xref: /freebsd/sys/dev/fxp/if_fxp.c (revision a3e8fd0b7f663db7eafff527d5c3ca3bcfa8a537)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/mbuf.h>
38 #include <sys/malloc.h>
39 		/* #include <sys/mutex.h> */
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/sysctl.h>
43 
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 
48 #ifdef NS
49 #include <netns/ns.h>
50 #include <netns/ns_if.h>
51 #endif
52 
53 #include <net/bpf.h>
54 #include <sys/sockio.h>
55 #include <sys/bus.h>
56 #include <machine/bus.h>
57 #include <sys/rman.h>
58 #include <machine/resource.h>
59 
60 #include <net/ethernet.h>
61 #include <net/if_arp.h>
62 
63 #include <vm/vm.h>		/* for vtophys */
64 #include <vm/pmap.h>		/* for vtophys */
65 #include <machine/clock.h>	/* for DELAY */
66 
67 #include <net/if_types.h>
68 #include <net/if_vlan_var.h>
69 
70 #include <pci/pcivar.h>
71 #include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
72 
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/fxp/if_fxpreg.h>
77 #include <dev/fxp/if_fxpvar.h>
78 #include <dev/fxp/rcvbundl.h>
79 
80 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
81 #include "miibus_if.h"
82 
83 /*
84  * NOTE!  On the Alpha, we have an alignment constraint.  The
85  * card DMAs the packet immediately following the RFA.  However,
86  * the first thing in the packet is a 14-byte Ethernet header.
87  * This means that the packet is misaligned.  To compensate,
88  * we actually offset the RFA 2 bytes into the cluster.  This
89  * alignes the packet after the Ethernet header at a 32-bit
90  * boundary.  HOWEVER!  This means that the RFA is misaligned!
91  */
92 #define	RFA_ALIGNMENT_FUDGE	2
93 
94 /*
95  * Set initial transmit threshold at 64 (512 bytes). This is
96  * increased by 64 (512 bytes) at a time, to maximum of 192
97  * (1536 bytes), if an underrun occurs.
98  */
99 static int tx_threshold = 64;
100 
101 /*
102  * The configuration byte map has several undefined fields which
103  * must be one or must be zero.  Set up a template for these bits
104  * only, (assuming a 82557 chip) leaving the actual configuration
105  * to fxp_init.
106  *
107  * See struct fxp_cb_config for the bit definitions.
108  */
109 static u_char fxp_cb_config_template[] = {
110 	0x0, 0x0,		/* cb_status */
111 	0x0, 0x0,		/* cb_command */
112 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113 	0x0,	/*  0 */
114 	0x0,	/*  1 */
115 	0x0,	/*  2 */
116 	0x0,	/*  3 */
117 	0x0,	/*  4 */
118 	0x0,	/*  5 */
119 	0x32,	/*  6 */
120 	0x0,	/*  7 */
121 	0x0,	/*  8 */
122 	0x0,	/*  9 */
123 	0x6,	/* 10 */
124 	0x0,	/* 11 */
125 	0x0,	/* 12 */
126 	0x0,	/* 13 */
127 	0xf2,	/* 14 */
128 	0x48,	/* 15 */
129 	0x0,	/* 16 */
130 	0x40,	/* 17 */
131 	0xf0,	/* 18 */
132 	0x0,	/* 19 */
133 	0x3f,	/* 20 */
134 	0x5	/* 21 */
135 };
136 
137 struct fxp_ident {
138 	u_int16_t	devid;
139 	char 		*name;
140 };
141 
142 /*
143  * Claim various Intel PCI device identifiers for this driver.  The
144  * sub-vendor and sub-device field are extensively used to identify
145  * particular variants, but we don't currently differentiate between
146  * them.
147  */
148 static struct fxp_ident fxp_ident_table[] = {
149     { 0x1229,		"Intel Pro 10/100B/100+ Ethernet" },
150     { 0x2449,		"Intel Pro/100 Ethernet" },
151     { 0x1209,		"Intel Embedded 10/100 Ethernet" },
152     { 0x1029,		"Intel Pro/100 Ethernet" },
153     { 0x1030,		"Intel Pro/100 Ethernet" },
154     { 0x1031,		"Intel Pro/100 Ethernet" },
155     { 0x1032,		"Intel Pro/100 Ethernet" },
156     { 0x1033,		"Intel Pro/100 Ethernet" },
157     { 0x1034,		"Intel Pro/100 Ethernet" },
158     { 0x1035,		"Intel Pro/100 Ethernet" },
159     { 0x1036,		"Intel Pro/100 Ethernet" },
160     { 0x1037,		"Intel Pro/100 Ethernet" },
161     { 0x1038,		"Intel Pro/100 Ethernet" },
162     { 0x1039,		"Intel Pro/100 Ethernet" },
163     { 0x103A,		"Intel Pro/100 Ethernet" },
164     { 0x103B,		"Intel Pro/100 Ethernet" },
165     { 0x103C,		"Intel Pro/100 Ethernet" },
166     { 0x103D,		"Intel Pro/100 Ethernet" },
167     { 0x103E,		"Intel Pro/100 Ethernet" },
168     { 0,		NULL },
169 };
170 
171 static int		fxp_probe(device_t dev);
172 static int		fxp_attach(device_t dev);
173 static int		fxp_detach(device_t dev);
174 static int		fxp_shutdown(device_t dev);
175 static int		fxp_suspend(device_t dev);
176 static int		fxp_resume(device_t dev);
177 
178 static void		fxp_intr(void *xsc);
179 static void 		fxp_init(void *xsc);
180 static void 		fxp_tick(void *xsc);
181 static void		fxp_powerstate_d0(device_t dev);
182 static void 		fxp_start(struct ifnet *ifp);
183 static void		fxp_stop(struct fxp_softc *sc);
184 static void 		fxp_release(struct fxp_softc *sc);
185 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
186 			    caddr_t data);
187 static void 		fxp_watchdog(struct ifnet *ifp);
188 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
189 static int		fxp_mc_addrs(struct fxp_softc *sc);
190 static void		fxp_mc_setup(struct fxp_softc *sc);
191 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
192 			    int autosize);
193 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
194 			    u_int16_t data);
195 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
196 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
197 			    int offset, int words);
198 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
199 			    int offset, int words);
200 static int		fxp_ifmedia_upd(struct ifnet *ifp);
201 static void		fxp_ifmedia_sts(struct ifnet *ifp,
202 			    struct ifmediareq *ifmr);
203 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
204 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
205 			    struct ifmediareq *ifmr);
206 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
207 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
208 			    int value);
209 static void		fxp_load_ucode(struct fxp_softc *sc);
210 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
211 			    int low, int high);
212 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
213 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
214 static __inline void	fxp_lwcopy(volatile u_int32_t *src,
215 			    volatile u_int32_t *dst);
216 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
217 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
218 static __inline void	fxp_dma_wait(volatile u_int16_t *status,
219 			    struct fxp_softc *sc);
220 
221 static device_method_t fxp_methods[] = {
222 	/* Device interface */
223 	DEVMETHOD(device_probe,		fxp_probe),
224 	DEVMETHOD(device_attach,	fxp_attach),
225 	DEVMETHOD(device_detach,	fxp_detach),
226 	DEVMETHOD(device_shutdown,	fxp_shutdown),
227 	DEVMETHOD(device_suspend,	fxp_suspend),
228 	DEVMETHOD(device_resume,	fxp_resume),
229 
230 	/* MII interface */
231 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
232 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
233 
234 	{ 0, 0 }
235 };
236 
237 static driver_t fxp_driver = {
238 	"fxp",
239 	fxp_methods,
240 	sizeof(struct fxp_softc),
241 };
242 
243 static devclass_t fxp_devclass;
244 
245 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
246 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
247 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
248 
249 static int fxp_rnr;
250 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
251 
252 /*
253  * Inline function to copy a 16-bit aligned 32-bit quantity.
254  */
255 static __inline void
256 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
257 {
258 #ifdef __i386__
259 	*dst = *src;
260 #else
261 	volatile u_int16_t *a = (volatile u_int16_t *)src;
262 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
263 
264 	b[0] = a[0];
265 	b[1] = a[1];
266 #endif
267 }
268 
269 /*
270  * Wait for the previous command to be accepted (but not necessarily
271  * completed).
272  */
273 static __inline void
274 fxp_scb_wait(struct fxp_softc *sc)
275 {
276 	int i = 10000;
277 
278 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
279 		DELAY(2);
280 	if (i == 0)
281 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
282 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
283 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
284 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
285 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
286 }
287 
288 static __inline void
289 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
290 {
291 
292 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
293 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
294 		fxp_scb_wait(sc);
295 	}
296 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
297 }
298 
299 static __inline void
300 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
301 {
302 	int i = 10000;
303 
304 	while (!(*status & FXP_CB_STATUS_C) && --i)
305 		DELAY(2);
306 	if (i == 0)
307 		device_printf(sc->dev, "DMA timeout\n");
308 }
309 
310 /*
311  * Return identification string if this is device is ours.
312  */
313 static int
314 fxp_probe(device_t dev)
315 {
316 	u_int16_t devid;
317 	struct fxp_ident *ident;
318 
319 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
320 		devid = pci_get_device(dev);
321 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
322 			if (ident->devid == devid) {
323 				device_set_desc(dev, ident->name);
324 				return (0);
325 			}
326 		}
327 	}
328 	return (ENXIO);
329 }
330 
331 static void
332 fxp_powerstate_d0(device_t dev)
333 {
334 #if __FreeBSD_version >= 430002
335 	u_int32_t iobase, membase, irq;
336 
337 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
338 		/* Save important PCI config data. */
339 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
340 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
341 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
342 
343 		/* Reset the power state. */
344 		device_printf(dev, "chip is in D%d power mode "
345 		    "-- setting to D0\n", pci_get_powerstate(dev));
346 
347 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
348 
349 		/* Restore PCI config data. */
350 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
351 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
352 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
353 	}
354 #endif
355 }
356 
357 static int
358 fxp_attach(device_t dev)
359 {
360 	int error = 0;
361 	struct fxp_softc *sc = device_get_softc(dev);
362 	struct ifnet *ifp;
363 	u_int32_t val;
364 	u_int16_t data;
365 	int i, rid, m1, m2, prefer_iomap;
366 	int s;
367 
368 	bzero(sc, sizeof(*sc));
369 	sc->dev = dev;
370 	callout_handle_init(&sc->stat_ch);
371 	sysctl_ctx_init(&sc->sysctl_ctx);
372 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
373 	    MTX_DEF | MTX_RECURSE);
374 
375 	s = splimp();
376 
377 	/*
378 	 * Enable bus mastering. Enable memory space too, in case
379 	 * BIOS/Prom forgot about it.
380 	 */
381 	val = pci_read_config(dev, PCIR_COMMAND, 2);
382 	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
383 	pci_write_config(dev, PCIR_COMMAND, val, 2);
384 	val = pci_read_config(dev, PCIR_COMMAND, 2);
385 
386 	fxp_powerstate_d0(dev);
387 
388 	/*
389 	 * Figure out which we should try first - memory mapping or i/o mapping?
390 	 * We default to memory mapping. Then we accept an override from the
391 	 * command line. Then we check to see which one is enabled.
392 	 */
393 	m1 = PCIM_CMD_MEMEN;
394 	m2 = PCIM_CMD_PORTEN;
395 	prefer_iomap = 0;
396 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
397 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
398 		m1 = PCIM_CMD_PORTEN;
399 		m2 = PCIM_CMD_MEMEN;
400 	}
401 
402 	if (val & m1) {
403 		sc->rtp =
404 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
405 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
406 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
407 	                                     0, ~0, 1, RF_ACTIVE);
408 	}
409 	if (sc->mem == NULL && (val & m2)) {
410 		sc->rtp =
411 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
412 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
413 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
414                                             0, ~0, 1, RF_ACTIVE);
415 	}
416 
417 	if (!sc->mem) {
418 		device_printf(dev, "could not map device registers\n");
419 		error = ENXIO;
420 		goto fail;
421         }
422 	if (bootverbose) {
423 		device_printf(dev, "using %s space register mapping\n",
424 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
425 	}
426 
427 	sc->sc_st = rman_get_bustag(sc->mem);
428 	sc->sc_sh = rman_get_bushandle(sc->mem);
429 
430 	/*
431 	 * Allocate our interrupt.
432 	 */
433 	rid = 0;
434 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
435 				 RF_SHAREABLE | RF_ACTIVE);
436 	if (sc->irq == NULL) {
437 		device_printf(dev, "could not map interrupt\n");
438 		error = ENXIO;
439 		goto fail;
440 	}
441 
442 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
443 			       fxp_intr, sc, &sc->ih);
444 	if (error) {
445 		device_printf(dev, "could not setup irq\n");
446 		goto fail;
447 	}
448 
449 	/*
450 	 * Reset to a stable state.
451 	 */
452 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
453 	DELAY(10);
454 
455 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
456 	    M_DEVBUF, M_NOWAIT | M_ZERO);
457 	if (sc->cbl_base == NULL)
458 		goto failmem;
459 
460 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
461 	    M_NOWAIT | M_ZERO);
462 	if (sc->fxp_stats == NULL)
463 		goto failmem;
464 
465 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
466 	if (sc->mcsp == NULL)
467 		goto failmem;
468 
469 	/*
470 	 * Pre-allocate our receive buffers.
471 	 */
472 	for (i = 0; i < FXP_NRFABUFS; i++) {
473 		if (fxp_add_rfabuf(sc, NULL) != 0) {
474 			goto failmem;
475 		}
476 	}
477 
478 	/*
479 	 * Find out how large of an SEEPROM we have.
480 	 */
481 	fxp_autosize_eeprom(sc);
482 
483 	/*
484 	 * Determine whether we must use the 503 serial interface.
485 	 */
486 	fxp_read_eeprom(sc, &data, 6, 1);
487 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
488 	    (data & FXP_PHY_SERIAL_ONLY))
489 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
490 
491 	/*
492 	 * Create the sysctl tree
493 	 */
494 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
495 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
496 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
497 	if (sc->sysctl_tree == NULL)
498 		goto fail;
499 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
500 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
501 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
502 	    "FXP driver receive interrupt microcode bundling delay");
503 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
504 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
505 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
506 	    "FXP driver receive interrupt microcode bundle size limit");
507 
508 	/*
509 	 * Pull in device tunables.
510 	 */
511 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
512 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
513 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
514 	    "int_delay", &sc->tunable_int_delay);
515 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
516 	    "bundle_max", &sc->tunable_bundle_max);
517 
518 	/*
519 	 * Find out the chip revision; lump all 82557 revs together.
520 	 */
521 	fxp_read_eeprom(sc, &data, 5, 1);
522 	if ((data >> 8) == 1)
523 		sc->revision = FXP_REV_82557;
524 	else
525 		sc->revision = pci_get_revid(dev);
526 
527 	/*
528 	 * Enable workarounds for certain chip revision deficiencies.
529 	 *
530 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
531 	 * some systems based a normal 82559 design, have a defect where
532 	 * the chip can cause a PCI protocol violation if it receives
533 	 * a CU_RESUME command when it is entering the IDLE state.  The
534 	 * workaround is to disable Dynamic Standby Mode, so the chip never
535 	 * deasserts CLKRUN#, and always remains in an active state.
536 	 *
537 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
538 	 */
539 	i = pci_get_device(dev);
540 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
541 	    sc->revision >= FXP_REV_82559_A0) {
542 		fxp_read_eeprom(sc, &data, 10, 1);
543 		if (data & 0x02) {			/* STB enable */
544 			u_int16_t cksum;
545 			int i;
546 
547 			device_printf(dev,
548 			    "Disabling dynamic standby mode in EEPROM\n");
549 			data &= ~0x02;
550 			fxp_write_eeprom(sc, &data, 10, 1);
551 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
552 			cksum = 0;
553 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
554 				fxp_read_eeprom(sc, &data, i, 1);
555 				cksum += data;
556 			}
557 			i = (1 << sc->eeprom_size) - 1;
558 			cksum = 0xBABA - cksum;
559 			fxp_read_eeprom(sc, &data, i, 1);
560 			fxp_write_eeprom(sc, &cksum, i, 1);
561 			device_printf(dev,
562 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
563 			    i, data, cksum);
564 #if 1
565 			/*
566 			 * If the user elects to continue, try the software
567 			 * workaround, as it is better than nothing.
568 			 */
569 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
570 #endif
571 		}
572 	}
573 
574 	/*
575 	 * If we are not a 82557 chip, we can enable extended features.
576 	 */
577 	if (sc->revision != FXP_REV_82557) {
578 		/*
579 		 * If MWI is enabled in the PCI configuration, and there
580 		 * is a valid cacheline size (8 or 16 dwords), then tell
581 		 * the board to turn on MWI.
582 		 */
583 		if (val & PCIM_CMD_MWRICEN &&
584 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
585 			sc->flags |= FXP_FLAG_MWI_ENABLE;
586 
587 		/* turn on the extended TxCB feature */
588 		sc->flags |= FXP_FLAG_EXT_TXCB;
589 
590 		/* enable reception of long frames for VLAN */
591 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
592 	}
593 
594 	/*
595 	 * Read MAC address.
596 	 */
597 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
598 	device_printf(dev, "Ethernet address %6D%s\n",
599 	    sc->arpcom.ac_enaddr, ":",
600 	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
601 	if (bootverbose) {
602 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
603 		    pci_get_vendor(dev), pci_get_device(dev),
604 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
605 		    pci_get_revid(dev));
606 		fxp_read_eeprom(sc, &data, 10, 1);
607 		device_printf(dev, "Dynamic Standby mode is %s\n",
608 		    data & 0x02 ? "enabled" : "disabled");
609 	}
610 
611 	/*
612 	 * If this is only a 10Mbps device, then there is no MII, and
613 	 * the PHY will use a serial interface instead.
614 	 *
615 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
616 	 * doesn't have a programming interface of any sort.  The
617 	 * media is sensed automatically based on how the link partner
618 	 * is configured.  This is, in essence, manual configuration.
619 	 */
620 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
621 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
622 		    fxp_serial_ifmedia_sts);
623 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
624 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
625 	} else {
626 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
627 		    fxp_ifmedia_sts)) {
628 	                device_printf(dev, "MII without any PHY!\n");
629 			error = ENXIO;
630 			goto fail;
631 		}
632 	}
633 
634 	ifp = &sc->arpcom.ac_if;
635 	ifp->if_unit = device_get_unit(dev);
636 	ifp->if_name = "fxp";
637 	ifp->if_output = ether_output;
638 	ifp->if_baudrate = 100000000;
639 	ifp->if_init = fxp_init;
640 	ifp->if_softc = sc;
641 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
642 	ifp->if_ioctl = fxp_ioctl;
643 	ifp->if_start = fxp_start;
644 	ifp->if_watchdog = fxp_watchdog;
645 
646 	/*
647 	 * Attach the interface.
648 	 */
649 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
650 
651 	/*
652 	 * Tell the upper layer(s) we support long frames.
653 	 */
654 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
655 
656 	/*
657 	 * Let the system queue as many packets as we have available
658 	 * TX descriptors.
659 	 */
660 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
661 
662 	splx(s);
663 	return (0);
664 
665 failmem:
666 	device_printf(dev, "Failed to malloc memory\n");
667 	error = ENOMEM;
668 fail:
669 	splx(s);
670 	fxp_release(sc);
671 	return (error);
672 }
673 
674 /*
675  * release all resources
676  */
677 static void
678 fxp_release(struct fxp_softc *sc)
679 {
680 
681 	bus_generic_detach(sc->dev);
682 	if (sc->miibus)
683 		device_delete_child(sc->dev, sc->miibus);
684 
685 	if (sc->cbl_base)
686 		free(sc->cbl_base, M_DEVBUF);
687 	if (sc->fxp_stats)
688 		free(sc->fxp_stats, M_DEVBUF);
689 	if (sc->mcsp)
690 		free(sc->mcsp, M_DEVBUF);
691 	if (sc->rfa_headm)
692 		m_freem(sc->rfa_headm);
693 
694 	if (sc->ih)
695 		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
696 	if (sc->irq)
697 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
698 	if (sc->mem)
699 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
700 
701         sysctl_ctx_free(&sc->sysctl_ctx);
702 
703 	mtx_destroy(&sc->sc_mtx);
704 }
705 
706 /*
707  * Detach interface.
708  */
709 static int
710 fxp_detach(device_t dev)
711 {
712 	struct fxp_softc *sc = device_get_softc(dev);
713 	int s;
714 
715 	/* disable interrupts */
716 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
717 
718 	s = splimp();
719 
720 	/*
721 	 * Stop DMA and drop transmit queue.
722 	 */
723 	fxp_stop(sc);
724 
725 	/*
726 	 * Close down routes etc.
727 	 */
728 	ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
729 
730 	/*
731 	 * Free all media structures.
732 	 */
733 	ifmedia_removeall(&sc->sc_media);
734 
735 	splx(s);
736 
737 	/* Release our allocated resources. */
738 	fxp_release(sc);
739 
740 	return (0);
741 }
742 
743 /*
744  * Device shutdown routine. Called at system shutdown after sync. The
745  * main purpose of this routine is to shut off receiver DMA so that
746  * kernel memory doesn't get clobbered during warmboot.
747  */
748 static int
749 fxp_shutdown(device_t dev)
750 {
751 	/*
752 	 * Make sure that DMA is disabled prior to reboot. Not doing
753 	 * do could allow DMA to corrupt kernel memory during the
754 	 * reboot before the driver initializes.
755 	 */
756 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
757 	return (0);
758 }
759 
760 /*
761  * Device suspend routine.  Stop the interface and save some PCI
762  * settings in case the BIOS doesn't restore them properly on
763  * resume.
764  */
765 static int
766 fxp_suspend(device_t dev)
767 {
768 	struct fxp_softc *sc = device_get_softc(dev);
769 	int i, s;
770 
771 	s = splimp();
772 
773 	fxp_stop(sc);
774 
775 	for (i = 0; i < 5; i++)
776 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
777 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
778 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
779 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
780 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
781 
782 	sc->suspended = 1;
783 
784 	splx(s);
785 	return (0);
786 }
787 
788 /*
789  * Device resume routine.  Restore some PCI settings in case the BIOS
790  * doesn't, re-enable busmastering, and restart the interface if
791  * appropriate.
792  */
793 static int
794 fxp_resume(device_t dev)
795 {
796 	struct fxp_softc *sc = device_get_softc(dev);
797 	struct ifnet *ifp = &sc->sc_if;
798 	u_int16_t pci_command;
799 	int i, s;
800 
801 	s = splimp();
802 
803 	fxp_powerstate_d0(dev);
804 
805 	/* better way to do this? */
806 	for (i = 0; i < 5; i++)
807 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
808 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
809 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
810 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
811 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
812 
813 	/* reenable busmastering */
814 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
815 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
816 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
817 
818 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
819 	DELAY(10);
820 
821 	/* reinitialize interface if necessary */
822 	if (ifp->if_flags & IFF_UP)
823 		fxp_init(sc);
824 
825 	sc->suspended = 0;
826 
827 	splx(s);
828 	return (0);
829 }
830 
831 static void
832 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
833 {
834 	u_int16_t reg;
835 	int x;
836 
837 	/*
838 	 * Shift in data.
839 	 */
840 	for (x = 1 << (length - 1); x; x >>= 1) {
841 		if (data & x)
842 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
843 		else
844 			reg = FXP_EEPROM_EECS;
845 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
846 		DELAY(1);
847 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
848 		DELAY(1);
849 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
850 		DELAY(1);
851 	}
852 }
853 
854 /*
855  * Read from the serial EEPROM. Basically, you manually shift in
856  * the read opcode (one bit at a time) and then shift in the address,
857  * and then you shift out the data (all of this one bit at a time).
858  * The word size is 16 bits, so you have to provide the address for
859  * every 16 bits of data.
860  */
861 static u_int16_t
862 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
863 {
864 	u_int16_t reg, data;
865 	int x;
866 
867 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
868 	/*
869 	 * Shift in read opcode.
870 	 */
871 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
872 	/*
873 	 * Shift in address.
874 	 */
875 	data = 0;
876 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
877 		if (offset & x)
878 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
879 		else
880 			reg = FXP_EEPROM_EECS;
881 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
882 		DELAY(1);
883 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
884 		DELAY(1);
885 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
886 		DELAY(1);
887 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
888 		data++;
889 		if (autosize && reg == 0) {
890 			sc->eeprom_size = data;
891 			break;
892 		}
893 	}
894 	/*
895 	 * Shift out data.
896 	 */
897 	data = 0;
898 	reg = FXP_EEPROM_EECS;
899 	for (x = 1 << 15; x; x >>= 1) {
900 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
901 		DELAY(1);
902 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
903 			data |= x;
904 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
905 		DELAY(1);
906 	}
907 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
908 	DELAY(1);
909 
910 	return (data);
911 }
912 
913 static void
914 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
915 {
916 	int i;
917 
918 	/*
919 	 * Erase/write enable.
920 	 */
921 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
922 	fxp_eeprom_shiftin(sc, 0x4, 3);
923 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
924 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
925 	DELAY(1);
926 	/*
927 	 * Shift in write opcode, address, data.
928 	 */
929 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
930 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
931 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
932 	fxp_eeprom_shiftin(sc, data, 16);
933 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
934 	DELAY(1);
935 	/*
936 	 * Wait for EEPROM to finish up.
937 	 */
938 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
939 	DELAY(1);
940 	for (i = 0; i < 1000; i++) {
941 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
942 			break;
943 		DELAY(50);
944 	}
945 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
946 	DELAY(1);
947 	/*
948 	 * Erase/write disable.
949 	 */
950 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
951 	fxp_eeprom_shiftin(sc, 0x4, 3);
952 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
953 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
954 	DELAY(1);
955 }
956 
957 /*
958  * From NetBSD:
959  *
960  * Figure out EEPROM size.
961  *
962  * 559's can have either 64-word or 256-word EEPROMs, the 558
963  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
964  * talks about the existance of 16 to 256 word EEPROMs.
965  *
966  * The only known sizes are 64 and 256, where the 256 version is used
967  * by CardBus cards to store CIS information.
968  *
969  * The address is shifted in msb-to-lsb, and after the last
970  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
971  * after which follows the actual data. We try to detect this zero, by
972  * probing the data-out bit in the EEPROM control register just after
973  * having shifted in a bit. If the bit is zero, we assume we've
974  * shifted enough address bits. The data-out should be tri-state,
975  * before this, which should translate to a logical one.
976  */
977 static void
978 fxp_autosize_eeprom(struct fxp_softc *sc)
979 {
980 
981 	/* guess maximum size of 256 words */
982 	sc->eeprom_size = 8;
983 
984 	/* autosize */
985 	(void) fxp_eeprom_getword(sc, 0, 1);
986 }
987 
988 static void
989 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
990 {
991 	int i;
992 
993 	for (i = 0; i < words; i++)
994 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
995 }
996 
997 static void
998 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
999 {
1000 	int i;
1001 
1002 	for (i = 0; i < words; i++)
1003 		fxp_eeprom_putword(sc, offset + i, data[i]);
1004 }
1005 
1006 /*
1007  * Start packet transmission on the interface.
1008  */
1009 static void
1010 fxp_start(struct ifnet *ifp)
1011 {
1012 	struct fxp_softc *sc = ifp->if_softc;
1013 	struct fxp_cb_tx *txp;
1014 
1015 	/*
1016 	 * See if we need to suspend xmit until the multicast filter
1017 	 * has been reprogrammed (which can only be done at the head
1018 	 * of the command chain).
1019 	 */
1020 	if (sc->need_mcsetup) {
1021 		return;
1022 	}
1023 
1024 	txp = NULL;
1025 
1026 	/*
1027 	 * We're finished if there is nothing more to add to the list or if
1028 	 * we're all filled up with buffers to transmit.
1029 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1030 	 *       a NOP command when needed.
1031 	 */
1032 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1033 		struct mbuf *m, *mb_head;
1034 		int segment;
1035 
1036 		/*
1037 		 * Grab a packet to transmit.
1038 		 */
1039 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1040 
1041 		/*
1042 		 * Get pointer to next available tx desc.
1043 		 */
1044 		txp = sc->cbl_last->next;
1045 
1046 		/*
1047 		 * Go through each of the mbufs in the chain and initialize
1048 		 * the transmit buffer descriptors with the physical address
1049 		 * and size of the mbuf.
1050 		 */
1051 tbdinit:
1052 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1053 			if (m->m_len != 0) {
1054 				if (segment == FXP_NTXSEG)
1055 					break;
1056 				txp->tbd[segment].tb_addr =
1057 				    vtophys(mtod(m, vm_offset_t));
1058 				txp->tbd[segment].tb_size = m->m_len;
1059 				segment++;
1060 			}
1061 		}
1062 		if (m != NULL) {
1063 			struct mbuf *mn;
1064 
1065 			/*
1066 			 * We ran out of segments. We have to recopy this
1067 			 * mbuf chain first. Bail out if we can't get the
1068 			 * new buffers.
1069 			 */
1070 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1071 			if (mn == NULL) {
1072 				m_freem(mb_head);
1073 				break;
1074 			}
1075 			if (mb_head->m_pkthdr.len > MHLEN) {
1076 				MCLGET(mn, M_DONTWAIT);
1077 				if ((mn->m_flags & M_EXT) == 0) {
1078 					m_freem(mn);
1079 					m_freem(mb_head);
1080 					break;
1081 				}
1082 			}
1083 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1084 			    mtod(mn, caddr_t));
1085 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1086 			m_freem(mb_head);
1087 			mb_head = mn;
1088 			goto tbdinit;
1089 		}
1090 
1091 		txp->tbd_number = segment;
1092 		txp->mb_head = mb_head;
1093 		txp->cb_status = 0;
1094 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1095 			txp->cb_command =
1096 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1097 			    FXP_CB_COMMAND_S;
1098 		} else {
1099 			txp->cb_command =
1100 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1101 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1102 			/*
1103 			 * Set a 5 second timer just in case we don't hear
1104 			 * from the card again.
1105 			 */
1106 			ifp->if_timer = 5;
1107 		}
1108 		txp->tx_threshold = tx_threshold;
1109 
1110 		/*
1111 		 * Advance the end of list forward.
1112 		 */
1113 
1114 #ifdef __alpha__
1115 		/*
1116 		 * On platforms which can't access memory in 16-bit
1117 		 * granularities, we must prevent the card from DMA'ing
1118 		 * up the status while we update the command field.
1119 		 * This could cause us to overwrite the completion status.
1120 		 */
1121 		atomic_clear_short(&sc->cbl_last->cb_command,
1122 		    FXP_CB_COMMAND_S);
1123 #else
1124 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1125 #endif /*__alpha__*/
1126 		sc->cbl_last = txp;
1127 
1128 		/*
1129 		 * Advance the beginning of the list forward if there are
1130 		 * no other packets queued (when nothing is queued, cbl_first
1131 		 * sits on the last TxCB that was sent out).
1132 		 */
1133 		if (sc->tx_queued == 0)
1134 			sc->cbl_first = txp;
1135 
1136 		sc->tx_queued++;
1137 
1138 		/*
1139 		 * Pass packet to bpf if there is a listener.
1140 		 */
1141 		if (ifp->if_bpf)
1142 			bpf_mtap(ifp, mb_head);
1143 	}
1144 
1145 	/*
1146 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1147 	 * going again if suspended.
1148 	 */
1149 	if (txp != NULL) {
1150 		fxp_scb_wait(sc);
1151 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1152 	}
1153 }
1154 
1155 static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count);
1156 
1157 #ifdef DEVICE_POLLING
1158 static poll_handler_t fxp_poll;
1159 
1160 static void
1161 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1162 {
1163 	struct fxp_softc *sc = ifp->if_softc;
1164 	u_int8_t statack;
1165 
1166 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1167 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1168 		return;
1169 	}
1170 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1171 	    FXP_SCB_STATACK_FR;
1172 	if (cmd == POLL_AND_CHECK_STATUS) {
1173 		u_int8_t tmp;
1174 
1175 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1176 		if (tmp == 0xff || tmp == 0)
1177 			return; /* nothing to do */
1178 		tmp &= ~statack;
1179 		/* ack what we can */
1180 		if (tmp != 0)
1181 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1182 		statack |= tmp;
1183 	}
1184 	fxp_intr_body(sc, statack, count);
1185 }
1186 #endif /* DEVICE_POLLING */
1187 
1188 /*
1189  * Process interface interrupts.
1190  */
1191 static void
1192 fxp_intr(void *xsc)
1193 {
1194 	struct fxp_softc *sc = xsc;
1195 	u_int8_t statack;
1196 
1197 #ifdef DEVICE_POLLING
1198 	struct ifnet *ifp = &sc->sc_if;
1199 
1200 	if (ifp->if_flags & IFF_POLLING)
1201 		return;
1202 	if (ether_poll_register(fxp_poll, ifp)) {
1203 		/* disable interrupts */
1204 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1205 		fxp_poll(ifp, 0, 1);
1206 		return;
1207 	}
1208 #endif
1209 
1210 	if (sc->suspended) {
1211 		return;
1212 	}
1213 
1214 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1215 		/*
1216 		 * It should not be possible to have all bits set; the
1217 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1218 		 * all bits are set, this may indicate that the card has
1219 		 * been physically ejected, so ignore it.
1220 		 */
1221 		if (statack == 0xff)
1222 			return;
1223 
1224 		/*
1225 		 * First ACK all the interrupts in this pass.
1226 		 */
1227 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1228 		fxp_intr_body(sc, statack, -1);
1229 	}
1230 }
1231 
1232 static void
1233 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1234 {
1235 	struct ifnet *ifp = &sc->sc_if;
1236 	struct mbuf *m;
1237 	struct fxp_rfa *rfa;
1238 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1239 
1240 	if (rnr)
1241 		fxp_rnr++;
1242 
1243 	/*
1244 	 * Free any finished transmit mbuf chains.
1245 	 *
1246 	 * Handle the CNA event likt a CXTNO event. It used to
1247 	 * be that this event (control unit not ready) was not
1248 	 * encountered, but it is now with the SMPng modifications.
1249 	 * The exact sequence of events that occur when the interface
1250 	 * is brought up are different now, and if this event
1251 	 * goes unhandled, the configuration/rxfilter setup sequence
1252 	 * can stall for several seconds. The result is that no
1253 	 * packets go out onto the wire for about 5 to 10 seconds
1254 	 * after the interface is ifconfig'ed for the first time.
1255 	 */
1256 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1257 		struct fxp_cb_tx *txp;
1258 
1259 		for (txp = sc->cbl_first; sc->tx_queued &&
1260 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1261 		    txp = txp->next) {
1262 			if (txp->mb_head != NULL) {
1263 				m_freem(txp->mb_head);
1264 				txp->mb_head = NULL;
1265 			}
1266 			sc->tx_queued--;
1267 		}
1268 		sc->cbl_first = txp;
1269 		ifp->if_timer = 0;
1270 		if (sc->tx_queued == 0) {
1271 			if (sc->need_mcsetup)
1272 				fxp_mc_setup(sc);
1273 		}
1274 		/*
1275 		 * Try to start more packets transmitting.
1276 		 */
1277 		if (ifp->if_snd.ifq_head != NULL)
1278 			fxp_start(ifp);
1279 	}
1280 
1281 	/*
1282 	 * Just return if nothing happened on the receive side.
1283 	 */
1284 	if ( (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) == 0)
1285 		return;
1286 
1287 	/*
1288 	 * Process receiver interrupts. If a no-resource (RNR)
1289 	 * condition exists, get whatever packets we can and
1290 	 * re-start the receiver.
1291 	 * When using polling, we do not process the list to completion,
1292 	 * so when we get an RNR interrupt we must defer the restart
1293 	 * until we hit the last buffer with the C bit set.
1294 	 * If we run out of cycles and rfa_headm has the C bit set,
1295 	 * record the pending RNR in an unused status bit, so that the
1296 	 * info will be used in the subsequent polling cycle.
1297 	 */
1298 
1299 #define	FXP_RFA_RNRMARK		0x4000	/* used to mark a pending RNR intr */
1300 
1301 	for (;;) {
1302 		m = sc->rfa_headm;
1303 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1304 		    RFA_ALIGNMENT_FUDGE);
1305 
1306 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1307 		if (count >= 0 && count-- == 0)
1308 			break;
1309 #endif /* DEVICE_POLLING */
1310 
1311 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1312 			break;
1313 
1314 		if (rfa->rfa_status & FXP_RFA_RNRMARK)
1315 			rnr = 1;
1316 		/*
1317 		 * Remove first packet from the chain.
1318 		 */
1319 		sc->rfa_headm = m->m_next;
1320 		m->m_next = NULL;
1321 
1322 		/*
1323 		 * Add a new buffer to the receive chain.
1324 		 * If this fails, the old buffer is recycled
1325 		 * instead.
1326 		 */
1327 		if (fxp_add_rfabuf(sc, m) == 0) {
1328 			int total_len;
1329 
1330 			/*
1331 			 * Fetch packet length (the top 2 bits of
1332 			 * actual_size are flags set by the controller
1333 			 * upon completion), and drop the packet in case
1334 			 * of bogus length or CRC errors.
1335 			 */
1336 			total_len = rfa->actual_size & 0x3fff;
1337 			if (total_len < sizeof(struct ether_header) ||
1338 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1339 				sizeof(struct fxp_rfa) ||
1340 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1341 				m_freem(m);
1342 				continue;
1343 			}
1344 
1345 			m->m_pkthdr.len = m->m_len = total_len;
1346 			ether_input(ifp, NULL, m);
1347 		}
1348 	}
1349 	if (rnr) {
1350 		if (rfa->rfa_status & FXP_RFA_STATUS_C)
1351 			rfa->rfa_status |= FXP_RFA_RNRMARK;
1352 		else {
1353 			fxp_scb_wait(sc);
1354 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1355 			    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1356 				RFA_ALIGNMENT_FUDGE);
1357 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1358 		}
1359 	}
1360 }
1361 
1362 /*
1363  * Update packet in/out/collision statistics. The i82557 doesn't
1364  * allow you to access these counters without doing a fairly
1365  * expensive DMA to get _all_ of the statistics it maintains, so
1366  * we do this operation here only once per second. The statistics
1367  * counters in the kernel are updated from the previous dump-stats
1368  * DMA and then a new dump-stats DMA is started. The on-chip
1369  * counters are zeroed when the DMA completes. If we can't start
1370  * the DMA immediately, we don't wait - we just prepare to read
1371  * them again next time.
1372  */
1373 static void
1374 fxp_tick(void *xsc)
1375 {
1376 	struct fxp_softc *sc = xsc;
1377 	struct ifnet *ifp = &sc->sc_if;
1378 	struct fxp_stats *sp = sc->fxp_stats;
1379 	struct fxp_cb_tx *txp;
1380 	int s;
1381 
1382 	ifp->if_opackets += sp->tx_good;
1383 	ifp->if_collisions += sp->tx_total_collisions;
1384 	if (sp->rx_good) {
1385 		ifp->if_ipackets += sp->rx_good;
1386 		sc->rx_idle_secs = 0;
1387 	} else {
1388 		/*
1389 		 * Receiver's been idle for another second.
1390 		 */
1391 		sc->rx_idle_secs++;
1392 	}
1393 	ifp->if_ierrors +=
1394 	    sp->rx_crc_errors +
1395 	    sp->rx_alignment_errors +
1396 	    sp->rx_rnr_errors +
1397 	    sp->rx_overrun_errors;
1398 	/*
1399 	 * If any transmit underruns occured, bump up the transmit
1400 	 * threshold by another 512 bytes (64 * 8).
1401 	 */
1402 	if (sp->tx_underruns) {
1403 		ifp->if_oerrors += sp->tx_underruns;
1404 		if (tx_threshold < 192)
1405 			tx_threshold += 64;
1406 	}
1407 	s = splimp();
1408 	/*
1409 	 * Release any xmit buffers that have completed DMA. This isn't
1410 	 * strictly necessary to do here, but it's advantagous for mbufs
1411 	 * with external storage to be released in a timely manner rather
1412 	 * than being defered for a potentially long time. This limits
1413 	 * the delay to a maximum of one second.
1414 	 */
1415 	for (txp = sc->cbl_first; sc->tx_queued &&
1416 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1417 	    txp = txp->next) {
1418 		if (txp->mb_head != NULL) {
1419 			m_freem(txp->mb_head);
1420 			txp->mb_head = NULL;
1421 		}
1422 		sc->tx_queued--;
1423 	}
1424 	sc->cbl_first = txp;
1425 	/*
1426 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1427 	 * then assume the receiver has locked up and attempt to clear
1428 	 * the condition by reprogramming the multicast filter. This is
1429 	 * a work-around for a bug in the 82557 where the receiver locks
1430 	 * up if it gets certain types of garbage in the syncronization
1431 	 * bits prior to the packet header. This bug is supposed to only
1432 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1433 	 * mode as well (perhaps due to a 10/100 speed transition).
1434 	 */
1435 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1436 		sc->rx_idle_secs = 0;
1437 		fxp_mc_setup(sc);
1438 	}
1439 	/*
1440 	 * If there is no pending command, start another stats
1441 	 * dump. Otherwise punt for now.
1442 	 */
1443 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1444 		/*
1445 		 * Start another stats dump.
1446 		 */
1447 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1448 	} else {
1449 		/*
1450 		 * A previous command is still waiting to be accepted.
1451 		 * Just zero our copy of the stats and wait for the
1452 		 * next timer event to update them.
1453 		 */
1454 		sp->tx_good = 0;
1455 		sp->tx_underruns = 0;
1456 		sp->tx_total_collisions = 0;
1457 
1458 		sp->rx_good = 0;
1459 		sp->rx_crc_errors = 0;
1460 		sp->rx_alignment_errors = 0;
1461 		sp->rx_rnr_errors = 0;
1462 		sp->rx_overrun_errors = 0;
1463 	}
1464 	if (sc->miibus != NULL)
1465 		mii_tick(device_get_softc(sc->miibus));
1466 	splx(s);
1467 	/*
1468 	 * Schedule another timeout one second from now.
1469 	 */
1470 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1471 }
1472 
1473 /*
1474  * Stop the interface. Cancels the statistics updater and resets
1475  * the interface.
1476  */
1477 static void
1478 fxp_stop(struct fxp_softc *sc)
1479 {
1480 	struct ifnet *ifp = &sc->sc_if;
1481 	struct fxp_cb_tx *txp;
1482 	int i;
1483 
1484 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1485 	ifp->if_timer = 0;
1486 
1487 #ifdef DEVICE_POLLING
1488 	ether_poll_deregister(ifp);
1489 #endif
1490 	/*
1491 	 * Cancel stats updater.
1492 	 */
1493 	untimeout(fxp_tick, sc, sc->stat_ch);
1494 
1495 	/*
1496 	 * Issue software reset, which also unloads the microcode.
1497 	 */
1498 	sc->flags &= ~FXP_FLAG_UCODE;
1499 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1500 	DELAY(50);
1501 
1502 	/*
1503 	 * Release any xmit buffers.
1504 	 */
1505 	txp = sc->cbl_base;
1506 	if (txp != NULL) {
1507 		for (i = 0; i < FXP_NTXCB; i++) {
1508 			if (txp[i].mb_head != NULL) {
1509 				m_freem(txp[i].mb_head);
1510 				txp[i].mb_head = NULL;
1511 			}
1512 		}
1513 	}
1514 	sc->tx_queued = 0;
1515 
1516 	/*
1517 	 * Free all the receive buffers then reallocate/reinitialize
1518 	 */
1519 	if (sc->rfa_headm != NULL)
1520 		m_freem(sc->rfa_headm);
1521 	sc->rfa_headm = NULL;
1522 	sc->rfa_tailm = NULL;
1523 	for (i = 0; i < FXP_NRFABUFS; i++) {
1524 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1525 			/*
1526 			 * This "can't happen" - we're at splimp()
1527 			 * and we just freed all the buffers we need
1528 			 * above.
1529 			 */
1530 			panic("fxp_stop: no buffers!");
1531 		}
1532 	}
1533 }
1534 
1535 /*
1536  * Watchdog/transmission transmit timeout handler. Called when a
1537  * transmission is started on the interface, but no interrupt is
1538  * received before the timeout. This usually indicates that the
1539  * card has wedged for some reason.
1540  */
1541 static void
1542 fxp_watchdog(struct ifnet *ifp)
1543 {
1544 	struct fxp_softc *sc = ifp->if_softc;
1545 
1546 	device_printf(sc->dev, "device timeout\n");
1547 	ifp->if_oerrors++;
1548 
1549 	fxp_init(sc);
1550 }
1551 
1552 static void
1553 fxp_init(void *xsc)
1554 {
1555 	struct fxp_softc *sc = xsc;
1556 	struct ifnet *ifp = &sc->sc_if;
1557 	struct fxp_cb_config *cbp;
1558 	struct fxp_cb_ias *cb_ias;
1559 	struct fxp_cb_tx *txp;
1560 	struct fxp_cb_mcs *mcsp;
1561 	int i, prm, s;
1562 
1563 	s = splimp();
1564 	/*
1565 	 * Cancel any pending I/O
1566 	 */
1567 	fxp_stop(sc);
1568 
1569 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1570 
1571 	/*
1572 	 * Initialize base of CBL and RFA memory. Loading with zero
1573 	 * sets it up for regular linear addressing.
1574 	 */
1575 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1576 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1577 
1578 	fxp_scb_wait(sc);
1579 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1580 
1581 	/*
1582 	 * Initialize base of dump-stats buffer.
1583 	 */
1584 	fxp_scb_wait(sc);
1585 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1586 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1587 
1588 	/*
1589 	 * Attempt to load microcode if requested.
1590 	 */
1591 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1592 		fxp_load_ucode(sc);
1593 
1594 	/*
1595 	 * Initialize the multicast address list.
1596 	 */
1597 	if (fxp_mc_addrs(sc)) {
1598 		mcsp = sc->mcsp;
1599 		mcsp->cb_status = 0;
1600 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1601 		mcsp->link_addr = -1;
1602 		/*
1603 	 	 * Start the multicast setup command.
1604 		 */
1605 		fxp_scb_wait(sc);
1606 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1607 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1608 		/* ...and wait for it to complete. */
1609 		fxp_dma_wait(&mcsp->cb_status, sc);
1610 	}
1611 
1612 	/*
1613 	 * We temporarily use memory that contains the TxCB list to
1614 	 * construct the config CB. The TxCB list memory is rebuilt
1615 	 * later.
1616 	 */
1617 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1618 
1619 	/*
1620 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1621 	 * zero and must be one bits in this structure and this is the easiest
1622 	 * way to initialize them all to proper values.
1623 	 */
1624 	bcopy(fxp_cb_config_template,
1625 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1626 		sizeof(fxp_cb_config_template));
1627 
1628 	cbp->cb_status =	0;
1629 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1630 	cbp->link_addr =	-1;	/* (no) next command */
1631 	cbp->byte_count =	22;	/* (22) bytes to config */
1632 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1633 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1634 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1635 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1636 	cbp->type_enable =	0;	/* actually reserved */
1637 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1638 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1639 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1640 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1641 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1642 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1643 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1644 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1645 	cbp->ci_int =		1;	/* interrupt on CU idle */
1646 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1647 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1648 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1649 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1650 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1651 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1652 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1653 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1654 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1655 	cbp->csma_dis =		0;	/* (don't) disable link */
1656 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1657 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1658 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1659 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1660 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1661 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1662 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1663 	cbp->loopback =		0;	/* (don't) loopback */
1664 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1665 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1666 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1667 	cbp->promiscuous =	prm;	/* promiscuous mode */
1668 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1669 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1670 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1671 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1672 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1673 
1674 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1675 	cbp->padding =		1;	/* (do) pad short tx packets */
1676 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1677 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1678 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1679 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1680 					/* must set wake_en in PMCSR also */
1681 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1682 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1683 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1684 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1685 
1686 	if (sc->revision == FXP_REV_82557) {
1687 		/*
1688 		 * The 82557 has no hardware flow control, the values
1689 		 * below are the defaults for the chip.
1690 		 */
1691 		cbp->fc_delay_lsb =	0;
1692 		cbp->fc_delay_msb =	0x40;
1693 		cbp->pri_fc_thresh =	3;
1694 		cbp->tx_fc_dis =	0;
1695 		cbp->rx_fc_restop =	0;
1696 		cbp->rx_fc_restart =	0;
1697 		cbp->fc_filter =	0;
1698 		cbp->pri_fc_loc =	1;
1699 	} else {
1700 		cbp->fc_delay_lsb =	0x1f;
1701 		cbp->fc_delay_msb =	0x01;
1702 		cbp->pri_fc_thresh =	3;
1703 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1704 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1705 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1706 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1707 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1708 	}
1709 
1710 	/*
1711 	 * Start the config command/DMA.
1712 	 */
1713 	fxp_scb_wait(sc);
1714 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1715 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1716 	/* ...and wait for it to complete. */
1717 	fxp_dma_wait(&cbp->cb_status, sc);
1718 
1719 	/*
1720 	 * Now initialize the station address. Temporarily use the TxCB
1721 	 * memory area like we did above for the config CB.
1722 	 */
1723 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1724 	cb_ias->cb_status = 0;
1725 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1726 	cb_ias->link_addr = -1;
1727 	bcopy(sc->arpcom.ac_enaddr,
1728 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1729 	    sizeof(sc->arpcom.ac_enaddr));
1730 
1731 	/*
1732 	 * Start the IAS (Individual Address Setup) command/DMA.
1733 	 */
1734 	fxp_scb_wait(sc);
1735 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1736 	/* ...and wait for it to complete. */
1737 	fxp_dma_wait(&cb_ias->cb_status, sc);
1738 
1739 	/*
1740 	 * Initialize transmit control block (TxCB) list.
1741 	 */
1742 
1743 	txp = sc->cbl_base;
1744 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1745 	for (i = 0; i < FXP_NTXCB; i++) {
1746 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1747 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1748 		txp[i].link_addr =
1749 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1750 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1751 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1752 		else
1753 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1754 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1755 	}
1756 	/*
1757 	 * Set the suspend flag on the first TxCB and start the control
1758 	 * unit. It will execute the NOP and then suspend.
1759 	 */
1760 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1761 	sc->cbl_first = sc->cbl_last = txp;
1762 	sc->tx_queued = 1;
1763 
1764 	fxp_scb_wait(sc);
1765 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1766 
1767 	/*
1768 	 * Initialize receiver buffer area - RFA.
1769 	 */
1770 	fxp_scb_wait(sc);
1771 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1772 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1773 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1774 
1775 	/*
1776 	 * Set current media.
1777 	 */
1778 	if (sc->miibus != NULL)
1779 		mii_mediachg(device_get_softc(sc->miibus));
1780 
1781 	ifp->if_flags |= IFF_RUNNING;
1782 	ifp->if_flags &= ~IFF_OACTIVE;
1783 
1784 	/*
1785 	 * Enable interrupts.
1786 	 */
1787 #ifdef DEVICE_POLLING
1788 	/*
1789 	 * ... but only do that if we are not polling. And because (presumably)
1790 	 * the default is interrupts on, we need to disable them explicitly!
1791 	 */
1792 	if ( ifp->if_flags & IFF_POLLING )
1793 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1794 	else
1795 #endif /* DEVICE_POLLING */
1796 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1797 	splx(s);
1798 
1799 	/*
1800 	 * Start stats updater.
1801 	 */
1802 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1803 }
1804 
1805 static int
1806 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1807 {
1808 
1809 	return (0);
1810 }
1811 
1812 static void
1813 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1814 {
1815 
1816 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1817 }
1818 
1819 /*
1820  * Change media according to request.
1821  */
1822 static int
1823 fxp_ifmedia_upd(struct ifnet *ifp)
1824 {
1825 	struct fxp_softc *sc = ifp->if_softc;
1826 	struct mii_data *mii;
1827 
1828 	mii = device_get_softc(sc->miibus);
1829 	mii_mediachg(mii);
1830 	return (0);
1831 }
1832 
1833 /*
1834  * Notify the world which media we're using.
1835  */
1836 static void
1837 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1838 {
1839 	struct fxp_softc *sc = ifp->if_softc;
1840 	struct mii_data *mii;
1841 
1842 	mii = device_get_softc(sc->miibus);
1843 	mii_pollstat(mii);
1844 	ifmr->ifm_active = mii->mii_media_active;
1845 	ifmr->ifm_status = mii->mii_media_status;
1846 
1847 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1848 		sc->cu_resume_bug = 1;
1849 	else
1850 		sc->cu_resume_bug = 0;
1851 }
1852 
1853 /*
1854  * Add a buffer to the end of the RFA buffer list.
1855  * Return 0 if successful, 1 for failure. A failure results in
1856  * adding the 'oldm' (if non-NULL) on to the end of the list -
1857  * tossing out its old contents and recycling it.
1858  * The RFA struct is stuck at the beginning of mbuf cluster and the
1859  * data pointer is fixed up to point just past it.
1860  */
1861 static int
1862 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1863 {
1864 	u_int32_t v;
1865 	struct mbuf *m;
1866 	struct fxp_rfa *rfa, *p_rfa;
1867 
1868 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1869 	if (m == NULL) { /* try to recycle the old mbuf instead */
1870 		if (oldm == NULL)
1871 			return 1;
1872 		m = oldm;
1873 		m->m_data = m->m_ext.ext_buf;
1874 	}
1875 
1876 	/*
1877 	 * Move the data pointer up so that the incoming data packet
1878 	 * will be 32-bit aligned.
1879 	 */
1880 	m->m_data += RFA_ALIGNMENT_FUDGE;
1881 
1882 	/*
1883 	 * Get a pointer to the base of the mbuf cluster and move
1884 	 * data start past it.
1885 	 */
1886 	rfa = mtod(m, struct fxp_rfa *);
1887 	m->m_data += sizeof(struct fxp_rfa);
1888 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1889 
1890 	/*
1891 	 * Initialize the rest of the RFA.  Note that since the RFA
1892 	 * is misaligned, we cannot store values directly.  Instead,
1893 	 * we use an optimized, inline copy.
1894 	 */
1895 
1896 	rfa->rfa_status = 0;
1897 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1898 	rfa->actual_size = 0;
1899 
1900 	v = -1;
1901 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1902 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1903 
1904 	/*
1905 	 * If there are other buffers already on the list, attach this
1906 	 * one to the end by fixing up the tail to point to this one.
1907 	 */
1908 	if (sc->rfa_headm != NULL) {
1909 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1910 		    RFA_ALIGNMENT_FUDGE);
1911 		sc->rfa_tailm->m_next = m;
1912 		v = vtophys(rfa);
1913 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1914 		p_rfa->rfa_control = 0;
1915 	} else {
1916 		sc->rfa_headm = m;
1917 	}
1918 	sc->rfa_tailm = m;
1919 
1920 	return (m == oldm);
1921 }
1922 
1923 static volatile int
1924 fxp_miibus_readreg(device_t dev, int phy, int reg)
1925 {
1926 	struct fxp_softc *sc = device_get_softc(dev);
1927 	int count = 10000;
1928 	int value;
1929 
1930 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1931 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1932 
1933 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1934 	    && count--)
1935 		DELAY(10);
1936 
1937 	if (count <= 0)
1938 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1939 
1940 	return (value & 0xffff);
1941 }
1942 
1943 static void
1944 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1945 {
1946 	struct fxp_softc *sc = device_get_softc(dev);
1947 	int count = 10000;
1948 
1949 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1950 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1951 	    (value & 0xffff));
1952 
1953 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1954 	    count--)
1955 		DELAY(10);
1956 
1957 	if (count <= 0)
1958 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1959 }
1960 
1961 static int
1962 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1963 {
1964 	struct fxp_softc *sc = ifp->if_softc;
1965 	struct ifreq *ifr = (struct ifreq *)data;
1966 	struct mii_data *mii;
1967 	int s, error = 0;
1968 
1969 	s = splimp();
1970 
1971 	switch (command) {
1972 	case SIOCSIFADDR:
1973 	case SIOCGIFADDR:
1974 	case SIOCSIFMTU:
1975 		error = ether_ioctl(ifp, command, data);
1976 		break;
1977 
1978 	case SIOCSIFFLAGS:
1979 		if (ifp->if_flags & IFF_ALLMULTI)
1980 			sc->flags |= FXP_FLAG_ALL_MCAST;
1981 		else
1982 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1983 
1984 		/*
1985 		 * If interface is marked up and not running, then start it.
1986 		 * If it is marked down and running, stop it.
1987 		 * XXX If it's up then re-initialize it. This is so flags
1988 		 * such as IFF_PROMISC are handled.
1989 		 */
1990 		if (ifp->if_flags & IFF_UP) {
1991 			fxp_init(sc);
1992 		} else {
1993 			if (ifp->if_flags & IFF_RUNNING)
1994 				fxp_stop(sc);
1995 		}
1996 		break;
1997 
1998 	case SIOCADDMULTI:
1999 	case SIOCDELMULTI:
2000 		if (ifp->if_flags & IFF_ALLMULTI)
2001 			sc->flags |= FXP_FLAG_ALL_MCAST;
2002 		else
2003 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2004 		/*
2005 		 * Multicast list has changed; set the hardware filter
2006 		 * accordingly.
2007 		 */
2008 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2009 			fxp_mc_setup(sc);
2010 		/*
2011 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2012 		 * again rather than else {}.
2013 		 */
2014 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2015 			fxp_init(sc);
2016 		error = 0;
2017 		break;
2018 
2019 	case SIOCSIFMEDIA:
2020 	case SIOCGIFMEDIA:
2021 		if (sc->miibus != NULL) {
2022 			mii = device_get_softc(sc->miibus);
2023                         error = ifmedia_ioctl(ifp, ifr,
2024                             &mii->mii_media, command);
2025 		} else {
2026                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2027 		}
2028 		break;
2029 
2030 	default:
2031 		error = EINVAL;
2032 	}
2033 	splx(s);
2034 	return (error);
2035 }
2036 
2037 /*
2038  * Fill in the multicast address list and return number of entries.
2039  */
2040 static int
2041 fxp_mc_addrs(struct fxp_softc *sc)
2042 {
2043 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2044 	struct ifnet *ifp = &sc->sc_if;
2045 	struct ifmultiaddr *ifma;
2046 	int nmcasts;
2047 
2048 	nmcasts = 0;
2049 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2050 #if __FreeBSD_version < 500000
2051 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2052 #else
2053 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2054 #endif
2055 			if (ifma->ifma_addr->sa_family != AF_LINK)
2056 				continue;
2057 			if (nmcasts >= MAXMCADDR) {
2058 				sc->flags |= FXP_FLAG_ALL_MCAST;
2059 				nmcasts = 0;
2060 				break;
2061 			}
2062 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2063 			    (void *)(uintptr_t)(volatile void *)
2064 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2065 			nmcasts++;
2066 		}
2067 	}
2068 	mcsp->mc_cnt = nmcasts * 6;
2069 	return (nmcasts);
2070 }
2071 
2072 /*
2073  * Program the multicast filter.
2074  *
2075  * We have an artificial restriction that the multicast setup command
2076  * must be the first command in the chain, so we take steps to ensure
2077  * this. By requiring this, it allows us to keep up the performance of
2078  * the pre-initialized command ring (esp. link pointers) by not actually
2079  * inserting the mcsetup command in the ring - i.e. its link pointer
2080  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2081  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2082  * lead into the regular TxCB ring when it completes.
2083  *
2084  * This function must be called at splimp.
2085  */
2086 static void
2087 fxp_mc_setup(struct fxp_softc *sc)
2088 {
2089 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2090 	struct ifnet *ifp = &sc->sc_if;
2091 	int count;
2092 
2093 	/*
2094 	 * If there are queued commands, we must wait until they are all
2095 	 * completed. If we are already waiting, then add a NOP command
2096 	 * with interrupt option so that we're notified when all commands
2097 	 * have been completed - fxp_start() ensures that no additional
2098 	 * TX commands will be added when need_mcsetup is true.
2099 	 */
2100 	if (sc->tx_queued) {
2101 		struct fxp_cb_tx *txp;
2102 
2103 		/*
2104 		 * need_mcsetup will be true if we are already waiting for the
2105 		 * NOP command to be completed (see below). In this case, bail.
2106 		 */
2107 		if (sc->need_mcsetup)
2108 			return;
2109 		sc->need_mcsetup = 1;
2110 
2111 		/*
2112 		 * Add a NOP command with interrupt so that we are notified
2113 		 * when all TX commands have been processed.
2114 		 */
2115 		txp = sc->cbl_last->next;
2116 		txp->mb_head = NULL;
2117 		txp->cb_status = 0;
2118 		txp->cb_command = FXP_CB_COMMAND_NOP |
2119 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2120 		/*
2121 		 * Advance the end of list forward.
2122 		 */
2123 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2124 		sc->cbl_last = txp;
2125 		sc->tx_queued++;
2126 		/*
2127 		 * Issue a resume in case the CU has just suspended.
2128 		 */
2129 		fxp_scb_wait(sc);
2130 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2131 		/*
2132 		 * Set a 5 second timer just in case we don't hear from the
2133 		 * card again.
2134 		 */
2135 		ifp->if_timer = 5;
2136 
2137 		return;
2138 	}
2139 	sc->need_mcsetup = 0;
2140 
2141 	/*
2142 	 * Initialize multicast setup descriptor.
2143 	 */
2144 	mcsp->next = sc->cbl_base;
2145 	mcsp->mb_head = NULL;
2146 	mcsp->cb_status = 0;
2147 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2148 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2149 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2150 	(void) fxp_mc_addrs(sc);
2151 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2152 	sc->tx_queued = 1;
2153 
2154 	/*
2155 	 * Wait until command unit is not active. This should never
2156 	 * be the case when nothing is queued, but make sure anyway.
2157 	 */
2158 	count = 100;
2159 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2160 	    FXP_SCB_CUS_ACTIVE && --count)
2161 		DELAY(10);
2162 	if (count == 0) {
2163 		device_printf(sc->dev, "command queue timeout\n");
2164 		return;
2165 	}
2166 
2167 	/*
2168 	 * Start the multicast setup command.
2169 	 */
2170 	fxp_scb_wait(sc);
2171 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2172 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2173 
2174 	ifp->if_timer = 2;
2175 	return;
2176 }
2177 
2178 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2179 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2180 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2181 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2182 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2183 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2184 
2185 #define UCODE(x)	x, sizeof(x)
2186 
2187 struct ucode {
2188 	u_int32_t	revision;
2189 	u_int32_t	*ucode;
2190 	int		length;
2191 	u_short		int_delay_offset;
2192 	u_short		bundle_max_offset;
2193 } ucode_table[] = {
2194 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2195 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2196 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2197 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2198 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2199 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2200 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2201 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2202 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2203 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2204 	{ 0, NULL, 0, 0, 0 }
2205 };
2206 
2207 static void
2208 fxp_load_ucode(struct fxp_softc *sc)
2209 {
2210 	struct ucode *uc;
2211 	struct fxp_cb_ucode *cbp;
2212 
2213 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2214 		if (sc->revision == uc->revision)
2215 			break;
2216 	if (uc->ucode == NULL)
2217 		return;
2218 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2219 	cbp->cb_status = 0;
2220 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2221 	cbp->link_addr = -1;    	/* (no) next command */
2222 	memcpy(cbp->ucode, uc->ucode, uc->length);
2223 	if (uc->int_delay_offset)
2224 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2225 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2226 	if (uc->bundle_max_offset)
2227 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2228 		    sc->tunable_bundle_max;
2229 	/*
2230 	 * Download the ucode to the chip.
2231 	 */
2232 	fxp_scb_wait(sc);
2233 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2234 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2235 	/* ...and wait for it to complete. */
2236 	fxp_dma_wait(&cbp->cb_status, sc);
2237 	device_printf(sc->dev,
2238 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2239 	    sc->tunable_int_delay,
2240 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2241 	sc->flags |= FXP_FLAG_UCODE;
2242 }
2243 
2244 static int
2245 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2246 {
2247 	int error, value;
2248 
2249 	value = *(int *)arg1;
2250 	error = sysctl_handle_int(oidp, &value, 0, req);
2251 	if (error || !req->newptr)
2252 		return (error);
2253 	if (value < low || value > high)
2254 		return (EINVAL);
2255 	*(int *)arg1 = value;
2256 	return (0);
2257 }
2258 
2259 /*
2260  * Interrupt delay is expressed in microseconds, a multiplier is used
2261  * to convert this to the appropriate clock ticks before using.
2262  */
2263 static int
2264 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2265 {
2266 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2267 }
2268 
2269 static int
2270 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2271 {
2272 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2273 }
2274