xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 8fa113e5fc65fe6abc757f0089f477a87ee4d185)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/mbuf.h>
38 #include <sys/malloc.h>
39 		/* #include <sys/mutex.h> */
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/sysctl.h>
43 
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 
48 #ifdef NS
49 #include <netns/ns.h>
50 #include <netns/ns_if.h>
51 #endif
52 
53 #include <net/bpf.h>
54 #include <sys/sockio.h>
55 #include <sys/bus.h>
56 #include <machine/bus.h>
57 #include <sys/rman.h>
58 #include <machine/resource.h>
59 
60 #include <net/ethernet.h>
61 #include <net/if_arp.h>
62 
63 #include <vm/vm.h>		/* for vtophys */
64 #include <vm/pmap.h>		/* for vtophys */
65 #include <machine/clock.h>	/* for DELAY */
66 
67 #include <net/if_types.h>
68 #include <net/if_vlan_var.h>
69 
70 #include <pci/pcivar.h>
71 #include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
72 
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/fxp/if_fxpreg.h>
77 #include <dev/fxp/if_fxpvar.h>
78 #include <dev/fxp/rcvbundl.h>
79 
80 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
81 #include "miibus_if.h"
82 
83 /*
84  * NOTE!  On the Alpha, we have an alignment constraint.  The
85  * card DMAs the packet immediately following the RFA.  However,
86  * the first thing in the packet is a 14-byte Ethernet header.
87  * This means that the packet is misaligned.  To compensate,
88  * we actually offset the RFA 2 bytes into the cluster.  This
89  * alignes the packet after the Ethernet header at a 32-bit
90  * boundary.  HOWEVER!  This means that the RFA is misaligned!
91  */
92 #define	RFA_ALIGNMENT_FUDGE	2
93 
94 /*
95  * Set initial transmit threshold at 64 (512 bytes). This is
96  * increased by 64 (512 bytes) at a time, to maximum of 192
97  * (1536 bytes), if an underrun occurs.
98  */
99 static int tx_threshold = 64;
100 
101 /*
102  * The configuration byte map has several undefined fields which
103  * must be one or must be zero.  Set up a template for these bits
104  * only, (assuming a 82557 chip) leaving the actual configuration
105  * to fxp_init.
106  *
107  * See struct fxp_cb_config for the bit definitions.
108  */
109 static u_char fxp_cb_config_template[] = {
110 	0x0, 0x0,		/* cb_status */
111 	0x0, 0x0,		/* cb_command */
112 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113 	0x0,	/*  0 */
114 	0x0,	/*  1 */
115 	0x0,	/*  2 */
116 	0x0,	/*  3 */
117 	0x0,	/*  4 */
118 	0x0,	/*  5 */
119 	0x32,	/*  6 */
120 	0x0,	/*  7 */
121 	0x0,	/*  8 */
122 	0x0,	/*  9 */
123 	0x6,	/* 10 */
124 	0x0,	/* 11 */
125 	0x0,	/* 12 */
126 	0x0,	/* 13 */
127 	0xf2,	/* 14 */
128 	0x48,	/* 15 */
129 	0x0,	/* 16 */
130 	0x40,	/* 17 */
131 	0xf0,	/* 18 */
132 	0x0,	/* 19 */
133 	0x3f,	/* 20 */
134 	0x5	/* 21 */
135 };
136 
137 struct fxp_ident {
138 	u_int16_t	devid;
139 	char 		*name;
140 };
141 
142 /*
143  * Claim various Intel PCI device identifiers for this driver.  The
144  * sub-vendor and sub-device field are extensively used to identify
145  * particular variants, but we don't currently differentiate between
146  * them.
147  */
148 static struct fxp_ident fxp_ident_table[] = {
149     { 0x1229,		"Intel Pro 10/100B/100+ Ethernet" },
150     { 0x2449,		"Intel Pro/100 Ethernet" },
151     { 0x1209,		"Intel Embedded 10/100 Ethernet" },
152     { 0x1029,		"Intel Pro/100 Ethernet" },
153     { 0x1030,		"Intel Pro/100 Ethernet" },
154     { 0x1031,		"Intel Pro/100 Ethernet" },
155     { 0x1032,		"Intel Pro/100 Ethernet" },
156     { 0x1033,		"Intel Pro/100 Ethernet" },
157     { 0x1034,		"Intel Pro/100 Ethernet" },
158     { 0x1035,		"Intel Pro/100 Ethernet" },
159     { 0x1036,		"Intel Pro/100 Ethernet" },
160     { 0x1037,		"Intel Pro/100 Ethernet" },
161     { 0x1038,		"Intel Pro/100 Ethernet" },
162     { 0,		NULL },
163 };
164 
165 static int		fxp_probe(device_t dev);
166 static int		fxp_attach(device_t dev);
167 static int		fxp_detach(device_t dev);
168 static int		fxp_shutdown(device_t dev);
169 static int		fxp_suspend(device_t dev);
170 static int		fxp_resume(device_t dev);
171 
172 static void		fxp_intr(void *xsc);
173 static void 		fxp_init(void *xsc);
174 static void 		fxp_tick(void *xsc);
175 static void		fxp_powerstate_d0(device_t dev);
176 static void 		fxp_start(struct ifnet *ifp);
177 static void		fxp_stop(struct fxp_softc *sc);
178 static void 		fxp_release(struct fxp_softc *sc);
179 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
180 			    caddr_t data);
181 static void 		fxp_watchdog(struct ifnet *ifp);
182 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
183 static void		fxp_mc_setup(struct fxp_softc *sc);
184 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
185 			    int autosize);
186 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
187 			    u_int16_t data);
188 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
189 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
190 			    int offset, int words);
191 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
192 			    int offset, int words);
193 static int		fxp_ifmedia_upd(struct ifnet *ifp);
194 static void		fxp_ifmedia_sts(struct ifnet *ifp,
195 			    struct ifmediareq *ifmr);
196 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
197 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
198 			    struct ifmediareq *ifmr);
199 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
200 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
201 			    int value);
202 static void		fxp_load_ucode(struct fxp_softc *sc);
203 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
204 			    int low, int high);
205 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
206 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
207 static __inline void	fxp_lwcopy(volatile u_int32_t *src,
208 			    volatile u_int32_t *dst);
209 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
210 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
211 static __inline void	fxp_dma_wait(volatile u_int16_t *status,
212 			    struct fxp_softc *sc);
213 
214 static device_method_t fxp_methods[] = {
215 	/* Device interface */
216 	DEVMETHOD(device_probe,		fxp_probe),
217 	DEVMETHOD(device_attach,	fxp_attach),
218 	DEVMETHOD(device_detach,	fxp_detach),
219 	DEVMETHOD(device_shutdown,	fxp_shutdown),
220 	DEVMETHOD(device_suspend,	fxp_suspend),
221 	DEVMETHOD(device_resume,	fxp_resume),
222 
223 	/* MII interface */
224 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
225 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
226 
227 	{ 0, 0 }
228 };
229 
230 static driver_t fxp_driver = {
231 	"fxp",
232 	fxp_methods,
233 	sizeof(struct fxp_softc),
234 };
235 
236 static devclass_t fxp_devclass;
237 
238 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
239 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
240 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
241 
242 /*
243  * Inline function to copy a 16-bit aligned 32-bit quantity.
244  */
245 static __inline void
246 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
247 {
248 #ifdef __i386__
249 	*dst = *src;
250 #else
251 	volatile u_int16_t *a = (volatile u_int16_t *)src;
252 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
253 
254 	b[0] = a[0];
255 	b[1] = a[1];
256 #endif
257 }
258 
259 /*
260  * Wait for the previous command to be accepted (but not necessarily
261  * completed).
262  */
263 static __inline void
264 fxp_scb_wait(struct fxp_softc *sc)
265 {
266 	int i = 10000;
267 
268 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
269 		DELAY(2);
270 	if (i == 0)
271 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
272 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
273 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
274 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
275 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
276 }
277 
278 static __inline void
279 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
280 {
281 
282 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
283 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
284 		fxp_scb_wait(sc);
285 	}
286 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
287 }
288 
289 static __inline void
290 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
291 {
292 	int i = 10000;
293 
294 	while (!(*status & FXP_CB_STATUS_C) && --i)
295 		DELAY(2);
296 	if (i == 0)
297 		device_printf(sc->dev, "DMA timeout\n");
298 }
299 
300 /*
301  * Return identification string if this is device is ours.
302  */
303 static int
304 fxp_probe(device_t dev)
305 {
306 	u_int16_t devid;
307 	struct fxp_ident *ident;
308 
309 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
310 		devid = pci_get_device(dev);
311 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
312 			if (ident->devid == devid) {
313 				device_set_desc(dev, ident->name);
314 				return (0);
315 			}
316 		}
317 	}
318 	return (ENXIO);
319 }
320 
321 static void
322 fxp_powerstate_d0(device_t dev)
323 {
324 #if __FreeBSD_version >= 430002
325 	u_int32_t iobase, membase, irq;
326 
327 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
328 		/* Save important PCI config data. */
329 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
330 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
331 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
332 
333 		/* Reset the power state. */
334 		device_printf(dev, "chip is in D%d power mode "
335 		    "-- setting to D0\n", pci_get_powerstate(dev));
336 
337 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
338 
339 		/* Restore PCI config data. */
340 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
341 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
342 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
343 	}
344 #endif
345 }
346 
347 static int
348 fxp_attach(device_t dev)
349 {
350 	int error = 0;
351 	struct fxp_softc *sc = device_get_softc(dev);
352 	struct ifnet *ifp;
353 	u_int32_t val;
354 	u_int16_t data;
355 	int i, rid, m1, m2, prefer_iomap;
356 	int s;
357 
358 	bzero(sc, sizeof(*sc));
359 	sc->dev = dev;
360 	callout_handle_init(&sc->stat_ch);
361 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
362 
363 	s = splimp();
364 
365 	/*
366 	 * Enable bus mastering. Enable memory space too, in case
367 	 * BIOS/Prom forgot about it.
368 	 */
369 	val = pci_read_config(dev, PCIR_COMMAND, 2);
370 	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
371 	pci_write_config(dev, PCIR_COMMAND, val, 2);
372 	val = pci_read_config(dev, PCIR_COMMAND, 2);
373 
374 	fxp_powerstate_d0(dev);
375 
376 	/*
377 	 * Figure out which we should try first - memory mapping or i/o mapping?
378 	 * We default to memory mapping. Then we accept an override from the
379 	 * command line. Then we check to see which one is enabled.
380 	 */
381 	m1 = PCIM_CMD_MEMEN;
382 	m2 = PCIM_CMD_PORTEN;
383 	prefer_iomap = 0;
384 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
385 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
386 		m1 = PCIM_CMD_PORTEN;
387 		m2 = PCIM_CMD_MEMEN;
388 	}
389 
390 	if (val & m1) {
391 		sc->rtp =
392 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
393 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
394 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
395 	                                     0, ~0, 1, RF_ACTIVE);
396 	}
397 	if (sc->mem == NULL && (val & m2)) {
398 		sc->rtp =
399 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
400 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
401 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
402                                             0, ~0, 1, RF_ACTIVE);
403 	}
404 
405 	if (!sc->mem) {
406 		device_printf(dev, "could not map device registers\n");
407 		error = ENXIO;
408 		goto fail;
409         }
410 	if (bootverbose) {
411 		device_printf(dev, "using %s space register mapping\n",
412 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
413 	}
414 
415 	sc->sc_st = rman_get_bustag(sc->mem);
416 	sc->sc_sh = rman_get_bushandle(sc->mem);
417 
418 	/*
419 	 * Allocate our interrupt.
420 	 */
421 	rid = 0;
422 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
423 				 RF_SHAREABLE | RF_ACTIVE);
424 	if (sc->irq == NULL) {
425 		device_printf(dev, "could not map interrupt\n");
426 		error = ENXIO;
427 		goto fail;
428 	}
429 
430 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
431 			       fxp_intr, sc, &sc->ih);
432 	if (error) {
433 		device_printf(dev, "could not setup irq\n");
434 		goto fail;
435 	}
436 
437 	/*
438 	 * Reset to a stable state.
439 	 */
440 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
441 	DELAY(10);
442 
443 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
444 	    M_DEVBUF, M_NOWAIT | M_ZERO);
445 	if (sc->cbl_base == NULL)
446 		goto failmem;
447 
448 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
449 	    M_NOWAIT | M_ZERO);
450 	if (sc->fxp_stats == NULL)
451 		goto failmem;
452 
453 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
454 	if (sc->mcsp == NULL)
455 		goto failmem;
456 
457 	/*
458 	 * Pre-allocate our receive buffers.
459 	 */
460 	for (i = 0; i < FXP_NRFABUFS; i++) {
461 		if (fxp_add_rfabuf(sc, NULL) != 0) {
462 			goto failmem;
463 		}
464 	}
465 
466 	/*
467 	 * Find out how large of an SEEPROM we have.
468 	 */
469 	fxp_autosize_eeprom(sc);
470 
471 	/*
472 	 * Determine whether we must use the 503 serial interface.
473 	 */
474 	fxp_read_eeprom(sc, &data, 6, 1);
475 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
476 	    (data & FXP_PHY_SERIAL_ONLY))
477 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
478 
479 	/*
480 	 * Create the sysctl tree
481 	 */
482 	sysctl_ctx_init(&sc->sysctl_ctx);
483 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
484 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
485 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
486 	if (sc->sysctl_tree == NULL)
487 		goto fail;
488 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
489 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
490 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
491 	    "FXP driver receive interrupt microcode bundling delay");
492 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
493 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
494 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
495 	    "FXP driver receive interrupt microcode bundle size limit");
496 
497 	/*
498 	 * Pull in device tunables.
499 	 */
500 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
501 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
502 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
503 	    "int_delay", &sc->tunable_int_delay);
504 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
505 	    "bundle_max", &sc->tunable_bundle_max);
506 
507 	/*
508 	 * Find out the chip revision; lump all 82557 revs together.
509 	 */
510 	fxp_read_eeprom(sc, &data, 5, 1);
511 	if ((data >> 8) == 1)
512 		sc->revision = FXP_REV_82557;
513 	else
514 		sc->revision = pci_get_revid(dev);
515 
516 	/*
517 	 * Enable workarounds for certain chip revision deficiencies.
518 	 *
519 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
520 	 * some systems based a normal 82559 design, have a defect where
521 	 * the chip can cause a PCI protocol violation if it receives
522 	 * a CU_RESUME command when it is entering the IDLE state.  The
523 	 * workaround is to disable Dynamic Standby Mode, so the chip never
524 	 * deasserts CLKRUN#, and always remains in an active state.
525 	 *
526 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
527 	 */
528 	i = pci_get_device(dev);
529 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
530 	    sc->revision >= FXP_REV_82559_A0) {
531 		fxp_read_eeprom(sc, &data, 10, 1);
532 		if (data & 0x02) {			/* STB enable */
533 			u_int16_t cksum;
534 			int i;
535 
536 			device_printf(dev,
537 		    "*** DISABLING DYNAMIC STANDBY MODE IN EEPROM ***\n");
538 			data &= ~0x02;
539 			fxp_write_eeprom(sc, &data, 10, 1);
540 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
541 			cksum = 0;
542 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
543 				fxp_read_eeprom(sc, &data, i, 1);
544 				cksum += data;
545 			}
546 			i = (1 << sc->eeprom_size) - 1;
547 			cksum = 0xBABA - cksum;
548 			fxp_read_eeprom(sc, &data, i, 1);
549 			fxp_write_eeprom(sc, &cksum, i, 1);
550 			device_printf(dev,
551 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
552 			    i, data, cksum);
553 			/*
554 			 * We need to do a full PCI reset here.  A software
555 			 * reset to the port doesn't cut it, but let's try
556 			 * anyway.
557 			 */
558 			CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
559 			DELAY(50);
560 			device_printf(dev,
561 	    "*** PLEASE REBOOT THE SYSTEM NOW FOR CORRECT OPERATION ***\n");
562 #if 1
563 			/*
564 			 * If the user elects to continue, try the software
565 			 * workaround, as it is better than nothing.
566 			 */
567 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
568 #endif
569 		}
570 	}
571 
572 	/*
573 	 * If we are not a 82557 chip, we can enable extended features.
574 	 */
575 	if (sc->revision != FXP_REV_82557) {
576 		/*
577 		 * If MWI is enabled in the PCI configuration, and there
578 		 * is a valid cacheline size (8 or 16 dwords), then tell
579 		 * the board to turn on MWI.
580 		 */
581 		if (val & PCIM_CMD_MWRICEN &&
582 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
583 			sc->flags |= FXP_FLAG_MWI_ENABLE;
584 
585 		/* turn on the extended TxCB feature */
586 		sc->flags |= FXP_FLAG_EXT_TXCB;
587 
588 		/* enable reception of long frames for VLAN */
589 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
590 	}
591 
592 	/*
593 	 * Read MAC address.
594 	 */
595 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
596 	device_printf(dev, "Ethernet address %6D%s\n",
597 	    sc->arpcom.ac_enaddr, ":",
598 	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
599 	if (bootverbose) {
600 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
601 		    pci_get_vendor(dev), pci_get_device(dev),
602 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
603 		    pci_get_revid(dev));
604 		fxp_read_eeprom(sc, &data, 10, 1);
605 		device_printf(dev, "Dynamic Standby mode is %s\n",
606 		    data & 0x02 ? "enabled" : "disabled");
607 	}
608 
609 	/*
610 	 * If this is only a 10Mbps device, then there is no MII, and
611 	 * the PHY will use a serial interface instead.
612 	 *
613 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
614 	 * doesn't have a programming interface of any sort.  The
615 	 * media is sensed automatically based on how the link partner
616 	 * is configured.  This is, in essence, manual configuration.
617 	 */
618 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
619 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
620 		    fxp_serial_ifmedia_sts);
621 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
622 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
623 	} else {
624 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
625 		    fxp_ifmedia_sts)) {
626 	                device_printf(dev, "MII without any PHY!\n");
627 			error = ENXIO;
628 			goto fail;
629 		}
630 	}
631 
632 	ifp = &sc->arpcom.ac_if;
633 	ifp->if_unit = device_get_unit(dev);
634 	ifp->if_name = "fxp";
635 	ifp->if_output = ether_output;
636 	ifp->if_baudrate = 100000000;
637 	ifp->if_init = fxp_init;
638 	ifp->if_softc = sc;
639 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
640 	ifp->if_ioctl = fxp_ioctl;
641 	ifp->if_start = fxp_start;
642 	ifp->if_watchdog = fxp_watchdog;
643 
644 	/*
645 	 * Attach the interface.
646 	 */
647 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
648 
649 	/*
650 	 * Tell the upper layer(s) we support long frames.
651 	 */
652 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
653 
654 	/*
655 	 * Let the system queue as many packets as we have available
656 	 * TX descriptors.
657 	 */
658 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
659 
660 	splx(s);
661 	return (0);
662 
663 failmem:
664 	device_printf(dev, "Failed to malloc memory\n");
665 	error = ENOMEM;
666 fail:
667 	splx(s);
668 	fxp_release(sc);
669 	return (error);
670 }
671 
672 /*
673  * release all resources
674  */
675 static void
676 fxp_release(struct fxp_softc *sc)
677 {
678 
679 	bus_generic_detach(sc->dev);
680 	if (sc->miibus)
681 		device_delete_child(sc->dev, sc->miibus);
682 
683 	if (sc->cbl_base)
684 		free(sc->cbl_base, M_DEVBUF);
685 	if (sc->fxp_stats)
686 		free(sc->fxp_stats, M_DEVBUF);
687 	if (sc->mcsp)
688 		free(sc->mcsp, M_DEVBUF);
689 	if (sc->rfa_headm)
690 		m_freem(sc->rfa_headm);
691 
692 	if (sc->ih)
693 		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
694 	if (sc->irq)
695 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
696 	if (sc->mem)
697 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
698 
699         sysctl_ctx_free(&sc->sysctl_ctx);
700 
701 	mtx_destroy(&sc->sc_mtx);
702 }
703 
704 /*
705  * Detach interface.
706  */
707 static int
708 fxp_detach(device_t dev)
709 {
710 	struct fxp_softc *sc = device_get_softc(dev);
711 	int s;
712 
713 	/* disable interrupts */
714 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
715 
716 	s = splimp();
717 
718 	/*
719 	 * Stop DMA and drop transmit queue.
720 	 */
721 	fxp_stop(sc);
722 
723 	/*
724 	 * Close down routes etc.
725 	 */
726 	ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
727 
728 	/*
729 	 * Free all media structures.
730 	 */
731 	ifmedia_removeall(&sc->sc_media);
732 
733 	splx(s);
734 
735 	/* Release our allocated resources. */
736 	fxp_release(sc);
737 
738 	return (0);
739 }
740 
741 /*
742  * Device shutdown routine. Called at system shutdown after sync. The
743  * main purpose of this routine is to shut off receiver DMA so that
744  * kernel memory doesn't get clobbered during warmboot.
745  */
746 static int
747 fxp_shutdown(device_t dev)
748 {
749 	/*
750 	 * Make sure that DMA is disabled prior to reboot. Not doing
751 	 * do could allow DMA to corrupt kernel memory during the
752 	 * reboot before the driver initializes.
753 	 */
754 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
755 	return (0);
756 }
757 
758 /*
759  * Device suspend routine.  Stop the interface and save some PCI
760  * settings in case the BIOS doesn't restore them properly on
761  * resume.
762  */
763 static int
764 fxp_suspend(device_t dev)
765 {
766 	struct fxp_softc *sc = device_get_softc(dev);
767 	int i, s;
768 
769 	s = splimp();
770 
771 	fxp_stop(sc);
772 
773 	for (i = 0; i < 5; i++)
774 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
775 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
776 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
777 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
778 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
779 
780 	sc->suspended = 1;
781 
782 	splx(s);
783 	return (0);
784 }
785 
786 /*
787  * Device resume routine.  Restore some PCI settings in case the BIOS
788  * doesn't, re-enable busmastering, and restart the interface if
789  * appropriate.
790  */
791 static int
792 fxp_resume(device_t dev)
793 {
794 	struct fxp_softc *sc = device_get_softc(dev);
795 	struct ifnet *ifp = &sc->sc_if;
796 	u_int16_t pci_command;
797 	int i, s;
798 
799 	s = splimp();
800 
801 	fxp_powerstate_d0(dev);
802 
803 	/* better way to do this? */
804 	for (i = 0; i < 5; i++)
805 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
806 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
807 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
808 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
809 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
810 
811 	/* reenable busmastering */
812 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
813 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
814 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
815 
816 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
817 	DELAY(10);
818 
819 	/* reinitialize interface if necessary */
820 	if (ifp->if_flags & IFF_UP)
821 		fxp_init(sc);
822 
823 	sc->suspended = 0;
824 
825 	splx(s);
826 	return (0);
827 }
828 
829 static void
830 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
831 {
832 	u_int16_t reg;
833 	int x;
834 
835 	/*
836 	 * Shift in data.
837 	 */
838 	for (x = 1 << (length - 1); x; x >>= 1) {
839 		if (data & x)
840 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
841 		else
842 			reg = FXP_EEPROM_EECS;
843 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
844 		DELAY(1);
845 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
846 		DELAY(1);
847 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
848 		DELAY(1);
849 	}
850 }
851 
852 /*
853  * Read from the serial EEPROM. Basically, you manually shift in
854  * the read opcode (one bit at a time) and then shift in the address,
855  * and then you shift out the data (all of this one bit at a time).
856  * The word size is 16 bits, so you have to provide the address for
857  * every 16 bits of data.
858  */
859 static u_int16_t
860 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
861 {
862 	u_int16_t reg, data;
863 	int x;
864 
865 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
866 	/*
867 	 * Shift in read opcode.
868 	 */
869 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
870 	/*
871 	 * Shift in address.
872 	 */
873 	data = 0;
874 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
875 		if (offset & x)
876 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
877 		else
878 			reg = FXP_EEPROM_EECS;
879 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
880 		DELAY(1);
881 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
882 		DELAY(1);
883 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
884 		DELAY(1);
885 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
886 		data++;
887 		if (autosize && reg == 0) {
888 			sc->eeprom_size = data;
889 			break;
890 		}
891 	}
892 	/*
893 	 * Shift out data.
894 	 */
895 	data = 0;
896 	reg = FXP_EEPROM_EECS;
897 	for (x = 1 << 15; x; x >>= 1) {
898 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
899 		DELAY(1);
900 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
901 			data |= x;
902 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
903 		DELAY(1);
904 	}
905 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
906 	DELAY(1);
907 
908 	return (data);
909 }
910 
911 static void
912 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
913 {
914 	int i;
915 
916 	/*
917 	 * Erase/write enable.
918 	 */
919 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
920 	fxp_eeprom_shiftin(sc, 0x4, 3);
921 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
922 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
923 	DELAY(1);
924 	/*
925 	 * Shift in write opcode, address, data.
926 	 */
927 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
928 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
929 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
930 	fxp_eeprom_shiftin(sc, data, 16);
931 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
932 	DELAY(1);
933 	/*
934 	 * Wait for EEPROM to finish up.
935 	 */
936 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
937 	DELAY(1);
938 	for (i = 0; i < 1000; i++) {
939 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
940 			break;
941 		DELAY(50);
942 	}
943 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
944 	DELAY(1);
945 	/*
946 	 * Erase/write disable.
947 	 */
948 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
949 	fxp_eeprom_shiftin(sc, 0x4, 3);
950 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
951 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
952 	DELAY(1);
953 }
954 
955 /*
956  * From NetBSD:
957  *
958  * Figure out EEPROM size.
959  *
960  * 559's can have either 64-word or 256-word EEPROMs, the 558
961  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
962  * talks about the existance of 16 to 256 word EEPROMs.
963  *
964  * The only known sizes are 64 and 256, where the 256 version is used
965  * by CardBus cards to store CIS information.
966  *
967  * The address is shifted in msb-to-lsb, and after the last
968  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
969  * after which follows the actual data. We try to detect this zero, by
970  * probing the data-out bit in the EEPROM control register just after
971  * having shifted in a bit. If the bit is zero, we assume we've
972  * shifted enough address bits. The data-out should be tri-state,
973  * before this, which should translate to a logical one.
974  */
975 static void
976 fxp_autosize_eeprom(struct fxp_softc *sc)
977 {
978 
979 	/* guess maximum size of 256 words */
980 	sc->eeprom_size = 8;
981 
982 	/* autosize */
983 	(void) fxp_eeprom_getword(sc, 0, 1);
984 }
985 
986 static void
987 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
988 {
989 	int i;
990 
991 	for (i = 0; i < words; i++)
992 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
993 }
994 
995 static void
996 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
997 {
998 	int i;
999 
1000 	for (i = 0; i < words; i++)
1001 		fxp_eeprom_putword(sc, offset + i, data[i]);
1002 }
1003 
1004 /*
1005  * Start packet transmission on the interface.
1006  */
1007 static void
1008 fxp_start(struct ifnet *ifp)
1009 {
1010 	struct fxp_softc *sc = ifp->if_softc;
1011 	struct fxp_cb_tx *txp;
1012 
1013 	/*
1014 	 * See if we need to suspend xmit until the multicast filter
1015 	 * has been reprogrammed (which can only be done at the head
1016 	 * of the command chain).
1017 	 */
1018 	if (sc->need_mcsetup) {
1019 		return;
1020 	}
1021 
1022 	txp = NULL;
1023 
1024 	/*
1025 	 * We're finished if there is nothing more to add to the list or if
1026 	 * we're all filled up with buffers to transmit.
1027 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1028 	 *       a NOP command when needed.
1029 	 */
1030 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1031 		struct mbuf *m, *mb_head;
1032 		int segment;
1033 
1034 		/*
1035 		 * Grab a packet to transmit.
1036 		 */
1037 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1038 
1039 		/*
1040 		 * Get pointer to next available tx desc.
1041 		 */
1042 		txp = sc->cbl_last->next;
1043 
1044 		/*
1045 		 * Go through each of the mbufs in the chain and initialize
1046 		 * the transmit buffer descriptors with the physical address
1047 		 * and size of the mbuf.
1048 		 */
1049 tbdinit:
1050 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1051 			if (m->m_len != 0) {
1052 				if (segment == FXP_NTXSEG)
1053 					break;
1054 				txp->tbd[segment].tb_addr =
1055 				    vtophys(mtod(m, vm_offset_t));
1056 				txp->tbd[segment].tb_size = m->m_len;
1057 				segment++;
1058 			}
1059 		}
1060 		if (m != NULL) {
1061 			struct mbuf *mn;
1062 
1063 			/*
1064 			 * We ran out of segments. We have to recopy this
1065 			 * mbuf chain first. Bail out if we can't get the
1066 			 * new buffers.
1067 			 */
1068 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1069 			if (mn == NULL) {
1070 				m_freem(mb_head);
1071 				break;
1072 			}
1073 			if (mb_head->m_pkthdr.len > MHLEN) {
1074 				MCLGET(mn, M_DONTWAIT);
1075 				if ((mn->m_flags & M_EXT) == 0) {
1076 					m_freem(mn);
1077 					m_freem(mb_head);
1078 					break;
1079 				}
1080 			}
1081 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1082 			    mtod(mn, caddr_t));
1083 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1084 			m_freem(mb_head);
1085 			mb_head = mn;
1086 			goto tbdinit;
1087 		}
1088 
1089 		txp->tbd_number = segment;
1090 		txp->mb_head = mb_head;
1091 		txp->cb_status = 0;
1092 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1093 			txp->cb_command =
1094 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1095 			    FXP_CB_COMMAND_S;
1096 		} else {
1097 			txp->cb_command =
1098 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1099 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1100 			/*
1101 			 * Set a 5 second timer just in case we don't hear
1102 			 * from the card again.
1103 			 */
1104 			ifp->if_timer = 5;
1105 		}
1106 		txp->tx_threshold = tx_threshold;
1107 
1108 		/*
1109 		 * Advance the end of list forward.
1110 		 */
1111 
1112 #ifdef __alpha__
1113 		/*
1114 		 * On platforms which can't access memory in 16-bit
1115 		 * granularities, we must prevent the card from DMA'ing
1116 		 * up the status while we update the command field.
1117 		 * This could cause us to overwrite the completion status.
1118 		 */
1119 		atomic_clear_short(&sc->cbl_last->cb_command,
1120 		    FXP_CB_COMMAND_S);
1121 #else
1122 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1123 #endif /*__alpha__*/
1124 		sc->cbl_last = txp;
1125 
1126 		/*
1127 		 * Advance the beginning of the list forward if there are
1128 		 * no other packets queued (when nothing is queued, cbl_first
1129 		 * sits on the last TxCB that was sent out).
1130 		 */
1131 		if (sc->tx_queued == 0)
1132 			sc->cbl_first = txp;
1133 
1134 		sc->tx_queued++;
1135 
1136 		/*
1137 		 * Pass packet to bpf if there is a listener.
1138 		 */
1139 		if (ifp->if_bpf)
1140 			bpf_mtap(ifp, mb_head);
1141 	}
1142 
1143 	/*
1144 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1145 	 * going again if suspended.
1146 	 */
1147 	if (txp != NULL) {
1148 		fxp_scb_wait(sc);
1149 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1150 	}
1151 }
1152 
1153 /*
1154  * Process interface interrupts.
1155  */
1156 static void
1157 fxp_intr(void *xsc)
1158 {
1159 	struct fxp_softc *sc = xsc;
1160 	struct ifnet *ifp = &sc->sc_if;
1161 	u_int8_t statack;
1162 
1163 	if (sc->suspended) {
1164 		return;
1165 	}
1166 
1167 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1168 		/*
1169 		 * It should not be possible to have all bits set; the
1170 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1171 		 * all bits are set, this may indicate that the card has
1172 		 * been physically ejected, so ignore it.
1173 		 */
1174 		if (statack == 0xff)
1175 			return;
1176 
1177 		/*
1178 		 * First ACK all the interrupts in this pass.
1179 		 */
1180 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1181 
1182 		/*
1183 		 * Free any finished transmit mbuf chains.
1184 		 *
1185 		 * Handle the CNA event likt a CXTNO event. It used to
1186 		 * be that this event (control unit not ready) was not
1187 		 * encountered, but it is now with the SMPng modifications.
1188 		 * The exact sequence of events that occur when the interface
1189 		 * is brought up are different now, and if this event
1190 		 * goes unhandled, the configuration/rxfilter setup sequence
1191 		 * can stall for several seconds. The result is that no
1192 		 * packets go out onto the wire for about 5 to 10 seconds
1193 		 * after the interface is ifconfig'ed for the first time.
1194 		 */
1195 		if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1196 			struct fxp_cb_tx *txp;
1197 
1198 			for (txp = sc->cbl_first; sc->tx_queued &&
1199 			    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1200 			    txp = txp->next) {
1201 				if (txp->mb_head != NULL) {
1202 					m_freem(txp->mb_head);
1203 					txp->mb_head = NULL;
1204 				}
1205 				sc->tx_queued--;
1206 			}
1207 			sc->cbl_first = txp;
1208 			ifp->if_timer = 0;
1209 			if (sc->tx_queued == 0) {
1210 				if (sc->need_mcsetup)
1211 					fxp_mc_setup(sc);
1212 			}
1213 			/*
1214 			 * Try to start more packets transmitting.
1215 			 */
1216 			if (ifp->if_snd.ifq_head != NULL)
1217 				fxp_start(ifp);
1218 		}
1219 		/*
1220 		 * Process receiver interrupts. If a no-resource (RNR)
1221 		 * condition exists, get whatever packets we can and
1222 		 * re-start the receiver.
1223 		 */
1224 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1225 			struct mbuf *m;
1226 			struct fxp_rfa *rfa;
1227 rcvloop:
1228 			m = sc->rfa_headm;
1229 			rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1230 			    RFA_ALIGNMENT_FUDGE);
1231 
1232 			if (rfa->rfa_status & FXP_RFA_STATUS_C) {
1233 				/*
1234 				 * Remove first packet from the chain.
1235 				 */
1236 				sc->rfa_headm = m->m_next;
1237 				m->m_next = NULL;
1238 
1239 				/*
1240 				 * Add a new buffer to the receive chain.
1241 				 * If this fails, the old buffer is recycled
1242 				 * instead.
1243 				 */
1244 				if (fxp_add_rfabuf(sc, m) == 0) {
1245 					struct ether_header *eh;
1246 					int total_len;
1247 
1248 					total_len = rfa->actual_size &
1249 					    (MCLBYTES - 1);
1250 					if (total_len <
1251 					    sizeof(struct ether_header)) {
1252 						m_freem(m);
1253 						goto rcvloop;
1254 					}
1255 
1256 					/*
1257 					 * Drop the packet if it has CRC
1258 					 * errors.  This test is only needed
1259 					 * when doing 802.1q VLAN on the 82557
1260 					 * chip.
1261 					 */
1262 					if (rfa->rfa_status &
1263 					    FXP_RFA_STATUS_CRC) {
1264 						m_freem(m);
1265 						goto rcvloop;
1266 					}
1267 
1268 					m->m_pkthdr.rcvif = ifp;
1269 					m->m_pkthdr.len = m->m_len = total_len;
1270 					eh = mtod(m, struct ether_header *);
1271 					m->m_data +=
1272 					    sizeof(struct ether_header);
1273 					m->m_len -=
1274 					    sizeof(struct ether_header);
1275 					m->m_pkthdr.len = m->m_len;
1276 					ether_input(ifp, eh, m);
1277 				}
1278 				goto rcvloop;
1279 			}
1280 			if (statack & FXP_SCB_STATACK_RNR) {
1281 				fxp_scb_wait(sc);
1282 				CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1283 				    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1284 					RFA_ALIGNMENT_FUDGE);
1285 				fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1286 			}
1287 		}
1288 	}
1289 }
1290 
1291 /*
1292  * Update packet in/out/collision statistics. The i82557 doesn't
1293  * allow you to access these counters without doing a fairly
1294  * expensive DMA to get _all_ of the statistics it maintains, so
1295  * we do this operation here only once per second. The statistics
1296  * counters in the kernel are updated from the previous dump-stats
1297  * DMA and then a new dump-stats DMA is started. The on-chip
1298  * counters are zeroed when the DMA completes. If we can't start
1299  * the DMA immediately, we don't wait - we just prepare to read
1300  * them again next time.
1301  */
1302 static void
1303 fxp_tick(void *xsc)
1304 {
1305 	struct fxp_softc *sc = xsc;
1306 	struct ifnet *ifp = &sc->sc_if;
1307 	struct fxp_stats *sp = sc->fxp_stats;
1308 	struct fxp_cb_tx *txp;
1309 	int s;
1310 
1311 	ifp->if_opackets += sp->tx_good;
1312 	ifp->if_collisions += sp->tx_total_collisions;
1313 	if (sp->rx_good) {
1314 		ifp->if_ipackets += sp->rx_good;
1315 		sc->rx_idle_secs = 0;
1316 	} else {
1317 		/*
1318 		 * Receiver's been idle for another second.
1319 		 */
1320 		sc->rx_idle_secs++;
1321 	}
1322 	ifp->if_ierrors +=
1323 	    sp->rx_crc_errors +
1324 	    sp->rx_alignment_errors +
1325 	    sp->rx_rnr_errors +
1326 	    sp->rx_overrun_errors;
1327 	/*
1328 	 * If any transmit underruns occured, bump up the transmit
1329 	 * threshold by another 512 bytes (64 * 8).
1330 	 */
1331 	if (sp->tx_underruns) {
1332 		ifp->if_oerrors += sp->tx_underruns;
1333 		if (tx_threshold < 192)
1334 			tx_threshold += 64;
1335 	}
1336 	s = splimp();
1337 	/*
1338 	 * Release any xmit buffers that have completed DMA. This isn't
1339 	 * strictly necessary to do here, but it's advantagous for mbufs
1340 	 * with external storage to be released in a timely manner rather
1341 	 * than being defered for a potentially long time. This limits
1342 	 * the delay to a maximum of one second.
1343 	 */
1344 	for (txp = sc->cbl_first; sc->tx_queued &&
1345 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1346 	    txp = txp->next) {
1347 		if (txp->mb_head != NULL) {
1348 			m_freem(txp->mb_head);
1349 			txp->mb_head = NULL;
1350 		}
1351 		sc->tx_queued--;
1352 	}
1353 	sc->cbl_first = txp;
1354 	/*
1355 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1356 	 * then assume the receiver has locked up and attempt to clear
1357 	 * the condition by reprogramming the multicast filter. This is
1358 	 * a work-around for a bug in the 82557 where the receiver locks
1359 	 * up if it gets certain types of garbage in the syncronization
1360 	 * bits prior to the packet header. This bug is supposed to only
1361 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1362 	 * mode as well (perhaps due to a 10/100 speed transition).
1363 	 */
1364 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1365 		sc->rx_idle_secs = 0;
1366 		fxp_mc_setup(sc);
1367 	}
1368 	/*
1369 	 * If there is no pending command, start another stats
1370 	 * dump. Otherwise punt for now.
1371 	 */
1372 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1373 		/*
1374 		 * Start another stats dump.
1375 		 */
1376 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1377 	} else {
1378 		/*
1379 		 * A previous command is still waiting to be accepted.
1380 		 * Just zero our copy of the stats and wait for the
1381 		 * next timer event to update them.
1382 		 */
1383 		sp->tx_good = 0;
1384 		sp->tx_underruns = 0;
1385 		sp->tx_total_collisions = 0;
1386 
1387 		sp->rx_good = 0;
1388 		sp->rx_crc_errors = 0;
1389 		sp->rx_alignment_errors = 0;
1390 		sp->rx_rnr_errors = 0;
1391 		sp->rx_overrun_errors = 0;
1392 	}
1393 	if (sc->miibus != NULL)
1394 		mii_tick(device_get_softc(sc->miibus));
1395 	splx(s);
1396 	/*
1397 	 * Schedule another timeout one second from now.
1398 	 */
1399 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1400 }
1401 
1402 /*
1403  * Stop the interface. Cancels the statistics updater and resets
1404  * the interface.
1405  */
1406 static void
1407 fxp_stop(struct fxp_softc *sc)
1408 {
1409 	struct ifnet *ifp = &sc->sc_if;
1410 	struct fxp_cb_tx *txp;
1411 	int i;
1412 
1413 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1414 	ifp->if_timer = 0;
1415 
1416 	/*
1417 	 * Cancel stats updater.
1418 	 */
1419 	untimeout(fxp_tick, sc, sc->stat_ch);
1420 
1421 	/*
1422 	 * Issue software reset, which also unloads the microcode.
1423 	 */
1424 	sc->flags &= ~FXP_FLAG_UCODE;
1425 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1426 	DELAY(50);
1427 
1428 	/*
1429 	 * Release any xmit buffers.
1430 	 */
1431 	txp = sc->cbl_base;
1432 	if (txp != NULL) {
1433 		for (i = 0; i < FXP_NTXCB; i++) {
1434 			if (txp[i].mb_head != NULL) {
1435 				m_freem(txp[i].mb_head);
1436 				txp[i].mb_head = NULL;
1437 			}
1438 		}
1439 	}
1440 	sc->tx_queued = 0;
1441 
1442 	/*
1443 	 * Free all the receive buffers then reallocate/reinitialize
1444 	 */
1445 	if (sc->rfa_headm != NULL)
1446 		m_freem(sc->rfa_headm);
1447 	sc->rfa_headm = NULL;
1448 	sc->rfa_tailm = NULL;
1449 	for (i = 0; i < FXP_NRFABUFS; i++) {
1450 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1451 			/*
1452 			 * This "can't happen" - we're at splimp()
1453 			 * and we just freed all the buffers we need
1454 			 * above.
1455 			 */
1456 			panic("fxp_stop: no buffers!");
1457 		}
1458 	}
1459 }
1460 
1461 /*
1462  * Watchdog/transmission transmit timeout handler. Called when a
1463  * transmission is started on the interface, but no interrupt is
1464  * received before the timeout. This usually indicates that the
1465  * card has wedged for some reason.
1466  */
1467 static void
1468 fxp_watchdog(struct ifnet *ifp)
1469 {
1470 	struct fxp_softc *sc = ifp->if_softc;
1471 
1472 	device_printf(sc->dev, "device timeout\n");
1473 	ifp->if_oerrors++;
1474 
1475 	fxp_init(sc);
1476 }
1477 
1478 static void
1479 fxp_init(void *xsc)
1480 {
1481 	struct fxp_softc *sc = xsc;
1482 	struct ifnet *ifp = &sc->sc_if;
1483 	struct fxp_cb_config *cbp;
1484 	struct fxp_cb_ias *cb_ias;
1485 	struct fxp_cb_tx *txp;
1486 	int i, prm, s;
1487 
1488 	s = splimp();
1489 	/*
1490 	 * Cancel any pending I/O
1491 	 */
1492 	fxp_stop(sc);
1493 
1494 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1495 
1496 	/*
1497 	 * Initialize base of CBL and RFA memory. Loading with zero
1498 	 * sets it up for regular linear addressing.
1499 	 */
1500 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1501 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1502 
1503 	fxp_scb_wait(sc);
1504 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1505 
1506 	/*
1507 	 * Initialize base of dump-stats buffer.
1508 	 */
1509 	fxp_scb_wait(sc);
1510 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1511 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1512 
1513 	/*
1514 	 * Attempt to load microcode if requested.
1515 	 */
1516 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1517 		fxp_load_ucode(sc);
1518 
1519 	/*
1520 	 * We temporarily use memory that contains the TxCB list to
1521 	 * construct the config CB. The TxCB list memory is rebuilt
1522 	 * later.
1523 	 */
1524 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1525 
1526 	/*
1527 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1528 	 * zero and must be one bits in this structure and this is the easiest
1529 	 * way to initialize them all to proper values.
1530 	 */
1531 	bcopy(fxp_cb_config_template,
1532 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1533 		sizeof(fxp_cb_config_template));
1534 
1535 	cbp->cb_status =	0;
1536 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1537 	cbp->link_addr =	-1;	/* (no) next command */
1538 	cbp->byte_count =	22;	/* (22) bytes to config */
1539 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1540 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1541 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1542 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1543 	cbp->type_enable =	0;	/* actually reserved */
1544 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1545 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1546 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1547 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1548 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1549 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1550 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1551 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1552 	cbp->ci_int =		1;	/* interrupt on CU idle */
1553 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1554 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1555 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1556 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1557 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1558 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1559 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1560 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1561 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1562 	cbp->csma_dis =		0;	/* (don't) disable link */
1563 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1564 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1565 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1566 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1567 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1568 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1569 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1570 	cbp->loopback =		0;	/* (don't) loopback */
1571 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1572 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1573 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1574 	cbp->promiscuous =	prm;	/* promiscuous mode */
1575 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1576 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1577 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1578 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1579 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1580 
1581 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1582 	cbp->padding =		1;	/* (do) pad short tx packets */
1583 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1584 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1585 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1586 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1587 					/* must set wake_en in PMCSR also */
1588 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1589 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1590 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1591 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1592 
1593 	if (sc->revision == FXP_REV_82557) {
1594 		/*
1595 		 * The 82557 has no hardware flow control, the values
1596 		 * below are the defaults for the chip.
1597 		 */
1598 		cbp->fc_delay_lsb =	0;
1599 		cbp->fc_delay_msb =	0x40;
1600 		cbp->pri_fc_thresh =	3;
1601 		cbp->tx_fc_dis =	0;
1602 		cbp->rx_fc_restop =	0;
1603 		cbp->rx_fc_restart =	0;
1604 		cbp->fc_filter =	0;
1605 		cbp->pri_fc_loc =	1;
1606 	} else {
1607 		cbp->fc_delay_lsb =	0x1f;
1608 		cbp->fc_delay_msb =	0x01;
1609 		cbp->pri_fc_thresh =	3;
1610 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1611 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1612 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1613 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1614 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1615 	}
1616 
1617 	/*
1618 	 * Start the config command/DMA.
1619 	 */
1620 	fxp_scb_wait(sc);
1621 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1622 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1623 	/* ...and wait for it to complete. */
1624 	fxp_dma_wait(&cbp->cb_status, sc);
1625 
1626 	/*
1627 	 * Now initialize the station address. Temporarily use the TxCB
1628 	 * memory area like we did above for the config CB.
1629 	 */
1630 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1631 	cb_ias->cb_status = 0;
1632 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1633 	cb_ias->link_addr = -1;
1634 	bcopy(sc->arpcom.ac_enaddr,
1635 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1636 	    sizeof(sc->arpcom.ac_enaddr));
1637 
1638 	/*
1639 	 * Start the IAS (Individual Address Setup) command/DMA.
1640 	 */
1641 	fxp_scb_wait(sc);
1642 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1643 	/* ...and wait for it to complete. */
1644 	fxp_dma_wait(&cb_ias->cb_status, sc);
1645 
1646 	/*
1647 	 * Initialize transmit control block (TxCB) list.
1648 	 */
1649 
1650 	txp = sc->cbl_base;
1651 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1652 	for (i = 0; i < FXP_NTXCB; i++) {
1653 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1654 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1655 		txp[i].link_addr =
1656 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1657 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1658 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1659 		else
1660 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1661 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1662 	}
1663 	/*
1664 	 * Set the suspend flag on the first TxCB and start the control
1665 	 * unit. It will execute the NOP and then suspend.
1666 	 */
1667 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1668 	sc->cbl_first = sc->cbl_last = txp;
1669 	sc->tx_queued = 1;
1670 
1671 	fxp_scb_wait(sc);
1672 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1673 
1674 	/*
1675 	 * Initialize receiver buffer area - RFA.
1676 	 */
1677 	fxp_scb_wait(sc);
1678 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1679 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1680 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1681 
1682 	/*
1683 	 * Set current media.
1684 	 */
1685 	if (sc->miibus != NULL)
1686 		mii_mediachg(device_get_softc(sc->miibus));
1687 
1688 	ifp->if_flags |= IFF_RUNNING;
1689 	ifp->if_flags &= ~IFF_OACTIVE;
1690 
1691 	/*
1692 	 * Enable interrupts.
1693 	 */
1694 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1695 	splx(s);
1696 
1697 	/*
1698 	 * Start stats updater.
1699 	 */
1700 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1701 }
1702 
1703 static int
1704 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1705 {
1706 
1707 	return (0);
1708 }
1709 
1710 static void
1711 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1712 {
1713 
1714 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1715 }
1716 
1717 /*
1718  * Change media according to request.
1719  */
1720 static int
1721 fxp_ifmedia_upd(struct ifnet *ifp)
1722 {
1723 	struct fxp_softc *sc = ifp->if_softc;
1724 	struct mii_data *mii;
1725 
1726 	mii = device_get_softc(sc->miibus);
1727 	mii_mediachg(mii);
1728 	return (0);
1729 }
1730 
1731 /*
1732  * Notify the world which media we're using.
1733  */
1734 static void
1735 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1736 {
1737 	struct fxp_softc *sc = ifp->if_softc;
1738 	struct mii_data *mii;
1739 
1740 	mii = device_get_softc(sc->miibus);
1741 	mii_pollstat(mii);
1742 	ifmr->ifm_active = mii->mii_media_active;
1743 	ifmr->ifm_status = mii->mii_media_status;
1744 
1745 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1746 		sc->cu_resume_bug = 1;
1747 	else
1748 		sc->cu_resume_bug = 0;
1749 }
1750 
1751 /*
1752  * Add a buffer to the end of the RFA buffer list.
1753  * Return 0 if successful, 1 for failure. A failure results in
1754  * adding the 'oldm' (if non-NULL) on to the end of the list -
1755  * tossing out its old contents and recycling it.
1756  * The RFA struct is stuck at the beginning of mbuf cluster and the
1757  * data pointer is fixed up to point just past it.
1758  */
1759 static int
1760 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1761 {
1762 	u_int32_t v;
1763 	struct mbuf *m;
1764 	struct fxp_rfa *rfa, *p_rfa;
1765 
1766 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1767 	if (m != NULL) {
1768 		MCLGET(m, M_DONTWAIT);
1769 		if ((m->m_flags & M_EXT) == 0) {
1770 			device_printf(sc->dev,
1771 			    "cluster allocation failed, packet dropped!\n");
1772 			m_freem(m);
1773 			if (oldm == NULL)
1774 				return 1;
1775 			m = oldm;
1776 			m->m_data = m->m_ext.ext_buf;
1777 		}
1778 	} else {
1779 		device_printf(sc->dev,
1780 		    "mbuf allocation failed, packet dropped!\n");
1781 		if (oldm == NULL)
1782 			return 1;
1783 		m = oldm;
1784 		m->m_data = m->m_ext.ext_buf;
1785 	}
1786 
1787 	/*
1788 	 * Move the data pointer up so that the incoming data packet
1789 	 * will be 32-bit aligned.
1790 	 */
1791 	m->m_data += RFA_ALIGNMENT_FUDGE;
1792 
1793 	/*
1794 	 * Get a pointer to the base of the mbuf cluster and move
1795 	 * data start past it.
1796 	 */
1797 	rfa = mtod(m, struct fxp_rfa *);
1798 	m->m_data += sizeof(struct fxp_rfa);
1799 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1800 
1801 	/*
1802 	 * Initialize the rest of the RFA.  Note that since the RFA
1803 	 * is misaligned, we cannot store values directly.  Instead,
1804 	 * we use an optimized, inline copy.
1805 	 */
1806 
1807 	rfa->rfa_status = 0;
1808 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1809 	rfa->actual_size = 0;
1810 
1811 	v = -1;
1812 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1813 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1814 
1815 	/*
1816 	 * If there are other buffers already on the list, attach this
1817 	 * one to the end by fixing up the tail to point to this one.
1818 	 */
1819 	if (sc->rfa_headm != NULL) {
1820 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1821 		    RFA_ALIGNMENT_FUDGE);
1822 		sc->rfa_tailm->m_next = m;
1823 		v = vtophys(rfa);
1824 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1825 		p_rfa->rfa_control = 0;
1826 	} else {
1827 		sc->rfa_headm = m;
1828 	}
1829 	sc->rfa_tailm = m;
1830 
1831 	return (m == oldm);
1832 }
1833 
1834 static volatile int
1835 fxp_miibus_readreg(device_t dev, int phy, int reg)
1836 {
1837 	struct fxp_softc *sc = device_get_softc(dev);
1838 	int count = 10000;
1839 	int value;
1840 
1841 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1842 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1843 
1844 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1845 	    && count--)
1846 		DELAY(10);
1847 
1848 	if (count <= 0)
1849 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1850 
1851 	return (value & 0xffff);
1852 }
1853 
1854 static void
1855 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1856 {
1857 	struct fxp_softc *sc = device_get_softc(dev);
1858 	int count = 10000;
1859 
1860 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1861 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1862 	    (value & 0xffff));
1863 
1864 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1865 	    count--)
1866 		DELAY(10);
1867 
1868 	if (count <= 0)
1869 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1870 }
1871 
1872 static int
1873 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1874 {
1875 	struct fxp_softc *sc = ifp->if_softc;
1876 	struct ifreq *ifr = (struct ifreq *)data;
1877 	struct mii_data *mii;
1878 	int s, error = 0;
1879 
1880 	s = splimp();
1881 
1882 	switch (command) {
1883 	case SIOCSIFADDR:
1884 	case SIOCGIFADDR:
1885 	case SIOCSIFMTU:
1886 		error = ether_ioctl(ifp, command, data);
1887 		break;
1888 
1889 	case SIOCSIFFLAGS:
1890 		if (ifp->if_flags & IFF_ALLMULTI)
1891 			sc->flags |= FXP_FLAG_ALL_MCAST;
1892 		else
1893 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1894 
1895 		/*
1896 		 * If interface is marked up and not running, then start it.
1897 		 * If it is marked down and running, stop it.
1898 		 * XXX If it's up then re-initialize it. This is so flags
1899 		 * such as IFF_PROMISC are handled.
1900 		 */
1901 		if (ifp->if_flags & IFF_UP) {
1902 			fxp_init(sc);
1903 		} else {
1904 			if (ifp->if_flags & IFF_RUNNING)
1905 				fxp_stop(sc);
1906 		}
1907 		break;
1908 
1909 	case SIOCADDMULTI:
1910 	case SIOCDELMULTI:
1911 		if (ifp->if_flags & IFF_ALLMULTI)
1912 			sc->flags |= FXP_FLAG_ALL_MCAST;
1913 		else
1914 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1915 		/*
1916 		 * Multicast list has changed; set the hardware filter
1917 		 * accordingly.
1918 		 */
1919 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
1920 			fxp_mc_setup(sc);
1921 		/*
1922 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
1923 		 * again rather than else {}.
1924 		 */
1925 		if (sc->flags & FXP_FLAG_ALL_MCAST)
1926 			fxp_init(sc);
1927 		error = 0;
1928 		break;
1929 
1930 	case SIOCSIFMEDIA:
1931 	case SIOCGIFMEDIA:
1932 		if (sc->miibus != NULL) {
1933 			mii = device_get_softc(sc->miibus);
1934                         error = ifmedia_ioctl(ifp, ifr,
1935                             &mii->mii_media, command);
1936 		} else {
1937                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
1938 		}
1939 		break;
1940 
1941 	default:
1942 		error = EINVAL;
1943 	}
1944 	splx(s);
1945 	return (error);
1946 }
1947 
1948 /*
1949  * Program the multicast filter.
1950  *
1951  * We have an artificial restriction that the multicast setup command
1952  * must be the first command in the chain, so we take steps to ensure
1953  * this. By requiring this, it allows us to keep up the performance of
1954  * the pre-initialized command ring (esp. link pointers) by not actually
1955  * inserting the mcsetup command in the ring - i.e. its link pointer
1956  * points to the TxCB ring, but the mcsetup descriptor itself is not part
1957  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
1958  * lead into the regular TxCB ring when it completes.
1959  *
1960  * This function must be called at splimp.
1961  */
1962 static void
1963 fxp_mc_setup(struct fxp_softc *sc)
1964 {
1965 	struct fxp_cb_mcs *mcsp = sc->mcsp;
1966 	struct ifnet *ifp = &sc->sc_if;
1967 	struct ifmultiaddr *ifma;
1968 	int nmcasts;
1969 	int count;
1970 
1971 	/*
1972 	 * If there are queued commands, we must wait until they are all
1973 	 * completed. If we are already waiting, then add a NOP command
1974 	 * with interrupt option so that we're notified when all commands
1975 	 * have been completed - fxp_start() ensures that no additional
1976 	 * TX commands will be added when need_mcsetup is true.
1977 	 */
1978 	if (sc->tx_queued) {
1979 		struct fxp_cb_tx *txp;
1980 
1981 		/*
1982 		 * need_mcsetup will be true if we are already waiting for the
1983 		 * NOP command to be completed (see below). In this case, bail.
1984 		 */
1985 		if (sc->need_mcsetup)
1986 			return;
1987 		sc->need_mcsetup = 1;
1988 
1989 		/*
1990 		 * Add a NOP command with interrupt so that we are notified
1991 		 * when all TX commands have been processed.
1992 		 */
1993 		txp = sc->cbl_last->next;
1994 		txp->mb_head = NULL;
1995 		txp->cb_status = 0;
1996 		txp->cb_command = FXP_CB_COMMAND_NOP |
1997 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1998 		/*
1999 		 * Advance the end of list forward.
2000 		 */
2001 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2002 		sc->cbl_last = txp;
2003 		sc->tx_queued++;
2004 		/*
2005 		 * Issue a resume in case the CU has just suspended.
2006 		 */
2007 		fxp_scb_wait(sc);
2008 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2009 		/*
2010 		 * Set a 5 second timer just in case we don't hear from the
2011 		 * card again.
2012 		 */
2013 		ifp->if_timer = 5;
2014 
2015 		return;
2016 	}
2017 	sc->need_mcsetup = 0;
2018 
2019 	/*
2020 	 * Initialize multicast setup descriptor.
2021 	 */
2022 	mcsp->next = sc->cbl_base;
2023 	mcsp->mb_head = NULL;
2024 	mcsp->cb_status = 0;
2025 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2026 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2027 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2028 
2029 	nmcasts = 0;
2030 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2031 #if __FreeBSD_version < 500000
2032 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2033 #else
2034 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2035 #endif
2036 			if (ifma->ifma_addr->sa_family != AF_LINK)
2037 				continue;
2038 			if (nmcasts >= MAXMCADDR) {
2039 				sc->flags |= FXP_FLAG_ALL_MCAST;
2040 				nmcasts = 0;
2041 				break;
2042 			}
2043 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2044 			    (void *)(uintptr_t)(volatile void *)
2045 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2046 			nmcasts++;
2047 		}
2048 	}
2049 	mcsp->mc_cnt = nmcasts * 6;
2050 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2051 	sc->tx_queued = 1;
2052 
2053 	/*
2054 	 * Wait until command unit is not active. This should never
2055 	 * be the case when nothing is queued, but make sure anyway.
2056 	 */
2057 	count = 100;
2058 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2059 	    FXP_SCB_CUS_ACTIVE && --count)
2060 		DELAY(10);
2061 	if (count == 0) {
2062 		device_printf(sc->dev, "command queue timeout\n");
2063 		return;
2064 	}
2065 
2066 	/*
2067 	 * Start the multicast setup command.
2068 	 */
2069 	fxp_scb_wait(sc);
2070 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2071 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2072 
2073 	ifp->if_timer = 2;
2074 	return;
2075 }
2076 
2077 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2078 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2079 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2080 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2081 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2082 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2083 
2084 #define UCODE(x)	x, sizeof(x)
2085 
2086 struct ucode {
2087 	u_int32_t	revision;
2088 	u_int32_t	*ucode;
2089 	int		length;
2090 	u_short		int_delay_offset;
2091 	u_short		bundle_max_offset;
2092 } ucode_table[] = {
2093 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2094 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2095 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2096 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2097 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2098 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2099 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2100 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2101 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2102 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2103 	{ 0, NULL, 0, 0, 0 }
2104 };
2105 
2106 static void
2107 fxp_load_ucode(struct fxp_softc *sc)
2108 {
2109 	struct ucode *uc;
2110 	struct fxp_cb_ucode *cbp;
2111 
2112 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2113 		if (sc->revision == uc->revision)
2114 			break;
2115 	if (uc->ucode == NULL)
2116 		return;
2117 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2118 	cbp->cb_status = 0;
2119 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2120 	cbp->link_addr = -1;    	/* (no) next command */
2121 	memcpy(cbp->ucode, uc->ucode, uc->length);
2122 	if (uc->int_delay_offset)
2123 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2124 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2125 	if (uc->bundle_max_offset)
2126 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2127 		    sc->tunable_bundle_max;
2128 	/*
2129 	 * Download the ucode to the chip.
2130 	 */
2131 	fxp_scb_wait(sc);
2132 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2133 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2134 	/* ...and wait for it to complete. */
2135 	fxp_dma_wait(&cbp->cb_status, sc);
2136 	device_printf(sc->dev,
2137 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2138 	    sc->tunable_int_delay,
2139 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2140 	sc->flags |= FXP_FLAG_UCODE;
2141 }
2142 
2143 static int
2144 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2145 {
2146 	int error, value;
2147 
2148 	value = *(int *)arg1;
2149 	error = sysctl_handle_int(oidp, &value, 0, req);
2150 	if (error || !req->newptr)
2151 		return (error);
2152 	if (value < low || value > high)
2153 		return (EINVAL);
2154 	*(int *)arg1 = value;
2155 	return (0);
2156 }
2157 
2158 /*
2159  * Interrupt delay is expressed in microseconds, a multiplier is used
2160  * to convert this to the appropriate clock ticks before using.
2161  */
2162 static int
2163 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2164 {
2165 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2166 }
2167 
2168 static int
2169 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2170 {
2171 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2172 }
2173