. */
1849 	csum = be16dec(mtod(m, char *) + pos);
1850 	/* checksum fixup for IP options */
1851 	len = hlen - sizeof(struct ip);
1852 	if (len > 0) {
1853 		opts = (uint16_t *)(ip + 1);
1854 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1855 			temp32 = csum - *opts;
1856 			temp32 = (temp32 >> 16) + (temp32 & 65535);
1857 			csum = temp32 & 65535;
1858 		}
1859 	}
1860 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1861 	m->m_pkthdr.csum_data = csum;
1862 }
1863 
1864 static int
1865 fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack,
1866     int count)
1867 {
1868 	struct mbuf *m;
1869 	struct fxp_rx *rxp;
1870 	struct fxp_rfa *rfa;
1871 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1872 	int rx_npkts;
1873 	uint16_t status;
1874 
1875 	rx_npkts = 0;
1876 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1877 
1878 	if (rnr)
1879 		sc->rnr++;
1880 #ifdef DEVICE_POLLING
1881 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1882 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1883 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1884 		rnr = 1;
1885 	}
1886 #endif
1887 
1888 	/*
1889 	 * Free any finished transmit mbuf chains.
1890 	 *
1891 	 * Handle the CNA event likt a CXTNO event. It used to
1892 	 * be that this event (control unit not ready) was not
1893 	 * encountered, but it is now with the SMPng modifications.
1894 	 * The exact sequence of events that occur when the interface
1895 	 * is brought up are different now, and if this event
1896 	 * goes unhandled, the configuration/rxfilter setup sequence
1897 	 * can stall for several seconds. The result is that no
1898 	 * packets go out onto the wire for about 5 to 10 seconds
1899 	 * after the interface is ifconfig'ed for the first time.
1900 	 */
1901 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1902 		fxp_txeof(sc);
1903 
1904 	/*
1905 	 * Try to start more packets transmitting.
1906 	 */
1907 	if (!if_sendq_empty(ifp))
1908 		fxp_start_body(ifp);
1909 
1910 	/*
1911 	 * Just return if nothing happened on the receive side.
1912 	 */
1913 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1914 		return (rx_npkts);
1915 
1916 	/*
1917 	 * Process receiver interrupts. If a no-resource (RNR)
1918 	 * condition exists, get whatever packets we can and
1919 	 * re-start the receiver.
1920 	 *
1921 	 * When using polling, we do not process the list to completion,
1922 	 * so when we get an RNR interrupt we must defer the restart
1923 	 * until we hit the last buffer with the C bit set.
1924 	 * If we run out of cycles and rfa_headm has the C bit set,
1925 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1926 	 * that the info will be used in the subsequent polling cycle.
1927 	 */
1928 	for (;;) {
1929 		rxp = sc->fxp_desc.rx_head;
1930 		m = rxp->rx_mbuf;
1931 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1932 		    RFA_ALIGNMENT_FUDGE);
1933 		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1934 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1935 
1936 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1937 		if (count >= 0 && count-- == 0) {
1938 			if (rnr) {
1939 				/* Defer RNR processing until the next time. */
1940 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1941 				rnr = 0;
1942 			}
1943 			break;
1944 		}
1945 #endif /* DEVICE_POLLING */
1946 
1947 		status = le16toh(rfa->rfa_status);
1948 		if ((status & FXP_RFA_STATUS_C) == 0)
1949 			break;
1950 
1951 		if ((status & FXP_RFA_STATUS_RNR) != 0)
1952 			rnr++;
1953 		/*
1954 		 * Advance head forward.
1955 		 */
1956 		sc->fxp_desc.rx_head = rxp->rx_next;
1957 
1958 		/*
1959 		 * Add a new buffer to the receive chain.
1960 		 * If this fails, the old buffer is recycled
1961 		 * instead.
1962 		 */
1963 		if (fxp_new_rfabuf(sc, rxp) == 0) {
1964 			int total_len;
1965 
1966 			/*
1967 			 * Fetch packet length (the top 2 bits of
1968 			 * actual_size are flags set by the controller
1969 			 * upon completion), and drop the packet in case
1970 			 * of bogus length or CRC errors.
1971 			 */
1972 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1973 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1974 			    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1975 				/* Adjust for appended checksum bytes. */
1976 				total_len -= 2;
1977 			}
1978 			if (total_len < (int)sizeof(struct ether_header) ||
1979 			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1980 			    sc->rfa_size) ||
1981 			    status & (FXP_RFA_STATUS_CRC |
1982 			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1983 				m_freem(m);
1984 				fxp_add_rfabuf(sc, rxp);
1985 				continue;
1986 			}
1987 
1988 			m->m_pkthdr.len = m->m_len = total_len;
1989 			if_setrcvif(m, ifp);
1990 
1991                         /* Do IP checksum checking. */
1992 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1993 				fxp_rxcsum(sc, ifp, m, status, total_len);
1994 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1995 			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1996 				m->m_pkthdr.ether_vtag =
1997 				    ntohs(rfa->rfax_vlan_id);
1998 				m->m_flags |= M_VLANTAG;
1999 			}
2000 			/*
2001 			 * Drop locks before calling if_input() since it
2002 			 * may re-enter fxp_start() in the netisr case.
2003 			 * This would result in a lock reversal.  Better
2004 			 * performance might be obtained by chaining all
2005 			 * packets received, dropping the lock, and then
2006 			 * calling if_input() on each one.
2007 			 */
2008 			FXP_UNLOCK(sc);
2009 			if_input(ifp, m);
2010 			FXP_LOCK(sc);
2011 			rx_npkts++;
2012 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2013 				return (rx_npkts);
2014 		} else {
2015 			/* Reuse RFA and loaded DMA map. */
2016 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2017 			fxp_discard_rfabuf(sc, rxp);
2018 		}
2019 		fxp_add_rfabuf(sc, rxp);
2020 	}
2021 	if (rnr) {
2022 		fxp_scb_wait(sc);
2023 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2024 		    sc->fxp_desc.rx_head->rx_addr);
2025 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2026 	}
2027 	return (rx_npkts);
2028 }
2029 
2030 static void
2031 fxp_update_stats(struct fxp_softc *sc)
2032 {
2033 	if_t ifp = sc->ifp;
2034 	struct fxp_stats *sp = sc->fxp_stats;
2035 	struct fxp_hwstats *hsp;
2036 	uint32_t *status;
2037 
2038 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2039 
2040 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2041 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2042 	/* Update statistical counters. */
2043 	if (sc->revision >= FXP_REV_82559_A0)
2044 		status = &sp->completion_status;
2045 	else if (sc->revision >= FXP_REV_82558_A4)
2046 		status = (uint32_t *)&sp->tx_tco;
2047 	else
2048 		status = &sp->tx_pause;
2049 	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2050 		hsp = &sc->fxp_hwstats;
2051 		hsp->tx_good += le32toh(sp->tx_good);
2052 		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2053 		hsp->tx_latecols += le32toh(sp->tx_latecols);
2054 		hsp->tx_underruns += le32toh(sp->tx_underruns);
2055 		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2056 		hsp->tx_deffered += le32toh(sp->tx_deffered);
2057 		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2058 		hsp->tx_multiple_collisions +=
2059 		    le32toh(sp->tx_multiple_collisions);
2060 		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2061 		hsp->rx_good += le32toh(sp->rx_good);
2062 		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2063 		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2064 		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2065 		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2066 		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2067 		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2068 		hsp->tx_pause += le32toh(sp->tx_pause);
2069 		hsp->rx_pause += le32toh(sp->rx_pause);
2070 		hsp->rx_controls += le32toh(sp->rx_controls);
2071 		hsp->tx_tco += le16toh(sp->tx_tco);
2072 		hsp->rx_tco += le16toh(sp->rx_tco);
2073 
2074 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good));
2075 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2076 		    le32toh(sp->tx_total_collisions));
2077 		if (sp->rx_good) {
2078 			if_inc_counter(ifp, IFCOUNTER_IPACKETS,
2079 			    le32toh(sp->rx_good));
2080 			sc->rx_idle_secs = 0;
2081 		} else if (sc->flags & FXP_FLAG_RXBUG) {
2082 			/*
2083 			 * Receiver's been idle for another second.
2084 			 */
2085 			sc->rx_idle_secs++;
2086 		}
2087 		if_inc_counter(ifp, IFCOUNTER_IERRORS,
2088 		    le32toh(sp->rx_crc_errors) +
2089 		    le32toh(sp->rx_alignment_errors) +
2090 		    le32toh(sp->rx_rnr_errors) +
2091 		    le32toh(sp->rx_overrun_errors));
2092 		/*
2093 		 * If any transmit underruns occurred, bump up the transmit
2094 		 * threshold by another 512 bytes (64 * 8).
2095 		 */
2096 		if (sp->tx_underruns) {
2097 			if_inc_counter(ifp, IFCOUNTER_OERRORS,
2098 			    le32toh(sp->tx_underruns));
2099 			if (tx_threshold < 192)
2100 				tx_threshold += 64;
2101 		}
2102 		*status = 0;
2103 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2104 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2105 	}
2106 }
2107 
2108 /*
2109  * Update packet in/out/collision statistics. The i82557 doesn't
2110  * allow you to access these counters without doing a fairly
2111  * expensive DMA to get _all_ of the statistics it maintains, so
2112  * we do this operation here only once per second. The statistics
2113  * counters in the kernel are updated from the previous dump-stats
2114  * DMA and then a new dump-stats DMA is started. The on-chip
2115  * counters are zeroed when the DMA completes. If we can't start
2116  * the DMA immediately, we don't wait - we just prepare to read
2117  * them again next time.
2118  */
2119 static void
2120 fxp_tick(void *xsc)
2121 {
2122 	struct fxp_softc *sc = xsc;
2123 	if_t ifp = sc->ifp;
2124 
2125 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2126 
2127 	/* Update statistical counters. */
2128 	fxp_update_stats(sc);
2129 
2130 	/*
2131 	 * Release any xmit buffers that have completed DMA. This isn't
2132 	 * strictly necessary to do here, but it's advantagous for mbufs
2133 	 * with external storage to be released in a timely manner rather
2134 	 * than being defered for a potentially long time. This limits
2135 	 * the delay to a maximum of one second.
2136 	 */
2137 	fxp_txeof(sc);
2138 
2139 	/*
2140 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2141 	 * then assume the receiver has locked up and attempt to clear
2142 	 * the condition by reprogramming the multicast filter. This is
2143 	 * a work-around for a bug in the 82557 where the receiver locks
2144 	 * up if it gets certain types of garbage in the synchronization
2145 	 * bits prior to the packet header. This bug is supposed to only
2146 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2147 	 * mode as well (perhaps due to a 10/100 speed transition).
2148 	 */
2149 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2150 		sc->rx_idle_secs = 0;
2151 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2152 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2153 			fxp_init_body(sc, 1);
2154 		}
2155 		return;
2156 	}
2157 	/*
2158 	 * If there is no pending command, start another stats
2159 	 * dump. Otherwise punt for now.
2160 	 */
2161 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2162 		/*
2163 		 * Start another stats dump.
2164 		 */
2165 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2166 	}
2167 	if (sc->miibus != NULL)
2168 		mii_tick(device_get_softc(sc->miibus));
2169 
2170 	/*
2171 	 * Check that chip hasn't hung.
2172 	 */
2173 	fxp_watchdog(sc);
2174 
2175 	/*
2176 	 * Schedule another timeout one second from now.
2177 	 */
2178 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2179 }
2180 
2181 /*
2182  * Stop the interface. Cancels the statistics updater and resets
2183  * the interface.
2184  */
2185 static void
2186 fxp_stop(struct fxp_softc *sc)
2187 {
2188 	if_t ifp = sc->ifp;
2189 	struct fxp_tx *txp;
2190 	int i;
2191 
2192 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2193 	sc->watchdog_timer = 0;
2194 
2195 	/*
2196 	 * Cancel stats updater.
2197 	 */
2198 	callout_stop(&sc->stat_ch);
2199 
2200 	/*
2201 	 * Preserve PCI configuration, configure, IA/multicast
2202 	 * setup and put RU and CU into idle state.
2203 	 */
2204 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2205 	DELAY(50);
2206 	/* Disable interrupts. */
2207 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2208 
2209 	fxp_update_stats(sc);
2210 
2211 	/*
2212 	 * Release any xmit buffers.
2213 	 */
2214 	txp = sc->fxp_desc.tx_list;
2215 	for (i = 0; i < FXP_NTXCB; i++) {
2216 		if (txp[i].tx_mbuf != NULL) {
2217 			bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2218 			    BUS_DMASYNC_POSTWRITE);
2219 			bus_dmamap_unload(sc->fxp_txmtag, txp[i].tx_map);
2220 			m_freem(txp[i].tx_mbuf);
2221 			txp[i].tx_mbuf = NULL;
2222 			/* clear this to reset csum offload bits */
2223 			txp[i].tx_cb->tbd[0].tb_addr = 0;
2224 		}
2225 	}
2226 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2227 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2228 	sc->tx_queued = 0;
2229 }
2230 
2231 /*
2232  * Watchdog/transmission transmit timeout handler. Called when a
2233  * transmission is started on the interface, but no interrupt is
2234  * received before the timeout. This usually indicates that the
2235  * card has wedged for some reason.
2236  */
2237 static void
2238 fxp_watchdog(struct fxp_softc *sc)
2239 {
2240 	if_t ifp = sc->ifp;
2241 
2242 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2243 
2244 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2245 		return;
2246 
2247 	device_printf(sc->dev, "device timeout\n");
2248 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2249 
2250 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2251 	fxp_init_body(sc, 1);
2252 }
2253 
2254 /*
2255  * Acquire locks and then call the real initialization function.  This
2256  * is necessary because ether_ioctl() calls if_init() and this would
2257  * result in mutex recursion if the mutex was held.
2258  */
2259 static void
2260 fxp_init(void *xsc)
2261 {
2262 	struct fxp_softc *sc = xsc;
2263 
2264 	FXP_LOCK(sc);
2265 	fxp_init_body(sc, 1);
2266 	FXP_UNLOCK(sc);
2267 }
2268 
2269 /*
2270  * Perform device initialization. This routine must be called with the
2271  * softc lock held.
2272  */
2273 static void
2274 fxp_init_body(struct fxp_softc *sc, int setmedia)
2275 {
2276 	if_t ifp = sc->ifp;
2277 	struct mii_data *mii;
2278 	struct fxp_cb_config *cbp;
2279 	struct fxp_cb_ias *cb_ias;
2280 	struct fxp_cb_tx *tcbp;
2281 	struct fxp_tx *txp;
2282 	int i, prm;
2283 
2284 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2285 
2286 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2287 		return;
2288 
2289 	/*
2290 	 * Cancel any pending I/O
2291 	 */
2292 	fxp_stop(sc);
2293 
2294 	/*
2295 	 * Issue software reset, which also unloads the microcode.
2296 	 */
2297 	sc->flags &= ~FXP_FLAG_UCODE;
2298 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2299 	DELAY(50);
2300 
2301 	prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0;
2302 
2303 	/*
2304 	 * Initialize base of CBL and RFA memory. Loading with zero
2305 	 * sets it up for regular linear addressing.
2306 	 */
2307 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2308 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2309 
2310 	fxp_scb_wait(sc);
2311 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2312 
2313 	/*
2314 	 * Initialize base of dump-stats buffer.
2315 	 */
2316 	fxp_scb_wait(sc);
2317 	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2318 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2319 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2320 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2321 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2322 
2323 	/*
2324 	 * Attempt to load microcode if requested.
2325 	 * For ICH based controllers do not load microcode.
2326 	 */
2327 	if (sc->ident->ich == 0) {
2328 		if (if_getflags(ifp) & IFF_LINK0 &&
2329 		    (sc->flags & FXP_FLAG_UCODE) == 0)
2330 			fxp_load_ucode(sc);
2331 	}
2332 
2333 	/*
2334 	 * Set IFF_ALLMULTI status. It's needed in configure action
2335 	 * command.
2336 	 */
2337 	fxp_mc_addrs(sc);
2338 
2339 	/*
2340 	 * We temporarily use memory that contains the TxCB list to
2341 	 * construct the config CB. The TxCB list memory is rebuilt
2342 	 * later.
2343 	 */
2344 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2345 
2346 	/*
2347 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2348 	 * zero and must be one bits in this structure and this is the easiest
2349 	 * way to initialize them all to proper values.
2350 	 */
2351 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2352 
2353 	cbp->cb_status =	0;
2354 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2355 	    FXP_CB_COMMAND_EL);
2356 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2357 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2358 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2359 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2360 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2361 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2362 	cbp->type_enable =	0;	/* actually reserved */
2363 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2364 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2365 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2366 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2367 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2368 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2369 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2370 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2371 	cbp->ci_int =		1;	/* interrupt on CU idle */
2372 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2373 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2374 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2375 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2376 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2377 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2378 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2379 	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2380 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2381 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2382 	cbp->csma_dis =		0;	/* (don't) disable link */
2383 	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2384 	    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0;
2385 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2386 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2387 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2388 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2389 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2390 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2391 	cbp->loopback =		0;	/* (don't) loopback */
2392 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2393 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2394 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2395 	cbp->promiscuous =	prm;	/* promiscuous mode */
2396 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2397 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2398 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2399 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2400 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2401 
2402 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2403 	cbp->padding =		1;	/* (do) pad short tx packets */
2404 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2405 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2406 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2407 	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2408 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2409 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2410 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2411 	cbp->mc_all =		if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm;
2412 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2413 	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2414 	    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2415 
2416 	if (sc->revision == FXP_REV_82557) {
2417 		/*
2418 		 * The 82557 has no hardware flow control, the values
2419 		 * below are the defaults for the chip.
2420 		 */
2421 		cbp->fc_delay_lsb =	0;
2422 		cbp->fc_delay_msb =	0x40;
2423 		cbp->pri_fc_thresh =	3;
2424 		cbp->tx_fc_dis =	0;
2425 		cbp->rx_fc_restop =	0;
2426 		cbp->rx_fc_restart =	0;
2427 		cbp->fc_filter =	0;
2428 		cbp->pri_fc_loc =	1;
2429 	} else {
2430 		/* Set pause RX FIFO threshold to 1KB. */
2431 		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2432 		/* Set pause time. */
2433 		cbp->fc_delay_lsb =	0xff;
2434 		cbp->fc_delay_msb =	0xff;
2435 		cbp->pri_fc_thresh =	3;
2436 		mii = device_get_softc(sc->miibus);
2437 		if ((IFM_OPTIONS(mii->mii_media_active) &
2438 		    IFM_ETH_TXPAUSE) != 0)
2439 			/* enable transmit FC */
2440 			cbp->tx_fc_dis = 0;
2441 		else
2442 			/* disable transmit FC */
2443 			cbp->tx_fc_dis = 1;
2444 		if ((IFM_OPTIONS(mii->mii_media_active) &
2445 		    IFM_ETH_RXPAUSE) != 0) {
2446 			/* enable FC restart/restop frames */
2447 			cbp->rx_fc_restart = 1;
2448 			cbp->rx_fc_restop = 1;
2449 		} else {
2450 			/* disable FC restart/restop frames */
2451 			cbp->rx_fc_restart = 0;
2452 			cbp->rx_fc_restop = 0;
2453 		}
2454 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2455 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2456 	}
2457 
2458 	/* Enable 82558 and 82559 extended statistics functionality. */
2459 	if (sc->revision >= FXP_REV_82558_A4) {
2460 		if (sc->revision >= FXP_REV_82559_A0) {
2461 			/*
2462 			 * Extend configuration table size to 32
2463 			 * to include TCO configuration.
2464 			 */
2465 			cbp->byte_count = 32;
2466 			cbp->ext_stats_dis = 1;
2467 			/* Enable TCO stats. */
2468 			cbp->tno_int_or_tco_en = 1;
2469 			cbp->gamla_rx = 1;
2470 		} else
2471 			cbp->ext_stats_dis = 0;
2472 	}
2473 
2474 	/*
2475 	 * Start the config command/DMA.
2476 	 */
2477 	fxp_scb_wait(sc);
2478 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2479 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2480 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2481 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2482 	/* ...and wait for it to complete. */
2483 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2484 
2485 	/*
2486 	 * Now initialize the station address. Temporarily use the TxCB
2487 	 * memory area like we did above for the config CB.
2488 	 */
2489 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2490 	cb_ias->cb_status = 0;
2491 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2492 	cb_ias->link_addr = 0xffffffff;
2493 	bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2494 
2495 	/*
2496 	 * Start the IAS (Individual Address Setup) command/DMA.
2497 	 */
2498 	fxp_scb_wait(sc);
2499 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2500 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2501 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2502 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2503 	/* ...and wait for it to complete. */
2504 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2505 
2506 	/*
2507 	 * Initialize the multicast address list.
2508 	 */
2509 	fxp_mc_setup(sc);
2510 
2511 	/*
2512 	 * Initialize transmit control block (TxCB) list.
2513 	 */
2514 	txp = sc->fxp_desc.tx_list;
2515 	tcbp = sc->fxp_desc.cbl_list;
2516 	bzero(tcbp, FXP_TXCB_SZ);
2517 	for (i = 0; i < FXP_NTXCB; i++) {
2518 		txp[i].tx_mbuf = NULL;
2519 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2520 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2521 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2522 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2523 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2524 			tcbp[i].tbd_array_addr =
2525 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2526 		else
2527 			tcbp[i].tbd_array_addr =
2528 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2529 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2530 	}
2531 	/*
2532 	 * Set the suspend flag on the first TxCB and start the control
2533 	 * unit. It will execute the NOP and then suspend.
2534 	 */
2535 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2536 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2537 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2538 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2539 	sc->tx_queued = 1;
2540 
2541 	fxp_scb_wait(sc);
2542 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2543 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2544 
2545 	/*
2546 	 * Initialize receiver buffer area - RFA.
2547 	 */
2548 	fxp_scb_wait(sc);
2549 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2550 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2551 
2552 	if (sc->miibus != NULL && setmedia != 0)
2553 		mii_mediachg(device_get_softc(sc->miibus));
2554 
2555 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2556 
2557 	/*
2558 	 * Enable interrupts.
2559 	 */
2560 #ifdef DEVICE_POLLING
2561 	/*
2562 	 * ... but only do that if we are not polling. And because (presumably)
2563 	 * the default is interrupts on, we need to disable them explicitly!
2564 	 */
2565 	if (if_getcapenable(ifp) & IFCAP_POLLING )
2566 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2567 	else
2568 #endif /* DEVICE_POLLING */
2569 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2570 
2571 	/*
2572 	 * Start stats updater.
2573 	 */
2574 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2575 }
2576 
2577 static int
2578 fxp_serial_ifmedia_upd(if_t ifp)
2579 {
2580 
2581 	return (0);
2582 }
2583 
2584 static void
2585 fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2586 {
2587 
2588 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2589 }
2590 
2591 /*
2592  * Change media according to request.
2593  */
2594 static int
2595 fxp_ifmedia_upd(if_t ifp)
2596 {
2597 	struct fxp_softc *sc = if_getsoftc(ifp);
2598 	struct mii_data *mii;
2599 	struct mii_softc	*miisc;
2600 
2601 	mii = device_get_softc(sc->miibus);
2602 	FXP_LOCK(sc);
2603 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2604 		PHY_RESET(miisc);
2605 	mii_mediachg(mii);
2606 	FXP_UNLOCK(sc);
2607 	return (0);
2608 }
2609 
2610 /*
2611  * Notify the world which media we're using.
2612  */
2613 static void
2614 fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2615 {
2616 	struct fxp_softc *sc = if_getsoftc(ifp);
2617 	struct mii_data *mii;
2618 
2619 	mii = device_get_softc(sc->miibus);
2620 	FXP_LOCK(sc);
2621 	mii_pollstat(mii);
2622 	ifmr->ifm_active = mii->mii_media_active;
2623 	ifmr->ifm_status = mii->mii_media_status;
2624 	FXP_UNLOCK(sc);
2625 }
2626 
2627 /*
2628  * Add a buffer to the end of the RFA buffer list.
2629  * Return 0 if successful, 1 for failure. A failure results in
2630  * reusing the RFA buffer.
2631  * The RFA struct is stuck at the beginning of mbuf cluster and the
2632  * data pointer is fixed up to point just past it.
2633  */
2634 static int
2635 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2636 {
2637 	struct mbuf *m;
2638 	struct fxp_rfa *rfa;
2639 	bus_dmamap_t tmp_map;
2640 	int error;
2641 
2642 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2643 	if (m == NULL)
2644 		return (ENOBUFS);
2645 
2646 	/*
2647 	 * Move the data pointer up so that the incoming data packet
2648 	 * will be 32-bit aligned.
2649 	 */
2650 	m->m_data += RFA_ALIGNMENT_FUDGE;
2651 
2652 	/*
2653 	 * Get a pointer to the base of the mbuf cluster and move
2654 	 * data start past it.
2655 	 */
2656 	rfa = mtod(m, struct fxp_rfa *);
2657 	m->m_data += sc->rfa_size;
2658 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2659 
2660 	rfa->rfa_status = 0;
2661 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2662 	rfa->actual_size = 0;
2663 	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2664 	    sc->rfa_size;
2665 
2666 	/*
2667 	 * Initialize the rest of the RFA.  Note that since the RFA
2668 	 * is misaligned, we cannot store values directly.  We're thus
2669 	 * using the le32enc() function which handles endianness and
2670 	 * is also alignment-safe.
2671 	 */
2672 	le32enc(&rfa->link_addr, 0xffffffff);
2673 	le32enc(&rfa->rbd_addr, 0xffffffff);
2674 
2675 	/* Map the RFA into DMA memory. */
2676 	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2677 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2678 	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2679 	if (error) {
2680 		m_freem(m);
2681 		return (error);
2682 	}
2683 
2684 	if (rxp->rx_mbuf != NULL)
2685 		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2686 	tmp_map = sc->spare_map;
2687 	sc->spare_map = rxp->rx_map;
2688 	rxp->rx_map = tmp_map;
2689 	rxp->rx_mbuf = m;
2690 
2691 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2692 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2693 	return (0);
2694 }
2695 
2696 static void
2697 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2698 {
2699 	struct fxp_rfa *p_rfa;
2700 	struct fxp_rx *p_rx;
2701 
2702 	/*
2703 	 * If there are other buffers already on the list, attach this
2704 	 * one to the end by fixing up the tail to point to this one.
2705 	 */
2706 	if (sc->fxp_desc.rx_head != NULL) {
2707 		p_rx = sc->fxp_desc.rx_tail;
2708 		p_rfa = (struct fxp_rfa *)
2709 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2710 		p_rx->rx_next = rxp;
2711 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2712 		p_rfa->rfa_control = 0;
2713 		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2714 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2715 	} else {
2716 		rxp->rx_next = NULL;
2717 		sc->fxp_desc.rx_head = rxp;
2718 	}
2719 	sc->fxp_desc.rx_tail = rxp;
2720 }
2721 
2722 static void
2723 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2724 {
2725 	struct mbuf *m;
2726 	struct fxp_rfa *rfa;
2727 
2728 	m = rxp->rx_mbuf;
2729 	m->m_data = m->m_ext.ext_buf;
2730 	/*
2731 	 * Move the data pointer up so that the incoming data packet
2732 	 * will be 32-bit aligned.
2733 	 */
2734 	m->m_data += RFA_ALIGNMENT_FUDGE;
2735 
2736 	/*
2737 	 * Get a pointer to the base of the mbuf cluster and move
2738 	 * data start past it.
2739 	 */
2740 	rfa = mtod(m, struct fxp_rfa *);
2741 	m->m_data += sc->rfa_size;
2742 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2743 
2744 	rfa->rfa_status = 0;
2745 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2746 	rfa->actual_size = 0;
2747 
2748 	/*
2749 	 * Initialize the rest of the RFA.  Note that since the RFA
2750 	 * is misaligned, we cannot store values directly.  We're thus
2751 	 * using the le32enc() function which handles endianness and
2752 	 * is also alignment-safe.
2753 	 */
2754 	le32enc(&rfa->link_addr, 0xffffffff);
2755 	le32enc(&rfa->rbd_addr, 0xffffffff);
2756 
2757 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2758 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2759 }
2760 
2761 static int
2762 fxp_miibus_readreg(device_t dev, int phy, int reg)
2763 {
2764 	struct fxp_softc *sc = device_get_softc(dev);
2765 	int count = 10000;
2766 	int value;
2767 
2768 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2769 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2770 
2771 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2772 	    && count--)
2773 		DELAY(10);
2774 
2775 	if (count <= 0)
2776 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2777 
2778 	return (value & 0xffff);
2779 }
2780 
2781 static int
2782 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2783 {
2784 	struct fxp_softc *sc = device_get_softc(dev);
2785 	int count = 10000;
2786 
2787 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2788 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2789 	    (value & 0xffff));
2790 
2791 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2792 	    count--)
2793 		DELAY(10);
2794 
2795 	if (count <= 0)
2796 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2797 	return (0);
2798 }
2799 
2800 static void
2801 fxp_miibus_statchg(device_t dev)
2802 {
2803 	struct fxp_softc *sc;
2804 	struct mii_data *mii;
2805 	if_t ifp;
2806 
2807 	sc = device_get_softc(dev);
2808 	mii = device_get_softc(sc->miibus);
2809 	ifp = sc->ifp;
2810 	if (mii == NULL || ifp == (void *)NULL ||
2811 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
2812 	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2813 	    (IFM_AVALID | IFM_ACTIVE))
2814 		return;
2815 
2816 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2817 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2818 		sc->cu_resume_bug = 1;
2819 	else
2820 		sc->cu_resume_bug = 0;
2821 	/*
2822 	 * Call fxp_init_body in order to adjust the flow control settings.
2823 	 * Note that the 82557 doesn't support hardware flow control.
2824 	 */
2825 	if (sc->revision == FXP_REV_82557)
2826 		return;
2827 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2828 	fxp_init_body(sc, 0);
2829 }
2830 
2831 static int
2832 fxp_ioctl(if_t ifp, u_long command, caddr_t data)
2833 {
2834 	struct fxp_softc *sc = if_getsoftc(ifp);
2835 	struct ifreq *ifr = (struct ifreq *)data;
2836 	struct mii_data *mii;
2837 	int flag, mask, error = 0, reinit;
2838 
2839 	switch (command) {
2840 	case SIOCSIFFLAGS:
2841 		FXP_LOCK(sc);
2842 		/*
2843 		 * If interface is marked up and not running, then start it.
2844 		 * If it is marked down and running, stop it.
2845 		 * XXX If it's up then re-initialize it. This is so flags
2846 		 * such as IFF_PROMISC are handled.
2847 		 */
2848 		if (if_getflags(ifp) & IFF_UP) {
2849 			if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) &&
2850 			    ((if_getflags(ifp) ^ sc->if_flags) &
2851 			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) {
2852 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2853 				fxp_init_body(sc, 0);
2854 			} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2855 				fxp_init_body(sc, 1);
2856 		} else {
2857 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2858 				fxp_stop(sc);
2859 		}
2860 		sc->if_flags = if_getflags(ifp);
2861 		FXP_UNLOCK(sc);
2862 		break;
2863 
2864 	case SIOCADDMULTI:
2865 	case SIOCDELMULTI:
2866 		FXP_LOCK(sc);
2867 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2868 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2869 			fxp_init_body(sc, 0);
2870 		}
2871 		FXP_UNLOCK(sc);
2872 		break;
2873 
2874 	case SIOCSIFMEDIA:
2875 	case SIOCGIFMEDIA:
2876 		if (sc->miibus != NULL) {
2877 			mii = device_get_softc(sc->miibus);
2878                         error = ifmedia_ioctl(ifp, ifr,
2879                             &mii->mii_media, command);
2880 		} else {
2881                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2882 		}
2883 		break;
2884 
2885 	case SIOCSIFCAP:
2886 		reinit = 0;
2887 		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
2888 #ifdef DEVICE_POLLING
2889 		if (mask & IFCAP_POLLING) {
2890 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2891 				error = ether_poll_register(fxp_poll, ifp);
2892 				if (error)
2893 					return(error);
2894 				FXP_LOCK(sc);
2895 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2896 				    FXP_SCB_INTR_DISABLE);
2897 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2898 				FXP_UNLOCK(sc);
2899 			} else {
2900 				error = ether_poll_deregister(ifp);
2901 				/* Enable interrupts in any case */
2902 				FXP_LOCK(sc);
2903 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2904 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2905 				FXP_UNLOCK(sc);
2906 			}
2907 		}
2908 #endif
2909 		FXP_LOCK(sc);
2910 		if ((mask & IFCAP_TXCSUM) != 0 &&
2911 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2912 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2913 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2914 				if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0);
2915 			else
2916 				if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES);
2917 		}
2918 		if ((mask & IFCAP_RXCSUM) != 0 &&
2919 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
2920 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2921 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2922 				reinit++;
2923 		}
2924 		if ((mask & IFCAP_TSO4) != 0 &&
2925 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
2926 			if_togglecapenable(ifp, IFCAP_TSO4);
2927 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
2928 				if_sethwassistbits(ifp, CSUM_TSO, 0);
2929 			else
2930 				if_sethwassistbits(ifp, 0, CSUM_TSO);
2931 		}
2932 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2933 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2934 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2935 		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2936 		    (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) {
2937 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
2938 			if (sc->revision != FXP_REV_82557)
2939 				flag = FXP_FLAG_LONG_PKT_EN;
2940 			else /* a hack to get long frames on the old chip */
2941 				flag = FXP_FLAG_SAVE_BAD;
2942 			sc->flags ^= flag;
2943 			if (if_getflags(ifp) & IFF_UP)
2944 				reinit++;
2945 		}
2946 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2947 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2948 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2949 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2950 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2951 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2952 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2953 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2954 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2955 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2956 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO |
2957 				    IFCAP_VLAN_HWCSUM);
2958 			reinit++;
2959 		}
2960 		if (reinit > 0 &&
2961 		    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2962 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2963 			fxp_init_body(sc, 0);
2964 		}
2965 		FXP_UNLOCK(sc);
2966 		if_vlancap(ifp);
2967 		break;
2968 
2969 	default:
2970 		error = ether_ioctl(ifp, command, data);
2971 	}
2972 	return (error);
2973 }
2974 
2975 /*
2976  * Fill in the multicast address list and return number of entries.
2977  */
2978 static int
2979 fxp_mc_addrs(struct fxp_softc *sc)
2980 {
2981 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2982 	if_t ifp = sc->ifp;
2983 	int nmcasts = 0;
2984 
2985 	if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) {
2986 		if_maddr_rlock(ifp);
2987 		if_setupmultiaddr(ifp, mcsp->mc_addr, &nmcasts, MAXMCADDR);
2988 		if (nmcasts >= MAXMCADDR) {
2989 			if_setflagbits(ifp, IFF_ALLMULTI, 0);
2990 			nmcasts = 0;
2991 		}
2992 		if_maddr_runlock(ifp);
2993 	}
2994 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2995 	return (nmcasts);
2996 }
2997 
2998 /*
2999  * Program the multicast filter.
3000  *
3001  * We have an artificial restriction that the multicast setup command
3002  * must be the first command in the chain, so we take steps to ensure
3003  * this. By requiring this, it allows us to keep up the performance of
3004  * the pre-initialized command ring (esp. link pointers) by not actually
3005  * inserting the mcsetup command in the ring - i.e. its link pointer
3006  * points to the TxCB ring, but the mcsetup descriptor itself is not part
3007  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
3008  * lead into the regular TxCB ring when it completes.
3009  */
3010 static void
3011 fxp_mc_setup(struct fxp_softc *sc)
3012 {
3013 	struct fxp_cb_mcs *mcsp;
3014 	int count;
3015 
3016 	FXP_LOCK_ASSERT(sc, MA_OWNED);
3017 
3018 	mcsp = sc->mcsp;
3019 	mcsp->cb_status = 0;
3020 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3021 	mcsp->link_addr = 0xffffffff;
3022 	fxp_mc_addrs(sc);
3023 
3024 	/*
3025 	 * Wait until command unit is idle. This should never be the
3026 	 * case when nothing is queued, but make sure anyway.
3027 	 */
3028 	count = 100;
3029 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3030 	    FXP_SCB_CUS_IDLE && --count)
3031 		DELAY(10);
3032 	if (count == 0) {
3033 		device_printf(sc->dev, "command queue timeout\n");
3034 		return;
3035 	}
3036 
3037 	/*
3038 	 * Start the multicast setup command.
3039 	 */
3040 	fxp_scb_wait(sc);
3041 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3042 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3043 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3044 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3045 	/* ...and wait for it to complete. */
3046 	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3047 }
3048 
3049 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3050 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3051 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3052 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3053 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3054 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3055 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3056 
3057 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3058 
3059 static const struct ucode {
3060 	uint32_t	revision;
3061 	uint32_t	*ucode;
3062 	int		length;
3063 	u_short		int_delay_offset;
3064 	u_short		bundle_max_offset;
3065 } ucode_table[] = {
3066 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3067 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3068 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3069 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3070 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3071 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3072 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3073 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3074 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3075 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3076 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3077 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3078 	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3079 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3080 	{ 0, NULL, 0, 0, 0 }
3081 };
3082 
3083 static void
3084 fxp_load_ucode(struct fxp_softc *sc)
3085 {
3086 	const struct ucode *uc;
3087 	struct fxp_cb_ucode *cbp;
3088 	int i;
3089 
3090 	if (sc->flags & FXP_FLAG_NO_UCODE)
3091 		return;
3092 
3093 	for (uc = ucode_table; uc->ucode != NULL; uc++)
3094 		if (sc->revision == uc->revision)
3095 			break;
3096 	if (uc->ucode == NULL)
3097 		return;
3098 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3099 	cbp->cb_status = 0;
3100 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3101 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3102 	for (i = 0; i < uc->length; i++)
3103 		cbp->ucode[i] = htole32(uc->ucode[i]);
3104 	if (uc->int_delay_offset)
3105 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3106 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3107 	if (uc->bundle_max_offset)
3108 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3109 		    htole16(sc->tunable_bundle_max);
3110 	/*
3111 	 * Download the ucode to the chip.
3112 	 */
3113 	fxp_scb_wait(sc);
3114 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3115 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3116 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3117 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3118 	/* ...and wait for it to complete. */
3119 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3120 	device_printf(sc->dev,
3121 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3122 	    sc->tunable_int_delay,
3123 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3124 	sc->flags |= FXP_FLAG_UCODE;
3125 	bzero(cbp, FXP_TXCB_SZ);
3126 }
3127 
3128 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3129 	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3130 
3131 static void
3132 fxp_sysctl_node(struct fxp_softc *sc)
3133 {
3134 	struct sysctl_ctx_list *ctx;
3135 	struct sysctl_oid_list *child, *parent;
3136 	struct sysctl_oid *tree;
3137 	struct fxp_hwstats *hsp;
3138 
3139 	ctx = device_get_sysctl_ctx(sc->dev);
3140 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3141 
3142 	SYSCTL_ADD_PROC(ctx, child,
3143 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
3144 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3145 	    "FXP driver receive interrupt microcode bundling delay");
3146 	SYSCTL_ADD_PROC(ctx, child,
3147 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
3148 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3149 	    "FXP driver receive interrupt microcode bundle size limit");
3150 	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3151 	    "FXP RNR events");
3152 
3153 	/*
3154 	 * Pull in device tunables.
3155 	 */
3156 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3157 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3158 	(void) resource_int_value(device_get_name(sc->dev),
3159 	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3160 	(void) resource_int_value(device_get_name(sc->dev),
3161 	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3162 	sc->rnr = 0;
3163 
3164 	hsp = &sc->fxp_hwstats;
3165 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3166 	    NULL, "FXP statistics");
3167 	parent = SYSCTL_CHILDREN(tree);
3168 
3169 	/* Rx MAC statistics. */
3170 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3171 	    NULL, "Rx MAC statistics");
3172 	child = SYSCTL_CHILDREN(tree);
3173 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3174 	    &hsp->rx_good, "Good frames");
3175 	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3176 	    &hsp->rx_crc_errors, "CRC errors");
3177 	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3178 	    &hsp->rx_alignment_errors, "Alignment errors");
3179 	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3180 	    &hsp->rx_rnr_errors, "RNR errors");
3181 	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3182 	    &hsp->rx_overrun_errors, "Overrun errors");
3183 	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3184 	    &hsp->rx_cdt_errors, "Collision detect errors");
3185 	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3186 	    &hsp->rx_shortframes, "Short frame errors");
3187 	if (sc->revision >= FXP_REV_82558_A4) {
3188 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3189 		    &hsp->rx_pause, "Pause frames");
3190 		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3191 		    &hsp->rx_controls, "Unsupported control frames");
3192 	}
3193 	if (sc->revision >= FXP_REV_82559_A0)
3194 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3195 		    &hsp->rx_tco, "TCO frames");
3196 
3197 	/* Tx MAC statistics. */
3198 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3199 	    NULL, "Tx MAC statistics");
3200 	child = SYSCTL_CHILDREN(tree);
3201 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3202 	    &hsp->tx_good, "Good frames");
3203 	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3204 	    &hsp->tx_maxcols, "Maximum collisions errors");
3205 	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3206 	    &hsp->tx_latecols, "Late collisions errors");
3207 	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3208 	    &hsp->tx_underruns, "Underrun errors");
3209 	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3210 	    &hsp->tx_lostcrs, "Lost carrier sense");
3211 	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3212 	    &hsp->tx_deffered, "Deferred");
3213 	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3214 	    &hsp->tx_single_collisions, "Single collisions");
3215 	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3216 	    &hsp->tx_multiple_collisions, "Multiple collisions");
3217 	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3218 	    &hsp->tx_total_collisions, "Total collisions");
3219 	if (sc->revision >= FXP_REV_82558_A4)
3220 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3221 		    &hsp->tx_pause, "Pause frames");
3222 	if (sc->revision >= FXP_REV_82559_A0)
3223 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3224 		    &hsp->tx_tco, "TCO frames");
3225 }
3226 
3227 #undef FXP_SYSCTL_STAT_ADD
3228 
3229 static int
3230 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3231 {
3232 	int error, value;
3233 
3234 	value = *(int *)arg1;
3235 	error = sysctl_handle_int(oidp, &value, 0, req);
3236 	if (error || !req->newptr)
3237 		return (error);
3238 	if (value < low || value > high)
3239 		return (EINVAL);
3240 	*(int *)arg1 = value;
3241 	return (0);
3242 }
3243 
3244 /*
3245  * Interrupt delay is expressed in microseconds, a multiplier is used
3246  * to convert this to the appropriate clock ticks before using.
3247  */
3248 static int
3249 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3250 {
3251 
3252 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3253 }
3254 
3255 static int
3256 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3257 {
3258 
3259 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3260 }
3261