1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-NetBSD 3 * 4 * Copyright (c) 1995, David Greenman 5 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice unmodified, this list of conditions, and the following 13 * disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /* 36 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver 37 */ 38 39 #ifdef HAVE_KERNEL_OPTION_HEADERS 40 #include "opt_device_polling.h" 41 #endif 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/bus.h> 46 #include <sys/endian.h> 47 #include <sys/kernel.h> 48 #include <sys/mbuf.h> 49 #include <sys/lock.h> 50 #include <sys/malloc.h> 51 #include <sys/module.h> 52 #include <sys/mutex.h> 53 #include <sys/rman.h> 54 #include <sys/socket.h> 55 #include <sys/sockio.h> 56 #include <sys/sysctl.h> 57 58 #include <net/bpf.h> 59 #include <net/ethernet.h> 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_arp.h> 63 #include <net/if_dl.h> 64 #include <net/if_media.h> 65 #include <net/if_types.h> 66 #include <net/if_vlan_var.h> 67 68 #include <netinet/in.h> 69 #include <netinet/in_systm.h> 70 #include <netinet/ip.h> 71 #include <netinet/tcp.h> 72 #include <netinet/udp.h> 73 74 #include <machine/bus.h> 75 #include <machine/in_cksum.h> 76 #include <machine/resource.h> 77 78 #include <dev/pci/pcivar.h> 79 #include <dev/pci/pcireg.h> /* for PCIM_CMD_xxx */ 80 81 #include <dev/mii/mii.h> 82 #include <dev/mii/miivar.h> 83 84 #include <dev/fxp/if_fxpreg.h> 85 #include <dev/fxp/if_fxpvar.h> 86 #include <dev/fxp/rcvbundl.h> 87 88 MODULE_DEPEND(fxp, pci, 1, 1, 1); 89 MODULE_DEPEND(fxp, ether, 1, 1, 1); 90 MODULE_DEPEND(fxp, miibus, 1, 1, 1); 91 #include "miibus_if.h" 92 93 /* 94 * NOTE! On !x86 we typically have an alignment constraint. The 95 * card DMAs the packet immediately following the RFA. However, 96 * the first thing in the packet is a 14-byte Ethernet header. 97 * This means that the packet is misaligned. To compensate, 98 * we actually offset the RFA 2 bytes into the cluster. This 99 * alignes the packet after the Ethernet header at a 32-bit 100 * boundary. HOWEVER! This means that the RFA is misaligned! 101 */ 102 #define RFA_ALIGNMENT_FUDGE 2 103 104 /* 105 * Set initial transmit threshold at 64 (512 bytes). This is 106 * increased by 64 (512 bytes) at a time, to maximum of 192 107 * (1536 bytes), if an underrun occurs. 108 */ 109 static int tx_threshold = 64; 110 111 /* 112 * The configuration byte map has several undefined fields which 113 * must be one or must be zero. Set up a template for these bits. 114 * The actual configuration is performed in fxp_init_body. 115 * 116 * See struct fxp_cb_config for the bit definitions. 117 */ 118 static const u_char fxp_cb_config_template[] = { 119 0x0, 0x0, /* cb_status */ 120 0x0, 0x0, /* cb_command */ 121 0x0, 0x0, 0x0, 0x0, /* link_addr */ 122 0x0, /* 0 */ 123 0x0, /* 1 */ 124 0x0, /* 2 */ 125 0x0, /* 3 */ 126 0x0, /* 4 */ 127 0x0, /* 5 */ 128 0x32, /* 6 */ 129 0x0, /* 7 */ 130 0x0, /* 8 */ 131 0x0, /* 9 */ 132 0x6, /* 10 */ 133 0x0, /* 11 */ 134 0x0, /* 12 */ 135 0x0, /* 13 */ 136 0xf2, /* 14 */ 137 0x48, /* 15 */ 138 0x0, /* 16 */ 139 0x40, /* 17 */ 140 0xf0, /* 18 */ 141 0x0, /* 19 */ 142 0x3f, /* 20 */ 143 0x5, /* 21 */ 144 0x0, /* 22 */ 145 0x0, /* 23 */ 146 0x0, /* 24 */ 147 0x0, /* 25 */ 148 0x0, /* 26 */ 149 0x0, /* 27 */ 150 0x0, /* 28 */ 151 0x0, /* 29 */ 152 0x0, /* 30 */ 153 0x0 /* 31 */ 154 }; 155 156 /* 157 * Claim various Intel PCI device identifiers for this driver. The 158 * sub-vendor and sub-device field are extensively used to identify 159 * particular variants, but we don't currently differentiate between 160 * them. 161 */ 162 static const struct fxp_ident fxp_ident_table[] = { 163 { 0x8086, 0x1029, -1, 0, "Intel 82559 PCI/CardBus Pro/100" }, 164 { 0x8086, 0x1030, -1, 0, "Intel 82559 Pro/100 Ethernet" }, 165 { 0x8086, 0x1031, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 166 { 0x8086, 0x1032, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 167 { 0x8086, 0x1033, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 168 { 0x8086, 0x1034, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 169 { 0x8086, 0x1035, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 170 { 0x8086, 0x1036, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 171 { 0x8086, 0x1037, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 172 { 0x8086, 0x1038, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 173 { 0x8086, 0x1039, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 174 { 0x8086, 0x103A, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 175 { 0x8086, 0x103B, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 176 { 0x8086, 0x103C, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 177 { 0x8086, 0x103D, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 178 { 0x8086, 0x103E, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 179 { 0x8086, 0x1050, -1, 5, "Intel 82801BA (D865) Pro/100 VE Ethernet" }, 180 { 0x8086, 0x1051, -1, 5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" }, 181 { 0x8086, 0x1059, -1, 0, "Intel 82551QM Pro/100 M Mobile Connection" }, 182 { 0x8086, 0x1064, -1, 6, "Intel 82562EZ (ICH6)" }, 183 { 0x8086, 0x1065, -1, 6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" }, 184 { 0x8086, 0x1068, -1, 6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" }, 185 { 0x8086, 0x1069, -1, 6, "Intel 82562EM/EX/GX Pro/100 Ethernet" }, 186 { 0x8086, 0x1091, -1, 7, "Intel 82562GX Pro/100 Ethernet" }, 187 { 0x8086, 0x1092, -1, 7, "Intel Pro/100 VE Network Connection" }, 188 { 0x8086, 0x1093, -1, 7, "Intel Pro/100 VM Network Connection" }, 189 { 0x8086, 0x1094, -1, 7, "Intel Pro/100 946GZ (ICH7) Network Connection" }, 190 { 0x8086, 0x1209, -1, 0, "Intel 82559ER Embedded 10/100 Ethernet" }, 191 { 0x8086, 0x1229, 0x01, 0, "Intel 82557 Pro/100 Ethernet" }, 192 { 0x8086, 0x1229, 0x02, 0, "Intel 82557 Pro/100 Ethernet" }, 193 { 0x8086, 0x1229, 0x03, 0, "Intel 82557 Pro/100 Ethernet" }, 194 { 0x8086, 0x1229, 0x04, 0, "Intel 82558 Pro/100 Ethernet" }, 195 { 0x8086, 0x1229, 0x05, 0, "Intel 82558 Pro/100 Ethernet" }, 196 { 0x8086, 0x1229, 0x06, 0, "Intel 82559 Pro/100 Ethernet" }, 197 { 0x8086, 0x1229, 0x07, 0, "Intel 82559 Pro/100 Ethernet" }, 198 { 0x8086, 0x1229, 0x08, 0, "Intel 82559 Pro/100 Ethernet" }, 199 { 0x8086, 0x1229, 0x09, 0, "Intel 82559ER Pro/100 Ethernet" }, 200 { 0x8086, 0x1229, 0x0c, 0, "Intel 82550 Pro/100 Ethernet" }, 201 { 0x8086, 0x1229, 0x0d, 0, "Intel 82550C Pro/100 Ethernet" }, 202 { 0x8086, 0x1229, 0x0e, 0, "Intel 82550 Pro/100 Ethernet" }, 203 { 0x8086, 0x1229, 0x0f, 0, "Intel 82551 Pro/100 Ethernet" }, 204 { 0x8086, 0x1229, 0x10, 0, "Intel 82551 Pro/100 Ethernet" }, 205 { 0x8086, 0x1229, -1, 0, "Intel 82557/8/9 Pro/100 Ethernet" }, 206 { 0x8086, 0x2449, -1, 2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" }, 207 { 0x8086, 0x27dc, -1, 7, "Intel 82801GB (ICH7) 10/100 Ethernet" }, 208 { 0, 0, -1, 0, NULL }, 209 }; 210 211 #ifdef FXP_IP_CSUM_WAR 212 #define FXP_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 213 #else 214 #define FXP_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 215 #endif 216 217 static int fxp_probe(device_t dev); 218 static int fxp_attach(device_t dev); 219 static int fxp_detach(device_t dev); 220 static int fxp_shutdown(device_t dev); 221 static int fxp_suspend(device_t dev); 222 static int fxp_resume(device_t dev); 223 224 static const struct fxp_ident *fxp_find_ident(device_t dev); 225 static void fxp_intr(void *xsc); 226 static void fxp_rxcsum(struct fxp_softc *sc, if_t ifp, 227 struct mbuf *m, uint16_t status, int pos); 228 static int fxp_intr_body(struct fxp_softc *sc, if_t ifp, 229 uint8_t statack, int count); 230 static void fxp_init(void *xsc); 231 static void fxp_init_body(struct fxp_softc *sc, int); 232 static void fxp_tick(void *xsc); 233 static void fxp_start(if_t ifp); 234 static void fxp_start_body(if_t ifp); 235 static int fxp_encap(struct fxp_softc *sc, struct mbuf **m_head); 236 static void fxp_txeof(struct fxp_softc *sc); 237 static void fxp_stop(struct fxp_softc *sc); 238 static void fxp_release(struct fxp_softc *sc); 239 static int fxp_ioctl(if_t ifp, u_long command, 240 caddr_t data); 241 static void fxp_watchdog(struct fxp_softc *sc); 242 static void fxp_add_rfabuf(struct fxp_softc *sc, 243 struct fxp_rx *rxp); 244 static void fxp_discard_rfabuf(struct fxp_softc *sc, 245 struct fxp_rx *rxp); 246 static int fxp_new_rfabuf(struct fxp_softc *sc, 247 struct fxp_rx *rxp); 248 static void fxp_mc_addrs(struct fxp_softc *sc); 249 static void fxp_mc_setup(struct fxp_softc *sc); 250 static uint16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, 251 int autosize); 252 static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, 253 uint16_t data); 254 static void fxp_autosize_eeprom(struct fxp_softc *sc); 255 static void fxp_load_eeprom(struct fxp_softc *sc); 256 static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, 257 int offset, int words); 258 static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, 259 int offset, int words); 260 static int fxp_ifmedia_upd(if_t ifp); 261 static void fxp_ifmedia_sts(if_t ifp, 262 struct ifmediareq *ifmr); 263 static int fxp_serial_ifmedia_upd(if_t ifp); 264 static void fxp_serial_ifmedia_sts(if_t ifp, 265 struct ifmediareq *ifmr); 266 static int fxp_miibus_readreg(device_t dev, int phy, int reg); 267 static int fxp_miibus_writereg(device_t dev, int phy, int reg, 268 int value); 269 static void fxp_miibus_statchg(device_t dev); 270 static void fxp_load_ucode(struct fxp_softc *sc); 271 static void fxp_update_stats(struct fxp_softc *sc); 272 static void fxp_sysctl_node(struct fxp_softc *sc); 273 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, 274 int low, int high); 275 static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS); 276 static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS); 277 static void fxp_scb_wait(struct fxp_softc *sc); 278 static void fxp_scb_cmd(struct fxp_softc *sc, int cmd); 279 static void fxp_dma_wait(struct fxp_softc *sc, 280 volatile uint16_t *status, bus_dma_tag_t dmat, 281 bus_dmamap_t map); 282 283 static device_method_t fxp_methods[] = { 284 /* Device interface */ 285 DEVMETHOD(device_probe, fxp_probe), 286 DEVMETHOD(device_attach, fxp_attach), 287 DEVMETHOD(device_detach, fxp_detach), 288 DEVMETHOD(device_shutdown, fxp_shutdown), 289 DEVMETHOD(device_suspend, fxp_suspend), 290 DEVMETHOD(device_resume, fxp_resume), 291 292 /* MII interface */ 293 DEVMETHOD(miibus_readreg, fxp_miibus_readreg), 294 DEVMETHOD(miibus_writereg, fxp_miibus_writereg), 295 DEVMETHOD(miibus_statchg, fxp_miibus_statchg), 296 297 DEVMETHOD_END 298 }; 299 300 static driver_t fxp_driver = { 301 "fxp", 302 fxp_methods, 303 sizeof(struct fxp_softc), 304 }; 305 306 DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, NULL, NULL, SI_ORDER_ANY); 307 MODULE_PNP_INFO("U16:vendor;U16:device", pci, fxp, fxp_ident_table, 308 nitems(fxp_ident_table) - 1); 309 DRIVER_MODULE(miibus, fxp, miibus_driver, NULL, NULL); 310 311 static struct resource_spec fxp_res_spec_mem[] = { 312 { SYS_RES_MEMORY, FXP_PCI_MMBA, RF_ACTIVE }, 313 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 314 { -1, 0 } 315 }; 316 317 static struct resource_spec fxp_res_spec_io[] = { 318 { SYS_RES_IOPORT, FXP_PCI_IOBA, RF_ACTIVE }, 319 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 320 { -1, 0 } 321 }; 322 323 /* 324 * Wait for the previous command to be accepted (but not necessarily 325 * completed). 326 */ 327 static void 328 fxp_scb_wait(struct fxp_softc *sc) 329 { 330 union { 331 uint16_t w; 332 uint8_t b[2]; 333 } flowctl; 334 int i = 10000; 335 336 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) 337 DELAY(2); 338 if (i == 0) { 339 flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH); 340 flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS); 341 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n", 342 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND), 343 CSR_READ_1(sc, FXP_CSR_SCB_STATACK), 344 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w); 345 } 346 } 347 348 static void 349 fxp_scb_cmd(struct fxp_softc *sc, int cmd) 350 { 351 352 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) { 353 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP); 354 fxp_scb_wait(sc); 355 } 356 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); 357 } 358 359 static void 360 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status, 361 bus_dma_tag_t dmat, bus_dmamap_t map) 362 { 363 int i; 364 365 for (i = 10000; i > 0; i--) { 366 DELAY(2); 367 bus_dmamap_sync(dmat, map, 368 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 369 if ((le16toh(*status) & FXP_CB_STATUS_C) != 0) 370 break; 371 } 372 if (i == 0) 373 device_printf(sc->dev, "DMA timeout\n"); 374 } 375 376 static const struct fxp_ident * 377 fxp_find_ident(device_t dev) 378 { 379 uint16_t vendor; 380 uint16_t device; 381 uint8_t revid; 382 const struct fxp_ident *ident; 383 384 vendor = pci_get_vendor(dev); 385 device = pci_get_device(dev); 386 revid = pci_get_revid(dev); 387 for (ident = fxp_ident_table; ident->name != NULL; ident++) { 388 if (ident->vendor == vendor && ident->device == device && 389 (ident->revid == revid || ident->revid == -1)) { 390 return (ident); 391 } 392 } 393 return (NULL); 394 } 395 396 /* 397 * Return identification string if this device is ours. 398 */ 399 static int 400 fxp_probe(device_t dev) 401 { 402 const struct fxp_ident *ident; 403 404 ident = fxp_find_ident(dev); 405 if (ident != NULL) { 406 device_set_desc(dev, ident->name); 407 return (BUS_PROBE_DEFAULT); 408 } 409 return (ENXIO); 410 } 411 412 static void 413 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 414 { 415 uint32_t *addr; 416 417 if (error) 418 return; 419 420 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 421 addr = arg; 422 *addr = segs->ds_addr; 423 } 424 425 static int 426 fxp_attach(device_t dev) 427 { 428 struct fxp_softc *sc; 429 struct fxp_cb_tx *tcbp; 430 struct fxp_tx *txp; 431 struct fxp_rx *rxp; 432 if_t ifp; 433 uint32_t val; 434 uint16_t data; 435 u_char eaddr[ETHER_ADDR_LEN]; 436 int error, flags, i, pmc, prefer_iomap; 437 438 error = 0; 439 sc = device_get_softc(dev); 440 sc->dev = dev; 441 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 442 MTX_DEF); 443 callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0); 444 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd, 445 fxp_serial_ifmedia_sts); 446 447 ifp = sc->ifp = if_gethandle(IFT_ETHER); 448 if (ifp == (void *)NULL) { 449 device_printf(dev, "can not if_alloc()\n"); 450 error = ENOSPC; 451 goto fail; 452 } 453 454 /* 455 * Enable bus mastering. 456 */ 457 pci_enable_busmaster(dev); 458 459 /* 460 * Figure out which we should try first - memory mapping or i/o mapping? 461 * We default to memory mapping. Then we accept an override from the 462 * command line. Then we check to see which one is enabled. 463 */ 464 prefer_iomap = 0; 465 resource_int_value(device_get_name(dev), device_get_unit(dev), 466 "prefer_iomap", &prefer_iomap); 467 if (prefer_iomap) 468 sc->fxp_spec = fxp_res_spec_io; 469 else 470 sc->fxp_spec = fxp_res_spec_mem; 471 472 error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res); 473 if (error) { 474 if (sc->fxp_spec == fxp_res_spec_mem) 475 sc->fxp_spec = fxp_res_spec_io; 476 else 477 sc->fxp_spec = fxp_res_spec_mem; 478 error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res); 479 } 480 if (error) { 481 device_printf(dev, "could not allocate resources\n"); 482 error = ENXIO; 483 goto fail; 484 } 485 486 if (bootverbose) { 487 device_printf(dev, "using %s space register mapping\n", 488 sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O"); 489 } 490 491 /* 492 * Put CU/RU idle state and prepare full reset. 493 */ 494 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 495 DELAY(10); 496 /* Full reset and disable interrupts. */ 497 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 498 DELAY(10); 499 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 500 501 /* 502 * Find out how large of an SEEPROM we have. 503 */ 504 fxp_autosize_eeprom(sc); 505 fxp_load_eeprom(sc); 506 507 /* 508 * Find out the chip revision; lump all 82557 revs together. 509 */ 510 sc->ident = fxp_find_ident(dev); 511 if (sc->ident->ich > 0) { 512 /* Assume ICH controllers are 82559. */ 513 sc->revision = FXP_REV_82559_A0; 514 } else { 515 data = sc->eeprom[FXP_EEPROM_MAP_CNTR]; 516 if ((data >> 8) == 1) 517 sc->revision = FXP_REV_82557; 518 else 519 sc->revision = pci_get_revid(dev); 520 } 521 522 /* 523 * Check availability of WOL. 82559ER does not support WOL. 524 */ 525 if (sc->revision >= FXP_REV_82558_A4 && 526 sc->revision != FXP_REV_82559S_A) { 527 data = sc->eeprom[FXP_EEPROM_MAP_ID]; 528 if ((data & 0x20) != 0 && 529 pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) 530 sc->flags |= FXP_FLAG_WOLCAP; 531 } 532 533 if (sc->revision == FXP_REV_82550_C) { 534 /* 535 * 82550C with server extension requires microcode to 536 * receive fragmented UDP datagrams. However if the 537 * microcode is used for client-only featured 82550C 538 * it locks up controller. 539 */ 540 data = sc->eeprom[FXP_EEPROM_MAP_COMPAT]; 541 if ((data & 0x0400) == 0) 542 sc->flags |= FXP_FLAG_NO_UCODE; 543 } 544 545 /* Receiver lock-up workaround detection. */ 546 if (sc->revision < FXP_REV_82558_A4) { 547 data = sc->eeprom[FXP_EEPROM_MAP_COMPAT]; 548 if ((data & 0x03) != 0x03) { 549 sc->flags |= FXP_FLAG_RXBUG; 550 device_printf(dev, "Enabling Rx lock-up workaround\n"); 551 } 552 } 553 554 /* 555 * Determine whether we must use the 503 serial interface. 556 */ 557 data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY]; 558 if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0 559 && (data & FXP_PHY_SERIAL_ONLY)) 560 sc->flags |= FXP_FLAG_SERIAL_MEDIA; 561 562 fxp_sysctl_node(sc); 563 /* 564 * Enable workarounds for certain chip revision deficiencies. 565 * 566 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly 567 * some systems based a normal 82559 design, have a defect where 568 * the chip can cause a PCI protocol violation if it receives 569 * a CU_RESUME command when it is entering the IDLE state. The 570 * workaround is to disable Dynamic Standby Mode, so the chip never 571 * deasserts CLKRUN#, and always remains in an active state. 572 * 573 * See Intel 82801BA/82801BAM Specification Update, Errata #30. 574 */ 575 if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) || 576 (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) { 577 data = sc->eeprom[FXP_EEPROM_MAP_ID]; 578 if (data & 0x02) { /* STB enable */ 579 uint16_t cksum; 580 int i; 581 582 device_printf(dev, 583 "Disabling dynamic standby mode in EEPROM\n"); 584 data &= ~0x02; 585 sc->eeprom[FXP_EEPROM_MAP_ID] = data; 586 fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1); 587 device_printf(dev, "New EEPROM ID: 0x%x\n", data); 588 cksum = 0; 589 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) 590 cksum += sc->eeprom[i]; 591 i = (1 << sc->eeprom_size) - 1; 592 cksum = 0xBABA - cksum; 593 fxp_write_eeprom(sc, &cksum, i, 1); 594 device_printf(dev, 595 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n", 596 i, sc->eeprom[i], cksum); 597 sc->eeprom[i] = cksum; 598 /* 599 * If the user elects to continue, try the software 600 * workaround, as it is better than nothing. 601 */ 602 sc->flags |= FXP_FLAG_CU_RESUME_BUG; 603 } 604 } 605 606 /* 607 * If we are not a 82557 chip, we can enable extended features. 608 */ 609 if (sc->revision != FXP_REV_82557) { 610 /* 611 * If MWI is enabled in the PCI configuration, and there 612 * is a valid cacheline size (8 or 16 dwords), then tell 613 * the board to turn on MWI. 614 */ 615 val = pci_read_config(dev, PCIR_COMMAND, 2); 616 if (val & PCIM_CMD_MWRICEN && 617 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0) 618 sc->flags |= FXP_FLAG_MWI_ENABLE; 619 620 /* turn on the extended TxCB feature */ 621 sc->flags |= FXP_FLAG_EXT_TXCB; 622 623 /* enable reception of long frames for VLAN */ 624 sc->flags |= FXP_FLAG_LONG_PKT_EN; 625 } else { 626 /* a hack to get long VLAN frames on a 82557 */ 627 sc->flags |= FXP_FLAG_SAVE_BAD; 628 } 629 630 /* For 82559 or later chips, Rx checksum offload is supported. */ 631 if (sc->revision >= FXP_REV_82559_A0) { 632 /* 82559ER does not support Rx checksum offloading. */ 633 if (sc->ident->device != 0x1209) 634 sc->flags |= FXP_FLAG_82559_RXCSUM; 635 } 636 /* 637 * Enable use of extended RFDs and TCBs for 82550 638 * and later chips. Note: we need extended TXCB support 639 * too, but that's already enabled by the code above. 640 * Be careful to do this only on the right devices. 641 */ 642 if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C || 643 sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F 644 || sc->revision == FXP_REV_82551_10) { 645 sc->rfa_size = sizeof (struct fxp_rfa); 646 sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT; 647 sc->flags |= FXP_FLAG_EXT_RFA; 648 /* Use extended RFA instead of 82559 checksum mode. */ 649 sc->flags &= ~FXP_FLAG_82559_RXCSUM; 650 } else { 651 sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN; 652 sc->tx_cmd = FXP_CB_COMMAND_XMIT; 653 } 654 655 /* 656 * Allocate DMA tags and DMA safe memory. 657 */ 658 sc->maxtxseg = FXP_NTXSEG; 659 sc->maxsegsize = MCLBYTES; 660 if (sc->flags & FXP_FLAG_EXT_RFA) { 661 sc->maxtxseg--; 662 sc->maxsegsize = FXP_TSO_SEGSIZE; 663 } 664 error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0, 665 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 666 sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header), 667 sc->maxtxseg, sc->maxsegsize, 0, NULL, NULL, &sc->fxp_txmtag); 668 if (error) { 669 device_printf(dev, "could not create TX DMA tag\n"); 670 goto fail; 671 } 672 673 error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0, 674 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 675 MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->fxp_rxmtag); 676 if (error) { 677 device_printf(dev, "could not create RX DMA tag\n"); 678 goto fail; 679 } 680 681 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 682 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 683 sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0, 684 NULL, NULL, &sc->fxp_stag); 685 if (error) { 686 device_printf(dev, "could not create stats DMA tag\n"); 687 goto fail; 688 } 689 690 error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats, 691 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap); 692 if (error) { 693 device_printf(dev, "could not allocate stats DMA memory\n"); 694 goto fail; 695 } 696 error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats, 697 sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 698 BUS_DMA_NOWAIT); 699 if (error) { 700 device_printf(dev, "could not load the stats DMA buffer\n"); 701 goto fail; 702 } 703 704 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 705 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 706 FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0, NULL, NULL, &sc->cbl_tag); 707 if (error) { 708 device_printf(dev, "could not create TxCB DMA tag\n"); 709 goto fail; 710 } 711 712 error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list, 713 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map); 714 if (error) { 715 device_printf(dev, "could not allocate TxCB DMA memory\n"); 716 goto fail; 717 } 718 719 error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map, 720 sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr, 721 &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT); 722 if (error) { 723 device_printf(dev, "could not load TxCB DMA buffer\n"); 724 goto fail; 725 } 726 727 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 728 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 729 sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0, 730 NULL, NULL, &sc->mcs_tag); 731 if (error) { 732 device_printf(dev, 733 "could not create multicast setup DMA tag\n"); 734 goto fail; 735 } 736 737 error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp, 738 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map); 739 if (error) { 740 device_printf(dev, 741 "could not allocate multicast setup DMA memory\n"); 742 goto fail; 743 } 744 error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp, 745 sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 746 BUS_DMA_NOWAIT); 747 if (error) { 748 device_printf(dev, 749 "can't load the multicast setup DMA buffer\n"); 750 goto fail; 751 } 752 753 /* 754 * Pre-allocate the TX DMA maps and setup the pointers to 755 * the TX command blocks. 756 */ 757 txp = sc->fxp_desc.tx_list; 758 tcbp = sc->fxp_desc.cbl_list; 759 for (i = 0; i < FXP_NTXCB; i++) { 760 txp[i].tx_cb = tcbp + i; 761 error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map); 762 if (error) { 763 device_printf(dev, "can't create DMA map for TX\n"); 764 goto fail; 765 } 766 } 767 error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map); 768 if (error) { 769 device_printf(dev, "can't create spare DMA map\n"); 770 goto fail; 771 } 772 773 /* 774 * Pre-allocate our receive buffers. 775 */ 776 sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL; 777 for (i = 0; i < FXP_NRFABUFS; i++) { 778 rxp = &sc->fxp_desc.rx_list[i]; 779 error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map); 780 if (error) { 781 device_printf(dev, "can't create DMA map for RX\n"); 782 goto fail; 783 } 784 if (fxp_new_rfabuf(sc, rxp) != 0) { 785 error = ENOMEM; 786 goto fail; 787 } 788 fxp_add_rfabuf(sc, rxp); 789 } 790 791 /* 792 * Read MAC address. 793 */ 794 eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff; 795 eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8; 796 eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff; 797 eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8; 798 eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff; 799 eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8; 800 if (bootverbose) { 801 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n", 802 pci_get_vendor(dev), pci_get_device(dev), 803 pci_get_subvendor(dev), pci_get_subdevice(dev), 804 pci_get_revid(dev)); 805 device_printf(dev, "Dynamic Standby mode is %s\n", 806 sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" : 807 "disabled"); 808 } 809 810 /* 811 * If this is only a 10Mbps device, then there is no MII, and 812 * the PHY will use a serial interface instead. 813 * 814 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 815 * doesn't have a programming interface of any sort. The 816 * media is sensed automatically based on how the link partner 817 * is configured. This is, in essence, manual configuration. 818 */ 819 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) { 820 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 821 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); 822 } else { 823 /* 824 * i82557 wedge when isolating all of their PHYs. 825 */ 826 flags = MIIF_NOISOLATE; 827 if (sc->revision >= FXP_REV_82558_A4) 828 flags |= MIIF_DOPAUSE; 829 error = mii_attach(dev, &sc->miibus, ifp, 830 (ifm_change_cb_t)fxp_ifmedia_upd, 831 (ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK, 832 MII_PHY_ANY, MII_OFFSET_ANY, flags); 833 if (error != 0) { 834 device_printf(dev, "attaching PHYs failed\n"); 835 goto fail; 836 } 837 } 838 839 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 840 if_setdev(ifp, dev); 841 if_setinitfn(ifp, fxp_init); 842 if_setsoftc(ifp, sc); 843 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 844 if_setioctlfn(ifp, fxp_ioctl); 845 if_setstartfn(ifp, fxp_start); 846 847 if_setcapabilities(ifp, 0); 848 if_setcapenable(ifp, 0); 849 850 /* Enable checksum offload/TSO for 82550 or better chips */ 851 if (sc->flags & FXP_FLAG_EXT_RFA) { 852 if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO); 853 if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0); 854 if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0); 855 } 856 857 if (sc->flags & FXP_FLAG_82559_RXCSUM) { 858 if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0); 859 if_setcapenablebit(ifp, IFCAP_RXCSUM, 0); 860 } 861 862 if (sc->flags & FXP_FLAG_WOLCAP) { 863 if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0); 864 if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0); 865 } 866 867 #ifdef DEVICE_POLLING 868 /* Inform the world we support polling. */ 869 if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0); 870 #endif 871 872 /* 873 * Attach the interface. 874 */ 875 ether_ifattach(ifp, eaddr); 876 877 /* 878 * Tell the upper layer(s) we support long frames. 879 * Must appear after the call to ether_ifattach() because 880 * ether_ifattach() sets ifi_hdrlen to the default value. 881 */ 882 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 883 if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0); 884 if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0); 885 if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) { 886 if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING | 887 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0); 888 if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING | 889 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0); 890 } 891 892 /* 893 * Let the system queue as many packets as we have available 894 * TX descriptors. 895 */ 896 if_setsendqlen(ifp, FXP_NTXCB - 1); 897 if_setsendqready(ifp); 898 899 /* 900 * Hook our interrupt after all initialization is complete. 901 */ 902 error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE, 903 NULL, fxp_intr, sc, &sc->ih); 904 if (error) { 905 device_printf(dev, "could not setup irq\n"); 906 ether_ifdetach(sc->ifp); 907 goto fail; 908 } 909 910 /* 911 * Configure hardware to reject magic frames otherwise 912 * system will hang on recipt of magic frames. 913 */ 914 if ((sc->flags & FXP_FLAG_WOLCAP) != 0) { 915 FXP_LOCK(sc); 916 /* Clear wakeup events. */ 917 CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR)); 918 fxp_init_body(sc, 0); 919 fxp_stop(sc); 920 FXP_UNLOCK(sc); 921 } 922 923 fail: 924 if (error) 925 fxp_release(sc); 926 return (error); 927 } 928 929 /* 930 * Release all resources. The softc lock should not be held and the 931 * interrupt should already be torn down. 932 */ 933 static void 934 fxp_release(struct fxp_softc *sc) 935 { 936 struct fxp_rx *rxp; 937 struct fxp_tx *txp; 938 int i; 939 940 FXP_LOCK_ASSERT(sc, MA_NOTOWNED); 941 KASSERT(sc->ih == NULL, 942 ("fxp_release() called with intr handle still active")); 943 if (sc->miibus) 944 device_delete_child(sc->dev, sc->miibus); 945 bus_generic_detach(sc->dev); 946 ifmedia_removeall(&sc->sc_media); 947 if (sc->fxp_desc.cbl_list) { 948 bus_dmamap_unload(sc->cbl_tag, sc->cbl_map); 949 bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list, 950 sc->cbl_map); 951 } 952 if (sc->fxp_stats) { 953 bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap); 954 bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap); 955 } 956 if (sc->mcsp) { 957 bus_dmamap_unload(sc->mcs_tag, sc->mcs_map); 958 bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map); 959 } 960 bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res); 961 if (sc->fxp_rxmtag) { 962 for (i = 0; i < FXP_NRFABUFS; i++) { 963 rxp = &sc->fxp_desc.rx_list[i]; 964 if (rxp->rx_mbuf != NULL) { 965 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 966 BUS_DMASYNC_POSTREAD); 967 bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map); 968 m_freem(rxp->rx_mbuf); 969 } 970 bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map); 971 } 972 bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map); 973 bus_dma_tag_destroy(sc->fxp_rxmtag); 974 } 975 if (sc->fxp_txmtag) { 976 for (i = 0; i < FXP_NTXCB; i++) { 977 txp = &sc->fxp_desc.tx_list[i]; 978 if (txp->tx_mbuf != NULL) { 979 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, 980 BUS_DMASYNC_POSTWRITE); 981 bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map); 982 m_freem(txp->tx_mbuf); 983 } 984 bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map); 985 } 986 bus_dma_tag_destroy(sc->fxp_txmtag); 987 } 988 if (sc->fxp_stag) 989 bus_dma_tag_destroy(sc->fxp_stag); 990 if (sc->cbl_tag) 991 bus_dma_tag_destroy(sc->cbl_tag); 992 if (sc->mcs_tag) 993 bus_dma_tag_destroy(sc->mcs_tag); 994 if (sc->ifp) 995 if_free(sc->ifp); 996 997 mtx_destroy(&sc->sc_mtx); 998 } 999 1000 /* 1001 * Detach interface. 1002 */ 1003 static int 1004 fxp_detach(device_t dev) 1005 { 1006 struct fxp_softc *sc = device_get_softc(dev); 1007 1008 #ifdef DEVICE_POLLING 1009 if (if_getcapenable(sc->ifp) & IFCAP_POLLING) 1010 ether_poll_deregister(sc->ifp); 1011 #endif 1012 1013 FXP_LOCK(sc); 1014 /* 1015 * Stop DMA and drop transmit queue, but disable interrupts first. 1016 */ 1017 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 1018 fxp_stop(sc); 1019 FXP_UNLOCK(sc); 1020 callout_drain(&sc->stat_ch); 1021 1022 /* 1023 * Close down routes etc. 1024 */ 1025 ether_ifdetach(sc->ifp); 1026 1027 /* 1028 * Unhook interrupt before dropping lock. This is to prevent 1029 * races with fxp_intr(). 1030 */ 1031 bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih); 1032 sc->ih = NULL; 1033 1034 /* Release our allocated resources. */ 1035 fxp_release(sc); 1036 return (0); 1037 } 1038 1039 /* 1040 * Device shutdown routine. Called at system shutdown after sync. The 1041 * main purpose of this routine is to shut off receiver DMA so that 1042 * kernel memory doesn't get clobbered during warmboot. 1043 */ 1044 static int 1045 fxp_shutdown(device_t dev) 1046 { 1047 1048 /* 1049 * Make sure that DMA is disabled prior to reboot. Not doing 1050 * do could allow DMA to corrupt kernel memory during the 1051 * reboot before the driver initializes. 1052 */ 1053 return (fxp_suspend(dev)); 1054 } 1055 1056 /* 1057 * Device suspend routine. Stop the interface and save some PCI 1058 * settings in case the BIOS doesn't restore them properly on 1059 * resume. 1060 */ 1061 static int 1062 fxp_suspend(device_t dev) 1063 { 1064 struct fxp_softc *sc = device_get_softc(dev); 1065 if_t ifp; 1066 int pmc; 1067 uint16_t pmstat; 1068 1069 FXP_LOCK(sc); 1070 1071 ifp = sc->ifp; 1072 if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) { 1073 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2); 1074 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1075 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) { 1076 /* Request PME. */ 1077 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1078 sc->flags |= FXP_FLAG_WOL; 1079 /* Reconfigure hardware to accept magic frames. */ 1080 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 1081 fxp_init_body(sc, 0); 1082 } 1083 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1084 } 1085 fxp_stop(sc); 1086 1087 sc->suspended = 1; 1088 1089 FXP_UNLOCK(sc); 1090 return (0); 1091 } 1092 1093 /* 1094 * Device resume routine. re-enable busmastering, and restart the interface if 1095 * appropriate. 1096 */ 1097 static int 1098 fxp_resume(device_t dev) 1099 { 1100 struct fxp_softc *sc = device_get_softc(dev); 1101 if_t ifp = sc->ifp; 1102 int pmc; 1103 uint16_t pmstat; 1104 1105 FXP_LOCK(sc); 1106 1107 if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) { 1108 sc->flags &= ~FXP_FLAG_WOL; 1109 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2); 1110 /* Disable PME and clear PME status. */ 1111 pmstat &= ~PCIM_PSTAT_PMEENABLE; 1112 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1113 if ((sc->flags & FXP_FLAG_WOLCAP) != 0) 1114 CSR_WRITE_1(sc, FXP_CSR_PMDR, 1115 CSR_READ_1(sc, FXP_CSR_PMDR)); 1116 } 1117 1118 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 1119 DELAY(10); 1120 1121 /* reinitialize interface if necessary */ 1122 if (if_getflags(ifp) & IFF_UP) 1123 fxp_init_body(sc, 1); 1124 1125 sc->suspended = 0; 1126 1127 FXP_UNLOCK(sc); 1128 return (0); 1129 } 1130 1131 static void 1132 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) 1133 { 1134 uint16_t reg; 1135 int x; 1136 1137 /* 1138 * Shift in data. 1139 */ 1140 for (x = 1 << (length - 1); x; x >>= 1) { 1141 if (data & x) 1142 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1143 else 1144 reg = FXP_EEPROM_EECS; 1145 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1146 DELAY(1); 1147 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1148 DELAY(1); 1149 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1150 DELAY(1); 1151 } 1152 } 1153 1154 /* 1155 * Read from the serial EEPROM. Basically, you manually shift in 1156 * the read opcode (one bit at a time) and then shift in the address, 1157 * and then you shift out the data (all of this one bit at a time). 1158 * The word size is 16 bits, so you have to provide the address for 1159 * every 16 bits of data. 1160 */ 1161 static uint16_t 1162 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize) 1163 { 1164 uint16_t reg, data; 1165 int x; 1166 1167 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1168 /* 1169 * Shift in read opcode. 1170 */ 1171 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); 1172 /* 1173 * Shift in address. 1174 */ 1175 data = 0; 1176 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) { 1177 if (offset & x) 1178 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1179 else 1180 reg = FXP_EEPROM_EECS; 1181 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1182 DELAY(1); 1183 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1184 DELAY(1); 1185 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1186 DELAY(1); 1187 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO; 1188 data++; 1189 if (autosize && reg == 0) { 1190 sc->eeprom_size = data; 1191 break; 1192 } 1193 } 1194 /* 1195 * Shift out data. 1196 */ 1197 data = 0; 1198 reg = FXP_EEPROM_EECS; 1199 for (x = 1 << 15; x; x >>= 1) { 1200 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1201 DELAY(1); 1202 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1203 data |= x; 1204 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1205 DELAY(1); 1206 } 1207 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1208 DELAY(1); 1209 1210 return (data); 1211 } 1212 1213 static void 1214 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data) 1215 { 1216 int i; 1217 1218 /* 1219 * Erase/write enable. 1220 */ 1221 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1222 fxp_eeprom_shiftin(sc, 0x4, 3); 1223 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); 1224 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1225 DELAY(1); 1226 /* 1227 * Shift in write opcode, address, data. 1228 */ 1229 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1230 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); 1231 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); 1232 fxp_eeprom_shiftin(sc, data, 16); 1233 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1234 DELAY(1); 1235 /* 1236 * Wait for EEPROM to finish up. 1237 */ 1238 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1239 DELAY(1); 1240 for (i = 0; i < 1000; i++) { 1241 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1242 break; 1243 DELAY(50); 1244 } 1245 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1246 DELAY(1); 1247 /* 1248 * Erase/write disable. 1249 */ 1250 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1251 fxp_eeprom_shiftin(sc, 0x4, 3); 1252 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); 1253 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1254 DELAY(1); 1255 } 1256 1257 /* 1258 * From NetBSD: 1259 * 1260 * Figure out EEPROM size. 1261 * 1262 * 559's can have either 64-word or 256-word EEPROMs, the 558 1263 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet 1264 * talks about the existence of 16 to 256 word EEPROMs. 1265 * 1266 * The only known sizes are 64 and 256, where the 256 version is used 1267 * by CardBus cards to store CIS information. 1268 * 1269 * The address is shifted in msb-to-lsb, and after the last 1270 * address-bit the EEPROM is supposed to output a `dummy zero' bit, 1271 * after which follows the actual data. We try to detect this zero, by 1272 * probing the data-out bit in the EEPROM control register just after 1273 * having shifted in a bit. If the bit is zero, we assume we've 1274 * shifted enough address bits. The data-out should be tri-state, 1275 * before this, which should translate to a logical one. 1276 */ 1277 static void 1278 fxp_autosize_eeprom(struct fxp_softc *sc) 1279 { 1280 1281 /* guess maximum size of 256 words */ 1282 sc->eeprom_size = 8; 1283 1284 /* autosize */ 1285 (void) fxp_eeprom_getword(sc, 0, 1); 1286 } 1287 1288 static void 1289 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1290 { 1291 int i; 1292 1293 for (i = 0; i < words; i++) 1294 data[i] = fxp_eeprom_getword(sc, offset + i, 0); 1295 } 1296 1297 static void 1298 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1299 { 1300 int i; 1301 1302 for (i = 0; i < words; i++) 1303 fxp_eeprom_putword(sc, offset + i, data[i]); 1304 } 1305 1306 static void 1307 fxp_load_eeprom(struct fxp_softc *sc) 1308 { 1309 int i; 1310 uint16_t cksum; 1311 1312 fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size); 1313 cksum = 0; 1314 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) 1315 cksum += sc->eeprom[i]; 1316 cksum = 0xBABA - cksum; 1317 if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1]) 1318 device_printf(sc->dev, 1319 "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n", 1320 cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]); 1321 } 1322 1323 /* 1324 * Grab the softc lock and call the real fxp_start_body() routine 1325 */ 1326 static void 1327 fxp_start(if_t ifp) 1328 { 1329 struct fxp_softc *sc = if_getsoftc(ifp); 1330 1331 FXP_LOCK(sc); 1332 fxp_start_body(ifp); 1333 FXP_UNLOCK(sc); 1334 } 1335 1336 /* 1337 * Start packet transmission on the interface. 1338 * This routine must be called with the softc lock held, and is an 1339 * internal entry point only. 1340 */ 1341 static void 1342 fxp_start_body(if_t ifp) 1343 { 1344 struct fxp_softc *sc = if_getsoftc(ifp); 1345 struct mbuf *mb_head; 1346 int txqueued; 1347 1348 FXP_LOCK_ASSERT(sc, MA_OWNED); 1349 1350 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1351 IFF_DRV_RUNNING) 1352 return; 1353 1354 if (sc->tx_queued > FXP_NTXCB_HIWAT) 1355 fxp_txeof(sc); 1356 /* 1357 * We're finished if there is nothing more to add to the list or if 1358 * we're all filled up with buffers to transmit. 1359 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add 1360 * a NOP command when needed. 1361 */ 1362 txqueued = 0; 1363 while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) { 1364 1365 /* 1366 * Grab a packet to transmit. 1367 */ 1368 mb_head = if_dequeue(ifp); 1369 if (mb_head == NULL) 1370 break; 1371 1372 if (fxp_encap(sc, &mb_head)) { 1373 if (mb_head == NULL) 1374 break; 1375 if_sendq_prepend(ifp, mb_head); 1376 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 1377 } 1378 txqueued++; 1379 /* 1380 * Pass packet to bpf if there is a listener. 1381 */ 1382 if_bpfmtap(ifp, mb_head); 1383 } 1384 1385 /* 1386 * We're finished. If we added to the list, issue a RESUME to get DMA 1387 * going again if suspended. 1388 */ 1389 if (txqueued > 0) { 1390 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1391 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1392 fxp_scb_wait(sc); 1393 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 1394 /* 1395 * Set a 5 second timer just in case we don't hear 1396 * from the card again. 1397 */ 1398 sc->watchdog_timer = 5; 1399 } 1400 } 1401 1402 static int 1403 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head) 1404 { 1405 struct mbuf *m; 1406 struct fxp_tx *txp; 1407 struct fxp_cb_tx *cbp; 1408 struct tcphdr *tcp; 1409 bus_dma_segment_t segs[FXP_NTXSEG]; 1410 int error, i, nseg, tcp_payload; 1411 1412 FXP_LOCK_ASSERT(sc, MA_OWNED); 1413 1414 tcp_payload = 0; 1415 tcp = NULL; 1416 /* 1417 * Get pointer to next available tx desc. 1418 */ 1419 txp = sc->fxp_desc.tx_last->tx_next; 1420 1421 /* 1422 * A note in Appendix B of the Intel 8255x 10/100 Mbps 1423 * Ethernet Controller Family Open Source Software 1424 * Developer Manual says: 1425 * Using software parsing is only allowed with legal 1426 * TCP/IP or UDP/IP packets. 1427 * ... 1428 * For all other datagrams, hardware parsing must 1429 * be used. 1430 * Software parsing appears to truncate ICMP and 1431 * fragmented UDP packets that contain one to three 1432 * bytes in the second (and final) mbuf of the packet. 1433 */ 1434 if (sc->flags & FXP_FLAG_EXT_RFA) 1435 txp->tx_cb->ipcb_ip_activation_high = 1436 FXP_IPCB_HARDWAREPARSING_ENABLE; 1437 1438 m = *m_head; 1439 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1440 /* 1441 * 82550/82551 requires ethernet/IP/TCP headers must be 1442 * contained in the first active transmit buffer. 1443 */ 1444 struct ether_header *eh; 1445 struct ip *ip; 1446 uint32_t ip_off, poff; 1447 1448 if (M_WRITABLE(*m_head) == 0) { 1449 /* Get a writable copy. */ 1450 m = m_dup(*m_head, M_NOWAIT); 1451 m_freem(*m_head); 1452 if (m == NULL) { 1453 *m_head = NULL; 1454 return (ENOBUFS); 1455 } 1456 *m_head = m; 1457 } 1458 ip_off = sizeof(struct ether_header); 1459 m = m_pullup(*m_head, ip_off); 1460 if (m == NULL) { 1461 *m_head = NULL; 1462 return (ENOBUFS); 1463 } 1464 eh = mtod(m, struct ether_header *); 1465 /* Check the existence of VLAN tag. */ 1466 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1467 ip_off = sizeof(struct ether_vlan_header); 1468 m = m_pullup(m, ip_off); 1469 if (m == NULL) { 1470 *m_head = NULL; 1471 return (ENOBUFS); 1472 } 1473 } 1474 m = m_pullup(m, ip_off + sizeof(struct ip)); 1475 if (m == NULL) { 1476 *m_head = NULL; 1477 return (ENOBUFS); 1478 } 1479 ip = (struct ip *)(mtod(m, char *) + ip_off); 1480 poff = ip_off + (ip->ip_hl << 2); 1481 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1482 if (m == NULL) { 1483 *m_head = NULL; 1484 return (ENOBUFS); 1485 } 1486 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1487 m = m_pullup(m, poff + (tcp->th_off << 2)); 1488 if (m == NULL) { 1489 *m_head = NULL; 1490 return (ENOBUFS); 1491 } 1492 1493 /* 1494 * Since 82550/82551 doesn't modify IP length and pseudo 1495 * checksum in the first frame driver should compute it. 1496 */ 1497 ip = (struct ip *)(mtod(m, char *) + ip_off); 1498 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1499 ip->ip_sum = 0; 1500 ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) + 1501 (tcp->th_off << 2)); 1502 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 1503 htons(IPPROTO_TCP + (tcp->th_off << 2) + 1504 m->m_pkthdr.tso_segsz)); 1505 /* Compute total TCP payload. */ 1506 tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2); 1507 tcp_payload -= tcp->th_off << 2; 1508 *m_head = m; 1509 } else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) { 1510 /* 1511 * Deal with TCP/IP checksum offload. Note that 1512 * in order for TCP checksum offload to work, 1513 * the pseudo header checksum must have already 1514 * been computed and stored in the checksum field 1515 * in the TCP header. The stack should have 1516 * already done this for us. 1517 */ 1518 txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; 1519 if (m->m_pkthdr.csum_flags & CSUM_TCP) 1520 txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET; 1521 1522 #ifdef FXP_IP_CSUM_WAR 1523 /* 1524 * XXX The 82550 chip appears to have trouble 1525 * dealing with IP header checksums in very small 1526 * datagrams, namely fragments from 1 to 3 bytes 1527 * in size. For example, say you want to transmit 1528 * a UDP packet of 1473 bytes. The packet will be 1529 * fragmented over two IP datagrams, the latter 1530 * containing only one byte of data. The 82550 will 1531 * botch the header checksum on the 1-byte fragment. 1532 * As long as the datagram contains 4 or more bytes 1533 * of data, you're ok. 1534 * 1535 * The following code attempts to work around this 1536 * problem: if the datagram is less than 38 bytes 1537 * in size (14 bytes ether header, 20 bytes IP header, 1538 * plus 4 bytes of data), we punt and compute the IP 1539 * header checksum by hand. This workaround doesn't 1540 * work very well, however, since it can be fooled 1541 * by things like VLAN tags and IP options that make 1542 * the header sizes/offsets vary. 1543 */ 1544 1545 if (m->m_pkthdr.csum_flags & CSUM_IP) { 1546 if (m->m_pkthdr.len < 38) { 1547 struct ip *ip; 1548 m->m_data += ETHER_HDR_LEN; 1549 ip = mtod(m, struct ip *); 1550 ip->ip_sum = in_cksum(m, ip->ip_hl << 2); 1551 m->m_data -= ETHER_HDR_LEN; 1552 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1553 } else { 1554 txp->tx_cb->ipcb_ip_activation_high = 1555 FXP_IPCB_HARDWAREPARSING_ENABLE; 1556 txp->tx_cb->ipcb_ip_schedule |= 1557 FXP_IPCB_IP_CHECKSUM_ENABLE; 1558 } 1559 } 1560 #endif 1561 } 1562 1563 error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head, 1564 segs, &nseg, 0); 1565 if (error == EFBIG) { 1566 m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg); 1567 if (m == NULL) { 1568 m_freem(*m_head); 1569 *m_head = NULL; 1570 return (ENOMEM); 1571 } 1572 *m_head = m; 1573 error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, 1574 *m_head, segs, &nseg, 0); 1575 if (error != 0) { 1576 m_freem(*m_head); 1577 *m_head = NULL; 1578 return (ENOMEM); 1579 } 1580 } else if (error != 0) 1581 return (error); 1582 if (nseg == 0) { 1583 m_freem(*m_head); 1584 *m_head = NULL; 1585 return (EIO); 1586 } 1587 1588 KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments")); 1589 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE); 1590 1591 cbp = txp->tx_cb; 1592 for (i = 0; i < nseg; i++) { 1593 /* 1594 * If this is an 82550/82551, then we're using extended 1595 * TxCBs _and_ we're using checksum offload. This means 1596 * that the TxCB is really an IPCB. One major difference 1597 * between the two is that with plain extended TxCBs, 1598 * the bottom half of the TxCB contains two entries from 1599 * the TBD array, whereas IPCBs contain just one entry: 1600 * one entry (8 bytes) has been sacrificed for the TCP/IP 1601 * checksum offload control bits. So to make things work 1602 * right, we have to start filling in the TBD array 1603 * starting from a different place depending on whether 1604 * the chip is an 82550/82551 or not. 1605 */ 1606 if (sc->flags & FXP_FLAG_EXT_RFA) { 1607 cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr); 1608 cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len); 1609 } else { 1610 cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr); 1611 cbp->tbd[i].tb_size = htole32(segs[i].ds_len); 1612 } 1613 } 1614 if (sc->flags & FXP_FLAG_EXT_RFA) { 1615 /* Configure dynamic TBD for 82550/82551. */ 1616 cbp->tbd_number = 0xFF; 1617 cbp->tbd[nseg].tb_size |= htole32(0x8000); 1618 } else 1619 cbp->tbd_number = nseg; 1620 /* Configure TSO. */ 1621 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1622 cbp->tbdtso.tb_size = htole32(m->m_pkthdr.tso_segsz << 16); 1623 cbp->tbd[1].tb_size |= htole32(tcp_payload << 16); 1624 cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE | 1625 FXP_IPCB_IP_CHECKSUM_ENABLE | 1626 FXP_IPCB_TCP_PACKET | 1627 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; 1628 } 1629 /* Configure VLAN hardware tag insertion. */ 1630 if ((m->m_flags & M_VLANTAG) != 0) { 1631 cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag); 1632 txp->tx_cb->ipcb_ip_activation_high |= 1633 FXP_IPCB_INSERTVLAN_ENABLE; 1634 } 1635 1636 txp->tx_mbuf = m; 1637 txp->tx_cb->cb_status = 0; 1638 txp->tx_cb->byte_count = 0; 1639 if (sc->tx_queued != FXP_CXINT_THRESH - 1) 1640 txp->tx_cb->cb_command = 1641 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1642 FXP_CB_COMMAND_S); 1643 else 1644 txp->tx_cb->cb_command = 1645 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1646 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); 1647 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) 1648 txp->tx_cb->tx_threshold = tx_threshold; 1649 1650 /* 1651 * Advance the end of list forward. 1652 */ 1653 sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S); 1654 sc->fxp_desc.tx_last = txp; 1655 1656 /* 1657 * Advance the beginning of the list forward if there are 1658 * no other packets queued (when nothing is queued, tx_first 1659 * sits on the last TxCB that was sent out). 1660 */ 1661 if (sc->tx_queued == 0) 1662 sc->fxp_desc.tx_first = txp; 1663 1664 sc->tx_queued++; 1665 1666 return (0); 1667 } 1668 1669 #ifdef DEVICE_POLLING 1670 static poll_handler_t fxp_poll; 1671 1672 static int 1673 fxp_poll(if_t ifp, enum poll_cmd cmd, int count) 1674 { 1675 struct fxp_softc *sc = if_getsoftc(ifp); 1676 uint8_t statack; 1677 int rx_npkts = 0; 1678 1679 FXP_LOCK(sc); 1680 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 1681 FXP_UNLOCK(sc); 1682 return (rx_npkts); 1683 } 1684 1685 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA | 1686 FXP_SCB_STATACK_FR; 1687 if (cmd == POLL_AND_CHECK_STATUS) { 1688 uint8_t tmp; 1689 1690 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK); 1691 if (tmp == 0xff || tmp == 0) { 1692 FXP_UNLOCK(sc); 1693 return (rx_npkts); /* nothing to do */ 1694 } 1695 tmp &= ~statack; 1696 /* ack what we can */ 1697 if (tmp != 0) 1698 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp); 1699 statack |= tmp; 1700 } 1701 rx_npkts = fxp_intr_body(sc, ifp, statack, count); 1702 FXP_UNLOCK(sc); 1703 return (rx_npkts); 1704 } 1705 #endif /* DEVICE_POLLING */ 1706 1707 /* 1708 * Process interface interrupts. 1709 */ 1710 static void 1711 fxp_intr(void *xsc) 1712 { 1713 struct fxp_softc *sc = xsc; 1714 if_t ifp = sc->ifp; 1715 uint8_t statack; 1716 1717 FXP_LOCK(sc); 1718 if (sc->suspended) { 1719 FXP_UNLOCK(sc); 1720 return; 1721 } 1722 1723 #ifdef DEVICE_POLLING 1724 if (if_getcapenable(ifp) & IFCAP_POLLING) { 1725 FXP_UNLOCK(sc); 1726 return; 1727 } 1728 #endif 1729 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { 1730 /* 1731 * It should not be possible to have all bits set; the 1732 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If 1733 * all bits are set, this may indicate that the card has 1734 * been physically ejected, so ignore it. 1735 */ 1736 if (statack == 0xff) { 1737 FXP_UNLOCK(sc); 1738 return; 1739 } 1740 1741 /* 1742 * First ACK all the interrupts in this pass. 1743 */ 1744 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); 1745 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) 1746 fxp_intr_body(sc, ifp, statack, -1); 1747 } 1748 FXP_UNLOCK(sc); 1749 } 1750 1751 static void 1752 fxp_txeof(struct fxp_softc *sc) 1753 { 1754 if_t ifp; 1755 struct fxp_tx *txp; 1756 1757 ifp = sc->ifp; 1758 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1759 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1760 for (txp = sc->fxp_desc.tx_first; sc->tx_queued && 1761 (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0; 1762 txp = txp->tx_next) { 1763 if (txp->tx_mbuf != NULL) { 1764 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, 1765 BUS_DMASYNC_POSTWRITE); 1766 bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map); 1767 m_freem(txp->tx_mbuf); 1768 txp->tx_mbuf = NULL; 1769 /* clear this to reset csum offload bits */ 1770 txp->tx_cb->tbd[0].tb_addr = 0; 1771 } 1772 sc->tx_queued--; 1773 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 1774 } 1775 sc->fxp_desc.tx_first = txp; 1776 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1777 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1778 if (sc->tx_queued == 0) 1779 sc->watchdog_timer = 0; 1780 } 1781 1782 static void 1783 fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m, 1784 uint16_t status, int pos) 1785 { 1786 struct ether_header *eh; 1787 struct ip *ip; 1788 struct udphdr *uh; 1789 int32_t hlen, len, pktlen, temp32; 1790 uint16_t csum, *opts; 1791 1792 if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) { 1793 if ((status & FXP_RFA_STATUS_PARSE) != 0) { 1794 if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID) 1795 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1796 if (status & FXP_RFDX_CS_IP_CSUM_VALID) 1797 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1798 if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) && 1799 (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) { 1800 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 1801 CSUM_PSEUDO_HDR; 1802 m->m_pkthdr.csum_data = 0xffff; 1803 } 1804 } 1805 return; 1806 } 1807 1808 pktlen = m->m_pkthdr.len; 1809 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) 1810 return; 1811 eh = mtod(m, struct ether_header *); 1812 if (eh->ether_type != htons(ETHERTYPE_IP)) 1813 return; 1814 ip = (struct ip *)(eh + 1); 1815 if (ip->ip_v != IPVERSION) 1816 return; 1817 1818 hlen = ip->ip_hl << 2; 1819 pktlen -= sizeof(struct ether_header); 1820 if (hlen < sizeof(struct ip)) 1821 return; 1822 if (ntohs(ip->ip_len) < hlen) 1823 return; 1824 if (ntohs(ip->ip_len) != pktlen) 1825 return; 1826 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) 1827 return; /* can't handle fragmented packet */ 1828 1829 switch (ip->ip_p) { 1830 case IPPROTO_TCP: 1831 if (pktlen < (hlen + sizeof(struct tcphdr))) 1832 return; 1833 break; 1834 case IPPROTO_UDP: 1835 if (pktlen < (hlen + sizeof(struct udphdr))) 1836 return; 1837 uh = (struct udphdr *)((caddr_t)ip + hlen); 1838 if (uh->uh_sum == 0) 1839 return; /* no checksum */ 1840 break; 1841 default: 1842 return; 1843 } 1844 /* Extract computed checksum. */ 1845 csum = be16dec(mtod(m, char *) + pos); 1846 /* checksum fixup for IP options */ 1847 len = hlen - sizeof(struct ip); 1848 if (len > 0) { 1849 opts = (uint16_t *)(ip + 1); 1850 for (; len > 0; len -= sizeof(uint16_t), opts++) { 1851 temp32 = csum - *opts; 1852 temp32 = (temp32 >> 16) + (temp32 & 65535); 1853 csum = temp32 & 65535; 1854 } 1855 } 1856 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 1857 m->m_pkthdr.csum_data = csum; 1858 } 1859 1860 static int 1861 fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack, 1862 int count) 1863 { 1864 struct mbuf *m; 1865 struct fxp_rx *rxp; 1866 struct fxp_rfa *rfa; 1867 int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0; 1868 int rx_npkts; 1869 uint16_t status; 1870 1871 rx_npkts = 0; 1872 FXP_LOCK_ASSERT(sc, MA_OWNED); 1873 1874 if (rnr) 1875 sc->rnr++; 1876 #ifdef DEVICE_POLLING 1877 /* Pick up a deferred RNR condition if `count' ran out last time. */ 1878 if (sc->flags & FXP_FLAG_DEFERRED_RNR) { 1879 sc->flags &= ~FXP_FLAG_DEFERRED_RNR; 1880 rnr = 1; 1881 } 1882 #endif 1883 1884 /* 1885 * Free any finished transmit mbuf chains. 1886 * 1887 * Handle the CNA event likt a CXTNO event. It used to 1888 * be that this event (control unit not ready) was not 1889 * encountered, but it is now with the SMPng modifications. 1890 * The exact sequence of events that occur when the interface 1891 * is brought up are different now, and if this event 1892 * goes unhandled, the configuration/rxfilter setup sequence 1893 * can stall for several seconds. The result is that no 1894 * packets go out onto the wire for about 5 to 10 seconds 1895 * after the interface is ifconfig'ed for the first time. 1896 */ 1897 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) 1898 fxp_txeof(sc); 1899 1900 /* 1901 * Try to start more packets transmitting. 1902 */ 1903 if (!if_sendq_empty(ifp)) 1904 fxp_start_body(ifp); 1905 1906 /* 1907 * Just return if nothing happened on the receive side. 1908 */ 1909 if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0) 1910 return (rx_npkts); 1911 1912 /* 1913 * Process receiver interrupts. If a no-resource (RNR) 1914 * condition exists, get whatever packets we can and 1915 * re-start the receiver. 1916 * 1917 * When using polling, we do not process the list to completion, 1918 * so when we get an RNR interrupt we must defer the restart 1919 * until we hit the last buffer with the C bit set. 1920 * If we run out of cycles and rfa_headm has the C bit set, 1921 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so 1922 * that the info will be used in the subsequent polling cycle. 1923 */ 1924 for (;;) { 1925 rxp = sc->fxp_desc.rx_head; 1926 m = rxp->rx_mbuf; 1927 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + 1928 RFA_ALIGNMENT_FUDGE); 1929 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 1930 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1931 1932 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */ 1933 if (count >= 0 && count-- == 0) { 1934 if (rnr) { 1935 /* Defer RNR processing until the next time. */ 1936 sc->flags |= FXP_FLAG_DEFERRED_RNR; 1937 rnr = 0; 1938 } 1939 break; 1940 } 1941 #endif /* DEVICE_POLLING */ 1942 1943 status = le16toh(rfa->rfa_status); 1944 if ((status & FXP_RFA_STATUS_C) == 0) 1945 break; 1946 1947 if ((status & FXP_RFA_STATUS_RNR) != 0) 1948 rnr++; 1949 /* 1950 * Advance head forward. 1951 */ 1952 sc->fxp_desc.rx_head = rxp->rx_next; 1953 1954 /* 1955 * Add a new buffer to the receive chain. 1956 * If this fails, the old buffer is recycled 1957 * instead. 1958 */ 1959 if (fxp_new_rfabuf(sc, rxp) == 0) { 1960 int total_len; 1961 1962 /* 1963 * Fetch packet length (the top 2 bits of 1964 * actual_size are flags set by the controller 1965 * upon completion), and drop the packet in case 1966 * of bogus length or CRC errors. 1967 */ 1968 total_len = le16toh(rfa->actual_size) & 0x3fff; 1969 if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 && 1970 (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) { 1971 /* Adjust for appended checksum bytes. */ 1972 total_len -= 2; 1973 } 1974 if (total_len < (int)sizeof(struct ether_header) || 1975 total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE - 1976 sc->rfa_size) || 1977 status & (FXP_RFA_STATUS_CRC | 1978 FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) { 1979 m_freem(m); 1980 fxp_add_rfabuf(sc, rxp); 1981 continue; 1982 } 1983 1984 m->m_pkthdr.len = m->m_len = total_len; 1985 if_setrcvif(m, ifp); 1986 1987 /* Do IP checksum checking. */ 1988 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) 1989 fxp_rxcsum(sc, ifp, m, status, total_len); 1990 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 && 1991 (status & FXP_RFA_STATUS_VLAN) != 0) { 1992 m->m_pkthdr.ether_vtag = 1993 ntohs(rfa->rfax_vlan_id); 1994 m->m_flags |= M_VLANTAG; 1995 } 1996 /* 1997 * Drop locks before calling if_input() since it 1998 * may re-enter fxp_start() in the netisr case. 1999 * This would result in a lock reversal. Better 2000 * performance might be obtained by chaining all 2001 * packets received, dropping the lock, and then 2002 * calling if_input() on each one. 2003 */ 2004 FXP_UNLOCK(sc); 2005 if_input(ifp, m); 2006 FXP_LOCK(sc); 2007 rx_npkts++; 2008 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) 2009 return (rx_npkts); 2010 } else { 2011 /* Reuse RFA and loaded DMA map. */ 2012 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2013 fxp_discard_rfabuf(sc, rxp); 2014 } 2015 fxp_add_rfabuf(sc, rxp); 2016 } 2017 if (rnr) { 2018 fxp_scb_wait(sc); 2019 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 2020 sc->fxp_desc.rx_head->rx_addr); 2021 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 2022 } 2023 return (rx_npkts); 2024 } 2025 2026 static void 2027 fxp_update_stats(struct fxp_softc *sc) 2028 { 2029 if_t ifp = sc->ifp; 2030 struct fxp_stats *sp = sc->fxp_stats; 2031 struct fxp_hwstats *hsp; 2032 uint32_t *status; 2033 2034 FXP_LOCK_ASSERT(sc, MA_OWNED); 2035 2036 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 2037 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2038 /* Update statistical counters. */ 2039 if (sc->revision >= FXP_REV_82559_A0) 2040 status = &sp->completion_status; 2041 else if (sc->revision >= FXP_REV_82558_A4) 2042 status = (uint32_t *)&sp->tx_tco; 2043 else 2044 status = &sp->tx_pause; 2045 if (*status == htole32(FXP_STATS_DR_COMPLETE)) { 2046 hsp = &sc->fxp_hwstats; 2047 hsp->tx_good += le32toh(sp->tx_good); 2048 hsp->tx_maxcols += le32toh(sp->tx_maxcols); 2049 hsp->tx_latecols += le32toh(sp->tx_latecols); 2050 hsp->tx_underruns += le32toh(sp->tx_underruns); 2051 hsp->tx_lostcrs += le32toh(sp->tx_lostcrs); 2052 hsp->tx_deffered += le32toh(sp->tx_deffered); 2053 hsp->tx_single_collisions += le32toh(sp->tx_single_collisions); 2054 hsp->tx_multiple_collisions += 2055 le32toh(sp->tx_multiple_collisions); 2056 hsp->tx_total_collisions += le32toh(sp->tx_total_collisions); 2057 hsp->rx_good += le32toh(sp->rx_good); 2058 hsp->rx_crc_errors += le32toh(sp->rx_crc_errors); 2059 hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors); 2060 hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors); 2061 hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors); 2062 hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors); 2063 hsp->rx_shortframes += le32toh(sp->rx_shortframes); 2064 hsp->tx_pause += le32toh(sp->tx_pause); 2065 hsp->rx_pause += le32toh(sp->rx_pause); 2066 hsp->rx_controls += le32toh(sp->rx_controls); 2067 hsp->tx_tco += le16toh(sp->tx_tco); 2068 hsp->rx_tco += le16toh(sp->rx_tco); 2069 2070 if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good)); 2071 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 2072 le32toh(sp->tx_total_collisions)); 2073 if (sp->rx_good) { 2074 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 2075 le32toh(sp->rx_good)); 2076 sc->rx_idle_secs = 0; 2077 } else if (sc->flags & FXP_FLAG_RXBUG) { 2078 /* 2079 * Receiver's been idle for another second. 2080 */ 2081 sc->rx_idle_secs++; 2082 } 2083 if_inc_counter(ifp, IFCOUNTER_IERRORS, 2084 le32toh(sp->rx_crc_errors) + 2085 le32toh(sp->rx_alignment_errors) + 2086 le32toh(sp->rx_rnr_errors) + 2087 le32toh(sp->rx_overrun_errors)); 2088 /* 2089 * If any transmit underruns occurred, bump up the transmit 2090 * threshold by another 512 bytes (64 * 8). 2091 */ 2092 if (sp->tx_underruns) { 2093 if_inc_counter(ifp, IFCOUNTER_OERRORS, 2094 le32toh(sp->tx_underruns)); 2095 if (tx_threshold < 192) 2096 tx_threshold += 64; 2097 } 2098 *status = 0; 2099 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 2100 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2101 } 2102 } 2103 2104 /* 2105 * Update packet in/out/collision statistics. The i82557 doesn't 2106 * allow you to access these counters without doing a fairly 2107 * expensive DMA to get _all_ of the statistics it maintains, so 2108 * we do this operation here only once per second. The statistics 2109 * counters in the kernel are updated from the previous dump-stats 2110 * DMA and then a new dump-stats DMA is started. The on-chip 2111 * counters are zeroed when the DMA completes. If we can't start 2112 * the DMA immediately, we don't wait - we just prepare to read 2113 * them again next time. 2114 */ 2115 static void 2116 fxp_tick(void *xsc) 2117 { 2118 struct fxp_softc *sc = xsc; 2119 if_t ifp = sc->ifp; 2120 2121 FXP_LOCK_ASSERT(sc, MA_OWNED); 2122 2123 /* Update statistical counters. */ 2124 fxp_update_stats(sc); 2125 2126 /* 2127 * Release any xmit buffers that have completed DMA. This isn't 2128 * strictly necessary to do here, but it's advantagous for mbufs 2129 * with external storage to be released in a timely manner rather 2130 * than being defered for a potentially long time. This limits 2131 * the delay to a maximum of one second. 2132 */ 2133 fxp_txeof(sc); 2134 2135 /* 2136 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, 2137 * then assume the receiver has locked up and attempt to clear 2138 * the condition by reprogramming the multicast filter. This is 2139 * a work-around for a bug in the 82557 where the receiver locks 2140 * up if it gets certain types of garbage in the synchronization 2141 * bits prior to the packet header. This bug is supposed to only 2142 * occur in 10Mbps mode, but has been seen to occur in 100Mbps 2143 * mode as well (perhaps due to a 10/100 speed transition). 2144 */ 2145 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { 2146 sc->rx_idle_secs = 0; 2147 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2148 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2149 fxp_init_body(sc, 1); 2150 } 2151 return; 2152 } 2153 /* 2154 * If there is no pending command, start another stats 2155 * dump. Otherwise punt for now. 2156 */ 2157 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { 2158 /* 2159 * Start another stats dump. 2160 */ 2161 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); 2162 } 2163 if (sc->miibus != NULL) 2164 mii_tick(device_get_softc(sc->miibus)); 2165 2166 /* 2167 * Check that chip hasn't hung. 2168 */ 2169 fxp_watchdog(sc); 2170 2171 /* 2172 * Schedule another timeout one second from now. 2173 */ 2174 callout_reset(&sc->stat_ch, hz, fxp_tick, sc); 2175 } 2176 2177 /* 2178 * Stop the interface. Cancels the statistics updater and resets 2179 * the interface. 2180 */ 2181 static void 2182 fxp_stop(struct fxp_softc *sc) 2183 { 2184 if_t ifp = sc->ifp; 2185 struct fxp_tx *txp; 2186 int i; 2187 2188 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); 2189 sc->watchdog_timer = 0; 2190 2191 /* 2192 * Cancel stats updater. 2193 */ 2194 callout_stop(&sc->stat_ch); 2195 2196 /* 2197 * Preserve PCI configuration, configure, IA/multicast 2198 * setup and put RU and CU into idle state. 2199 */ 2200 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 2201 DELAY(50); 2202 /* Disable interrupts. */ 2203 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 2204 2205 fxp_update_stats(sc); 2206 2207 /* 2208 * Release any xmit buffers. 2209 */ 2210 txp = sc->fxp_desc.tx_list; 2211 for (i = 0; i < FXP_NTXCB; i++) { 2212 if (txp[i].tx_mbuf != NULL) { 2213 bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map, 2214 BUS_DMASYNC_POSTWRITE); 2215 bus_dmamap_unload(sc->fxp_txmtag, txp[i].tx_map); 2216 m_freem(txp[i].tx_mbuf); 2217 txp[i].tx_mbuf = NULL; 2218 /* clear this to reset csum offload bits */ 2219 txp[i].tx_cb->tbd[0].tb_addr = 0; 2220 } 2221 } 2222 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2223 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2224 sc->tx_queued = 0; 2225 } 2226 2227 /* 2228 * Watchdog/transmission transmit timeout handler. Called when a 2229 * transmission is started on the interface, but no interrupt is 2230 * received before the timeout. This usually indicates that the 2231 * card has wedged for some reason. 2232 */ 2233 static void 2234 fxp_watchdog(struct fxp_softc *sc) 2235 { 2236 if_t ifp = sc->ifp; 2237 2238 FXP_LOCK_ASSERT(sc, MA_OWNED); 2239 2240 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 2241 return; 2242 2243 device_printf(sc->dev, "device timeout\n"); 2244 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2245 2246 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2247 fxp_init_body(sc, 1); 2248 } 2249 2250 /* 2251 * Acquire locks and then call the real initialization function. This 2252 * is necessary because ether_ioctl() calls if_init() and this would 2253 * result in mutex recursion if the mutex was held. 2254 */ 2255 static void 2256 fxp_init(void *xsc) 2257 { 2258 struct fxp_softc *sc = xsc; 2259 2260 FXP_LOCK(sc); 2261 fxp_init_body(sc, 1); 2262 FXP_UNLOCK(sc); 2263 } 2264 2265 /* 2266 * Perform device initialization. This routine must be called with the 2267 * softc lock held. 2268 */ 2269 static void 2270 fxp_init_body(struct fxp_softc *sc, int setmedia) 2271 { 2272 if_t ifp = sc->ifp; 2273 struct mii_data *mii; 2274 struct fxp_cb_config *cbp; 2275 struct fxp_cb_ias *cb_ias; 2276 struct fxp_cb_tx *tcbp; 2277 struct fxp_tx *txp; 2278 int i, prm; 2279 2280 FXP_LOCK_ASSERT(sc, MA_OWNED); 2281 2282 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2283 return; 2284 2285 /* 2286 * Cancel any pending I/O 2287 */ 2288 fxp_stop(sc); 2289 2290 /* 2291 * Issue software reset, which also unloads the microcode. 2292 */ 2293 sc->flags &= ~FXP_FLAG_UCODE; 2294 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 2295 DELAY(50); 2296 2297 prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0; 2298 2299 /* 2300 * Initialize base of CBL and RFA memory. Loading with zero 2301 * sets it up for regular linear addressing. 2302 */ 2303 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); 2304 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); 2305 2306 fxp_scb_wait(sc); 2307 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); 2308 2309 /* 2310 * Initialize base of dump-stats buffer. 2311 */ 2312 fxp_scb_wait(sc); 2313 bzero(sc->fxp_stats, sizeof(struct fxp_stats)); 2314 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 2315 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2316 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr); 2317 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); 2318 2319 /* 2320 * Attempt to load microcode if requested. 2321 * For ICH based controllers do not load microcode. 2322 */ 2323 if (sc->ident->ich == 0) { 2324 if (if_getflags(ifp) & IFF_LINK0 && 2325 (sc->flags & FXP_FLAG_UCODE) == 0) 2326 fxp_load_ucode(sc); 2327 } 2328 2329 /* 2330 * Set IFF_ALLMULTI status. It's needed in configure action 2331 * command. 2332 */ 2333 fxp_mc_addrs(sc); 2334 2335 /* 2336 * We temporarily use memory that contains the TxCB list to 2337 * construct the config CB. The TxCB list memory is rebuilt 2338 * later. 2339 */ 2340 cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list; 2341 2342 /* 2343 * This bcopy is kind of disgusting, but there are a bunch of must be 2344 * zero and must be one bits in this structure and this is the easiest 2345 * way to initialize them all to proper values. 2346 */ 2347 bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template)); 2348 2349 cbp->cb_status = 0; 2350 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG | 2351 FXP_CB_COMMAND_EL); 2352 cbp->link_addr = 0xffffffff; /* (no) next command */ 2353 cbp->byte_count = sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22; 2354 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ 2355 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ 2356 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ 2357 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0; 2358 cbp->type_enable = 0; /* actually reserved */ 2359 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0; 2360 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0; 2361 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ 2362 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ 2363 cbp->dma_mbce = 0; /* (disable) dma max counters */ 2364 cbp->late_scb = 0; /* (don't) defer SCB update */ 2365 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */ 2366 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */ 2367 cbp->ci_int = 1; /* interrupt on CU idle */ 2368 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1; 2369 cbp->ext_stats_dis = 1; /* disable extended counters */ 2370 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */ 2371 cbp->save_bf = sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm; 2372 cbp->disc_short_rx = !prm; /* discard short packets */ 2373 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */ 2374 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */ 2375 cbp->dyn_tbd = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2376 cbp->ext_rfa = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2377 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1; 2378 cbp->csma_dis = 0; /* (don't) disable link */ 2379 cbp->tcp_udp_cksum = ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 && 2380 (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0; 2381 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */ 2382 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */ 2383 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */ 2384 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */ 2385 cbp->nsai = 1; /* (don't) disable source addr insert */ 2386 cbp->preamble_length = 2; /* (7 byte) preamble */ 2387 cbp->loopback = 0; /* (don't) loopback */ 2388 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ 2389 cbp->linear_pri_mode = 0; /* (wait after xmit only) */ 2390 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ 2391 cbp->promiscuous = prm; /* promiscuous mode */ 2392 cbp->bcast_disable = 0; /* (don't) disable broadcasts */ 2393 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/ 2394 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */ 2395 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */ 2396 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0; 2397 2398 cbp->stripping = !prm; /* truncate rx packet to byte count */ 2399 cbp->padding = 1; /* (do) pad short tx packets */ 2400 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ 2401 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0; 2402 cbp->ia_wake_en = 0; /* (don't) wake up on address match */ 2403 cbp->magic_pkt_dis = sc->flags & FXP_FLAG_WOL ? 0 : 1; 2404 cbp->force_fdx = 0; /* (don't) force full duplex */ 2405 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ 2406 cbp->multi_ia = 0; /* (don't) accept multiple IAs */ 2407 cbp->mc_all = if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm; 2408 cbp->gamla_rx = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2409 cbp->vlan_strip_en = ((sc->flags & FXP_FLAG_EXT_RFA) != 0 && 2410 (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0; 2411 2412 if (sc->revision == FXP_REV_82557) { 2413 /* 2414 * The 82557 has no hardware flow control, the values 2415 * below are the defaults for the chip. 2416 */ 2417 cbp->fc_delay_lsb = 0; 2418 cbp->fc_delay_msb = 0x40; 2419 cbp->pri_fc_thresh = 3; 2420 cbp->tx_fc_dis = 0; 2421 cbp->rx_fc_restop = 0; 2422 cbp->rx_fc_restart = 0; 2423 cbp->fc_filter = 0; 2424 cbp->pri_fc_loc = 1; 2425 } else { 2426 /* Set pause RX FIFO threshold to 1KB. */ 2427 CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1); 2428 /* Set pause time. */ 2429 cbp->fc_delay_lsb = 0xff; 2430 cbp->fc_delay_msb = 0xff; 2431 cbp->pri_fc_thresh = 3; 2432 mii = device_get_softc(sc->miibus); 2433 if ((IFM_OPTIONS(mii->mii_media_active) & 2434 IFM_ETH_TXPAUSE) != 0) 2435 /* enable transmit FC */ 2436 cbp->tx_fc_dis = 0; 2437 else 2438 /* disable transmit FC */ 2439 cbp->tx_fc_dis = 1; 2440 if ((IFM_OPTIONS(mii->mii_media_active) & 2441 IFM_ETH_RXPAUSE) != 0) { 2442 /* enable FC restart/restop frames */ 2443 cbp->rx_fc_restart = 1; 2444 cbp->rx_fc_restop = 1; 2445 } else { 2446 /* disable FC restart/restop frames */ 2447 cbp->rx_fc_restart = 0; 2448 cbp->rx_fc_restop = 0; 2449 } 2450 cbp->fc_filter = !prm; /* drop FC frames to host */ 2451 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */ 2452 } 2453 2454 /* Enable 82558 and 82559 extended statistics functionality. */ 2455 if (sc->revision >= FXP_REV_82558_A4) { 2456 if (sc->revision >= FXP_REV_82559_A0) { 2457 /* 2458 * Extend configuration table size to 32 2459 * to include TCO configuration. 2460 */ 2461 cbp->byte_count = 32; 2462 cbp->ext_stats_dis = 1; 2463 /* Enable TCO stats. */ 2464 cbp->tno_int_or_tco_en = 1; 2465 cbp->gamla_rx = 1; 2466 } else 2467 cbp->ext_stats_dis = 0; 2468 } 2469 2470 /* 2471 * Start the config command/DMA. 2472 */ 2473 fxp_scb_wait(sc); 2474 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2475 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2476 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2477 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2478 /* ...and wait for it to complete. */ 2479 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 2480 2481 /* 2482 * Now initialize the station address. Temporarily use the TxCB 2483 * memory area like we did above for the config CB. 2484 */ 2485 cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list; 2486 cb_ias->cb_status = 0; 2487 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL); 2488 cb_ias->link_addr = 0xffffffff; 2489 bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN); 2490 2491 /* 2492 * Start the IAS (Individual Address Setup) command/DMA. 2493 */ 2494 fxp_scb_wait(sc); 2495 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2496 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2497 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2498 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2499 /* ...and wait for it to complete. */ 2500 fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map); 2501 2502 /* 2503 * Initialize the multicast address list. 2504 */ 2505 fxp_mc_setup(sc); 2506 2507 /* 2508 * Initialize transmit control block (TxCB) list. 2509 */ 2510 txp = sc->fxp_desc.tx_list; 2511 tcbp = sc->fxp_desc.cbl_list; 2512 bzero(tcbp, FXP_TXCB_SZ); 2513 for (i = 0; i < FXP_NTXCB; i++) { 2514 txp[i].tx_mbuf = NULL; 2515 tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK); 2516 tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP); 2517 tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr + 2518 (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx))); 2519 if (sc->flags & FXP_FLAG_EXT_TXCB) 2520 tcbp[i].tbd_array_addr = 2521 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2])); 2522 else 2523 tcbp[i].tbd_array_addr = 2524 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0])); 2525 txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK]; 2526 } 2527 /* 2528 * Set the suspend flag on the first TxCB and start the control 2529 * unit. It will execute the NOP and then suspend. 2530 */ 2531 tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S); 2532 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2533 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2534 sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp; 2535 sc->tx_queued = 1; 2536 2537 fxp_scb_wait(sc); 2538 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2539 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2540 2541 /* 2542 * Initialize receiver buffer area - RFA. 2543 */ 2544 fxp_scb_wait(sc); 2545 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr); 2546 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 2547 2548 if (sc->miibus != NULL && setmedia != 0) 2549 mii_mediachg(device_get_softc(sc->miibus)); 2550 2551 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE); 2552 2553 /* 2554 * Enable interrupts. 2555 */ 2556 #ifdef DEVICE_POLLING 2557 /* 2558 * ... but only do that if we are not polling. And because (presumably) 2559 * the default is interrupts on, we need to disable them explicitly! 2560 */ 2561 if (if_getcapenable(ifp) & IFCAP_POLLING ) 2562 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 2563 else 2564 #endif /* DEVICE_POLLING */ 2565 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 2566 2567 /* 2568 * Start stats updater. 2569 */ 2570 callout_reset(&sc->stat_ch, hz, fxp_tick, sc); 2571 } 2572 2573 static int 2574 fxp_serial_ifmedia_upd(if_t ifp) 2575 { 2576 2577 return (0); 2578 } 2579 2580 static void 2581 fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 2582 { 2583 2584 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2585 } 2586 2587 /* 2588 * Change media according to request. 2589 */ 2590 static int 2591 fxp_ifmedia_upd(if_t ifp) 2592 { 2593 struct fxp_softc *sc = if_getsoftc(ifp); 2594 struct mii_data *mii; 2595 struct mii_softc *miisc; 2596 2597 mii = device_get_softc(sc->miibus); 2598 FXP_LOCK(sc); 2599 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 2600 PHY_RESET(miisc); 2601 mii_mediachg(mii); 2602 FXP_UNLOCK(sc); 2603 return (0); 2604 } 2605 2606 /* 2607 * Notify the world which media we're using. 2608 */ 2609 static void 2610 fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 2611 { 2612 struct fxp_softc *sc = if_getsoftc(ifp); 2613 struct mii_data *mii; 2614 2615 mii = device_get_softc(sc->miibus); 2616 FXP_LOCK(sc); 2617 mii_pollstat(mii); 2618 ifmr->ifm_active = mii->mii_media_active; 2619 ifmr->ifm_status = mii->mii_media_status; 2620 FXP_UNLOCK(sc); 2621 } 2622 2623 /* 2624 * Add a buffer to the end of the RFA buffer list. 2625 * Return 0 if successful, 1 for failure. A failure results in 2626 * reusing the RFA buffer. 2627 * The RFA struct is stuck at the beginning of mbuf cluster and the 2628 * data pointer is fixed up to point just past it. 2629 */ 2630 static int 2631 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2632 { 2633 struct mbuf *m; 2634 struct fxp_rfa *rfa; 2635 bus_dmamap_t tmp_map; 2636 int error; 2637 2638 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2639 if (m == NULL) 2640 return (ENOBUFS); 2641 2642 /* 2643 * Move the data pointer up so that the incoming data packet 2644 * will be 32-bit aligned. 2645 */ 2646 m->m_data += RFA_ALIGNMENT_FUDGE; 2647 2648 /* 2649 * Get a pointer to the base of the mbuf cluster and move 2650 * data start past it. 2651 */ 2652 rfa = mtod(m, struct fxp_rfa *); 2653 m->m_data += sc->rfa_size; 2654 rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE); 2655 2656 rfa->rfa_status = 0; 2657 rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL); 2658 rfa->actual_size = 0; 2659 m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE - 2660 sc->rfa_size; 2661 2662 /* 2663 * Initialize the rest of the RFA. Note that since the RFA 2664 * is misaligned, we cannot store values directly. We're thus 2665 * using the le32enc() function which handles endianness and 2666 * is also alignment-safe. 2667 */ 2668 le32enc(&rfa->link_addr, 0xffffffff); 2669 le32enc(&rfa->rbd_addr, 0xffffffff); 2670 2671 /* Map the RFA into DMA memory. */ 2672 error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa, 2673 MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr, 2674 &rxp->rx_addr, BUS_DMA_NOWAIT); 2675 if (error) { 2676 m_freem(m); 2677 return (error); 2678 } 2679 2680 if (rxp->rx_mbuf != NULL) 2681 bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map); 2682 tmp_map = sc->spare_map; 2683 sc->spare_map = rxp->rx_map; 2684 rxp->rx_map = tmp_map; 2685 rxp->rx_mbuf = m; 2686 2687 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 2688 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2689 return (0); 2690 } 2691 2692 static void 2693 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2694 { 2695 struct fxp_rfa *p_rfa; 2696 struct fxp_rx *p_rx; 2697 2698 /* 2699 * If there are other buffers already on the list, attach this 2700 * one to the end by fixing up the tail to point to this one. 2701 */ 2702 if (sc->fxp_desc.rx_head != NULL) { 2703 p_rx = sc->fxp_desc.rx_tail; 2704 p_rfa = (struct fxp_rfa *) 2705 (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE); 2706 p_rx->rx_next = rxp; 2707 le32enc(&p_rfa->link_addr, rxp->rx_addr); 2708 p_rfa->rfa_control = 0; 2709 bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map, 2710 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2711 } else { 2712 rxp->rx_next = NULL; 2713 sc->fxp_desc.rx_head = rxp; 2714 } 2715 sc->fxp_desc.rx_tail = rxp; 2716 } 2717 2718 static void 2719 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2720 { 2721 struct mbuf *m; 2722 struct fxp_rfa *rfa; 2723 2724 m = rxp->rx_mbuf; 2725 m->m_data = m->m_ext.ext_buf; 2726 /* 2727 * Move the data pointer up so that the incoming data packet 2728 * will be 32-bit aligned. 2729 */ 2730 m->m_data += RFA_ALIGNMENT_FUDGE; 2731 2732 /* 2733 * Get a pointer to the base of the mbuf cluster and move 2734 * data start past it. 2735 */ 2736 rfa = mtod(m, struct fxp_rfa *); 2737 m->m_data += sc->rfa_size; 2738 rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE); 2739 2740 rfa->rfa_status = 0; 2741 rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL); 2742 rfa->actual_size = 0; 2743 2744 /* 2745 * Initialize the rest of the RFA. Note that since the RFA 2746 * is misaligned, we cannot store values directly. We're thus 2747 * using the le32enc() function which handles endianness and 2748 * is also alignment-safe. 2749 */ 2750 le32enc(&rfa->link_addr, 0xffffffff); 2751 le32enc(&rfa->rbd_addr, 0xffffffff); 2752 2753 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 2754 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2755 } 2756 2757 static int 2758 fxp_miibus_readreg(device_t dev, int phy, int reg) 2759 { 2760 struct fxp_softc *sc = device_get_softc(dev); 2761 int count = 10000; 2762 int value; 2763 2764 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2765 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); 2766 2767 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 2768 && count--) 2769 DELAY(10); 2770 2771 if (count <= 0) 2772 device_printf(dev, "fxp_miibus_readreg: timed out\n"); 2773 2774 return (value & 0xffff); 2775 } 2776 2777 static int 2778 fxp_miibus_writereg(device_t dev, int phy, int reg, int value) 2779 { 2780 struct fxp_softc *sc = device_get_softc(dev); 2781 int count = 10000; 2782 2783 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2784 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | 2785 (value & 0xffff)); 2786 2787 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && 2788 count--) 2789 DELAY(10); 2790 2791 if (count <= 0) 2792 device_printf(dev, "fxp_miibus_writereg: timed out\n"); 2793 return (0); 2794 } 2795 2796 static void 2797 fxp_miibus_statchg(device_t dev) 2798 { 2799 struct fxp_softc *sc; 2800 struct mii_data *mii; 2801 if_t ifp; 2802 2803 sc = device_get_softc(dev); 2804 mii = device_get_softc(sc->miibus); 2805 ifp = sc->ifp; 2806 if (mii == NULL || ifp == (void *)NULL || 2807 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || 2808 (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) != 2809 (IFM_AVALID | IFM_ACTIVE)) 2810 return; 2811 2812 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T && 2813 sc->flags & FXP_FLAG_CU_RESUME_BUG) 2814 sc->cu_resume_bug = 1; 2815 else 2816 sc->cu_resume_bug = 0; 2817 /* 2818 * Call fxp_init_body in order to adjust the flow control settings. 2819 * Note that the 82557 doesn't support hardware flow control. 2820 */ 2821 if (sc->revision == FXP_REV_82557) 2822 return; 2823 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2824 fxp_init_body(sc, 0); 2825 } 2826 2827 static int 2828 fxp_ioctl(if_t ifp, u_long command, caddr_t data) 2829 { 2830 struct fxp_softc *sc = if_getsoftc(ifp); 2831 struct ifreq *ifr = (struct ifreq *)data; 2832 struct mii_data *mii; 2833 int flag, mask, error = 0, reinit; 2834 2835 switch (command) { 2836 case SIOCSIFFLAGS: 2837 FXP_LOCK(sc); 2838 /* 2839 * If interface is marked up and not running, then start it. 2840 * If it is marked down and running, stop it. 2841 * XXX If it's up then re-initialize it. This is so flags 2842 * such as IFF_PROMISC are handled. 2843 */ 2844 if (if_getflags(ifp) & IFF_UP) { 2845 if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) && 2846 ((if_getflags(ifp) ^ sc->if_flags) & 2847 (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) { 2848 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2849 fxp_init_body(sc, 0); 2850 } else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) 2851 fxp_init_body(sc, 1); 2852 } else { 2853 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) 2854 fxp_stop(sc); 2855 } 2856 sc->if_flags = if_getflags(ifp); 2857 FXP_UNLOCK(sc); 2858 break; 2859 2860 case SIOCADDMULTI: 2861 case SIOCDELMULTI: 2862 FXP_LOCK(sc); 2863 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2864 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2865 fxp_init_body(sc, 0); 2866 } 2867 FXP_UNLOCK(sc); 2868 break; 2869 2870 case SIOCSIFMEDIA: 2871 case SIOCGIFMEDIA: 2872 if (sc->miibus != NULL) { 2873 mii = device_get_softc(sc->miibus); 2874 error = ifmedia_ioctl(ifp, ifr, 2875 &mii->mii_media, command); 2876 } else { 2877 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); 2878 } 2879 break; 2880 2881 case SIOCSIFCAP: 2882 reinit = 0; 2883 mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap; 2884 #ifdef DEVICE_POLLING 2885 if (mask & IFCAP_POLLING) { 2886 if (ifr->ifr_reqcap & IFCAP_POLLING) { 2887 error = ether_poll_register(fxp_poll, ifp); 2888 if (error) 2889 return(error); 2890 FXP_LOCK(sc); 2891 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 2892 FXP_SCB_INTR_DISABLE); 2893 if_setcapenablebit(ifp, IFCAP_POLLING, 0); 2894 FXP_UNLOCK(sc); 2895 } else { 2896 error = ether_poll_deregister(ifp); 2897 /* Enable interrupts in any case */ 2898 FXP_LOCK(sc); 2899 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 2900 if_setcapenablebit(ifp, 0, IFCAP_POLLING); 2901 FXP_UNLOCK(sc); 2902 } 2903 } 2904 #endif 2905 FXP_LOCK(sc); 2906 if ((mask & IFCAP_TXCSUM) != 0 && 2907 (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) { 2908 if_togglecapenable(ifp, IFCAP_TXCSUM); 2909 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0) 2910 if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0); 2911 else 2912 if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES); 2913 } 2914 if ((mask & IFCAP_RXCSUM) != 0 && 2915 (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) { 2916 if_togglecapenable(ifp, IFCAP_RXCSUM); 2917 if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0) 2918 reinit++; 2919 } 2920 if ((mask & IFCAP_TSO4) != 0 && 2921 (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) { 2922 if_togglecapenable(ifp, IFCAP_TSO4); 2923 if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0) 2924 if_sethwassistbits(ifp, CSUM_TSO, 0); 2925 else 2926 if_sethwassistbits(ifp, 0, CSUM_TSO); 2927 } 2928 if ((mask & IFCAP_WOL_MAGIC) != 0 && 2929 (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0) 2930 if_togglecapenable(ifp, IFCAP_WOL_MAGIC); 2931 if ((mask & IFCAP_VLAN_MTU) != 0 && 2932 (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) { 2933 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 2934 if (sc->revision != FXP_REV_82557) 2935 flag = FXP_FLAG_LONG_PKT_EN; 2936 else /* a hack to get long frames on the old chip */ 2937 flag = FXP_FLAG_SAVE_BAD; 2938 sc->flags ^= flag; 2939 if (if_getflags(ifp) & IFF_UP) 2940 reinit++; 2941 } 2942 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 2943 (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0) 2944 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 2945 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 2946 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0) 2947 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 2948 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2949 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { 2950 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 2951 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0) 2952 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO | 2953 IFCAP_VLAN_HWCSUM); 2954 reinit++; 2955 } 2956 if (reinit > 0 && 2957 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2958 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2959 fxp_init_body(sc, 0); 2960 } 2961 FXP_UNLOCK(sc); 2962 if_vlancap(ifp); 2963 break; 2964 2965 default: 2966 error = ether_ioctl(ifp, command, data); 2967 } 2968 return (error); 2969 } 2970 2971 static u_int 2972 fxp_setup_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 2973 { 2974 struct fxp_softc *sc = arg; 2975 struct fxp_cb_mcs *mcsp = sc->mcsp; 2976 2977 if (mcsp->mc_cnt < MAXMCADDR) 2978 bcopy(LLADDR(sdl), mcsp->mc_addr[mcsp->mc_cnt * ETHER_ADDR_LEN], 2979 ETHER_ADDR_LEN); 2980 mcsp->mc_cnt++; 2981 return (1); 2982 } 2983 2984 /* 2985 * Fill in the multicast address list and return number of entries. 2986 */ 2987 static void 2988 fxp_mc_addrs(struct fxp_softc *sc) 2989 { 2990 struct fxp_cb_mcs *mcsp = sc->mcsp; 2991 if_t ifp = sc->ifp; 2992 2993 if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) { 2994 mcsp->mc_cnt = 0; 2995 if_foreach_llmaddr(sc->ifp, fxp_setup_maddr, sc); 2996 if (mcsp->mc_cnt >= MAXMCADDR) { 2997 if_setflagbits(ifp, IFF_ALLMULTI, 0); 2998 mcsp->mc_cnt = 0; 2999 } 3000 } 3001 mcsp->mc_cnt = htole16(mcsp->mc_cnt * ETHER_ADDR_LEN); 3002 } 3003 3004 /* 3005 * Program the multicast filter. 3006 * 3007 * We have an artificial restriction that the multicast setup command 3008 * must be the first command in the chain, so we take steps to ensure 3009 * this. By requiring this, it allows us to keep up the performance of 3010 * the pre-initialized command ring (esp. link pointers) by not actually 3011 * inserting the mcsetup command in the ring - i.e. its link pointer 3012 * points to the TxCB ring, but the mcsetup descriptor itself is not part 3013 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it 3014 * lead into the regular TxCB ring when it completes. 3015 */ 3016 static void 3017 fxp_mc_setup(struct fxp_softc *sc) 3018 { 3019 struct fxp_cb_mcs *mcsp; 3020 int count; 3021 3022 FXP_LOCK_ASSERT(sc, MA_OWNED); 3023 3024 mcsp = sc->mcsp; 3025 mcsp->cb_status = 0; 3026 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL); 3027 mcsp->link_addr = 0xffffffff; 3028 fxp_mc_addrs(sc); 3029 3030 /* 3031 * Wait until command unit is idle. This should never be the 3032 * case when nothing is queued, but make sure anyway. 3033 */ 3034 count = 100; 3035 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) != 3036 FXP_SCB_CUS_IDLE && --count) 3037 DELAY(10); 3038 if (count == 0) { 3039 device_printf(sc->dev, "command queue timeout\n"); 3040 return; 3041 } 3042 3043 /* 3044 * Start the multicast setup command. 3045 */ 3046 fxp_scb_wait(sc); 3047 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, 3048 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3049 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr); 3050 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 3051 /* ...and wait for it to complete. */ 3052 fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map); 3053 } 3054 3055 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE; 3056 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE; 3057 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE; 3058 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE; 3059 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE; 3060 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE; 3061 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE; 3062 3063 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t) 3064 3065 static const struct ucode { 3066 uint32_t revision; 3067 uint32_t *ucode; 3068 int length; 3069 u_short int_delay_offset; 3070 u_short bundle_max_offset; 3071 } ucode_table[] = { 3072 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 }, 3073 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 }, 3074 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma), 3075 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD }, 3076 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s), 3077 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD }, 3078 { FXP_REV_82550, UCODE(fxp_ucode_d102), 3079 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD }, 3080 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c), 3081 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD }, 3082 { FXP_REV_82551_F, UCODE(fxp_ucode_d102e), 3083 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD }, 3084 { FXP_REV_82551_10, UCODE(fxp_ucode_d102e), 3085 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD }, 3086 { 0, NULL, 0, 0, 0 } 3087 }; 3088 3089 static void 3090 fxp_load_ucode(struct fxp_softc *sc) 3091 { 3092 const struct ucode *uc; 3093 struct fxp_cb_ucode *cbp; 3094 int i; 3095 3096 if (sc->flags & FXP_FLAG_NO_UCODE) 3097 return; 3098 3099 for (uc = ucode_table; uc->ucode != NULL; uc++) 3100 if (sc->revision == uc->revision) 3101 break; 3102 if (uc->ucode == NULL) 3103 return; 3104 cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list; 3105 cbp->cb_status = 0; 3106 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL); 3107 cbp->link_addr = 0xffffffff; /* (no) next command */ 3108 for (i = 0; i < uc->length; i++) 3109 cbp->ucode[i] = htole32(uc->ucode[i]); 3110 if (uc->int_delay_offset) 3111 *(uint16_t *)&cbp->ucode[uc->int_delay_offset] = 3112 htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2); 3113 if (uc->bundle_max_offset) 3114 *(uint16_t *)&cbp->ucode[uc->bundle_max_offset] = 3115 htole16(sc->tunable_bundle_max); 3116 /* 3117 * Download the ucode to the chip. 3118 */ 3119 fxp_scb_wait(sc); 3120 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 3121 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3122 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 3123 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 3124 /* ...and wait for it to complete. */ 3125 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 3126 device_printf(sc->dev, 3127 "Microcode loaded, int_delay: %d usec bundle_max: %d\n", 3128 sc->tunable_int_delay, 3129 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max); 3130 sc->flags |= FXP_FLAG_UCODE; 3131 bzero(cbp, FXP_TXCB_SZ); 3132 } 3133 3134 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d) \ 3135 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 3136 3137 static void 3138 fxp_sysctl_node(struct fxp_softc *sc) 3139 { 3140 struct sysctl_ctx_list *ctx; 3141 struct sysctl_oid_list *child, *parent; 3142 struct sysctl_oid *tree; 3143 struct fxp_hwstats *hsp; 3144 3145 ctx = device_get_sysctl_ctx(sc->dev); 3146 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 3147 3148 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_delay", 3149 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 3150 &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I", 3151 "FXP driver receive interrupt microcode bundling delay"); 3152 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "bundle_max", 3153 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 3154 &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I", 3155 "FXP driver receive interrupt microcode bundle size limit"); 3156 SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0, 3157 "FXP RNR events"); 3158 3159 /* 3160 * Pull in device tunables. 3161 */ 3162 sc->tunable_int_delay = TUNABLE_INT_DELAY; 3163 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX; 3164 (void) resource_int_value(device_get_name(sc->dev), 3165 device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay); 3166 (void) resource_int_value(device_get_name(sc->dev), 3167 device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max); 3168 sc->rnr = 0; 3169 3170 hsp = &sc->fxp_hwstats; 3171 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", 3172 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "FXP statistics"); 3173 parent = SYSCTL_CHILDREN(tree); 3174 3175 /* Rx MAC statistics. */ 3176 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", 3177 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics"); 3178 child = SYSCTL_CHILDREN(tree); 3179 FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames", 3180 &hsp->rx_good, "Good frames"); 3181 FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors", 3182 &hsp->rx_crc_errors, "CRC errors"); 3183 FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors", 3184 &hsp->rx_alignment_errors, "Alignment errors"); 3185 FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors", 3186 &hsp->rx_rnr_errors, "RNR errors"); 3187 FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors", 3188 &hsp->rx_overrun_errors, "Overrun errors"); 3189 FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors", 3190 &hsp->rx_cdt_errors, "Collision detect errors"); 3191 FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes", 3192 &hsp->rx_shortframes, "Short frame errors"); 3193 if (sc->revision >= FXP_REV_82558_A4) { 3194 FXP_SYSCTL_STAT_ADD(ctx, child, "pause", 3195 &hsp->rx_pause, "Pause frames"); 3196 FXP_SYSCTL_STAT_ADD(ctx, child, "controls", 3197 &hsp->rx_controls, "Unsupported control frames"); 3198 } 3199 if (sc->revision >= FXP_REV_82559_A0) 3200 FXP_SYSCTL_STAT_ADD(ctx, child, "tco", 3201 &hsp->rx_tco, "TCO frames"); 3202 3203 /* Tx MAC statistics. */ 3204 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", 3205 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics"); 3206 child = SYSCTL_CHILDREN(tree); 3207 FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames", 3208 &hsp->tx_good, "Good frames"); 3209 FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols", 3210 &hsp->tx_maxcols, "Maximum collisions errors"); 3211 FXP_SYSCTL_STAT_ADD(ctx, child, "latecols", 3212 &hsp->tx_latecols, "Late collisions errors"); 3213 FXP_SYSCTL_STAT_ADD(ctx, child, "underruns", 3214 &hsp->tx_underruns, "Underrun errors"); 3215 FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs", 3216 &hsp->tx_lostcrs, "Lost carrier sense"); 3217 FXP_SYSCTL_STAT_ADD(ctx, child, "deffered", 3218 &hsp->tx_deffered, "Deferred"); 3219 FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions", 3220 &hsp->tx_single_collisions, "Single collisions"); 3221 FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions", 3222 &hsp->tx_multiple_collisions, "Multiple collisions"); 3223 FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions", 3224 &hsp->tx_total_collisions, "Total collisions"); 3225 if (sc->revision >= FXP_REV_82558_A4) 3226 FXP_SYSCTL_STAT_ADD(ctx, child, "pause", 3227 &hsp->tx_pause, "Pause frames"); 3228 if (sc->revision >= FXP_REV_82559_A0) 3229 FXP_SYSCTL_STAT_ADD(ctx, child, "tco", 3230 &hsp->tx_tco, "TCO frames"); 3231 } 3232 3233 #undef FXP_SYSCTL_STAT_ADD 3234 3235 static int 3236 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3237 { 3238 int error, value; 3239 3240 value = *(int *)arg1; 3241 error = sysctl_handle_int(oidp, &value, 0, req); 3242 if (error || !req->newptr) 3243 return (error); 3244 if (value < low || value > high) 3245 return (EINVAL); 3246 *(int *)arg1 = value; 3247 return (0); 3248 } 3249 3250 /* 3251 * Interrupt delay is expressed in microseconds, a multiplier is used 3252 * to convert this to the appropriate clock ticks before using. 3253 */ 3254 static int 3255 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS) 3256 { 3257 3258 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000)); 3259 } 3260 3261 static int 3262 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS) 3263 { 3264 3265 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff)); 3266 } 3267