xref: /freebsd/sys/dev/fxp/if_fxp.c (revision a79b71281cd63ad7a6cc43a6d5673a2510b51630)
1 /*
2  * Copyright (c) 1995, David Greenman
3  * All rights reserved.
4  *
5  * Modifications to support NetBSD and media selection:
6  * Copyright (c) 1997 Jason R. Thorpe.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * $FreeBSD$
31  */
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 
48 #ifdef NS
49 #include <netns/ns.h>
50 #include <netns/ns_if.h>
51 #endif
52 
53 #include <net/bpf.h>
54 
55 #if defined(__NetBSD__)
56 
57 #include <sys/ioctl.h>
58 #include <sys/errno.h>
59 #include <sys/device.h>
60 
61 #include <net/if_dl.h>
62 #include <net/if_ether.h>
63 
64 #include <netinet/if_inarp.h>
65 
66 #include <vm/vm.h>
67 
68 #include <machine/cpu.h>
69 #include <machine/bus.h>
70 #include <machine/intr.h>
71 
72 #include <dev/pci/if_fxpreg.h>
73 #include <dev/pci/if_fxpvar.h>
74 
75 #include <dev/pci/pcivar.h>
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcidevs.h>
78 
79 
80 #else /* __FreeBSD__ */
81 
82 #include <sys/sockio.h>
83 #include <sys/bus.h>
84 #include <machine/bus.h>
85 #include <sys/rman.h>
86 #include <machine/resource.h>
87 
88 #include <net/ethernet.h>
89 #include <net/if_arp.h>
90 
91 #include <vm/vm.h>		/* for vtophys */
92 #include <vm/pmap.h>		/* for vtophys */
93 #include <machine/clock.h>	/* for DELAY */
94 
95 #include <pci/pcivar.h>
96 #include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
97 #include <pci/if_fxpreg.h>
98 #include <pci/if_fxpvar.h>
99 
100 #endif /* __NetBSD__ */
101 
102 #ifdef __alpha__		/* XXX */
103 /* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */
104 #undef vtophys
105 #define	vtophys(va)	alpha_XXX_dmamap((vm_offset_t)(va))
106 #endif /* __alpha__ */
107 
108 /*
109  * NOTE!  On the Alpha, we have an alignment constraint.  The
110  * card DMAs the packet immediately following the RFA.  However,
111  * the first thing in the packet is a 14-byte Ethernet header.
112  * This means that the packet is misaligned.  To compensate,
113  * we actually offset the RFA 2 bytes into the cluster.  This
114  * alignes the packet after the Ethernet header at a 32-bit
115  * boundary.  HOWEVER!  This means that the RFA is misaligned!
116  */
117 #define	RFA_ALIGNMENT_FUDGE	2
118 
119 /*
120  * Inline function to copy a 16-bit aligned 32-bit quantity.
121  */
122 static __inline void fxp_lwcopy __P((volatile u_int32_t *,
123 	volatile u_int32_t *));
124 static __inline void
125 fxp_lwcopy(src, dst)
126 	volatile u_int32_t *src, *dst;
127 {
128 #ifdef __i386__
129 	*dst = *src;
130 #else
131 	volatile u_int16_t *a = (volatile u_int16_t *)src;
132 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
133 
134 	b[0] = a[0];
135 	b[1] = a[1];
136 #endif
137 }
138 
139 /*
140  * Template for default configuration parameters.
141  * See struct fxp_cb_config for the bit definitions.
142  */
143 static u_char fxp_cb_config_template[] = {
144 	0x0, 0x0,		/* cb_status */
145 	0x80, 0x2,		/* cb_command */
146 	0xff, 0xff, 0xff, 0xff,	/* link_addr */
147 	0x16,	/*  0 */
148 	0x8,	/*  1 */
149 	0x0,	/*  2 */
150 	0x0,	/*  3 */
151 	0x0,	/*  4 */
152 	0x80,	/*  5 */
153 	0xb2,	/*  6 */
154 	0x3,	/*  7 */
155 	0x1,	/*  8 */
156 	0x0,	/*  9 */
157 	0x26,	/* 10 */
158 	0x0,	/* 11 */
159 	0x60,	/* 12 */
160 	0x0,	/* 13 */
161 	0xf2,	/* 14 */
162 	0x48,	/* 15 */
163 	0x0,	/* 16 */
164 	0x40,	/* 17 */
165 	0xf3,	/* 18 */
166 	0x0,	/* 19 */
167 	0x3f,	/* 20 */
168 	0x5	/* 21 */
169 };
170 
171 /* Supported media types. */
172 struct fxp_supported_media {
173 	const int	fsm_phy;	/* PHY type */
174 	const int	*fsm_media;	/* the media array */
175 	const int	fsm_nmedia;	/* the number of supported media */
176 	const int	fsm_defmedia;	/* default media for this PHY */
177 };
178 
179 static const int fxp_media_standard[] = {
180 	IFM_ETHER|IFM_10_T,
181 	IFM_ETHER|IFM_10_T|IFM_FDX,
182 	IFM_ETHER|IFM_100_TX,
183 	IFM_ETHER|IFM_100_TX|IFM_FDX,
184 	IFM_ETHER|IFM_AUTO,
185 };
186 #define	FXP_MEDIA_STANDARD_DEFMEDIA	(IFM_ETHER|IFM_AUTO)
187 
188 static const int fxp_media_default[] = {
189 	IFM_ETHER|IFM_MANUAL,		/* XXX IFM_AUTO ? */
190 };
191 #define	FXP_MEDIA_DEFAULT_DEFMEDIA	(IFM_ETHER|IFM_MANUAL)
192 
193 static const struct fxp_supported_media fxp_media[] = {
194 	{ FXP_PHY_DP83840, fxp_media_standard,
195 	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
196 	  FXP_MEDIA_STANDARD_DEFMEDIA },
197 	{ FXP_PHY_DP83840A, fxp_media_standard,
198 	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
199 	  FXP_MEDIA_STANDARD_DEFMEDIA },
200 	{ FXP_PHY_82553A, fxp_media_standard,
201 	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
202 	  FXP_MEDIA_STANDARD_DEFMEDIA },
203 	{ FXP_PHY_82553C, fxp_media_standard,
204 	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
205 	  FXP_MEDIA_STANDARD_DEFMEDIA },
206 	{ FXP_PHY_82555, fxp_media_standard,
207 	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
208 	  FXP_MEDIA_STANDARD_DEFMEDIA },
209 	{ FXP_PHY_82555B, fxp_media_standard,
210 	  sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]),
211 	  FXP_MEDIA_STANDARD_DEFMEDIA },
212 	{ FXP_PHY_80C24, fxp_media_default,
213 	  sizeof(fxp_media_default) / sizeof(fxp_media_default[0]),
214 	  FXP_MEDIA_DEFAULT_DEFMEDIA },
215 };
216 #define	NFXPMEDIA (sizeof(fxp_media) / sizeof(fxp_media[0]))
217 
218 static int fxp_mediachange	__P((struct ifnet *));
219 static void fxp_mediastatus	__P((struct ifnet *, struct ifmediareq *));
220 static void fxp_set_media	__P((struct fxp_softc *, int));
221 static __inline void fxp_scb_wait __P((struct fxp_softc *));
222 static FXP_INTR_TYPE fxp_intr	__P((void *));
223 static void fxp_start		__P((struct ifnet *));
224 static int fxp_ioctl		__P((struct ifnet *,
225 				     FXP_IOCTLCMD_TYPE, caddr_t));
226 static void fxp_init		__P((void *));
227 static void fxp_stop		__P((struct fxp_softc *));
228 static void fxp_watchdog	__P((struct ifnet *));
229 static int fxp_add_rfabuf	__P((struct fxp_softc *, struct mbuf *));
230 static int fxp_mdi_read		__P((struct fxp_softc *, int, int));
231 static void fxp_mdi_write	__P((struct fxp_softc *, int, int, int));
232 static void fxp_autosize_eeprom __P((struct fxp_softc *));
233 static void fxp_read_eeprom	__P((struct fxp_softc *, u_int16_t *,
234 				     int, int));
235 static int fxp_attach_common	__P((struct fxp_softc *, u_int8_t *));
236 static void fxp_stats_update	__P((void *));
237 static void fxp_mc_setup	__P((struct fxp_softc *));
238 
239 /*
240  * Set initial transmit threshold at 64 (512 bytes). This is
241  * increased by 64 (512 bytes) at a time, to maximum of 192
242  * (1536 bytes), if an underrun occurs.
243  */
244 static int tx_threshold = 64;
245 
246 /*
247  * Number of transmit control blocks. This determines the number
248  * of transmit buffers that can be chained in the CB list.
249  * This must be a power of two.
250  */
251 #define FXP_NTXCB	128
252 
253 /*
254  * Number of completed TX commands at which point an interrupt
255  * will be generated to garbage collect the attached buffers.
256  * Must be at least one less than FXP_NTXCB, and should be
257  * enough less so that the transmitter doesn't becomes idle
258  * during the buffer rundown (which would reduce performance).
259  */
260 #define FXP_CXINT_THRESH 120
261 
262 /*
263  * TxCB list index mask. This is used to do list wrap-around.
264  */
265 #define FXP_TXCB_MASK	(FXP_NTXCB - 1)
266 
267 /*
268  * Number of receive frame area buffers. These are large so chose
269  * wisely.
270  */
271 #define FXP_NRFABUFS	64
272 
273 /*
274  * Maximum number of seconds that the receiver can be idle before we
275  * assume it's dead and attempt to reset it by reprogramming the
276  * multicast filter. This is part of a work-around for a bug in the
277  * NIC. See fxp_stats_update().
278  */
279 #define FXP_MAX_RX_IDLE	15
280 
281 /*
282  * Wait for the previous command to be accepted (but not necessarily
283  * completed).
284  */
285 static __inline void
286 fxp_scb_wait(sc)
287 	struct fxp_softc *sc;
288 {
289 	int i = 10000;
290 
291 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i);
292 }
293 
294 /*************************************************************
295  * Operating system-specific autoconfiguration glue
296  *************************************************************/
297 
298 #if defined(__NetBSD__)
299 
300 #ifdef __BROKEN_INDIRECT_CONFIG
301 static int fxp_match __P((struct device *, void *, void *));
302 #else
303 static int fxp_match __P((struct device *, struct cfdata *, void *));
304 #endif
305 static void fxp_attach __P((struct device *, struct device *, void *));
306 
307 static void	fxp_shutdown __P((void *));
308 
309 /* Compensate for lack of a generic ether_ioctl() */
310 static int	fxp_ether_ioctl __P((struct ifnet *,
311 				    FXP_IOCTLCMD_TYPE, caddr_t));
312 #define	ether_ioctl	fxp_ether_ioctl
313 
314 struct cfattach fxp_ca = {
315 	sizeof(struct fxp_softc), fxp_match, fxp_attach
316 };
317 
318 struct cfdriver fxp_cd = {
319 	NULL, "fxp", DV_IFNET
320 };
321 
322 /*
323  * Check if a device is an 82557.
324  */
325 static int
326 fxp_match(parent, match, aux)
327 	struct device *parent;
328 #ifdef __BROKEN_INDIRECT_CONFIG
329 	void *match;
330 #else
331 	struct cfdata *match;
332 #endif
333 	void *aux;
334 {
335 	struct pci_attach_args *pa = aux;
336 
337 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
338 		return (0);
339 
340 	switch (PCI_PRODUCT(pa->pa_id)) {
341 	case PCI_PRODUCT_INTEL_82557:
342 		return (1);
343 	}
344 
345 	return (0);
346 }
347 
348 static void
349 fxp_attach(parent, self, aux)
350 	struct device *parent, *self;
351 	void *aux;
352 {
353 	struct fxp_softc *sc = (struct fxp_softc *)self;
354 	struct pci_attach_args *pa = aux;
355 	pci_chipset_tag_t pc = pa->pa_pc;
356 	pci_intr_handle_t ih;
357 	const char *intrstr = NULL;
358 	u_int8_t enaddr[6];
359 	struct ifnet *ifp;
360 
361 	/*
362 	 * Map control/status registers.
363 	 */
364 	if (pci_mapreg_map(pa, FXP_PCI_MMBA, PCI_MAPREG_TYPE_MEM, 0,
365 	    &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
366 		printf(": can't map registers\n");
367 		return;
368 	}
369 	printf(": Intel EtherExpress Pro 10/100B Ethernet\n");
370 
371 	/*
372 	 * Allocate our interrupt.
373 	 */
374 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
375 	    pa->pa_intrline, &ih)) {
376 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
377 		return;
378 	}
379 	intrstr = pci_intr_string(pc, ih);
380 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, fxp_intr, sc);
381 	if (sc->sc_ih == NULL) {
382 		printf("%s: couldn't establish interrupt",
383 		    sc->sc_dev.dv_xname);
384 		if (intrstr != NULL)
385 			printf(" at %s", intrstr);
386 		printf("\n");
387 		return;
388 	}
389 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
390 
391 	/* Do generic parts of attach. */
392 	if (fxp_attach_common(sc, enaddr)) {
393 		/* Failed! */
394 		return;
395 	}
396 
397 	printf("%s: Ethernet address %s%s\n", sc->sc_dev.dv_xname,
398 	    ether_sprintf(enaddr), sc->phy_10Mbps_only ? ", 10Mbps" : "");
399 
400 	ifp = &sc->sc_ethercom.ec_if;
401 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
402 	ifp->if_softc = sc;
403 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
404 	ifp->if_ioctl = fxp_ioctl;
405 	ifp->if_start = fxp_start;
406 	ifp->if_watchdog = fxp_watchdog;
407 
408 	/*
409 	 * Attach the interface.
410 	 */
411 	if_attach(ifp);
412 	/*
413 	 * Let the system queue as many packets as we have available
414 	 * TX descriptors.
415 	 */
416 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
417 	ether_ifattach(ifp, enaddr);
418 	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
419 	    sizeof(struct ether_header));
420 
421 	/*
422 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
423 	 * doing do could allow DMA to corrupt kernel memory during the
424 	 * reboot before the driver initializes.
425 	 */
426 	shutdownhook_establish(fxp_shutdown, sc);
427 }
428 
429 /*
430  * Device shutdown routine. Called at system shutdown after sync. The
431  * main purpose of this routine is to shut off receiver DMA so that
432  * kernel memory doesn't get clobbered during warmboot.
433  */
434 static void
435 fxp_shutdown(sc)
436 	void *sc;
437 {
438 	fxp_stop((struct fxp_softc *) sc);
439 }
440 
441 static int
442 fxp_ether_ioctl(ifp, cmd, data)
443 	struct ifnet *ifp;
444 	FXP_IOCTLCMD_TYPE cmd;
445 	caddr_t data;
446 {
447 	struct ifaddr *ifa = (struct ifaddr *) data;
448 	struct fxp_softc *sc = ifp->if_softc;
449 
450 	switch (cmd) {
451 	case SIOCSIFADDR:
452 		ifp->if_flags |= IFF_UP;
453 
454 		switch (ifa->ifa_addr->sa_family) {
455 #ifdef INET
456 		case AF_INET:
457 			fxp_init(sc);
458 			arp_ifinit(ifp, ifa);
459 			break;
460 #endif
461 #ifdef NS
462 		case AF_NS:
463 		    {
464 			 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
465 
466 			 if (ns_nullhost(*ina))
467 				ina->x_host = *(union ns_host *)
468 				    LLADDR(ifp->if_sadl);
469 			 else
470 				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
471 				    ifp->if_addrlen);
472 			 /* Set new address. */
473 			 fxp_init(sc);
474 			 break;
475 		    }
476 #endif
477 		default:
478 			fxp_init(sc);
479 			break;
480 		}
481 		break;
482 
483 	default:
484 		return (EINVAL);
485 	}
486 
487 	return (0);
488 }
489 
490 #else /* __FreeBSD__ */
491 
492 /*
493  * Return identification string if this is device is ours.
494  */
495 static int
496 fxp_probe(device_t dev)
497 {
498 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
499 		switch (pci_get_device(dev)) {
500 
501 		case FXP_DEVICEID_i82557:
502 			device_set_desc(dev, "Intel Pro 10/100B/100+ Ethernet");
503 			return 0;
504 		case FXP_DEVICEID_i82559:
505 			device_set_desc(dev, "Intel InBusiness 10/100 Ethernet");
506 			return 0;
507 		case FXP_DEVICEID_i82559ER:
508 			device_set_desc(dev, "Intel Embedded 10/100 Ethernet");
509 			return 0;
510 		default:
511 			break;
512 		}
513 	}
514 
515 	return ENXIO;
516 }
517 
518 static int
519 fxp_attach(device_t dev)
520 {
521 	int error = 0;
522 	struct fxp_softc *sc = device_get_softc(dev);
523 	struct ifnet *ifp;
524 	int s;
525 	u_long val;
526 	int rid;
527 
528 	callout_handle_init(&sc->stat_ch);
529 
530 	s = splimp();
531 
532 	/*
533 	 * Enable bus mastering.
534 	 */
535 	val = pci_read_config(dev, PCIR_COMMAND, 2);
536 	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
537 	pci_write_config(dev, PCIR_COMMAND, val, 2);
538 
539 	/*
540 	 * Map control/status registers.
541 	 */
542 	rid = FXP_PCI_MMBA;
543 	sc->mem = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
544 				     0, ~0, 1, RF_ACTIVE);
545 	if (!sc->mem) {
546 		device_printf(dev, "could not map memory\n");
547 		error = ENXIO;
548 		goto fail;
549         }
550 
551 	sc->sc_st = rman_get_bustag(sc->mem);
552 	sc->sc_sh = rman_get_bushandle(sc->mem);
553 
554 	/*
555 	 * Allocate our interrupt.
556 	 */
557 	rid = 0;
558 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
559 				 RF_SHAREABLE | RF_ACTIVE);
560 	if (sc->irq == NULL) {
561 		device_printf(dev, "could not map interrupt\n");
562 		error = ENXIO;
563 		goto fail;
564 	}
565 
566 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
567 			       fxp_intr, sc, &sc->ih);
568 	if (error) {
569 		device_printf(dev, "could not setup irq\n");
570 		goto fail;
571 	}
572 
573 	/* Do generic parts of attach. */
574 	if (fxp_attach_common(sc, sc->arpcom.ac_enaddr)) {
575 		/* Failed! */
576 		bus_teardown_intr(dev, sc->irq, sc->ih);
577 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
578 		bus_release_resource(dev, SYS_RES_MEMORY, FXP_PCI_MMBA, sc->mem);
579 		error = ENXIO;
580 		goto fail;
581 	}
582 
583 	device_printf(dev, "Ethernet address %6D%s\n",
584 	    sc->arpcom.ac_enaddr, ":", sc->phy_10Mbps_only ? ", 10Mbps" : "");
585 
586 	ifp = &sc->arpcom.ac_if;
587 	ifp->if_unit = device_get_unit(dev);
588 	ifp->if_name = "fxp";
589 	ifp->if_output = ether_output;
590 	ifp->if_baudrate = 100000000;
591 	ifp->if_init = fxp_init;
592 	ifp->if_softc = sc;
593 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
594 	ifp->if_ioctl = fxp_ioctl;
595 	ifp->if_start = fxp_start;
596 	ifp->if_watchdog = fxp_watchdog;
597 
598 	/*
599 	 * Attach the interface.
600 	 */
601 	if_attach(ifp);
602 	/*
603 	 * Let the system queue as many packets as we have available
604 	 * TX descriptors.
605 	 */
606 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
607 	ether_ifattach(ifp);
608 	bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
609 
610 	splx(s);
611 	return 0;
612 
613  fail:
614 	splx(s);
615 	return error;
616 }
617 
618 /*
619  * Detach interface.
620  */
621 static int
622 fxp_detach(device_t dev)
623 {
624 	struct fxp_softc *sc = device_get_softc(dev);
625 	int s;
626 
627 	s = splimp();
628 
629 	/*
630 	 * Close down routes etc.
631 	 */
632 	if_detach(&sc->arpcom.ac_if);
633 
634 	/*
635 	 * Stop DMA and drop transmit queue.
636 	 */
637 	fxp_stop(sc);
638 
639 	/*
640 	 * Deallocate resources.
641 	 */
642 	bus_teardown_intr(dev, sc->irq, sc->ih);
643 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
644 	bus_release_resource(dev, SYS_RES_MEMORY, FXP_PCI_MMBA, sc->mem);
645 
646 	/*
647 	 * Free all the receive buffers.
648 	 */
649 	if (sc->rfa_headm != NULL)
650 		m_freem(sc->rfa_headm);
651 
652 	/*
653 	 * Free all media structures.
654 	 */
655 	ifmedia_removeall(&sc->sc_media);
656 
657 	/*
658 	 * Free anciliary structures.
659 	 */
660 	free(sc->cbl_base, M_DEVBUF);
661 	free(sc->fxp_stats, M_DEVBUF);
662 	free(sc->mcsp, M_DEVBUF);
663 
664 	splx(s);
665 
666 	return 0;
667 }
668 
669 /*
670  * Device shutdown routine. Called at system shutdown after sync. The
671  * main purpose of this routine is to shut off receiver DMA so that
672  * kernel memory doesn't get clobbered during warmboot.
673  */
674 static int
675 fxp_shutdown(device_t dev)
676 {
677 	/*
678 	 * Make sure that DMA is disabled prior to reboot. Not doing
679 	 * do could allow DMA to corrupt kernel memory during the
680 	 * reboot before the driver initializes.
681 	 */
682 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
683 	return 0;
684 }
685 
686 static device_method_t fxp_methods[] = {
687 	/* Device interface */
688 	DEVMETHOD(device_probe,		fxp_probe),
689 	DEVMETHOD(device_attach,	fxp_attach),
690 	DEVMETHOD(device_detach,	fxp_detach),
691 	DEVMETHOD(device_shutdown,	fxp_shutdown),
692 
693 	{ 0, 0 }
694 };
695 
696 static driver_t fxp_driver = {
697 	"fxp",
698 	fxp_methods,
699 	sizeof(struct fxp_softc),
700 };
701 
702 static devclass_t fxp_devclass;
703 
704 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
705 
706 #endif /* __NetBSD__ */
707 
708 /*************************************************************
709  * End of operating system-specific autoconfiguration glue
710  *************************************************************/
711 
712 /*
713  * Do generic parts of attach.
714  */
715 static int
716 fxp_attach_common(sc, enaddr)
717 	struct fxp_softc *sc;
718 	u_int8_t *enaddr;
719 {
720 	u_int16_t data;
721 	int i, nmedia, defmedia;
722 	const int *media;
723 
724 	/*
725 	 * Reset to a stable state.
726 	 */
727 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
728 	DELAY(10);
729 
730 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
731 	    M_DEVBUF, M_NOWAIT);
732 	if (sc->cbl_base == NULL)
733 		goto fail;
734 	bzero(sc->cbl_base, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
735 
736 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF, M_NOWAIT);
737 	if (sc->fxp_stats == NULL)
738 		goto fail;
739 	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
740 
741 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
742 	if (sc->mcsp == NULL)
743 		goto fail;
744 
745 	/*
746 	 * Pre-allocate our receive buffers.
747 	 */
748 	for (i = 0; i < FXP_NRFABUFS; i++) {
749 		if (fxp_add_rfabuf(sc, NULL) != 0) {
750 			goto fail;
751 		}
752 	}
753 
754 	/*
755 	 * Find out how large of an SEEPROM we have.
756 	 */
757 	fxp_autosize_eeprom(sc);
758 
759 	/*
760 	 * Get info about the primary PHY
761 	 */
762 	fxp_read_eeprom(sc, (u_int16_t *)&data, 6, 1);
763 	sc->phy_primary_addr = data & 0xff;
764 	sc->phy_primary_device = (data >> 8) & 0x3f;
765 	sc->phy_10Mbps_only = data >> 15;
766 
767 	/*
768 	 * Read MAC address.
769 	 */
770 	fxp_read_eeprom(sc, (u_int16_t *)enaddr, 0, 3);
771 
772 	/*
773 	 * Initialize the media structures.
774 	 */
775 
776 	media = fxp_media_default;
777 	nmedia = sizeof(fxp_media_default) / sizeof(fxp_media_default[0]);
778 	defmedia = FXP_MEDIA_DEFAULT_DEFMEDIA;
779 
780 	for (i = 0; i < NFXPMEDIA; i++) {
781 		if (sc->phy_primary_device == fxp_media[i].fsm_phy) {
782 			media = fxp_media[i].fsm_media;
783 			nmedia = fxp_media[i].fsm_nmedia;
784 			defmedia = fxp_media[i].fsm_defmedia;
785 		}
786 	}
787 
788 	ifmedia_init(&sc->sc_media, 0, fxp_mediachange, fxp_mediastatus);
789 	for (i = 0; i < nmedia; i++) {
790 		if (IFM_SUBTYPE(media[i]) == IFM_100_TX && sc->phy_10Mbps_only)
791 			continue;
792 		ifmedia_add(&sc->sc_media, media[i], 0, NULL);
793 	}
794 	ifmedia_set(&sc->sc_media, defmedia);
795 
796 	return (0);
797 
798  fail:
799 	printf(FXP_FORMAT ": Failed to malloc memory\n", FXP_ARGS(sc));
800 	if (sc->cbl_base)
801 		free(sc->cbl_base, M_DEVBUF);
802 	if (sc->fxp_stats)
803 		free(sc->fxp_stats, M_DEVBUF);
804 	if (sc->mcsp)
805 		free(sc->mcsp, M_DEVBUF);
806 	/* frees entire chain */
807 	if (sc->rfa_headm)
808 		m_freem(sc->rfa_headm);
809 
810 	return (ENOMEM);
811 }
812 
813 /*
814  * From NetBSD:
815  *
816  * Figure out EEPROM size.
817  *
818  * 559's can have either 64-word or 256-word EEPROMs, the 558
819  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
820  * talks about the existance of 16 to 256 word EEPROMs.
821  *
822  * The only known sizes are 64 and 256, where the 256 version is used
823  * by CardBus cards to store CIS information.
824  *
825  * The address is shifted in msb-to-lsb, and after the last
826  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
827  * after which follows the actual data. We try to detect this zero, by
828  * probing the data-out bit in the EEPROM control register just after
829  * having shifted in a bit. If the bit is zero, we assume we've
830  * shifted enough address bits. The data-out should be tri-state,
831  * before this, which should translate to a logical one.
832  *
833  * Other ways to do this would be to try to read a register with known
834  * contents with a varying number of address bits, but no such
835  * register seem to be available. The high bits of register 10 are 01
836  * on the 558 and 559, but apparently not on the 557.
837  *
838  * The Linux driver computes a checksum on the EEPROM data, but the
839  * value of this checksum is not very well documented.
840  */
841 static void
842 fxp_autosize_eeprom(sc)
843 	struct fxp_softc *sc;
844 {
845 	u_int16_t reg;
846 	int x;
847 
848 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
849 	/*
850 	 * Shift in read opcode.
851 	 */
852 	for (x = 3; x > 0; x--) {
853 		if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
854 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
855 		} else {
856 			reg = FXP_EEPROM_EECS;
857 		}
858 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
859 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
860 		    reg | FXP_EEPROM_EESK);
861 		DELAY(1);
862 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
863 		DELAY(1);
864 	}
865 	/*
866 	 * Shift in address.
867 	 * Wait for the dummy zero following a correct address shift.
868 	 */
869 	for (x = 1; x <= 8; x++) {
870 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
871 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
872 			FXP_EEPROM_EECS | FXP_EEPROM_EESK);
873 		DELAY(1);
874 		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) == 0)
875 			break;
876 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
877 		DELAY(1);
878 	}
879 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
880 	DELAY(1);
881 	sc->eeprom_size = x;
882 }
883 /*
884  * Read from the serial EEPROM. Basically, you manually shift in
885  * the read opcode (one bit at a time) and then shift in the address,
886  * and then you shift out the data (all of this one bit at a time).
887  * The word size is 16 bits, so you have to provide the address for
888  * every 16 bits of data.
889  */
890 static void
891 fxp_read_eeprom(sc, data, offset, words)
892 	struct fxp_softc *sc;
893 	u_short *data;
894 	int offset;
895 	int words;
896 {
897 	u_int16_t reg;
898 	int i, x;
899 
900 	for (i = 0; i < words; i++) {
901 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
902 		/*
903 		 * Shift in read opcode.
904 		 */
905 		for (x = 3; x > 0; x--) {
906 			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
907 				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
908 			} else {
909 				reg = FXP_EEPROM_EECS;
910 			}
911 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
912 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
913 			    reg | FXP_EEPROM_EESK);
914 			DELAY(1);
915 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
916 			DELAY(1);
917 		}
918 		/*
919 		 * Shift in address.
920 		 */
921 		for (x = sc->eeprom_size; x > 0; x--) {
922 			if ((i + offset) & (1 << (x - 1))) {
923 				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
924 			} else {
925 				reg = FXP_EEPROM_EECS;
926 			}
927 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
928 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
929 			    reg | FXP_EEPROM_EESK);
930 			DELAY(1);
931 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
932 			DELAY(1);
933 		}
934 		reg = FXP_EEPROM_EECS;
935 		data[i] = 0;
936 		/*
937 		 * Shift out data.
938 		 */
939 		for (x = 16; x > 0; x--) {
940 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
941 			    reg | FXP_EEPROM_EESK);
942 			DELAY(1);
943 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
944 			    FXP_EEPROM_EEDO)
945 				data[i] |= (1 << (x - 1));
946 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
947 			DELAY(1);
948 		}
949 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
950 		DELAY(1);
951 	}
952 }
953 
954 /*
955  * Start packet transmission on the interface.
956  */
957 static void
958 fxp_start(ifp)
959 	struct ifnet *ifp;
960 {
961 	struct fxp_softc *sc = ifp->if_softc;
962 	struct fxp_cb_tx *txp;
963 
964 	/*
965 	 * See if we need to suspend xmit until the multicast filter
966 	 * has been reprogrammed (which can only be done at the head
967 	 * of the command chain).
968 	 */
969 	if (sc->need_mcsetup)
970 		return;
971 
972 	txp = NULL;
973 
974 	/*
975 	 * We're finished if there is nothing more to add to the list or if
976 	 * we're all filled up with buffers to transmit.
977 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
978 	 *       a NOP command when needed.
979 	 */
980 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
981 		struct mbuf *m, *mb_head;
982 		int segment;
983 
984 		/*
985 		 * Grab a packet to transmit.
986 		 */
987 		IF_DEQUEUE(&ifp->if_snd, mb_head);
988 
989 		/*
990 		 * Get pointer to next available tx desc.
991 		 */
992 		txp = sc->cbl_last->next;
993 
994 		/*
995 		 * Go through each of the mbufs in the chain and initialize
996 		 * the transmit buffer descriptors with the physical address
997 		 * and size of the mbuf.
998 		 */
999 tbdinit:
1000 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1001 			if (m->m_len != 0) {
1002 				if (segment == FXP_NTXSEG)
1003 					break;
1004 				txp->tbd[segment].tb_addr =
1005 				    vtophys(mtod(m, vm_offset_t));
1006 				txp->tbd[segment].tb_size = m->m_len;
1007 				segment++;
1008 			}
1009 		}
1010 		if (m != NULL) {
1011 			struct mbuf *mn;
1012 
1013 			/*
1014 			 * We ran out of segments. We have to recopy this mbuf
1015 			 * chain first. Bail out if we can't get the new buffers.
1016 			 */
1017 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1018 			if (mn == NULL) {
1019 				m_freem(mb_head);
1020 				break;
1021 			}
1022 			if (mb_head->m_pkthdr.len > MHLEN) {
1023 				MCLGET(mn, M_DONTWAIT);
1024 				if ((mn->m_flags & M_EXT) == 0) {
1025 					m_freem(mn);
1026 					m_freem(mb_head);
1027 					break;
1028 				}
1029 			}
1030 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1031 			    mtod(mn, caddr_t));
1032 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1033 			m_freem(mb_head);
1034 			mb_head = mn;
1035 			goto tbdinit;
1036 		}
1037 
1038 		txp->tbd_number = segment;
1039 		txp->mb_head = mb_head;
1040 		txp->cb_status = 0;
1041 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1042 			txp->cb_command =
1043 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S;
1044 		} else {
1045 			txp->cb_command =
1046 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1047 			/*
1048 			 * Set a 5 second timer just in case we don't hear from the
1049 			 * card again.
1050 			 */
1051 			ifp->if_timer = 5;
1052 		}
1053 		txp->tx_threshold = tx_threshold;
1054 
1055 		/*
1056 		 * Advance the end of list forward.
1057 		 */
1058 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1059 		sc->cbl_last = txp;
1060 
1061 		/*
1062 		 * Advance the beginning of the list forward if there are
1063 		 * no other packets queued (when nothing is queued, cbl_first
1064 		 * sits on the last TxCB that was sent out).
1065 		 */
1066 		if (sc->tx_queued == 0)
1067 			sc->cbl_first = txp;
1068 
1069 		sc->tx_queued++;
1070 
1071 		/*
1072 		 * Pass packet to bpf if there is a listener.
1073 		 */
1074 		if (ifp->if_bpf)
1075 			bpf_mtap(FXP_BPFTAP_ARG(ifp), mb_head);
1076 	}
1077 
1078 	/*
1079 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1080 	 * going again if suspended.
1081 	 */
1082 	if (txp != NULL) {
1083 		fxp_scb_wait(sc);
1084 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
1085 	}
1086 }
1087 
1088 /*
1089  * Process interface interrupts.
1090  */
1091 static FXP_INTR_TYPE
1092 fxp_intr(arg)
1093 	void *arg;
1094 {
1095 	struct fxp_softc *sc = arg;
1096 	struct ifnet *ifp = &sc->sc_if;
1097 	u_int8_t statack;
1098 #if defined(__NetBSD__)
1099 	int claimed = 0;
1100 #endif
1101 
1102 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1103 #if defined(__NetBSD__)
1104 		claimed = 1;
1105 #endif
1106 		/*
1107 		 * First ACK all the interrupts in this pass.
1108 		 */
1109 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1110 
1111 		/*
1112 		 * Free any finished transmit mbuf chains.
1113 		 */
1114 		if (statack & FXP_SCB_STATACK_CXTNO) {
1115 			struct fxp_cb_tx *txp;
1116 
1117 			for (txp = sc->cbl_first; sc->tx_queued &&
1118 			    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1119 			    txp = txp->next) {
1120 				if (txp->mb_head != NULL) {
1121 					m_freem(txp->mb_head);
1122 					txp->mb_head = NULL;
1123 				}
1124 				sc->tx_queued--;
1125 			}
1126 			sc->cbl_first = txp;
1127 			ifp->if_timer = 0;
1128 			if (sc->tx_queued == 0) {
1129 				if (sc->need_mcsetup)
1130 					fxp_mc_setup(sc);
1131 			}
1132 			/*
1133 			 * Try to start more packets transmitting.
1134 			 */
1135 			if (ifp->if_snd.ifq_head != NULL)
1136 				fxp_start(ifp);
1137 		}
1138 		/*
1139 		 * Process receiver interrupts. If a no-resource (RNR)
1140 		 * condition exists, get whatever packets we can and
1141 		 * re-start the receiver.
1142 		 */
1143 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1144 			struct mbuf *m;
1145 			struct fxp_rfa *rfa;
1146 rcvloop:
1147 			m = sc->rfa_headm;
1148 			rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1149 			    RFA_ALIGNMENT_FUDGE);
1150 
1151 			if (rfa->rfa_status & FXP_RFA_STATUS_C) {
1152 				/*
1153 				 * Remove first packet from the chain.
1154 				 */
1155 				sc->rfa_headm = m->m_next;
1156 				m->m_next = NULL;
1157 
1158 				/*
1159 				 * Add a new buffer to the receive chain.
1160 				 * If this fails, the old buffer is recycled
1161 				 * instead.
1162 				 */
1163 				if (fxp_add_rfabuf(sc, m) == 0) {
1164 					struct ether_header *eh;
1165 					int total_len;
1166 
1167 					total_len = rfa->actual_size &
1168 					    (MCLBYTES - 1);
1169 					if (total_len <
1170 					    sizeof(struct ether_header)) {
1171 						m_freem(m);
1172 						goto rcvloop;
1173 					}
1174 					m->m_pkthdr.rcvif = ifp;
1175 					m->m_pkthdr.len = m->m_len = total_len;
1176 					eh = mtod(m, struct ether_header *);
1177 					m->m_data +=
1178 					    sizeof(struct ether_header);
1179 					m->m_len -=
1180 					    sizeof(struct ether_header);
1181 					m->m_pkthdr.len = m->m_len;
1182 					ether_input(ifp, eh, m);
1183 				}
1184 				goto rcvloop;
1185 			}
1186 			if (statack & FXP_SCB_STATACK_RNR) {
1187 				fxp_scb_wait(sc);
1188 				CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1189 				    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1190 					RFA_ALIGNMENT_FUDGE);
1191 				CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1192 				    FXP_SCB_COMMAND_RU_START);
1193 			}
1194 		}
1195 	}
1196 #if defined(__NetBSD__)
1197 	return (claimed);
1198 #endif
1199 }
1200 
1201 /*
1202  * Update packet in/out/collision statistics. The i82557 doesn't
1203  * allow you to access these counters without doing a fairly
1204  * expensive DMA to get _all_ of the statistics it maintains, so
1205  * we do this operation here only once per second. The statistics
1206  * counters in the kernel are updated from the previous dump-stats
1207  * DMA and then a new dump-stats DMA is started. The on-chip
1208  * counters are zeroed when the DMA completes. If we can't start
1209  * the DMA immediately, we don't wait - we just prepare to read
1210  * them again next time.
1211  */
1212 static void
1213 fxp_stats_update(arg)
1214 	void *arg;
1215 {
1216 	struct fxp_softc *sc = arg;
1217 	struct ifnet *ifp = &sc->sc_if;
1218 	struct fxp_stats *sp = sc->fxp_stats;
1219 	struct fxp_cb_tx *txp;
1220 	int s;
1221 
1222 	ifp->if_opackets += sp->tx_good;
1223 	ifp->if_collisions += sp->tx_total_collisions;
1224 	if (sp->rx_good) {
1225 		ifp->if_ipackets += sp->rx_good;
1226 		sc->rx_idle_secs = 0;
1227 	} else {
1228 		/*
1229 		 * Receiver's been idle for another second.
1230 		 */
1231 		sc->rx_idle_secs++;
1232 	}
1233 	ifp->if_ierrors +=
1234 	    sp->rx_crc_errors +
1235 	    sp->rx_alignment_errors +
1236 	    sp->rx_rnr_errors +
1237 	    sp->rx_overrun_errors;
1238 	/*
1239 	 * If any transmit underruns occured, bump up the transmit
1240 	 * threshold by another 512 bytes (64 * 8).
1241 	 */
1242 	if (sp->tx_underruns) {
1243 		ifp->if_oerrors += sp->tx_underruns;
1244 		if (tx_threshold < 192)
1245 			tx_threshold += 64;
1246 	}
1247 	s = splimp();
1248 	/*
1249 	 * Release any xmit buffers that have completed DMA. This isn't
1250 	 * strictly necessary to do here, but it's advantagous for mbufs
1251 	 * with external storage to be released in a timely manner rather
1252 	 * than being defered for a potentially long time. This limits
1253 	 * the delay to a maximum of one second.
1254 	 */
1255 	for (txp = sc->cbl_first; sc->tx_queued &&
1256 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1257 	    txp = txp->next) {
1258 		if (txp->mb_head != NULL) {
1259 			m_freem(txp->mb_head);
1260 			txp->mb_head = NULL;
1261 		}
1262 		sc->tx_queued--;
1263 	}
1264 	sc->cbl_first = txp;
1265 	/*
1266 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1267 	 * then assume the receiver has locked up and attempt to clear
1268 	 * the condition by reprogramming the multicast filter. This is
1269 	 * a work-around for a bug in the 82557 where the receiver locks
1270 	 * up if it gets certain types of garbage in the syncronization
1271 	 * bits prior to the packet header. This bug is supposed to only
1272 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1273 	 * mode as well (perhaps due to a 10/100 speed transition).
1274 	 */
1275 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1276 		sc->rx_idle_secs = 0;
1277 		fxp_mc_setup(sc);
1278 	}
1279 	/*
1280 	 * If there is no pending command, start another stats
1281 	 * dump. Otherwise punt for now.
1282 	 */
1283 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1284 		/*
1285 		 * Start another stats dump.
1286 		 */
1287 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1288 		    FXP_SCB_COMMAND_CU_DUMPRESET);
1289 	} else {
1290 		/*
1291 		 * A previous command is still waiting to be accepted.
1292 		 * Just zero our copy of the stats and wait for the
1293 		 * next timer event to update them.
1294 		 */
1295 		sp->tx_good = 0;
1296 		sp->tx_underruns = 0;
1297 		sp->tx_total_collisions = 0;
1298 
1299 		sp->rx_good = 0;
1300 		sp->rx_crc_errors = 0;
1301 		sp->rx_alignment_errors = 0;
1302 		sp->rx_rnr_errors = 0;
1303 		sp->rx_overrun_errors = 0;
1304 	}
1305 	splx(s);
1306 	/*
1307 	 * Schedule another timeout one second from now.
1308 	 */
1309 	sc->stat_ch = timeout(fxp_stats_update, sc, hz);
1310 }
1311 
1312 /*
1313  * Stop the interface. Cancels the statistics updater and resets
1314  * the interface.
1315  */
1316 static void
1317 fxp_stop(sc)
1318 	struct fxp_softc *sc;
1319 {
1320 	struct ifnet *ifp = &sc->sc_if;
1321 	struct fxp_cb_tx *txp;
1322 	int i;
1323 
1324 	/*
1325 	 * Cancel stats updater.
1326 	 */
1327 	untimeout(fxp_stats_update, sc, sc->stat_ch);
1328 
1329 	/*
1330 	 * Issue software reset
1331 	 */
1332 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1333 	DELAY(10);
1334 
1335 	/*
1336 	 * Release any xmit buffers.
1337 	 */
1338 	txp = sc->cbl_base;
1339 	if (txp != NULL) {
1340 		for (i = 0; i < FXP_NTXCB; i++) {
1341 			if (txp[i].mb_head != NULL) {
1342 				m_freem(txp[i].mb_head);
1343 				txp[i].mb_head = NULL;
1344 			}
1345 		}
1346 	}
1347 	sc->tx_queued = 0;
1348 
1349 	/*
1350 	 * Free all the receive buffers then reallocate/reinitialize
1351 	 */
1352 	if (sc->rfa_headm != NULL)
1353 		m_freem(sc->rfa_headm);
1354 	sc->rfa_headm = NULL;
1355 	sc->rfa_tailm = NULL;
1356 	for (i = 0; i < FXP_NRFABUFS; i++) {
1357 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1358 			/*
1359 			 * This "can't happen" - we're at splimp()
1360 			 * and we just freed all the buffers we need
1361 			 * above.
1362 			 */
1363 			panic("fxp_stop: no buffers!");
1364 		}
1365 	}
1366 
1367 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1368 	ifp->if_timer = 0;
1369 }
1370 
1371 /*
1372  * Watchdog/transmission transmit timeout handler. Called when a
1373  * transmission is started on the interface, but no interrupt is
1374  * received before the timeout. This usually indicates that the
1375  * card has wedged for some reason.
1376  */
1377 static void
1378 fxp_watchdog(ifp)
1379 	struct ifnet *ifp;
1380 {
1381 	struct fxp_softc *sc = ifp->if_softc;
1382 
1383 	printf(FXP_FORMAT ": device timeout\n", FXP_ARGS(sc));
1384 	ifp->if_oerrors++;
1385 
1386 	fxp_init(sc);
1387 }
1388 
1389 static void
1390 fxp_init(xsc)
1391 	void *xsc;
1392 {
1393 	struct fxp_softc *sc = xsc;
1394 	struct ifnet *ifp = &sc->sc_if;
1395 	struct fxp_cb_config *cbp;
1396 	struct fxp_cb_ias *cb_ias;
1397 	struct fxp_cb_tx *txp;
1398 	int i, s, prm;
1399 
1400 	s = splimp();
1401 	/*
1402 	 * Cancel any pending I/O
1403 	 */
1404 	fxp_stop(sc);
1405 
1406 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1407 
1408 	/*
1409 	 * Initialize base of CBL and RFA memory. Loading with zero
1410 	 * sets it up for regular linear addressing.
1411 	 */
1412 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1413 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1414 
1415 	fxp_scb_wait(sc);
1416 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1417 
1418 	/*
1419 	 * Initialize base of dump-stats buffer.
1420 	 */
1421 	fxp_scb_wait(sc);
1422 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1423 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1424 
1425 	/*
1426 	 * We temporarily use memory that contains the TxCB list to
1427 	 * construct the config CB. The TxCB list memory is rebuilt
1428 	 * later.
1429 	 */
1430 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1431 
1432 	/*
1433 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1434 	 * zero and must be one bits in this structure and this is the easiest
1435 	 * way to initialize them all to proper values.
1436 	 */
1437 	bcopy(fxp_cb_config_template, (volatile void *)&cbp->cb_status,
1438 		sizeof(fxp_cb_config_template));
1439 
1440 	cbp->cb_status =	0;
1441 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1442 	cbp->link_addr =	-1;	/* (no) next command */
1443 	cbp->byte_count =	22;	/* (22) bytes to config */
1444 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1445 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1446 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1447 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1448 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1449 	cbp->dma_bce =		0;	/* (disable) dma max counters */
1450 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1451 	cbp->tno_int =		0;	/* (disable) tx not okay interrupt */
1452 	cbp->ci_int =		1;	/* interrupt on CU idle */
1453 	cbp->save_bf =		prm;	/* save bad frames */
1454 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1455 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1456 	cbp->mediatype =	!sc->phy_10Mbps_only; /* interface mode */
1457 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1458 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1459 	cbp->loopback =		0;	/* (don't) loopback */
1460 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1461 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1462 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1463 	cbp->promiscuous =	prm;	/* promiscuous mode */
1464 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1465 	cbp->crscdt =		0;	/* (CRS only) */
1466 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1467 	cbp->padding =		1;	/* (do) pad short tx packets */
1468 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1469 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1470 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1471 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1472 	cbp->mc_all =		sc->all_mcasts;/* accept all multicasts */
1473 
1474 	/*
1475 	 * Start the config command/DMA.
1476 	 */
1477 	fxp_scb_wait(sc);
1478 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1479 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1480 	/* ...and wait for it to complete. */
1481 	while (!(cbp->cb_status & FXP_CB_STATUS_C));
1482 
1483 	/*
1484 	 * Now initialize the station address. Temporarily use the TxCB
1485 	 * memory area like we did above for the config CB.
1486 	 */
1487 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1488 	cb_ias->cb_status = 0;
1489 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1490 	cb_ias->link_addr = -1;
1491 #if defined(__NetBSD__)
1492 	bcopy(LLADDR(ifp->if_sadl), (void *)cb_ias->macaddr, 6);
1493 #else
1494 	bcopy(sc->arpcom.ac_enaddr, (volatile void *)cb_ias->macaddr,
1495 	    sizeof(sc->arpcom.ac_enaddr));
1496 #endif /* __NetBSD__ */
1497 
1498 	/*
1499 	 * Start the IAS (Individual Address Setup) command/DMA.
1500 	 */
1501 	fxp_scb_wait(sc);
1502 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1503 	/* ...and wait for it to complete. */
1504 	while (!(cb_ias->cb_status & FXP_CB_STATUS_C));
1505 
1506 	/*
1507 	 * Initialize transmit control block (TxCB) list.
1508 	 */
1509 
1510 	txp = sc->cbl_base;
1511 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1512 	for (i = 0; i < FXP_NTXCB; i++) {
1513 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1514 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1515 		txp[i].link_addr = vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1516 		txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1517 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1518 	}
1519 	/*
1520 	 * Set the suspend flag on the first TxCB and start the control
1521 	 * unit. It will execute the NOP and then suspend.
1522 	 */
1523 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1524 	sc->cbl_first = sc->cbl_last = txp;
1525 	sc->tx_queued = 1;
1526 
1527 	fxp_scb_wait(sc);
1528 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1529 
1530 	/*
1531 	 * Initialize receiver buffer area - RFA.
1532 	 */
1533 	fxp_scb_wait(sc);
1534 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1535 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1536 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1537 
1538 	/*
1539 	 * Set current media.
1540 	 */
1541 	fxp_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
1542 
1543 	ifp->if_flags |= IFF_RUNNING;
1544 	ifp->if_flags &= ~IFF_OACTIVE;
1545 	splx(s);
1546 
1547 	/*
1548 	 * Start stats updater.
1549 	 */
1550 	sc->stat_ch = timeout(fxp_stats_update, sc, hz);
1551 }
1552 
1553 static void
1554 fxp_set_media(sc, media)
1555 	struct fxp_softc *sc;
1556 	int media;
1557 {
1558 
1559 	switch (sc->phy_primary_device) {
1560 	case FXP_PHY_DP83840:
1561 	case FXP_PHY_DP83840A:
1562 		fxp_mdi_write(sc, sc->phy_primary_addr, FXP_DP83840_PCR,
1563 		    fxp_mdi_read(sc, sc->phy_primary_addr, FXP_DP83840_PCR) |
1564 		    FXP_DP83840_PCR_LED4_MODE |	/* LED4 always indicates duplex */
1565 		    FXP_DP83840_PCR_F_CONNECT |	/* force link disconnect bypass */
1566 		    FXP_DP83840_PCR_BIT10);	/* XXX I have no idea */
1567 		/* fall through */
1568 	case FXP_PHY_82553A:
1569 	case FXP_PHY_82553C: /* untested */
1570 	case FXP_PHY_82555:
1571 	case FXP_PHY_82555B:
1572 		if (IFM_SUBTYPE(media) != IFM_AUTO) {
1573 			int flags;
1574 
1575 			flags = (IFM_SUBTYPE(media) == IFM_100_TX) ?
1576 			    FXP_PHY_BMCR_SPEED_100M : 0;
1577 			flags |= (media & IFM_FDX) ?
1578 			    FXP_PHY_BMCR_FULLDUPLEX : 0;
1579 			fxp_mdi_write(sc, sc->phy_primary_addr,
1580 			    FXP_PHY_BMCR,
1581 			    (fxp_mdi_read(sc, sc->phy_primary_addr,
1582 			    FXP_PHY_BMCR) &
1583 			    ~(FXP_PHY_BMCR_AUTOEN | FXP_PHY_BMCR_SPEED_100M |
1584 			     FXP_PHY_BMCR_FULLDUPLEX)) | flags);
1585 		} else {
1586 			fxp_mdi_write(sc, sc->phy_primary_addr,
1587 			    FXP_PHY_BMCR,
1588 			    (fxp_mdi_read(sc, sc->phy_primary_addr,
1589 			    FXP_PHY_BMCR) | FXP_PHY_BMCR_AUTOEN));
1590 		}
1591 		break;
1592 	/*
1593 	 * The Seeq 80c24 doesn't have a PHY programming interface, so do
1594 	 * nothing.
1595 	 */
1596 	case FXP_PHY_80C24:
1597 		break;
1598 	default:
1599 		printf(FXP_FORMAT
1600 		    ": warning: unsupported PHY, type = %d, addr = %d\n",
1601 		     FXP_ARGS(sc), sc->phy_primary_device,
1602 		     sc->phy_primary_addr);
1603 	}
1604 }
1605 
1606 /*
1607  * Change media according to request.
1608  */
1609 int
1610 fxp_mediachange(ifp)
1611 	struct ifnet *ifp;
1612 {
1613 	struct fxp_softc *sc = ifp->if_softc;
1614 	struct ifmedia *ifm = &sc->sc_media;
1615 
1616 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1617 		return (EINVAL);
1618 
1619 	fxp_set_media(sc, ifm->ifm_media);
1620 	return (0);
1621 }
1622 
1623 /*
1624  * Notify the world which media we're using.
1625  */
1626 void
1627 fxp_mediastatus(ifp, ifmr)
1628 	struct ifnet *ifp;
1629 	struct ifmediareq *ifmr;
1630 {
1631 	struct fxp_softc *sc = ifp->if_softc;
1632 	int flags, stsflags;
1633 
1634 	switch (sc->phy_primary_device) {
1635 	case FXP_PHY_82555:
1636 	case FXP_PHY_82555B:
1637 	case FXP_PHY_DP83840:
1638 	case FXP_PHY_DP83840A:
1639 		ifmr->ifm_status = IFM_AVALID; /* IFM_ACTIVE will be valid */
1640 		ifmr->ifm_active = IFM_ETHER;
1641 		/*
1642 		 * the following is not an error.
1643 		 * You need to read this register twice to get current
1644 		 * status. This is correct documented behaviour, the
1645 		 * first read gets latched values.
1646 		 */
1647 		stsflags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_STS);
1648 		stsflags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_STS);
1649 		if (stsflags & FXP_PHY_STS_LINK_STS)
1650 				ifmr->ifm_status |= IFM_ACTIVE;
1651 
1652 		/*
1653 		 * If we are in auto mode, then try report the result.
1654 		 */
1655 		flags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_BMCR);
1656 		if (flags & FXP_PHY_BMCR_AUTOEN) {
1657 			ifmr->ifm_active |= IFM_AUTO; /* XXX presently 0 */
1658 			if (stsflags & FXP_PHY_STS_AUTO_DONE) {
1659 				/*
1660 				 * Intel and National parts report
1661 				 * differently on what they found.
1662 				 */
1663 				if ((sc->phy_primary_device == FXP_PHY_82555)
1664 				|| (sc->phy_primary_device == FXP_PHY_82555B)) {
1665 					flags = fxp_mdi_read(sc,
1666 						sc->phy_primary_addr,
1667 						FXP_PHY_USC);
1668 
1669 					if (flags & FXP_PHY_USC_SPEED)
1670 						ifmr->ifm_active |= IFM_100_TX;
1671 					else
1672 						ifmr->ifm_active |= IFM_10_T;
1673 
1674 					if (flags & FXP_PHY_USC_DUPLEX)
1675 						ifmr->ifm_active |= IFM_FDX;
1676 				} else { /* it's National. only know speed  */
1677 					flags = fxp_mdi_read(sc,
1678 						sc->phy_primary_addr,
1679 						FXP_DP83840_PAR);
1680 
1681 					if (flags & FXP_DP83840_PAR_SPEED_10)
1682 						ifmr->ifm_active |= IFM_10_T;
1683 					else
1684 						ifmr->ifm_active |= IFM_100_TX;
1685 				}
1686 			}
1687 		} else { /* in manual mode.. just report what we were set to */
1688 			if (flags & FXP_PHY_BMCR_SPEED_100M)
1689 				ifmr->ifm_active |= IFM_100_TX;
1690 			else
1691 				ifmr->ifm_active |= IFM_10_T;
1692 
1693 			if (flags & FXP_PHY_BMCR_FULLDUPLEX)
1694 				ifmr->ifm_active |= IFM_FDX;
1695 		}
1696 		break;
1697 
1698 	case FXP_PHY_80C24:
1699 	default:
1700 		ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; /* XXX IFM_AUTO ? */
1701 	}
1702 }
1703 
1704 /*
1705  * Add a buffer to the end of the RFA buffer list.
1706  * Return 0 if successful, 1 for failure. A failure results in
1707  * adding the 'oldm' (if non-NULL) on to the end of the list -
1708  * tossing out its old contents and recycling it.
1709  * The RFA struct is stuck at the beginning of mbuf cluster and the
1710  * data pointer is fixed up to point just past it.
1711  */
1712 static int
1713 fxp_add_rfabuf(sc, oldm)
1714 	struct fxp_softc *sc;
1715 	struct mbuf *oldm;
1716 {
1717 	u_int32_t v;
1718 	struct mbuf *m;
1719 	struct fxp_rfa *rfa, *p_rfa;
1720 
1721 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1722 	if (m != NULL) {
1723 		MCLGET(m, M_DONTWAIT);
1724 		if ((m->m_flags & M_EXT) == 0) {
1725 			m_freem(m);
1726 			if (oldm == NULL)
1727 				return 1;
1728 			m = oldm;
1729 			m->m_data = m->m_ext.ext_buf;
1730 		}
1731 	} else {
1732 		if (oldm == NULL)
1733 			return 1;
1734 		m = oldm;
1735 		m->m_data = m->m_ext.ext_buf;
1736 	}
1737 
1738 	/*
1739 	 * Move the data pointer up so that the incoming data packet
1740 	 * will be 32-bit aligned.
1741 	 */
1742 	m->m_data += RFA_ALIGNMENT_FUDGE;
1743 
1744 	/*
1745 	 * Get a pointer to the base of the mbuf cluster and move
1746 	 * data start past it.
1747 	 */
1748 	rfa = mtod(m, struct fxp_rfa *);
1749 	m->m_data += sizeof(struct fxp_rfa);
1750 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1751 
1752 	/*
1753 	 * Initialize the rest of the RFA.  Note that since the RFA
1754 	 * is misaligned, we cannot store values directly.  Instead,
1755 	 * we use an optimized, inline copy.
1756 	 */
1757 
1758 	rfa->rfa_status = 0;
1759 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1760 	rfa->actual_size = 0;
1761 
1762 	v = -1;
1763 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1764 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1765 
1766 	/*
1767 	 * If there are other buffers already on the list, attach this
1768 	 * one to the end by fixing up the tail to point to this one.
1769 	 */
1770 	if (sc->rfa_headm != NULL) {
1771 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1772 		    RFA_ALIGNMENT_FUDGE);
1773 		sc->rfa_tailm->m_next = m;
1774 		v = vtophys(rfa);
1775 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1776 		p_rfa->rfa_control = 0;
1777 	} else {
1778 		sc->rfa_headm = m;
1779 	}
1780 	sc->rfa_tailm = m;
1781 
1782 	return (m == oldm);
1783 }
1784 
1785 static volatile int
1786 fxp_mdi_read(sc, phy, reg)
1787 	struct fxp_softc *sc;
1788 	int phy;
1789 	int reg;
1790 {
1791 	int count = 10000;
1792 	int value;
1793 
1794 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1795 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1796 
1797 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1798 	    && count--)
1799 		DELAY(10);
1800 
1801 	if (count <= 0)
1802 		printf(FXP_FORMAT ": fxp_mdi_read: timed out\n",
1803 		    FXP_ARGS(sc));
1804 
1805 	return (value & 0xffff);
1806 }
1807 
1808 static void
1809 fxp_mdi_write(sc, phy, reg, value)
1810 	struct fxp_softc *sc;
1811 	int phy;
1812 	int reg;
1813 	int value;
1814 {
1815 	int count = 10000;
1816 
1817 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1818 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1819 	    (value & 0xffff));
1820 
1821 	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1822 	    count--)
1823 		DELAY(10);
1824 
1825 	if (count <= 0)
1826 		printf(FXP_FORMAT ": fxp_mdi_write: timed out\n",
1827 		    FXP_ARGS(sc));
1828 }
1829 
1830 static int
1831 fxp_ioctl(ifp, command, data)
1832 	struct ifnet *ifp;
1833 	FXP_IOCTLCMD_TYPE command;
1834 	caddr_t data;
1835 {
1836 	struct fxp_softc *sc = ifp->if_softc;
1837 	struct ifreq *ifr = (struct ifreq *)data;
1838 	int s, error = 0;
1839 
1840 	s = splimp();
1841 
1842 	switch (command) {
1843 
1844 	case SIOCSIFADDR:
1845 #if !defined(__NetBSD__)
1846 	case SIOCGIFADDR:
1847 	case SIOCSIFMTU:
1848 #endif
1849 		error = ether_ioctl(ifp, command, data);
1850 		break;
1851 
1852 	case SIOCSIFFLAGS:
1853 		sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1854 
1855 		/*
1856 		 * If interface is marked up and not running, then start it.
1857 		 * If it is marked down and running, stop it.
1858 		 * XXX If it's up then re-initialize it. This is so flags
1859 		 * such as IFF_PROMISC are handled.
1860 		 */
1861 		if (ifp->if_flags & IFF_UP) {
1862 			fxp_init(sc);
1863 		} else {
1864 			if (ifp->if_flags & IFF_RUNNING)
1865 				fxp_stop(sc);
1866 		}
1867 		break;
1868 
1869 	case SIOCADDMULTI:
1870 	case SIOCDELMULTI:
1871 		sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1872 #if defined(__NetBSD__)
1873 		error = (command == SIOCADDMULTI) ?
1874 		    ether_addmulti(ifr, &sc->sc_ethercom) :
1875 		    ether_delmulti(ifr, &sc->sc_ethercom);
1876 
1877 		if (error == ENETRESET) {
1878 			/*
1879 			 * Multicast list has changed; set the hardware
1880 			 * filter accordingly.
1881 			 */
1882 			if (!sc->all_mcasts)
1883 				fxp_mc_setup(sc);
1884 			/*
1885 			 * fxp_mc_setup() can turn on all_mcasts if we run
1886 			 * out of space, so check it again rather than else {}.
1887 			 */
1888 			if (sc->all_mcasts)
1889 				fxp_init(sc);
1890 			error = 0;
1891 		}
1892 #else /* __FreeBSD__ */
1893 		/*
1894 		 * Multicast list has changed; set the hardware filter
1895 		 * accordingly.
1896 		 */
1897 		if (!sc->all_mcasts)
1898 			fxp_mc_setup(sc);
1899 		/*
1900 		 * fxp_mc_setup() can turn on sc->all_mcasts, so check it
1901 		 * again rather than else {}.
1902 		 */
1903 		if (sc->all_mcasts)
1904 			fxp_init(sc);
1905 		error = 0;
1906 #endif /* __NetBSD__ */
1907 		break;
1908 
1909 	case SIOCSIFMEDIA:
1910 	case SIOCGIFMEDIA:
1911 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1912 		break;
1913 
1914 	default:
1915 		error = EINVAL;
1916 	}
1917 	(void) splx(s);
1918 	return (error);
1919 }
1920 
1921 /*
1922  * Program the multicast filter.
1923  *
1924  * We have an artificial restriction that the multicast setup command
1925  * must be the first command in the chain, so we take steps to ensure
1926  * this. By requiring this, it allows us to keep up the performance of
1927  * the pre-initialized command ring (esp. link pointers) by not actually
1928  * inserting the mcsetup command in the ring - i.e. its link pointer
1929  * points to the TxCB ring, but the mcsetup descriptor itself is not part
1930  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
1931  * lead into the regular TxCB ring when it completes.
1932  *
1933  * This function must be called at splimp.
1934  */
1935 static void
1936 fxp_mc_setup(sc)
1937 	struct fxp_softc *sc;
1938 {
1939 	struct fxp_cb_mcs *mcsp = sc->mcsp;
1940 	struct ifnet *ifp = &sc->sc_if;
1941 	struct ifmultiaddr *ifma;
1942 	int nmcasts;
1943 
1944 	/*
1945 	 * If there are queued commands, we must wait until they are all
1946 	 * completed. If we are already waiting, then add a NOP command
1947 	 * with interrupt option so that we're notified when all commands
1948 	 * have been completed - fxp_start() ensures that no additional
1949 	 * TX commands will be added when need_mcsetup is true.
1950 	 */
1951 	if (sc->tx_queued) {
1952 		struct fxp_cb_tx *txp;
1953 
1954 		/*
1955 		 * need_mcsetup will be true if we are already waiting for the
1956 		 * NOP command to be completed (see below). In this case, bail.
1957 		 */
1958 		if (sc->need_mcsetup)
1959 			return;
1960 		sc->need_mcsetup = 1;
1961 
1962 		/*
1963 		 * Add a NOP command with interrupt so that we are notified when all
1964 		 * TX commands have been processed.
1965 		 */
1966 		txp = sc->cbl_last->next;
1967 		txp->mb_head = NULL;
1968 		txp->cb_status = 0;
1969 		txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1970 		/*
1971 		 * Advance the end of list forward.
1972 		 */
1973 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1974 		sc->cbl_last = txp;
1975 		sc->tx_queued++;
1976 		/*
1977 		 * Issue a resume in case the CU has just suspended.
1978 		 */
1979 		fxp_scb_wait(sc);
1980 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
1981 		/*
1982 		 * Set a 5 second timer just in case we don't hear from the
1983 		 * card again.
1984 		 */
1985 		ifp->if_timer = 5;
1986 
1987 		return;
1988 	}
1989 	sc->need_mcsetup = 0;
1990 
1991 	/*
1992 	 * Initialize multicast setup descriptor.
1993 	 */
1994 	mcsp->next = sc->cbl_base;
1995 	mcsp->mb_head = NULL;
1996 	mcsp->cb_status = 0;
1997 	mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1998 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
1999 
2000 	nmcasts = 0;
2001 	if (!sc->all_mcasts) {
2002 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
2003 		    ifma = ifma->ifma_link.le_next) {
2004 			if (ifma->ifma_addr->sa_family != AF_LINK)
2005 				continue;
2006 			if (nmcasts >= MAXMCADDR) {
2007 				sc->all_mcasts = 1;
2008 				nmcasts = 0;
2009 				break;
2010 			}
2011 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2012 			    (volatile void *) &sc->mcsp->mc_addr[nmcasts][0], 6);
2013 			nmcasts++;
2014 		}
2015 	}
2016 	mcsp->mc_cnt = nmcasts * 6;
2017 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2018 	sc->tx_queued = 1;
2019 
2020 	/*
2021 	 * Wait until command unit is not active. This should never
2022 	 * be the case when nothing is queued, but make sure anyway.
2023 	 */
2024 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2025 	    FXP_SCB_CUS_ACTIVE) ;
2026 
2027 	/*
2028 	 * Start the multicast setup command.
2029 	 */
2030 	fxp_scb_wait(sc);
2031 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2032 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
2033 
2034 	ifp->if_timer = 2;
2035 	return;
2036 }
2037