1 /*- 2 * Copyright (c) 1995, David Greenman 3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice unmodified, this list of conditions, and the following 11 * disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 /* 32 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/mbuf.h> 38 #include <sys/malloc.h> 39 /* #include <sys/mutex.h> */ 40 #include <sys/kernel.h> 41 #include <sys/socket.h> 42 #include <sys/sysctl.h> 43 44 #include <net/if.h> 45 #include <net/if_dl.h> 46 #include <net/if_media.h> 47 48 #ifdef NS 49 #include <netns/ns.h> 50 #include <netns/ns_if.h> 51 #endif 52 53 #include <net/bpf.h> 54 #include <sys/sockio.h> 55 #include <sys/bus.h> 56 #include <machine/bus.h> 57 #include <sys/rman.h> 58 #include <machine/resource.h> 59 60 #include <net/ethernet.h> 61 #include <net/if_arp.h> 62 63 #include <vm/vm.h> /* for vtophys */ 64 #include <vm/pmap.h> /* for vtophys */ 65 #include <machine/clock.h> /* for DELAY */ 66 67 #include <net/if_types.h> 68 #include <net/if_vlan_var.h> 69 70 #include <pci/pcivar.h> 71 #include <pci/pcireg.h> /* for PCIM_CMD_xxx */ 72 73 #include <dev/mii/mii.h> 74 #include <dev/mii/miivar.h> 75 76 #include <dev/fxp/if_fxpreg.h> 77 #include <dev/fxp/if_fxpvar.h> 78 #include <dev/fxp/rcvbundl.h> 79 80 MODULE_DEPEND(fxp, miibus, 1, 1, 1); 81 #include "miibus_if.h" 82 83 /* 84 * NOTE! On the Alpha, we have an alignment constraint. The 85 * card DMAs the packet immediately following the RFA. However, 86 * the first thing in the packet is a 14-byte Ethernet header. 87 * This means that the packet is misaligned. To compensate, 88 * we actually offset the RFA 2 bytes into the cluster. This 89 * alignes the packet after the Ethernet header at a 32-bit 90 * boundary. HOWEVER! This means that the RFA is misaligned! 91 */ 92 #define RFA_ALIGNMENT_FUDGE 2 93 94 /* 95 * Set initial transmit threshold at 64 (512 bytes). This is 96 * increased by 64 (512 bytes) at a time, to maximum of 192 97 * (1536 bytes), if an underrun occurs. 98 */ 99 static int tx_threshold = 64; 100 101 /* 102 * The configuration byte map has several undefined fields which 103 * must be one or must be zero. Set up a template for these bits 104 * only, (assuming a 82557 chip) leaving the actual configuration 105 * to fxp_init. 106 * 107 * See struct fxp_cb_config for the bit definitions. 108 */ 109 static u_char fxp_cb_config_template[] = { 110 0x0, 0x0, /* cb_status */ 111 0x0, 0x0, /* cb_command */ 112 0x0, 0x0, 0x0, 0x0, /* link_addr */ 113 0x0, /* 0 */ 114 0x0, /* 1 */ 115 0x0, /* 2 */ 116 0x0, /* 3 */ 117 0x0, /* 4 */ 118 0x0, /* 5 */ 119 0x32, /* 6 */ 120 0x0, /* 7 */ 121 0x0, /* 8 */ 122 0x0, /* 9 */ 123 0x6, /* 10 */ 124 0x0, /* 11 */ 125 0x0, /* 12 */ 126 0x0, /* 13 */ 127 0xf2, /* 14 */ 128 0x48, /* 15 */ 129 0x0, /* 16 */ 130 0x40, /* 17 */ 131 0xf0, /* 18 */ 132 0x0, /* 19 */ 133 0x3f, /* 20 */ 134 0x5 /* 21 */ 135 }; 136 137 struct fxp_ident { 138 u_int16_t devid; 139 char *name; 140 }; 141 142 /* 143 * Claim various Intel PCI device identifiers for this driver. The 144 * sub-vendor and sub-device field are extensively used to identify 145 * particular variants, but we don't currently differentiate between 146 * them. 147 */ 148 static struct fxp_ident fxp_ident_table[] = { 149 { 0x1229, "Intel Pro 10/100B/100+ Ethernet" }, 150 { 0x2449, "Intel Pro/100 Ethernet" }, 151 { 0x1209, "Intel Embedded 10/100 Ethernet" }, 152 { 0x1029, "Intel Pro/100 Ethernet" }, 153 { 0x1030, "Intel Pro/100 Ethernet" }, 154 { 0x1031, "Intel Pro/100 Ethernet" }, 155 { 0x1032, "Intel Pro/100 Ethernet" }, 156 { 0x1033, "Intel Pro/100 Ethernet" }, 157 { 0x1034, "Intel Pro/100 Ethernet" }, 158 { 0x1035, "Intel Pro/100 Ethernet" }, 159 { 0x1036, "Intel Pro/100 Ethernet" }, 160 { 0x1037, "Intel Pro/100 Ethernet" }, 161 { 0x1038, "Intel Pro/100 Ethernet" }, 162 { 0, NULL }, 163 }; 164 165 static int fxp_probe(device_t dev); 166 static int fxp_attach(device_t dev); 167 static int fxp_detach(device_t dev); 168 static int fxp_shutdown(device_t dev); 169 static int fxp_suspend(device_t dev); 170 static int fxp_resume(device_t dev); 171 172 static void fxp_intr(void *xsc); 173 static void fxp_init(void *xsc); 174 static void fxp_tick(void *xsc); 175 static void fxp_powerstate_d0(device_t dev); 176 static void fxp_start(struct ifnet *ifp); 177 static void fxp_stop(struct fxp_softc *sc); 178 static void fxp_release(struct fxp_softc *sc); 179 static int fxp_ioctl(struct ifnet *ifp, u_long command, 180 caddr_t data); 181 static void fxp_watchdog(struct ifnet *ifp); 182 static int fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm); 183 static void fxp_mc_setup(struct fxp_softc *sc); 184 static u_int16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, 185 int autosize); 186 static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, 187 u_int16_t data); 188 static void fxp_autosize_eeprom(struct fxp_softc *sc); 189 static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, 190 int offset, int words); 191 static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, 192 int offset, int words); 193 static int fxp_ifmedia_upd(struct ifnet *ifp); 194 static void fxp_ifmedia_sts(struct ifnet *ifp, 195 struct ifmediareq *ifmr); 196 static int fxp_serial_ifmedia_upd(struct ifnet *ifp); 197 static void fxp_serial_ifmedia_sts(struct ifnet *ifp, 198 struct ifmediareq *ifmr); 199 static volatile int fxp_miibus_readreg(device_t dev, int phy, int reg); 200 static void fxp_miibus_writereg(device_t dev, int phy, int reg, 201 int value); 202 static void fxp_load_ucode(struct fxp_softc *sc); 203 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, 204 int low, int high); 205 static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS); 206 static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS); 207 static __inline void fxp_lwcopy(volatile u_int32_t *src, 208 volatile u_int32_t *dst); 209 static __inline void fxp_scb_wait(struct fxp_softc *sc); 210 static __inline void fxp_scb_cmd(struct fxp_softc *sc, int cmd); 211 static __inline void fxp_dma_wait(volatile u_int16_t *status, 212 struct fxp_softc *sc); 213 214 static device_method_t fxp_methods[] = { 215 /* Device interface */ 216 DEVMETHOD(device_probe, fxp_probe), 217 DEVMETHOD(device_attach, fxp_attach), 218 DEVMETHOD(device_detach, fxp_detach), 219 DEVMETHOD(device_shutdown, fxp_shutdown), 220 DEVMETHOD(device_suspend, fxp_suspend), 221 DEVMETHOD(device_resume, fxp_resume), 222 223 /* MII interface */ 224 DEVMETHOD(miibus_readreg, fxp_miibus_readreg), 225 DEVMETHOD(miibus_writereg, fxp_miibus_writereg), 226 227 { 0, 0 } 228 }; 229 230 static driver_t fxp_driver = { 231 "fxp", 232 fxp_methods, 233 sizeof(struct fxp_softc), 234 }; 235 236 static devclass_t fxp_devclass; 237 238 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0); 239 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0); 240 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0); 241 242 /* 243 * Inline function to copy a 16-bit aligned 32-bit quantity. 244 */ 245 static __inline void 246 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst) 247 { 248 #ifdef __i386__ 249 *dst = *src; 250 #else 251 volatile u_int16_t *a = (volatile u_int16_t *)src; 252 volatile u_int16_t *b = (volatile u_int16_t *)dst; 253 254 b[0] = a[0]; 255 b[1] = a[1]; 256 #endif 257 } 258 259 /* 260 * Wait for the previous command to be accepted (but not necessarily 261 * completed). 262 */ 263 static __inline void 264 fxp_scb_wait(struct fxp_softc *sc) 265 { 266 int i = 10000; 267 268 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) 269 DELAY(2); 270 if (i == 0) 271 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n", 272 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND), 273 CSR_READ_1(sc, FXP_CSR_SCB_STATACK), 274 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), 275 CSR_READ_2(sc, FXP_CSR_FLOWCONTROL)); 276 } 277 278 static __inline void 279 fxp_scb_cmd(struct fxp_softc *sc, int cmd) 280 { 281 282 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) { 283 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP); 284 fxp_scb_wait(sc); 285 } 286 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); 287 } 288 289 static __inline void 290 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc) 291 { 292 int i = 10000; 293 294 while (!(*status & FXP_CB_STATUS_C) && --i) 295 DELAY(2); 296 if (i == 0) 297 device_printf(sc->dev, "DMA timeout\n"); 298 } 299 300 /* 301 * Return identification string if this is device is ours. 302 */ 303 static int 304 fxp_probe(device_t dev) 305 { 306 u_int16_t devid; 307 struct fxp_ident *ident; 308 309 if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) { 310 devid = pci_get_device(dev); 311 for (ident = fxp_ident_table; ident->name != NULL; ident++) { 312 if (ident->devid == devid) { 313 device_set_desc(dev, ident->name); 314 return (0); 315 } 316 } 317 } 318 return (ENXIO); 319 } 320 321 static void 322 fxp_powerstate_d0(device_t dev) 323 { 324 #if __FreeBSD_version >= 430002 325 u_int32_t iobase, membase, irq; 326 327 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 328 /* Save important PCI config data. */ 329 iobase = pci_read_config(dev, FXP_PCI_IOBA, 4); 330 membase = pci_read_config(dev, FXP_PCI_MMBA, 4); 331 irq = pci_read_config(dev, PCIR_INTLINE, 4); 332 333 /* Reset the power state. */ 334 device_printf(dev, "chip is in D%d power mode " 335 "-- setting to D0\n", pci_get_powerstate(dev)); 336 337 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 338 339 /* Restore PCI config data. */ 340 pci_write_config(dev, FXP_PCI_IOBA, iobase, 4); 341 pci_write_config(dev, FXP_PCI_MMBA, membase, 4); 342 pci_write_config(dev, PCIR_INTLINE, irq, 4); 343 } 344 #endif 345 } 346 347 static int 348 fxp_attach(device_t dev) 349 { 350 int error = 0; 351 struct fxp_softc *sc = device_get_softc(dev); 352 struct ifnet *ifp; 353 u_int32_t val; 354 u_int16_t data; 355 int i, rid, m1, m2, prefer_iomap; 356 int s; 357 358 bzero(sc, sizeof(*sc)); 359 sc->dev = dev; 360 callout_handle_init(&sc->stat_ch); 361 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE); 362 363 s = splimp(); 364 365 /* 366 * Enable bus mastering. Enable memory space too, in case 367 * BIOS/Prom forgot about it. 368 */ 369 val = pci_read_config(dev, PCIR_COMMAND, 2); 370 val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); 371 pci_write_config(dev, PCIR_COMMAND, val, 2); 372 val = pci_read_config(dev, PCIR_COMMAND, 2); 373 374 fxp_powerstate_d0(dev); 375 376 /* 377 * Figure out which we should try first - memory mapping or i/o mapping? 378 * We default to memory mapping. Then we accept an override from the 379 * command line. Then we check to see which one is enabled. 380 */ 381 m1 = PCIM_CMD_MEMEN; 382 m2 = PCIM_CMD_PORTEN; 383 prefer_iomap = 0; 384 if (resource_int_value(device_get_name(dev), device_get_unit(dev), 385 "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) { 386 m1 = PCIM_CMD_PORTEN; 387 m2 = PCIM_CMD_MEMEN; 388 } 389 390 if (val & m1) { 391 sc->rtp = 392 (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; 393 sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA; 394 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd, 395 0, ~0, 1, RF_ACTIVE); 396 } 397 if (sc->mem == NULL && (val & m2)) { 398 sc->rtp = 399 (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; 400 sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA; 401 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd, 402 0, ~0, 1, RF_ACTIVE); 403 } 404 405 if (!sc->mem) { 406 device_printf(dev, "could not map device registers\n"); 407 error = ENXIO; 408 goto fail; 409 } 410 if (bootverbose) { 411 device_printf(dev, "using %s space register mapping\n", 412 sc->rtp == SYS_RES_MEMORY? "memory" : "I/O"); 413 } 414 415 sc->sc_st = rman_get_bustag(sc->mem); 416 sc->sc_sh = rman_get_bushandle(sc->mem); 417 418 /* 419 * Allocate our interrupt. 420 */ 421 rid = 0; 422 sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 423 RF_SHAREABLE | RF_ACTIVE); 424 if (sc->irq == NULL) { 425 device_printf(dev, "could not map interrupt\n"); 426 error = ENXIO; 427 goto fail; 428 } 429 430 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET, 431 fxp_intr, sc, &sc->ih); 432 if (error) { 433 device_printf(dev, "could not setup irq\n"); 434 goto fail; 435 } 436 437 /* 438 * Reset to a stable state. 439 */ 440 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 441 DELAY(10); 442 443 sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB, 444 M_DEVBUF, M_NOWAIT | M_ZERO); 445 if (sc->cbl_base == NULL) 446 goto failmem; 447 448 sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF, 449 M_NOWAIT | M_ZERO); 450 if (sc->fxp_stats == NULL) 451 goto failmem; 452 453 sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT); 454 if (sc->mcsp == NULL) 455 goto failmem; 456 457 /* 458 * Pre-allocate our receive buffers. 459 */ 460 for (i = 0; i < FXP_NRFABUFS; i++) { 461 if (fxp_add_rfabuf(sc, NULL) != 0) { 462 goto failmem; 463 } 464 } 465 466 /* 467 * Find out how large of an SEEPROM we have. 468 */ 469 fxp_autosize_eeprom(sc); 470 471 /* 472 * Determine whether we must use the 503 serial interface. 473 */ 474 fxp_read_eeprom(sc, &data, 6, 1); 475 if ((data & FXP_PHY_DEVICE_MASK) != 0 && 476 (data & FXP_PHY_SERIAL_ONLY)) 477 sc->flags |= FXP_FLAG_SERIAL_MEDIA; 478 479 /* 480 * Create the sysctl tree 481 */ 482 sysctl_ctx_init(&sc->sysctl_ctx); 483 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 484 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 485 device_get_nameunit(dev), CTLFLAG_RD, 0, ""); 486 if (sc->sysctl_tree == NULL) 487 goto fail; 488 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 489 OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON, 490 &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I", 491 "FXP driver receive interrupt microcode bundling delay"); 492 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 493 OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON, 494 &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I", 495 "FXP driver receive interrupt microcode bundle size limit"); 496 497 /* 498 * Pull in device tunables. 499 */ 500 sc->tunable_int_delay = TUNABLE_INT_DELAY; 501 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX; 502 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 503 "int_delay", &sc->tunable_int_delay); 504 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 505 "bundle_max", &sc->tunable_bundle_max); 506 507 /* 508 * Find out the chip revision; lump all 82557 revs together. 509 */ 510 fxp_read_eeprom(sc, &data, 5, 1); 511 if ((data >> 8) == 1) 512 sc->revision = FXP_REV_82557; 513 else 514 sc->revision = pci_get_revid(dev); 515 516 /* 517 * Enable workarounds for certain chip revision deficiencies. 518 * 519 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly 520 * some systems based a normal 82559 design, have a defect where 521 * the chip can cause a PCI protocol violation if it receives 522 * a CU_RESUME command when it is entering the IDLE state. The 523 * workaround is to disable Dynamic Standby Mode, so the chip never 524 * deasserts CLKRUN#, and always remains in an active state. 525 * 526 * See Intel 82801BA/82801BAM Specification Update, Errata #30. 527 */ 528 i = pci_get_device(dev); 529 if (i == 0x2449 || (i > 0x1030 && i < 0x1039) || 530 sc->revision >= FXP_REV_82559_A0) { 531 fxp_read_eeprom(sc, &data, 10, 1); 532 if (data & 0x02) { /* STB enable */ 533 u_int16_t cksum; 534 int i; 535 536 device_printf(dev, 537 "*** DISABLING DYNAMIC STANDBY MODE IN EEPROM ***\n"); 538 data &= ~0x02; 539 fxp_write_eeprom(sc, &data, 10, 1); 540 device_printf(dev, "New EEPROM ID: 0x%x\n", data); 541 cksum = 0; 542 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) { 543 fxp_read_eeprom(sc, &data, i, 1); 544 cksum += data; 545 } 546 i = (1 << sc->eeprom_size) - 1; 547 cksum = 0xBABA - cksum; 548 fxp_read_eeprom(sc, &data, i, 1); 549 fxp_write_eeprom(sc, &cksum, i, 1); 550 device_printf(dev, 551 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n", 552 i, data, cksum); 553 /* 554 * We need to do a full PCI reset here. A software 555 * reset to the port doesn't cut it, but let's try 556 * anyway. 557 */ 558 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 559 DELAY(50); 560 device_printf(dev, 561 "*** PLEASE REBOOT THE SYSTEM NOW FOR CORRECT OPERATION ***\n"); 562 #if 1 563 /* 564 * If the user elects to continue, try the software 565 * workaround, as it is better than nothing. 566 */ 567 sc->flags |= FXP_FLAG_CU_RESUME_BUG; 568 #endif 569 } 570 } 571 572 /* 573 * If we are not a 82557 chip, we can enable extended features. 574 */ 575 if (sc->revision != FXP_REV_82557) { 576 /* 577 * If MWI is enabled in the PCI configuration, and there 578 * is a valid cacheline size (8 or 16 dwords), then tell 579 * the board to turn on MWI. 580 */ 581 if (val & PCIM_CMD_MWRICEN && 582 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0) 583 sc->flags |= FXP_FLAG_MWI_ENABLE; 584 585 /* turn on the extended TxCB feature */ 586 sc->flags |= FXP_FLAG_EXT_TXCB; 587 588 /* enable reception of long frames for VLAN */ 589 sc->flags |= FXP_FLAG_LONG_PKT_EN; 590 } 591 592 /* 593 * Read MAC address. 594 */ 595 fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3); 596 device_printf(dev, "Ethernet address %6D%s\n", 597 sc->arpcom.ac_enaddr, ":", 598 sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : ""); 599 if (bootverbose) { 600 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n", 601 pci_get_vendor(dev), pci_get_device(dev), 602 pci_get_subvendor(dev), pci_get_subdevice(dev), 603 pci_get_revid(dev)); 604 fxp_read_eeprom(sc, &data, 10, 1); 605 device_printf(dev, "Dynamic Standby mode is %s\n", 606 data & 0x02 ? "enabled" : "disabled"); 607 } 608 609 /* 610 * If this is only a 10Mbps device, then there is no MII, and 611 * the PHY will use a serial interface instead. 612 * 613 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 614 * doesn't have a programming interface of any sort. The 615 * media is sensed automatically based on how the link partner 616 * is configured. This is, in essence, manual configuration. 617 */ 618 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) { 619 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd, 620 fxp_serial_ifmedia_sts); 621 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 622 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); 623 } else { 624 if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd, 625 fxp_ifmedia_sts)) { 626 device_printf(dev, "MII without any PHY!\n"); 627 error = ENXIO; 628 goto fail; 629 } 630 } 631 632 ifp = &sc->arpcom.ac_if; 633 ifp->if_unit = device_get_unit(dev); 634 ifp->if_name = "fxp"; 635 ifp->if_output = ether_output; 636 ifp->if_baudrate = 100000000; 637 ifp->if_init = fxp_init; 638 ifp->if_softc = sc; 639 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 640 ifp->if_ioctl = fxp_ioctl; 641 ifp->if_start = fxp_start; 642 ifp->if_watchdog = fxp_watchdog; 643 644 /* 645 * Attach the interface. 646 */ 647 ether_ifattach(ifp, ETHER_BPF_SUPPORTED); 648 649 /* 650 * Tell the upper layer(s) we support long frames. 651 */ 652 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 653 654 /* 655 * Let the system queue as many packets as we have available 656 * TX descriptors. 657 */ 658 ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1; 659 660 splx(s); 661 return (0); 662 663 failmem: 664 device_printf(dev, "Failed to malloc memory\n"); 665 error = ENOMEM; 666 fail: 667 splx(s); 668 fxp_release(sc); 669 return (error); 670 } 671 672 /* 673 * release all resources 674 */ 675 static void 676 fxp_release(struct fxp_softc *sc) 677 { 678 679 bus_generic_detach(sc->dev); 680 if (sc->miibus) 681 device_delete_child(sc->dev, sc->miibus); 682 683 if (sc->cbl_base) 684 free(sc->cbl_base, M_DEVBUF); 685 if (sc->fxp_stats) 686 free(sc->fxp_stats, M_DEVBUF); 687 if (sc->mcsp) 688 free(sc->mcsp, M_DEVBUF); 689 if (sc->rfa_headm) 690 m_freem(sc->rfa_headm); 691 692 if (sc->ih) 693 bus_teardown_intr(sc->dev, sc->irq, sc->ih); 694 if (sc->irq) 695 bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq); 696 if (sc->mem) 697 bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem); 698 699 sysctl_ctx_free(&sc->sysctl_ctx); 700 701 mtx_destroy(&sc->sc_mtx); 702 } 703 704 /* 705 * Detach interface. 706 */ 707 static int 708 fxp_detach(device_t dev) 709 { 710 struct fxp_softc *sc = device_get_softc(dev); 711 int s; 712 713 /* disable interrupts */ 714 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 715 716 s = splimp(); 717 718 /* 719 * Stop DMA and drop transmit queue. 720 */ 721 fxp_stop(sc); 722 723 /* 724 * Close down routes etc. 725 */ 726 ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED); 727 728 /* 729 * Free all media structures. 730 */ 731 ifmedia_removeall(&sc->sc_media); 732 733 splx(s); 734 735 /* Release our allocated resources. */ 736 fxp_release(sc); 737 738 return (0); 739 } 740 741 /* 742 * Device shutdown routine. Called at system shutdown after sync. The 743 * main purpose of this routine is to shut off receiver DMA so that 744 * kernel memory doesn't get clobbered during warmboot. 745 */ 746 static int 747 fxp_shutdown(device_t dev) 748 { 749 /* 750 * Make sure that DMA is disabled prior to reboot. Not doing 751 * do could allow DMA to corrupt kernel memory during the 752 * reboot before the driver initializes. 753 */ 754 fxp_stop((struct fxp_softc *) device_get_softc(dev)); 755 return (0); 756 } 757 758 /* 759 * Device suspend routine. Stop the interface and save some PCI 760 * settings in case the BIOS doesn't restore them properly on 761 * resume. 762 */ 763 static int 764 fxp_suspend(device_t dev) 765 { 766 struct fxp_softc *sc = device_get_softc(dev); 767 int i, s; 768 769 s = splimp(); 770 771 fxp_stop(sc); 772 773 for (i = 0; i < 5; i++) 774 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4); 775 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4); 776 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1); 777 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 778 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); 779 780 sc->suspended = 1; 781 782 splx(s); 783 return (0); 784 } 785 786 /* 787 * Device resume routine. Restore some PCI settings in case the BIOS 788 * doesn't, re-enable busmastering, and restart the interface if 789 * appropriate. 790 */ 791 static int 792 fxp_resume(device_t dev) 793 { 794 struct fxp_softc *sc = device_get_softc(dev); 795 struct ifnet *ifp = &sc->sc_if; 796 u_int16_t pci_command; 797 int i, s; 798 799 s = splimp(); 800 801 fxp_powerstate_d0(dev); 802 803 /* better way to do this? */ 804 for (i = 0; i < 5; i++) 805 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4); 806 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4); 807 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1); 808 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1); 809 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1); 810 811 /* reenable busmastering */ 812 pci_command = pci_read_config(dev, PCIR_COMMAND, 2); 813 pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); 814 pci_write_config(dev, PCIR_COMMAND, pci_command, 2); 815 816 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 817 DELAY(10); 818 819 /* reinitialize interface if necessary */ 820 if (ifp->if_flags & IFF_UP) 821 fxp_init(sc); 822 823 sc->suspended = 0; 824 825 splx(s); 826 return (0); 827 } 828 829 static void 830 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) 831 { 832 u_int16_t reg; 833 int x; 834 835 /* 836 * Shift in data. 837 */ 838 for (x = 1 << (length - 1); x; x >>= 1) { 839 if (data & x) 840 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 841 else 842 reg = FXP_EEPROM_EECS; 843 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 844 DELAY(1); 845 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 846 DELAY(1); 847 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 848 DELAY(1); 849 } 850 } 851 852 /* 853 * Read from the serial EEPROM. Basically, you manually shift in 854 * the read opcode (one bit at a time) and then shift in the address, 855 * and then you shift out the data (all of this one bit at a time). 856 * The word size is 16 bits, so you have to provide the address for 857 * every 16 bits of data. 858 */ 859 static u_int16_t 860 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize) 861 { 862 u_int16_t reg, data; 863 int x; 864 865 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 866 /* 867 * Shift in read opcode. 868 */ 869 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); 870 /* 871 * Shift in address. 872 */ 873 data = 0; 874 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) { 875 if (offset & x) 876 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 877 else 878 reg = FXP_EEPROM_EECS; 879 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 880 DELAY(1); 881 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 882 DELAY(1); 883 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 884 DELAY(1); 885 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO; 886 data++; 887 if (autosize && reg == 0) { 888 sc->eeprom_size = data; 889 break; 890 } 891 } 892 /* 893 * Shift out data. 894 */ 895 data = 0; 896 reg = FXP_EEPROM_EECS; 897 for (x = 1 << 15; x; x >>= 1) { 898 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 899 DELAY(1); 900 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 901 data |= x; 902 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 903 DELAY(1); 904 } 905 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 906 DELAY(1); 907 908 return (data); 909 } 910 911 static void 912 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data) 913 { 914 int i; 915 916 /* 917 * Erase/write enable. 918 */ 919 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 920 fxp_eeprom_shiftin(sc, 0x4, 3); 921 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); 922 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 923 DELAY(1); 924 /* 925 * Shift in write opcode, address, data. 926 */ 927 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 928 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); 929 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); 930 fxp_eeprom_shiftin(sc, data, 16); 931 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 932 DELAY(1); 933 /* 934 * Wait for EEPROM to finish up. 935 */ 936 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 937 DELAY(1); 938 for (i = 0; i < 1000; i++) { 939 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 940 break; 941 DELAY(50); 942 } 943 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 944 DELAY(1); 945 /* 946 * Erase/write disable. 947 */ 948 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 949 fxp_eeprom_shiftin(sc, 0x4, 3); 950 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); 951 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 952 DELAY(1); 953 } 954 955 /* 956 * From NetBSD: 957 * 958 * Figure out EEPROM size. 959 * 960 * 559's can have either 64-word or 256-word EEPROMs, the 558 961 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet 962 * talks about the existance of 16 to 256 word EEPROMs. 963 * 964 * The only known sizes are 64 and 256, where the 256 version is used 965 * by CardBus cards to store CIS information. 966 * 967 * The address is shifted in msb-to-lsb, and after the last 968 * address-bit the EEPROM is supposed to output a `dummy zero' bit, 969 * after which follows the actual data. We try to detect this zero, by 970 * probing the data-out bit in the EEPROM control register just after 971 * having shifted in a bit. If the bit is zero, we assume we've 972 * shifted enough address bits. The data-out should be tri-state, 973 * before this, which should translate to a logical one. 974 */ 975 static void 976 fxp_autosize_eeprom(struct fxp_softc *sc) 977 { 978 979 /* guess maximum size of 256 words */ 980 sc->eeprom_size = 8; 981 982 /* autosize */ 983 (void) fxp_eeprom_getword(sc, 0, 1); 984 } 985 986 static void 987 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 988 { 989 int i; 990 991 for (i = 0; i < words; i++) 992 data[i] = fxp_eeprom_getword(sc, offset + i, 0); 993 } 994 995 static void 996 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 997 { 998 int i; 999 1000 for (i = 0; i < words; i++) 1001 fxp_eeprom_putword(sc, offset + i, data[i]); 1002 } 1003 1004 /* 1005 * Start packet transmission on the interface. 1006 */ 1007 static void 1008 fxp_start(struct ifnet *ifp) 1009 { 1010 struct fxp_softc *sc = ifp->if_softc; 1011 struct fxp_cb_tx *txp; 1012 1013 /* 1014 * See if we need to suspend xmit until the multicast filter 1015 * has been reprogrammed (which can only be done at the head 1016 * of the command chain). 1017 */ 1018 if (sc->need_mcsetup) { 1019 return; 1020 } 1021 1022 txp = NULL; 1023 1024 /* 1025 * We're finished if there is nothing more to add to the list or if 1026 * we're all filled up with buffers to transmit. 1027 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add 1028 * a NOP command when needed. 1029 */ 1030 while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) { 1031 struct mbuf *m, *mb_head; 1032 int segment; 1033 1034 /* 1035 * Grab a packet to transmit. 1036 */ 1037 IF_DEQUEUE(&ifp->if_snd, mb_head); 1038 1039 /* 1040 * Get pointer to next available tx desc. 1041 */ 1042 txp = sc->cbl_last->next; 1043 1044 /* 1045 * Go through each of the mbufs in the chain and initialize 1046 * the transmit buffer descriptors with the physical address 1047 * and size of the mbuf. 1048 */ 1049 tbdinit: 1050 for (m = mb_head, segment = 0; m != NULL; m = m->m_next) { 1051 if (m->m_len != 0) { 1052 if (segment == FXP_NTXSEG) 1053 break; 1054 txp->tbd[segment].tb_addr = 1055 vtophys(mtod(m, vm_offset_t)); 1056 txp->tbd[segment].tb_size = m->m_len; 1057 segment++; 1058 } 1059 } 1060 if (m != NULL) { 1061 struct mbuf *mn; 1062 1063 /* 1064 * We ran out of segments. We have to recopy this 1065 * mbuf chain first. Bail out if we can't get the 1066 * new buffers. 1067 */ 1068 MGETHDR(mn, M_DONTWAIT, MT_DATA); 1069 if (mn == NULL) { 1070 m_freem(mb_head); 1071 break; 1072 } 1073 if (mb_head->m_pkthdr.len > MHLEN) { 1074 MCLGET(mn, M_DONTWAIT); 1075 if ((mn->m_flags & M_EXT) == 0) { 1076 m_freem(mn); 1077 m_freem(mb_head); 1078 break; 1079 } 1080 } 1081 m_copydata(mb_head, 0, mb_head->m_pkthdr.len, 1082 mtod(mn, caddr_t)); 1083 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len; 1084 m_freem(mb_head); 1085 mb_head = mn; 1086 goto tbdinit; 1087 } 1088 1089 txp->tbd_number = segment; 1090 txp->mb_head = mb_head; 1091 txp->cb_status = 0; 1092 if (sc->tx_queued != FXP_CXINT_THRESH - 1) { 1093 txp->cb_command = 1094 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | 1095 FXP_CB_COMMAND_S; 1096 } else { 1097 txp->cb_command = 1098 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | 1099 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; 1100 /* 1101 * Set a 5 second timer just in case we don't hear 1102 * from the card again. 1103 */ 1104 ifp->if_timer = 5; 1105 } 1106 txp->tx_threshold = tx_threshold; 1107 1108 /* 1109 * Advance the end of list forward. 1110 */ 1111 1112 #ifdef __alpha__ 1113 /* 1114 * On platforms which can't access memory in 16-bit 1115 * granularities, we must prevent the card from DMA'ing 1116 * up the status while we update the command field. 1117 * This could cause us to overwrite the completion status. 1118 */ 1119 atomic_clear_short(&sc->cbl_last->cb_command, 1120 FXP_CB_COMMAND_S); 1121 #else 1122 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S; 1123 #endif /*__alpha__*/ 1124 sc->cbl_last = txp; 1125 1126 /* 1127 * Advance the beginning of the list forward if there are 1128 * no other packets queued (when nothing is queued, cbl_first 1129 * sits on the last TxCB that was sent out). 1130 */ 1131 if (sc->tx_queued == 0) 1132 sc->cbl_first = txp; 1133 1134 sc->tx_queued++; 1135 1136 /* 1137 * Pass packet to bpf if there is a listener. 1138 */ 1139 if (ifp->if_bpf) 1140 bpf_mtap(ifp, mb_head); 1141 } 1142 1143 /* 1144 * We're finished. If we added to the list, issue a RESUME to get DMA 1145 * going again if suspended. 1146 */ 1147 if (txp != NULL) { 1148 fxp_scb_wait(sc); 1149 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 1150 } 1151 } 1152 1153 /* 1154 * Process interface interrupts. 1155 */ 1156 static void 1157 fxp_intr(void *xsc) 1158 { 1159 struct fxp_softc *sc = xsc; 1160 struct ifnet *ifp = &sc->sc_if; 1161 u_int8_t statack; 1162 1163 if (sc->suspended) { 1164 return; 1165 } 1166 1167 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { 1168 /* 1169 * It should not be possible to have all bits set; the 1170 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If 1171 * all bits are set, this may indicate that the card has 1172 * been physically ejected, so ignore it. 1173 */ 1174 if (statack == 0xff) 1175 return; 1176 1177 /* 1178 * First ACK all the interrupts in this pass. 1179 */ 1180 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); 1181 1182 /* 1183 * Free any finished transmit mbuf chains. 1184 * 1185 * Handle the CNA event likt a CXTNO event. It used to 1186 * be that this event (control unit not ready) was not 1187 * encountered, but it is now with the SMPng modifications. 1188 * The exact sequence of events that occur when the interface 1189 * is brought up are different now, and if this event 1190 * goes unhandled, the configuration/rxfilter setup sequence 1191 * can stall for several seconds. The result is that no 1192 * packets go out onto the wire for about 5 to 10 seconds 1193 * after the interface is ifconfig'ed for the first time. 1194 */ 1195 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) { 1196 struct fxp_cb_tx *txp; 1197 1198 for (txp = sc->cbl_first; sc->tx_queued && 1199 (txp->cb_status & FXP_CB_STATUS_C) != 0; 1200 txp = txp->next) { 1201 if (txp->mb_head != NULL) { 1202 m_freem(txp->mb_head); 1203 txp->mb_head = NULL; 1204 } 1205 sc->tx_queued--; 1206 } 1207 sc->cbl_first = txp; 1208 ifp->if_timer = 0; 1209 if (sc->tx_queued == 0) { 1210 if (sc->need_mcsetup) 1211 fxp_mc_setup(sc); 1212 } 1213 /* 1214 * Try to start more packets transmitting. 1215 */ 1216 if (ifp->if_snd.ifq_head != NULL) 1217 fxp_start(ifp); 1218 } 1219 /* 1220 * Process receiver interrupts. If a no-resource (RNR) 1221 * condition exists, get whatever packets we can and 1222 * re-start the receiver. 1223 */ 1224 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) { 1225 struct mbuf *m; 1226 struct fxp_rfa *rfa; 1227 rcvloop: 1228 m = sc->rfa_headm; 1229 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + 1230 RFA_ALIGNMENT_FUDGE); 1231 1232 if (rfa->rfa_status & FXP_RFA_STATUS_C) { 1233 /* 1234 * Remove first packet from the chain. 1235 */ 1236 sc->rfa_headm = m->m_next; 1237 m->m_next = NULL; 1238 1239 /* 1240 * Add a new buffer to the receive chain. 1241 * If this fails, the old buffer is recycled 1242 * instead. 1243 */ 1244 if (fxp_add_rfabuf(sc, m) == 0) { 1245 struct ether_header *eh; 1246 int total_len; 1247 1248 total_len = rfa->actual_size & 1249 (MCLBYTES - 1); 1250 if (total_len < 1251 sizeof(struct ether_header)) { 1252 m_freem(m); 1253 goto rcvloop; 1254 } 1255 1256 /* 1257 * Drop the packet if it has CRC 1258 * errors. This test is only needed 1259 * when doing 802.1q VLAN on the 82557 1260 * chip. 1261 */ 1262 if (rfa->rfa_status & 1263 FXP_RFA_STATUS_CRC) { 1264 m_freem(m); 1265 goto rcvloop; 1266 } 1267 1268 m->m_pkthdr.rcvif = ifp; 1269 m->m_pkthdr.len = m->m_len = total_len; 1270 eh = mtod(m, struct ether_header *); 1271 m->m_data += 1272 sizeof(struct ether_header); 1273 m->m_len -= 1274 sizeof(struct ether_header); 1275 m->m_pkthdr.len = m->m_len; 1276 ether_input(ifp, eh, m); 1277 } 1278 goto rcvloop; 1279 } 1280 if (statack & FXP_SCB_STATACK_RNR) { 1281 fxp_scb_wait(sc); 1282 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 1283 vtophys(sc->rfa_headm->m_ext.ext_buf) + 1284 RFA_ALIGNMENT_FUDGE); 1285 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 1286 } 1287 } 1288 } 1289 } 1290 1291 /* 1292 * Update packet in/out/collision statistics. The i82557 doesn't 1293 * allow you to access these counters without doing a fairly 1294 * expensive DMA to get _all_ of the statistics it maintains, so 1295 * we do this operation here only once per second. The statistics 1296 * counters in the kernel are updated from the previous dump-stats 1297 * DMA and then a new dump-stats DMA is started. The on-chip 1298 * counters are zeroed when the DMA completes. If we can't start 1299 * the DMA immediately, we don't wait - we just prepare to read 1300 * them again next time. 1301 */ 1302 static void 1303 fxp_tick(void *xsc) 1304 { 1305 struct fxp_softc *sc = xsc; 1306 struct ifnet *ifp = &sc->sc_if; 1307 struct fxp_stats *sp = sc->fxp_stats; 1308 struct fxp_cb_tx *txp; 1309 int s; 1310 1311 ifp->if_opackets += sp->tx_good; 1312 ifp->if_collisions += sp->tx_total_collisions; 1313 if (sp->rx_good) { 1314 ifp->if_ipackets += sp->rx_good; 1315 sc->rx_idle_secs = 0; 1316 } else { 1317 /* 1318 * Receiver's been idle for another second. 1319 */ 1320 sc->rx_idle_secs++; 1321 } 1322 ifp->if_ierrors += 1323 sp->rx_crc_errors + 1324 sp->rx_alignment_errors + 1325 sp->rx_rnr_errors + 1326 sp->rx_overrun_errors; 1327 /* 1328 * If any transmit underruns occured, bump up the transmit 1329 * threshold by another 512 bytes (64 * 8). 1330 */ 1331 if (sp->tx_underruns) { 1332 ifp->if_oerrors += sp->tx_underruns; 1333 if (tx_threshold < 192) 1334 tx_threshold += 64; 1335 } 1336 s = splimp(); 1337 /* 1338 * Release any xmit buffers that have completed DMA. This isn't 1339 * strictly necessary to do here, but it's advantagous for mbufs 1340 * with external storage to be released in a timely manner rather 1341 * than being defered for a potentially long time. This limits 1342 * the delay to a maximum of one second. 1343 */ 1344 for (txp = sc->cbl_first; sc->tx_queued && 1345 (txp->cb_status & FXP_CB_STATUS_C) != 0; 1346 txp = txp->next) { 1347 if (txp->mb_head != NULL) { 1348 m_freem(txp->mb_head); 1349 txp->mb_head = NULL; 1350 } 1351 sc->tx_queued--; 1352 } 1353 sc->cbl_first = txp; 1354 /* 1355 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, 1356 * then assume the receiver has locked up and attempt to clear 1357 * the condition by reprogramming the multicast filter. This is 1358 * a work-around for a bug in the 82557 where the receiver locks 1359 * up if it gets certain types of garbage in the syncronization 1360 * bits prior to the packet header. This bug is supposed to only 1361 * occur in 10Mbps mode, but has been seen to occur in 100Mbps 1362 * mode as well (perhaps due to a 10/100 speed transition). 1363 */ 1364 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { 1365 sc->rx_idle_secs = 0; 1366 fxp_mc_setup(sc); 1367 } 1368 /* 1369 * If there is no pending command, start another stats 1370 * dump. Otherwise punt for now. 1371 */ 1372 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { 1373 /* 1374 * Start another stats dump. 1375 */ 1376 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); 1377 } else { 1378 /* 1379 * A previous command is still waiting to be accepted. 1380 * Just zero our copy of the stats and wait for the 1381 * next timer event to update them. 1382 */ 1383 sp->tx_good = 0; 1384 sp->tx_underruns = 0; 1385 sp->tx_total_collisions = 0; 1386 1387 sp->rx_good = 0; 1388 sp->rx_crc_errors = 0; 1389 sp->rx_alignment_errors = 0; 1390 sp->rx_rnr_errors = 0; 1391 sp->rx_overrun_errors = 0; 1392 } 1393 if (sc->miibus != NULL) 1394 mii_tick(device_get_softc(sc->miibus)); 1395 splx(s); 1396 /* 1397 * Schedule another timeout one second from now. 1398 */ 1399 sc->stat_ch = timeout(fxp_tick, sc, hz); 1400 } 1401 1402 /* 1403 * Stop the interface. Cancels the statistics updater and resets 1404 * the interface. 1405 */ 1406 static void 1407 fxp_stop(struct fxp_softc *sc) 1408 { 1409 struct ifnet *ifp = &sc->sc_if; 1410 struct fxp_cb_tx *txp; 1411 int i; 1412 1413 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1414 ifp->if_timer = 0; 1415 1416 /* 1417 * Cancel stats updater. 1418 */ 1419 untimeout(fxp_tick, sc, sc->stat_ch); 1420 1421 /* 1422 * Issue software reset, which also unloads the microcode. 1423 */ 1424 sc->flags &= ~FXP_FLAG_UCODE; 1425 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 1426 DELAY(50); 1427 1428 /* 1429 * Release any xmit buffers. 1430 */ 1431 txp = sc->cbl_base; 1432 if (txp != NULL) { 1433 for (i = 0; i < FXP_NTXCB; i++) { 1434 if (txp[i].mb_head != NULL) { 1435 m_freem(txp[i].mb_head); 1436 txp[i].mb_head = NULL; 1437 } 1438 } 1439 } 1440 sc->tx_queued = 0; 1441 1442 /* 1443 * Free all the receive buffers then reallocate/reinitialize 1444 */ 1445 if (sc->rfa_headm != NULL) 1446 m_freem(sc->rfa_headm); 1447 sc->rfa_headm = NULL; 1448 sc->rfa_tailm = NULL; 1449 for (i = 0; i < FXP_NRFABUFS; i++) { 1450 if (fxp_add_rfabuf(sc, NULL) != 0) { 1451 /* 1452 * This "can't happen" - we're at splimp() 1453 * and we just freed all the buffers we need 1454 * above. 1455 */ 1456 panic("fxp_stop: no buffers!"); 1457 } 1458 } 1459 } 1460 1461 /* 1462 * Watchdog/transmission transmit timeout handler. Called when a 1463 * transmission is started on the interface, but no interrupt is 1464 * received before the timeout. This usually indicates that the 1465 * card has wedged for some reason. 1466 */ 1467 static void 1468 fxp_watchdog(struct ifnet *ifp) 1469 { 1470 struct fxp_softc *sc = ifp->if_softc; 1471 1472 device_printf(sc->dev, "device timeout\n"); 1473 ifp->if_oerrors++; 1474 1475 fxp_init(sc); 1476 } 1477 1478 static void 1479 fxp_init(void *xsc) 1480 { 1481 struct fxp_softc *sc = xsc; 1482 struct ifnet *ifp = &sc->sc_if; 1483 struct fxp_cb_config *cbp; 1484 struct fxp_cb_ias *cb_ias; 1485 struct fxp_cb_tx *txp; 1486 int i, prm, s; 1487 1488 s = splimp(); 1489 /* 1490 * Cancel any pending I/O 1491 */ 1492 fxp_stop(sc); 1493 1494 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; 1495 1496 /* 1497 * Initialize base of CBL and RFA memory. Loading with zero 1498 * sets it up for regular linear addressing. 1499 */ 1500 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); 1501 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); 1502 1503 fxp_scb_wait(sc); 1504 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); 1505 1506 /* 1507 * Initialize base of dump-stats buffer. 1508 */ 1509 fxp_scb_wait(sc); 1510 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats)); 1511 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); 1512 1513 /* 1514 * Attempt to load microcode if requested. 1515 */ 1516 if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0) 1517 fxp_load_ucode(sc); 1518 1519 /* 1520 * We temporarily use memory that contains the TxCB list to 1521 * construct the config CB. The TxCB list memory is rebuilt 1522 * later. 1523 */ 1524 cbp = (struct fxp_cb_config *) sc->cbl_base; 1525 1526 /* 1527 * This bcopy is kind of disgusting, but there are a bunch of must be 1528 * zero and must be one bits in this structure and this is the easiest 1529 * way to initialize them all to proper values. 1530 */ 1531 bcopy(fxp_cb_config_template, 1532 (void *)(uintptr_t)(volatile void *)&cbp->cb_status, 1533 sizeof(fxp_cb_config_template)); 1534 1535 cbp->cb_status = 0; 1536 cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL; 1537 cbp->link_addr = -1; /* (no) next command */ 1538 cbp->byte_count = 22; /* (22) bytes to config */ 1539 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ 1540 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ 1541 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ 1542 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0; 1543 cbp->type_enable = 0; /* actually reserved */ 1544 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0; 1545 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0; 1546 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ 1547 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ 1548 cbp->dma_mbce = 0; /* (disable) dma max counters */ 1549 cbp->late_scb = 0; /* (don't) defer SCB update */ 1550 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */ 1551 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */ 1552 cbp->ci_int = 1; /* interrupt on CU idle */ 1553 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1; 1554 cbp->ext_stats_dis = 1; /* disable extended counters */ 1555 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */ 1556 cbp->save_bf = sc->revision == FXP_REV_82557 ? 1 : prm; 1557 cbp->disc_short_rx = !prm; /* discard short packets */ 1558 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */ 1559 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */ 1560 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */ 1561 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1; 1562 cbp->csma_dis = 0; /* (don't) disable link */ 1563 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */ 1564 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */ 1565 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */ 1566 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */ 1567 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */ 1568 cbp->nsai = 1; /* (don't) disable source addr insert */ 1569 cbp->preamble_length = 2; /* (7 byte) preamble */ 1570 cbp->loopback = 0; /* (don't) loopback */ 1571 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ 1572 cbp->linear_pri_mode = 0; /* (wait after xmit only) */ 1573 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ 1574 cbp->promiscuous = prm; /* promiscuous mode */ 1575 cbp->bcast_disable = 0; /* (don't) disable broadcasts */ 1576 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/ 1577 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */ 1578 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */ 1579 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0; 1580 1581 cbp->stripping = !prm; /* truncate rx packet to byte count */ 1582 cbp->padding = 1; /* (do) pad short tx packets */ 1583 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ 1584 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0; 1585 cbp->ia_wake_en = 0; /* (don't) wake up on address match */ 1586 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */ 1587 /* must set wake_en in PMCSR also */ 1588 cbp->force_fdx = 0; /* (don't) force full duplex */ 1589 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ 1590 cbp->multi_ia = 0; /* (don't) accept multiple IAs */ 1591 cbp->mc_all = sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0; 1592 1593 if (sc->revision == FXP_REV_82557) { 1594 /* 1595 * The 82557 has no hardware flow control, the values 1596 * below are the defaults for the chip. 1597 */ 1598 cbp->fc_delay_lsb = 0; 1599 cbp->fc_delay_msb = 0x40; 1600 cbp->pri_fc_thresh = 3; 1601 cbp->tx_fc_dis = 0; 1602 cbp->rx_fc_restop = 0; 1603 cbp->rx_fc_restart = 0; 1604 cbp->fc_filter = 0; 1605 cbp->pri_fc_loc = 1; 1606 } else { 1607 cbp->fc_delay_lsb = 0x1f; 1608 cbp->fc_delay_msb = 0x01; 1609 cbp->pri_fc_thresh = 3; 1610 cbp->tx_fc_dis = 0; /* enable transmit FC */ 1611 cbp->rx_fc_restop = 1; /* enable FC restop frames */ 1612 cbp->rx_fc_restart = 1; /* enable FC restart frames */ 1613 cbp->fc_filter = !prm; /* drop FC frames to host */ 1614 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */ 1615 } 1616 1617 /* 1618 * Start the config command/DMA. 1619 */ 1620 fxp_scb_wait(sc); 1621 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status)); 1622 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1623 /* ...and wait for it to complete. */ 1624 fxp_dma_wait(&cbp->cb_status, sc); 1625 1626 /* 1627 * Now initialize the station address. Temporarily use the TxCB 1628 * memory area like we did above for the config CB. 1629 */ 1630 cb_ias = (struct fxp_cb_ias *) sc->cbl_base; 1631 cb_ias->cb_status = 0; 1632 cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL; 1633 cb_ias->link_addr = -1; 1634 bcopy(sc->arpcom.ac_enaddr, 1635 (void *)(uintptr_t)(volatile void *)cb_ias->macaddr, 1636 sizeof(sc->arpcom.ac_enaddr)); 1637 1638 /* 1639 * Start the IAS (Individual Address Setup) command/DMA. 1640 */ 1641 fxp_scb_wait(sc); 1642 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1643 /* ...and wait for it to complete. */ 1644 fxp_dma_wait(&cb_ias->cb_status, sc); 1645 1646 /* 1647 * Initialize transmit control block (TxCB) list. 1648 */ 1649 1650 txp = sc->cbl_base; 1651 bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB); 1652 for (i = 0; i < FXP_NTXCB; i++) { 1653 txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK; 1654 txp[i].cb_command = FXP_CB_COMMAND_NOP; 1655 txp[i].link_addr = 1656 vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status); 1657 if (sc->flags & FXP_FLAG_EXT_TXCB) 1658 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]); 1659 else 1660 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]); 1661 txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK]; 1662 } 1663 /* 1664 * Set the suspend flag on the first TxCB and start the control 1665 * unit. It will execute the NOP and then suspend. 1666 */ 1667 txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S; 1668 sc->cbl_first = sc->cbl_last = txp; 1669 sc->tx_queued = 1; 1670 1671 fxp_scb_wait(sc); 1672 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1673 1674 /* 1675 * Initialize receiver buffer area - RFA. 1676 */ 1677 fxp_scb_wait(sc); 1678 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 1679 vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE); 1680 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 1681 1682 /* 1683 * Set current media. 1684 */ 1685 if (sc->miibus != NULL) 1686 mii_mediachg(device_get_softc(sc->miibus)); 1687 1688 ifp->if_flags |= IFF_RUNNING; 1689 ifp->if_flags &= ~IFF_OACTIVE; 1690 1691 /* 1692 * Enable interrupts. 1693 */ 1694 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 1695 splx(s); 1696 1697 /* 1698 * Start stats updater. 1699 */ 1700 sc->stat_ch = timeout(fxp_tick, sc, hz); 1701 } 1702 1703 static int 1704 fxp_serial_ifmedia_upd(struct ifnet *ifp) 1705 { 1706 1707 return (0); 1708 } 1709 1710 static void 1711 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1712 { 1713 1714 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 1715 } 1716 1717 /* 1718 * Change media according to request. 1719 */ 1720 static int 1721 fxp_ifmedia_upd(struct ifnet *ifp) 1722 { 1723 struct fxp_softc *sc = ifp->if_softc; 1724 struct mii_data *mii; 1725 1726 mii = device_get_softc(sc->miibus); 1727 mii_mediachg(mii); 1728 return (0); 1729 } 1730 1731 /* 1732 * Notify the world which media we're using. 1733 */ 1734 static void 1735 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1736 { 1737 struct fxp_softc *sc = ifp->if_softc; 1738 struct mii_data *mii; 1739 1740 mii = device_get_softc(sc->miibus); 1741 mii_pollstat(mii); 1742 ifmr->ifm_active = mii->mii_media_active; 1743 ifmr->ifm_status = mii->mii_media_status; 1744 1745 if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG) 1746 sc->cu_resume_bug = 1; 1747 else 1748 sc->cu_resume_bug = 0; 1749 } 1750 1751 /* 1752 * Add a buffer to the end of the RFA buffer list. 1753 * Return 0 if successful, 1 for failure. A failure results in 1754 * adding the 'oldm' (if non-NULL) on to the end of the list - 1755 * tossing out its old contents and recycling it. 1756 * The RFA struct is stuck at the beginning of mbuf cluster and the 1757 * data pointer is fixed up to point just past it. 1758 */ 1759 static int 1760 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm) 1761 { 1762 u_int32_t v; 1763 struct mbuf *m; 1764 struct fxp_rfa *rfa, *p_rfa; 1765 1766 MGETHDR(m, M_DONTWAIT, MT_DATA); 1767 if (m != NULL) { 1768 MCLGET(m, M_DONTWAIT); 1769 if ((m->m_flags & M_EXT) == 0) { 1770 device_printf(sc->dev, 1771 "cluster allocation failed, packet dropped!\n"); 1772 m_freem(m); 1773 if (oldm == NULL) 1774 return 1; 1775 m = oldm; 1776 m->m_data = m->m_ext.ext_buf; 1777 } 1778 } else { 1779 device_printf(sc->dev, 1780 "mbuf allocation failed, packet dropped!\n"); 1781 if (oldm == NULL) 1782 return 1; 1783 m = oldm; 1784 m->m_data = m->m_ext.ext_buf; 1785 } 1786 1787 /* 1788 * Move the data pointer up so that the incoming data packet 1789 * will be 32-bit aligned. 1790 */ 1791 m->m_data += RFA_ALIGNMENT_FUDGE; 1792 1793 /* 1794 * Get a pointer to the base of the mbuf cluster and move 1795 * data start past it. 1796 */ 1797 rfa = mtod(m, struct fxp_rfa *); 1798 m->m_data += sizeof(struct fxp_rfa); 1799 rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE); 1800 1801 /* 1802 * Initialize the rest of the RFA. Note that since the RFA 1803 * is misaligned, we cannot store values directly. Instead, 1804 * we use an optimized, inline copy. 1805 */ 1806 1807 rfa->rfa_status = 0; 1808 rfa->rfa_control = FXP_RFA_CONTROL_EL; 1809 rfa->actual_size = 0; 1810 1811 v = -1; 1812 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr); 1813 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr); 1814 1815 /* 1816 * If there are other buffers already on the list, attach this 1817 * one to the end by fixing up the tail to point to this one. 1818 */ 1819 if (sc->rfa_headm != NULL) { 1820 p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf + 1821 RFA_ALIGNMENT_FUDGE); 1822 sc->rfa_tailm->m_next = m; 1823 v = vtophys(rfa); 1824 fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr); 1825 p_rfa->rfa_control = 0; 1826 } else { 1827 sc->rfa_headm = m; 1828 } 1829 sc->rfa_tailm = m; 1830 1831 return (m == oldm); 1832 } 1833 1834 static volatile int 1835 fxp_miibus_readreg(device_t dev, int phy, int reg) 1836 { 1837 struct fxp_softc *sc = device_get_softc(dev); 1838 int count = 10000; 1839 int value; 1840 1841 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 1842 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); 1843 1844 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 1845 && count--) 1846 DELAY(10); 1847 1848 if (count <= 0) 1849 device_printf(dev, "fxp_miibus_readreg: timed out\n"); 1850 1851 return (value & 0xffff); 1852 } 1853 1854 static void 1855 fxp_miibus_writereg(device_t dev, int phy, int reg, int value) 1856 { 1857 struct fxp_softc *sc = device_get_softc(dev); 1858 int count = 10000; 1859 1860 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 1861 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | 1862 (value & 0xffff)); 1863 1864 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && 1865 count--) 1866 DELAY(10); 1867 1868 if (count <= 0) 1869 device_printf(dev, "fxp_miibus_writereg: timed out\n"); 1870 } 1871 1872 static int 1873 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1874 { 1875 struct fxp_softc *sc = ifp->if_softc; 1876 struct ifreq *ifr = (struct ifreq *)data; 1877 struct mii_data *mii; 1878 int s, error = 0; 1879 1880 s = splimp(); 1881 1882 switch (command) { 1883 case SIOCSIFADDR: 1884 case SIOCGIFADDR: 1885 case SIOCSIFMTU: 1886 error = ether_ioctl(ifp, command, data); 1887 break; 1888 1889 case SIOCSIFFLAGS: 1890 if (ifp->if_flags & IFF_ALLMULTI) 1891 sc->flags |= FXP_FLAG_ALL_MCAST; 1892 else 1893 sc->flags &= ~FXP_FLAG_ALL_MCAST; 1894 1895 /* 1896 * If interface is marked up and not running, then start it. 1897 * If it is marked down and running, stop it. 1898 * XXX If it's up then re-initialize it. This is so flags 1899 * such as IFF_PROMISC are handled. 1900 */ 1901 if (ifp->if_flags & IFF_UP) { 1902 fxp_init(sc); 1903 } else { 1904 if (ifp->if_flags & IFF_RUNNING) 1905 fxp_stop(sc); 1906 } 1907 break; 1908 1909 case SIOCADDMULTI: 1910 case SIOCDELMULTI: 1911 if (ifp->if_flags & IFF_ALLMULTI) 1912 sc->flags |= FXP_FLAG_ALL_MCAST; 1913 else 1914 sc->flags &= ~FXP_FLAG_ALL_MCAST; 1915 /* 1916 * Multicast list has changed; set the hardware filter 1917 * accordingly. 1918 */ 1919 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) 1920 fxp_mc_setup(sc); 1921 /* 1922 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it 1923 * again rather than else {}. 1924 */ 1925 if (sc->flags & FXP_FLAG_ALL_MCAST) 1926 fxp_init(sc); 1927 error = 0; 1928 break; 1929 1930 case SIOCSIFMEDIA: 1931 case SIOCGIFMEDIA: 1932 if (sc->miibus != NULL) { 1933 mii = device_get_softc(sc->miibus); 1934 error = ifmedia_ioctl(ifp, ifr, 1935 &mii->mii_media, command); 1936 } else { 1937 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); 1938 } 1939 break; 1940 1941 default: 1942 error = EINVAL; 1943 } 1944 splx(s); 1945 return (error); 1946 } 1947 1948 /* 1949 * Program the multicast filter. 1950 * 1951 * We have an artificial restriction that the multicast setup command 1952 * must be the first command in the chain, so we take steps to ensure 1953 * this. By requiring this, it allows us to keep up the performance of 1954 * the pre-initialized command ring (esp. link pointers) by not actually 1955 * inserting the mcsetup command in the ring - i.e. its link pointer 1956 * points to the TxCB ring, but the mcsetup descriptor itself is not part 1957 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it 1958 * lead into the regular TxCB ring when it completes. 1959 * 1960 * This function must be called at splimp. 1961 */ 1962 static void 1963 fxp_mc_setup(struct fxp_softc *sc) 1964 { 1965 struct fxp_cb_mcs *mcsp = sc->mcsp; 1966 struct ifnet *ifp = &sc->sc_if; 1967 struct ifmultiaddr *ifma; 1968 int nmcasts; 1969 int count; 1970 1971 /* 1972 * If there are queued commands, we must wait until they are all 1973 * completed. If we are already waiting, then add a NOP command 1974 * with interrupt option so that we're notified when all commands 1975 * have been completed - fxp_start() ensures that no additional 1976 * TX commands will be added when need_mcsetup is true. 1977 */ 1978 if (sc->tx_queued) { 1979 struct fxp_cb_tx *txp; 1980 1981 /* 1982 * need_mcsetup will be true if we are already waiting for the 1983 * NOP command to be completed (see below). In this case, bail. 1984 */ 1985 if (sc->need_mcsetup) 1986 return; 1987 sc->need_mcsetup = 1; 1988 1989 /* 1990 * Add a NOP command with interrupt so that we are notified 1991 * when all TX commands have been processed. 1992 */ 1993 txp = sc->cbl_last->next; 1994 txp->mb_head = NULL; 1995 txp->cb_status = 0; 1996 txp->cb_command = FXP_CB_COMMAND_NOP | 1997 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; 1998 /* 1999 * Advance the end of list forward. 2000 */ 2001 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S; 2002 sc->cbl_last = txp; 2003 sc->tx_queued++; 2004 /* 2005 * Issue a resume in case the CU has just suspended. 2006 */ 2007 fxp_scb_wait(sc); 2008 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 2009 /* 2010 * Set a 5 second timer just in case we don't hear from the 2011 * card again. 2012 */ 2013 ifp->if_timer = 5; 2014 2015 return; 2016 } 2017 sc->need_mcsetup = 0; 2018 2019 /* 2020 * Initialize multicast setup descriptor. 2021 */ 2022 mcsp->next = sc->cbl_base; 2023 mcsp->mb_head = NULL; 2024 mcsp->cb_status = 0; 2025 mcsp->cb_command = FXP_CB_COMMAND_MCAS | 2026 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; 2027 mcsp->link_addr = vtophys(&sc->cbl_base->cb_status); 2028 2029 nmcasts = 0; 2030 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) { 2031 #if __FreeBSD_version < 500000 2032 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2033 #else 2034 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2035 #endif 2036 if (ifma->ifma_addr->sa_family != AF_LINK) 2037 continue; 2038 if (nmcasts >= MAXMCADDR) { 2039 sc->flags |= FXP_FLAG_ALL_MCAST; 2040 nmcasts = 0; 2041 break; 2042 } 2043 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 2044 (void *)(uintptr_t)(volatile void *) 2045 &sc->mcsp->mc_addr[nmcasts][0], 6); 2046 nmcasts++; 2047 } 2048 } 2049 mcsp->mc_cnt = nmcasts * 6; 2050 sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp; 2051 sc->tx_queued = 1; 2052 2053 /* 2054 * Wait until command unit is not active. This should never 2055 * be the case when nothing is queued, but make sure anyway. 2056 */ 2057 count = 100; 2058 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) == 2059 FXP_SCB_CUS_ACTIVE && --count) 2060 DELAY(10); 2061 if (count == 0) { 2062 device_printf(sc->dev, "command queue timeout\n"); 2063 return; 2064 } 2065 2066 /* 2067 * Start the multicast setup command. 2068 */ 2069 fxp_scb_wait(sc); 2070 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status)); 2071 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2072 2073 ifp->if_timer = 2; 2074 return; 2075 } 2076 2077 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE; 2078 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE; 2079 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE; 2080 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE; 2081 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE; 2082 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE; 2083 2084 #define UCODE(x) x, sizeof(x) 2085 2086 struct ucode { 2087 u_int32_t revision; 2088 u_int32_t *ucode; 2089 int length; 2090 u_short int_delay_offset; 2091 u_short bundle_max_offset; 2092 } ucode_table[] = { 2093 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 }, 2094 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 }, 2095 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma), 2096 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD }, 2097 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s), 2098 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD }, 2099 { FXP_REV_82550, UCODE(fxp_ucode_d102), 2100 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD }, 2101 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c), 2102 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD }, 2103 { 0, NULL, 0, 0, 0 } 2104 }; 2105 2106 static void 2107 fxp_load_ucode(struct fxp_softc *sc) 2108 { 2109 struct ucode *uc; 2110 struct fxp_cb_ucode *cbp; 2111 2112 for (uc = ucode_table; uc->ucode != NULL; uc++) 2113 if (sc->revision == uc->revision) 2114 break; 2115 if (uc->ucode == NULL) 2116 return; 2117 cbp = (struct fxp_cb_ucode *)sc->cbl_base; 2118 cbp->cb_status = 0; 2119 cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL; 2120 cbp->link_addr = -1; /* (no) next command */ 2121 memcpy(cbp->ucode, uc->ucode, uc->length); 2122 if (uc->int_delay_offset) 2123 *(u_short *)&cbp->ucode[uc->int_delay_offset] = 2124 sc->tunable_int_delay + sc->tunable_int_delay / 2; 2125 if (uc->bundle_max_offset) 2126 *(u_short *)&cbp->ucode[uc->bundle_max_offset] = 2127 sc->tunable_bundle_max; 2128 /* 2129 * Download the ucode to the chip. 2130 */ 2131 fxp_scb_wait(sc); 2132 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status)); 2133 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2134 /* ...and wait for it to complete. */ 2135 fxp_dma_wait(&cbp->cb_status, sc); 2136 device_printf(sc->dev, 2137 "Microcode loaded, int_delay: %d usec bundle_max: %d\n", 2138 sc->tunable_int_delay, 2139 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max); 2140 sc->flags |= FXP_FLAG_UCODE; 2141 } 2142 2143 static int 2144 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 2145 { 2146 int error, value; 2147 2148 value = *(int *)arg1; 2149 error = sysctl_handle_int(oidp, &value, 0, req); 2150 if (error || !req->newptr) 2151 return (error); 2152 if (value < low || value > high) 2153 return (EINVAL); 2154 *(int *)arg1 = value; 2155 return (0); 2156 } 2157 2158 /* 2159 * Interrupt delay is expressed in microseconds, a multiplier is used 2160 * to convert this to the appropriate clock ticks before using. 2161 */ 2162 static int 2163 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS) 2164 { 2165 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000)); 2166 } 2167 2168 static int 2169 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS) 2170 { 2171 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff)); 2172 } 2173