xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 7afc53b8dfcc7d5897920ce6cc7e842fbb4ab813)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/endian.h>
40 #include <sys/mbuf.h>
41 		/* #include <sys/mutex.h> */
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sysctl.h>
46 
47 #include <net/if.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 
51 #include <net/bpf.h>
52 #include <sys/sockio.h>
53 #include <sys/bus.h>
54 #include <machine/bus.h>
55 #include <sys/rman.h>
56 #include <machine/resource.h>
57 
58 #include <net/ethernet.h>
59 #include <net/if_arp.h>
60 
61 #include <machine/clock.h>	/* for DELAY */
62 
63 #include <net/if_types.h>
64 #include <net/if_vlan_var.h>
65 
66 #ifdef FXP_IP_CSUM_WAR
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <machine/in_cksum.h>
71 #endif
72 
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75 
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 
79 #include <dev/fxp/if_fxpreg.h>
80 #include <dev/fxp/if_fxpvar.h>
81 #include <dev/fxp/rcvbundl.h>
82 
83 MODULE_DEPEND(fxp, pci, 1, 1, 1);
84 MODULE_DEPEND(fxp, ether, 1, 1, 1);
85 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86 #include "miibus_if.h"
87 
88 /*
89  * NOTE!  On the Alpha, we have an alignment constraint.  The
90  * card DMAs the packet immediately following the RFA.  However,
91  * the first thing in the packet is a 14-byte Ethernet header.
92  * This means that the packet is misaligned.  To compensate,
93  * we actually offset the RFA 2 bytes into the cluster.  This
94  * alignes the packet after the Ethernet header at a 32-bit
95  * boundary.  HOWEVER!  This means that the RFA is misaligned!
96  */
97 #define	RFA_ALIGNMENT_FUDGE	2
98 
99 /*
100  * Set initial transmit threshold at 64 (512 bytes). This is
101  * increased by 64 (512 bytes) at a time, to maximum of 192
102  * (1536 bytes), if an underrun occurs.
103  */
104 static int tx_threshold = 64;
105 
106 /*
107  * The configuration byte map has several undefined fields which
108  * must be one or must be zero.  Set up a template for these bits
109  * only, (assuming a 82557 chip) leaving the actual configuration
110  * to fxp_init.
111  *
112  * See struct fxp_cb_config for the bit definitions.
113  */
114 static u_char fxp_cb_config_template[] = {
115 	0x0, 0x0,		/* cb_status */
116 	0x0, 0x0,		/* cb_command */
117 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118 	0x0,	/*  0 */
119 	0x0,	/*  1 */
120 	0x0,	/*  2 */
121 	0x0,	/*  3 */
122 	0x0,	/*  4 */
123 	0x0,	/*  5 */
124 	0x32,	/*  6 */
125 	0x0,	/*  7 */
126 	0x0,	/*  8 */
127 	0x0,	/*  9 */
128 	0x6,	/* 10 */
129 	0x0,	/* 11 */
130 	0x0,	/* 12 */
131 	0x0,	/* 13 */
132 	0xf2,	/* 14 */
133 	0x48,	/* 15 */
134 	0x0,	/* 16 */
135 	0x40,	/* 17 */
136 	0xf0,	/* 18 */
137 	0x0,	/* 19 */
138 	0x3f,	/* 20 */
139 	0x5	/* 21 */
140 };
141 
142 struct fxp_ident {
143 	uint16_t	devid;
144 	int16_t		revid;		/* -1 matches anything */
145 	char 		*name;
146 };
147 
148 /*
149  * Claim various Intel PCI device identifiers for this driver.  The
150  * sub-vendor and sub-device field are extensively used to identify
151  * particular variants, but we don't currently differentiate between
152  * them.
153  */
154 static struct fxp_ident fxp_ident_table[] = {
155     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172     { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174     { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
175     { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
176     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
177     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
178     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
179     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
180     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
181     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
182     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
183     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
184     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
185     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
186     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
187     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
188     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
189     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
190     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
191     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
192     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
193     { 0,	-1,	NULL },
194 };
195 
196 #ifdef FXP_IP_CSUM_WAR
197 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
198 #else
199 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
200 #endif
201 
202 static int		fxp_probe(device_t dev);
203 static int		fxp_attach(device_t dev);
204 static int		fxp_detach(device_t dev);
205 static int		fxp_shutdown(device_t dev);
206 static int		fxp_suspend(device_t dev);
207 static int		fxp_resume(device_t dev);
208 
209 static void		fxp_intr(void *xsc);
210 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
211 			    uint8_t statack, int count);
212 static void 		fxp_init(void *xsc);
213 static void 		fxp_init_body(struct fxp_softc *sc);
214 static void 		fxp_tick(void *xsc);
215 static void 		fxp_start(struct ifnet *ifp);
216 static void 		fxp_start_body(struct ifnet *ifp);
217 static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
218 static void		fxp_stop(struct fxp_softc *sc);
219 static void 		fxp_release(struct fxp_softc *sc);
220 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
221 			    caddr_t data);
222 static void 		fxp_watchdog(struct ifnet *ifp);
223 static int		fxp_add_rfabuf(struct fxp_softc *sc,
224     			    struct fxp_rx *rxp);
225 static int		fxp_mc_addrs(struct fxp_softc *sc);
226 static void		fxp_mc_setup(struct fxp_softc *sc);
227 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
228 			    int autosize);
229 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
230 			    uint16_t data);
231 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
232 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
233 			    int offset, int words);
234 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
235 			    int offset, int words);
236 static int		fxp_ifmedia_upd(struct ifnet *ifp);
237 static void		fxp_ifmedia_sts(struct ifnet *ifp,
238 			    struct ifmediareq *ifmr);
239 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
240 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
241 			    struct ifmediareq *ifmr);
242 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
243 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
244 			    int value);
245 static void		fxp_load_ucode(struct fxp_softc *sc);
246 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
247 			    int low, int high);
248 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
249 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
250 static void 		fxp_scb_wait(struct fxp_softc *sc);
251 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
252 static void		fxp_dma_wait(struct fxp_softc *sc,
253     			    volatile uint16_t *status, bus_dma_tag_t dmat,
254 			    bus_dmamap_t map);
255 
256 static device_method_t fxp_methods[] = {
257 	/* Device interface */
258 	DEVMETHOD(device_probe,		fxp_probe),
259 	DEVMETHOD(device_attach,	fxp_attach),
260 	DEVMETHOD(device_detach,	fxp_detach),
261 	DEVMETHOD(device_shutdown,	fxp_shutdown),
262 	DEVMETHOD(device_suspend,	fxp_suspend),
263 	DEVMETHOD(device_resume,	fxp_resume),
264 
265 	/* MII interface */
266 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
267 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
268 
269 	{ 0, 0 }
270 };
271 
272 static driver_t fxp_driver = {
273 	"fxp",
274 	fxp_methods,
275 	sizeof(struct fxp_softc),
276 };
277 
278 static devclass_t fxp_devclass;
279 
280 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
281 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
282 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
283 
284 /*
285  * Wait for the previous command to be accepted (but not necessarily
286  * completed).
287  */
288 static void
289 fxp_scb_wait(struct fxp_softc *sc)
290 {
291 	int i = 10000;
292 
293 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
294 		DELAY(2);
295 	if (i == 0)
296 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
297 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
298 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
299 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
300 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
301 }
302 
303 static void
304 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
305 {
306 
307 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
308 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
309 		fxp_scb_wait(sc);
310 	}
311 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
312 }
313 
314 static void
315 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
316     bus_dma_tag_t dmat, bus_dmamap_t map)
317 {
318 	int i = 10000;
319 
320 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
321 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
322 		DELAY(2);
323 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
324 	}
325 	if (i == 0)
326 		device_printf(sc->dev, "DMA timeout\n");
327 }
328 
329 /*
330  * Return identification string if this device is ours.
331  */
332 static int
333 fxp_probe(device_t dev)
334 {
335 	uint16_t devid;
336 	uint8_t revid;
337 	struct fxp_ident *ident;
338 
339 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
340 		devid = pci_get_device(dev);
341 		revid = pci_get_revid(dev);
342 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
343 			if (ident->devid == devid &&
344 			    (ident->revid == revid || ident->revid == -1)) {
345 				device_set_desc(dev, ident->name);
346 				return (BUS_PROBE_DEFAULT);
347 			}
348 		}
349 	}
350 	return (ENXIO);
351 }
352 
353 static void
354 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
355 {
356 	uint32_t *addr;
357 
358 	if (error)
359 		return;
360 
361 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
362 	addr = arg;
363 	*addr = segs->ds_addr;
364 }
365 
366 static int
367 fxp_attach(device_t dev)
368 {
369 	struct fxp_softc *sc;
370 	struct fxp_cb_tx *tcbp;
371 	struct fxp_tx *txp;
372 	struct fxp_rx *rxp;
373 	struct ifnet *ifp;
374 	uint32_t val;
375 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
376 	int i, rid, m1, m2, prefer_iomap;
377 	int error, s;
378 
379 	error = 0;
380 	sc = device_get_softc(dev);
381 	sc->dev = dev;
382 	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
383 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
384 	    MTX_DEF);
385 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
386 	    fxp_serial_ifmedia_sts);
387 
388 	s = splimp();
389 
390 	/*
391 	 * Enable bus mastering.
392 	 */
393 	pci_enable_busmaster(dev);
394 	val = pci_read_config(dev, PCIR_COMMAND, 2);
395 
396 	/*
397 	 * Figure out which we should try first - memory mapping or i/o mapping?
398 	 * We default to memory mapping. Then we accept an override from the
399 	 * command line. Then we check to see which one is enabled.
400 	 */
401 	m1 = PCIM_CMD_MEMEN;
402 	m2 = PCIM_CMD_PORTEN;
403 	prefer_iomap = 0;
404 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
405 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
406 		m1 = PCIM_CMD_PORTEN;
407 		m2 = PCIM_CMD_MEMEN;
408 	}
409 
410 	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
411 	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
412 	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
413 	if (sc->mem == NULL) {
414 		sc->rtp =
415 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
416 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
417 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
418                                             RF_ACTIVE);
419 	}
420 
421 	if (!sc->mem) {
422 		error = ENXIO;
423 		goto fail;
424         }
425 	if (bootverbose) {
426 		device_printf(dev, "using %s space register mapping\n",
427 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
428 	}
429 
430 	sc->sc_st = rman_get_bustag(sc->mem);
431 	sc->sc_sh = rman_get_bushandle(sc->mem);
432 
433 	/*
434 	 * Allocate our interrupt.
435 	 */
436 	rid = 0;
437 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
438 				 RF_SHAREABLE | RF_ACTIVE);
439 	if (sc->irq == NULL) {
440 		device_printf(dev, "could not map interrupt\n");
441 		error = ENXIO;
442 		goto fail;
443 	}
444 
445 	/*
446 	 * Reset to a stable state.
447 	 */
448 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
449 	DELAY(10);
450 
451 	/*
452 	 * Find out how large of an SEEPROM we have.
453 	 */
454 	fxp_autosize_eeprom(sc);
455 
456 	/*
457 	 * Find out the chip revision; lump all 82557 revs together.
458 	 */
459 	fxp_read_eeprom(sc, &data, 5, 1);
460 	if ((data >> 8) == 1)
461 		sc->revision = FXP_REV_82557;
462 	else
463 		sc->revision = pci_get_revid(dev);
464 
465 	/*
466 	 * Determine whether we must use the 503 serial interface.
467 	 */
468 	fxp_read_eeprom(sc, &data, 6, 1);
469 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
470 	    && (data & FXP_PHY_SERIAL_ONLY))
471 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
472 
473 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
474 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
475 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
476 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
477 	    "FXP driver receive interrupt microcode bundling delay");
478 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
479 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
480 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
481 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
482 	    "FXP driver receive interrupt microcode bundle size limit");
483 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
484 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
485 	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
486 	    "FXP RNR events");
487 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
488 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
489 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
490 	    "FXP flow control disabled");
491 
492 	/*
493 	 * Pull in device tunables.
494 	 */
495 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
496 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
497 	sc->tunable_noflow = 1;
498 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
499 	    "int_delay", &sc->tunable_int_delay);
500 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
501 	    "bundle_max", &sc->tunable_bundle_max);
502 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
503 	    "noflow", &sc->tunable_noflow);
504 	sc->rnr = 0;
505 
506 	/*
507 	 * Enable workarounds for certain chip revision deficiencies.
508 	 *
509 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
510 	 * some systems based a normal 82559 design, have a defect where
511 	 * the chip can cause a PCI protocol violation if it receives
512 	 * a CU_RESUME command when it is entering the IDLE state.  The
513 	 * workaround is to disable Dynamic Standby Mode, so the chip never
514 	 * deasserts CLKRUN#, and always remains in an active state.
515 	 *
516 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
517 	 */
518 	i = pci_get_device(dev);
519 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
520 	    sc->revision >= FXP_REV_82559_A0) {
521 		fxp_read_eeprom(sc, &data, 10, 1);
522 		if (data & 0x02) {			/* STB enable */
523 			uint16_t cksum;
524 			int i;
525 
526 			device_printf(dev,
527 			    "Disabling dynamic standby mode in EEPROM\n");
528 			data &= ~0x02;
529 			fxp_write_eeprom(sc, &data, 10, 1);
530 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
531 			cksum = 0;
532 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
533 				fxp_read_eeprom(sc, &data, i, 1);
534 				cksum += data;
535 			}
536 			i = (1 << sc->eeprom_size) - 1;
537 			cksum = 0xBABA - cksum;
538 			fxp_read_eeprom(sc, &data, i, 1);
539 			fxp_write_eeprom(sc, &cksum, i, 1);
540 			device_printf(dev,
541 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
542 			    i, data, cksum);
543 #if 1
544 			/*
545 			 * If the user elects to continue, try the software
546 			 * workaround, as it is better than nothing.
547 			 */
548 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
549 #endif
550 		}
551 	}
552 
553 	/*
554 	 * If we are not a 82557 chip, we can enable extended features.
555 	 */
556 	if (sc->revision != FXP_REV_82557) {
557 		/*
558 		 * If MWI is enabled in the PCI configuration, and there
559 		 * is a valid cacheline size (8 or 16 dwords), then tell
560 		 * the board to turn on MWI.
561 		 */
562 		if (val & PCIM_CMD_MWRICEN &&
563 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
564 			sc->flags |= FXP_FLAG_MWI_ENABLE;
565 
566 		/* turn on the extended TxCB feature */
567 		sc->flags |= FXP_FLAG_EXT_TXCB;
568 
569 		/* enable reception of long frames for VLAN */
570 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
571 	} else {
572 		/* a hack to get long VLAN frames on a 82557 */
573 		sc->flags |= FXP_FLAG_SAVE_BAD;
574 	}
575 
576 	/*
577 	 * Enable use of extended RFDs and TCBs for 82550
578 	 * and later chips. Note: we need extended TXCB support
579 	 * too, but that's already enabled by the code above.
580 	 * Be careful to do this only on the right devices.
581 	 */
582 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
583 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
584 	    || sc->revision == FXP_REV_82551_10) {
585 		sc->rfa_size = sizeof (struct fxp_rfa);
586 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
587 		sc->flags |= FXP_FLAG_EXT_RFA;
588 	} else {
589 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
590 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
591 	}
592 
593 	/*
594 	 * Allocate DMA tags and DMA safe memory.
595 	 */
596 	sc->maxtxseg = FXP_NTXSEG;
597 	if (sc->flags & FXP_FLAG_EXT_RFA)
598 		sc->maxtxseg--;
599 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
600 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
601 	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
602 	    &sc->fxp_mtag);
603 	if (error) {
604 		device_printf(dev, "could not allocate dma tag\n");
605 		goto fail;
606 	}
607 
608 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
609 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
610 	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
611 	    &sc->fxp_stag);
612 	if (error) {
613 		device_printf(dev, "could not allocate dma tag\n");
614 		goto fail;
615 	}
616 
617 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
618 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
619 	if (error)
620 		goto fail;
621 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
622 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
623 	if (error) {
624 		device_printf(dev, "could not map the stats buffer\n");
625 		goto fail;
626 	}
627 
628 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
629 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
630 	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
631 	if (error) {
632 		device_printf(dev, "could not allocate dma tag\n");
633 		goto fail;
634 	}
635 
636 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
637 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
638 	if (error)
639 		goto fail;
640 
641 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
642 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
643 	    &sc->fxp_desc.cbl_addr, 0);
644 	if (error) {
645 		device_printf(dev, "could not map DMA memory\n");
646 		goto fail;
647 	}
648 
649 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
650 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
651 	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
652 	    &sc->mcs_tag);
653 	if (error) {
654 		device_printf(dev, "could not allocate dma tag\n");
655 		goto fail;
656 	}
657 
658 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
659 	    BUS_DMA_NOWAIT, &sc->mcs_map);
660 	if (error)
661 		goto fail;
662 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
663 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
664 	if (error) {
665 		device_printf(dev, "can't map the multicast setup command\n");
666 		goto fail;
667 	}
668 
669 	/*
670 	 * Pre-allocate the TX DMA maps and setup the pointers to
671 	 * the TX command blocks.
672 	 */
673 	txp = sc->fxp_desc.tx_list;
674 	tcbp = sc->fxp_desc.cbl_list;
675 	for (i = 0; i < FXP_NTXCB; i++) {
676 		txp[i].tx_cb = tcbp + i;
677 		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
678 		if (error) {
679 			device_printf(dev, "can't create DMA map for TX\n");
680 			goto fail;
681 		}
682 	}
683 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
684 	if (error) {
685 		device_printf(dev, "can't create spare DMA map\n");
686 		goto fail;
687 	}
688 
689 	/*
690 	 * Pre-allocate our receive buffers.
691 	 */
692 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
693 	for (i = 0; i < FXP_NRFABUFS; i++) {
694 		rxp = &sc->fxp_desc.rx_list[i];
695 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
696 		if (error) {
697 			device_printf(dev, "can't create DMA map for RX\n");
698 			goto fail;
699 		}
700 		if (fxp_add_rfabuf(sc, rxp) != 0) {
701 			error = ENOMEM;
702 			goto fail;
703 		}
704 	}
705 
706 	/*
707 	 * Read MAC address.
708 	 */
709 	fxp_read_eeprom(sc, myea, 0, 3);
710 	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
711 	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
712 	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
713 	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
714 	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
715 	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
716 	if (bootverbose) {
717 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
718 		    pci_get_vendor(dev), pci_get_device(dev),
719 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
720 		    pci_get_revid(dev));
721 		fxp_read_eeprom(sc, &data, 10, 1);
722 		device_printf(dev, "Dynamic Standby mode is %s\n",
723 		    data & 0x02 ? "enabled" : "disabled");
724 	}
725 
726 	/*
727 	 * If this is only a 10Mbps device, then there is no MII, and
728 	 * the PHY will use a serial interface instead.
729 	 *
730 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
731 	 * doesn't have a programming interface of any sort.  The
732 	 * media is sensed automatically based on how the link partner
733 	 * is configured.  This is, in essence, manual configuration.
734 	 */
735 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
736 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
737 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
738 	} else {
739 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
740 		    fxp_ifmedia_sts)) {
741 	                device_printf(dev, "MII without any PHY!\n");
742 			error = ENXIO;
743 			goto fail;
744 		}
745 	}
746 
747 	ifp = &sc->arpcom.ac_if;
748 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
749 	ifp->if_baudrate = 100000000;
750 	ifp->if_init = fxp_init;
751 	ifp->if_softc = sc;
752 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
753 	ifp->if_ioctl = fxp_ioctl;
754 	ifp->if_start = fxp_start;
755 	ifp->if_watchdog = fxp_watchdog;
756 
757 	ifp->if_capabilities = ifp->if_capenable = 0;
758 
759 	/* Enable checksum offload for 82550 or better chips */
760 	if (sc->flags & FXP_FLAG_EXT_RFA) {
761 		ifp->if_hwassist = FXP_CSUM_FEATURES;
762 		ifp->if_capabilities |= IFCAP_HWCSUM;
763 		ifp->if_capenable |= IFCAP_HWCSUM;
764 	}
765 
766 #ifdef DEVICE_POLLING
767 	/* Inform the world we support polling. */
768 	ifp->if_capabilities |= IFCAP_POLLING;
769 	ifp->if_capenable |= IFCAP_POLLING;
770 #endif
771 
772 	/*
773 	 * Attach the interface.
774 	 */
775 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
776 
777 	/*
778 	 * Tell the upper layer(s) we support long frames.
779 	 * Must appear after the call to ether_ifattach() because
780 	 * ether_ifattach() sets ifi_hdrlen to the default value.
781 	 */
782 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
783 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
784 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
785 
786 	/*
787 	 * Let the system queue as many packets as we have available
788 	 * TX descriptors.
789 	 */
790 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
791 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
792 	IFQ_SET_READY(&ifp->if_snd);
793 
794 	/*
795 	 * Hook our interrupt after all initialization is complete.
796 	 */
797 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
798 			       fxp_intr, sc, &sc->ih);
799 	if (error) {
800 		device_printf(dev, "could not setup irq\n");
801 		ether_ifdetach(&sc->arpcom.ac_if);
802 		goto fail;
803 	}
804 
805 fail:
806 	splx(s);
807 	if (error)
808 		fxp_release(sc);
809 	return (error);
810 }
811 
812 /*
813  * Release all resources.  The softc lock should not be held and the
814  * interrupt should already be torn down.
815  */
816 static void
817 fxp_release(struct fxp_softc *sc)
818 {
819 	struct fxp_rx *rxp;
820 	struct fxp_tx *txp;
821 	int i;
822 
823 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
824 	KASSERT(sc->ih == NULL,
825 	    ("fxp_release() called with intr handle still active"));
826 	if (sc->miibus)
827 		device_delete_child(sc->dev, sc->miibus);
828 	bus_generic_detach(sc->dev);
829 	ifmedia_removeall(&sc->sc_media);
830 	if (sc->fxp_desc.cbl_list) {
831 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
832 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
833 		    sc->cbl_map);
834 	}
835 	if (sc->fxp_stats) {
836 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
837 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
838 	}
839 	if (sc->mcsp) {
840 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
841 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
842 	}
843 	if (sc->irq)
844 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
845 	if (sc->mem)
846 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
847 	if (sc->fxp_mtag) {
848 		for (i = 0; i < FXP_NRFABUFS; i++) {
849 			rxp = &sc->fxp_desc.rx_list[i];
850 			if (rxp->rx_mbuf != NULL) {
851 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
852 				    BUS_DMASYNC_POSTREAD);
853 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
854 				m_freem(rxp->rx_mbuf);
855 			}
856 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
857 		}
858 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
859 		for (i = 0; i < FXP_NTXCB; i++) {
860 			txp = &sc->fxp_desc.tx_list[i];
861 			if (txp->tx_mbuf != NULL) {
862 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
863 				    BUS_DMASYNC_POSTWRITE);
864 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
865 				m_freem(txp->tx_mbuf);
866 			}
867 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
868 		}
869 		bus_dma_tag_destroy(sc->fxp_mtag);
870 	}
871 	if (sc->fxp_stag)
872 		bus_dma_tag_destroy(sc->fxp_stag);
873 	if (sc->cbl_tag)
874 		bus_dma_tag_destroy(sc->cbl_tag);
875 	if (sc->mcs_tag)
876 		bus_dma_tag_destroy(sc->mcs_tag);
877 
878 	mtx_destroy(&sc->sc_mtx);
879 }
880 
881 /*
882  * Detach interface.
883  */
884 static int
885 fxp_detach(device_t dev)
886 {
887 	struct fxp_softc *sc = device_get_softc(dev);
888 	int s;
889 
890 	FXP_LOCK(sc);
891 	s = splimp();
892 
893 	sc->suspended = 1;	/* Do same thing as we do for suspend */
894 	/*
895 	 * Close down routes etc.
896 	 */
897 	ether_ifdetach(&sc->arpcom.ac_if);
898 
899 	/*
900 	 * Stop DMA and drop transmit queue, but disable interrupts first.
901 	 */
902 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
903 	fxp_stop(sc);
904 	FXP_UNLOCK(sc);
905 
906 	/*
907 	 * Unhook interrupt before dropping lock. This is to prevent
908 	 * races with fxp_intr().
909 	 */
910 	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
911 	sc->ih = NULL;
912 
913 	splx(s);
914 
915 	/* Release our allocated resources. */
916 	fxp_release(sc);
917 	return (0);
918 }
919 
920 /*
921  * Device shutdown routine. Called at system shutdown after sync. The
922  * main purpose of this routine is to shut off receiver DMA so that
923  * kernel memory doesn't get clobbered during warmboot.
924  */
925 static int
926 fxp_shutdown(device_t dev)
927 {
928 	/*
929 	 * Make sure that DMA is disabled prior to reboot. Not doing
930 	 * do could allow DMA to corrupt kernel memory during the
931 	 * reboot before the driver initializes.
932 	 */
933 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
934 	return (0);
935 }
936 
937 /*
938  * Device suspend routine.  Stop the interface and save some PCI
939  * settings in case the BIOS doesn't restore them properly on
940  * resume.
941  */
942 static int
943 fxp_suspend(device_t dev)
944 {
945 	struct fxp_softc *sc = device_get_softc(dev);
946 	int i, s;
947 
948 	FXP_LOCK(sc);
949 	s = splimp();
950 
951 	fxp_stop(sc);
952 
953 	for (i = 0; i < 5; i++)
954 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
955 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
956 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
957 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
958 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
959 
960 	sc->suspended = 1;
961 
962 	FXP_UNLOCK(sc);
963 	splx(s);
964 	return (0);
965 }
966 
967 /*
968  * Device resume routine.  Restore some PCI settings in case the BIOS
969  * doesn't, re-enable busmastering, and restart the interface if
970  * appropriate.
971  */
972 static int
973 fxp_resume(device_t dev)
974 {
975 	struct fxp_softc *sc = device_get_softc(dev);
976 	struct ifnet *ifp = &sc->sc_if;
977 	uint16_t pci_command;
978 	int i, s;
979 
980 	FXP_LOCK(sc);
981 	s = splimp();
982 
983 	/* better way to do this? */
984 	for (i = 0; i < 5; i++)
985 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
986 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
987 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
988 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
989 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
990 
991 	/* reenable busmastering */
992 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
993 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
994 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
995 
996 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
997 	DELAY(10);
998 
999 	/* reinitialize interface if necessary */
1000 	if (ifp->if_flags & IFF_UP)
1001 		fxp_init_body(sc);
1002 
1003 	sc->suspended = 0;
1004 
1005 	FXP_UNLOCK(sc);
1006 	splx(s);
1007 	return (0);
1008 }
1009 
1010 static void
1011 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1012 {
1013 	uint16_t reg;
1014 	int x;
1015 
1016 	/*
1017 	 * Shift in data.
1018 	 */
1019 	for (x = 1 << (length - 1); x; x >>= 1) {
1020 		if (data & x)
1021 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1022 		else
1023 			reg = FXP_EEPROM_EECS;
1024 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1025 		DELAY(1);
1026 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1027 		DELAY(1);
1028 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1029 		DELAY(1);
1030 	}
1031 }
1032 
1033 /*
1034  * Read from the serial EEPROM. Basically, you manually shift in
1035  * the read opcode (one bit at a time) and then shift in the address,
1036  * and then you shift out the data (all of this one bit at a time).
1037  * The word size is 16 bits, so you have to provide the address for
1038  * every 16 bits of data.
1039  */
1040 static uint16_t
1041 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1042 {
1043 	uint16_t reg, data;
1044 	int x;
1045 
1046 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1047 	/*
1048 	 * Shift in read opcode.
1049 	 */
1050 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1051 	/*
1052 	 * Shift in address.
1053 	 */
1054 	data = 0;
1055 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1056 		if (offset & x)
1057 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1058 		else
1059 			reg = FXP_EEPROM_EECS;
1060 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1061 		DELAY(1);
1062 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1063 		DELAY(1);
1064 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1065 		DELAY(1);
1066 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1067 		data++;
1068 		if (autosize && reg == 0) {
1069 			sc->eeprom_size = data;
1070 			break;
1071 		}
1072 	}
1073 	/*
1074 	 * Shift out data.
1075 	 */
1076 	data = 0;
1077 	reg = FXP_EEPROM_EECS;
1078 	for (x = 1 << 15; x; x >>= 1) {
1079 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1080 		DELAY(1);
1081 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1082 			data |= x;
1083 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1084 		DELAY(1);
1085 	}
1086 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1087 	DELAY(1);
1088 
1089 	return (data);
1090 }
1091 
1092 static void
1093 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1094 {
1095 	int i;
1096 
1097 	/*
1098 	 * Erase/write enable.
1099 	 */
1100 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1101 	fxp_eeprom_shiftin(sc, 0x4, 3);
1102 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1103 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1104 	DELAY(1);
1105 	/*
1106 	 * Shift in write opcode, address, data.
1107 	 */
1108 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1109 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1110 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1111 	fxp_eeprom_shiftin(sc, data, 16);
1112 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1113 	DELAY(1);
1114 	/*
1115 	 * Wait for EEPROM to finish up.
1116 	 */
1117 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1118 	DELAY(1);
1119 	for (i = 0; i < 1000; i++) {
1120 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1121 			break;
1122 		DELAY(50);
1123 	}
1124 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1125 	DELAY(1);
1126 	/*
1127 	 * Erase/write disable.
1128 	 */
1129 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1130 	fxp_eeprom_shiftin(sc, 0x4, 3);
1131 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1132 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1133 	DELAY(1);
1134 }
1135 
1136 /*
1137  * From NetBSD:
1138  *
1139  * Figure out EEPROM size.
1140  *
1141  * 559's can have either 64-word or 256-word EEPROMs, the 558
1142  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1143  * talks about the existance of 16 to 256 word EEPROMs.
1144  *
1145  * The only known sizes are 64 and 256, where the 256 version is used
1146  * by CardBus cards to store CIS information.
1147  *
1148  * The address is shifted in msb-to-lsb, and after the last
1149  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1150  * after which follows the actual data. We try to detect this zero, by
1151  * probing the data-out bit in the EEPROM control register just after
1152  * having shifted in a bit. If the bit is zero, we assume we've
1153  * shifted enough address bits. The data-out should be tri-state,
1154  * before this, which should translate to a logical one.
1155  */
1156 static void
1157 fxp_autosize_eeprom(struct fxp_softc *sc)
1158 {
1159 
1160 	/* guess maximum size of 256 words */
1161 	sc->eeprom_size = 8;
1162 
1163 	/* autosize */
1164 	(void) fxp_eeprom_getword(sc, 0, 1);
1165 }
1166 
1167 static void
1168 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1169 {
1170 	int i;
1171 
1172 	for (i = 0; i < words; i++)
1173 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1174 }
1175 
1176 static void
1177 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1178 {
1179 	int i;
1180 
1181 	for (i = 0; i < words; i++)
1182 		fxp_eeprom_putword(sc, offset + i, data[i]);
1183 }
1184 
1185 /*
1186  * Grab the softc lock and call the real fxp_start_body() routine
1187  */
1188 static void
1189 fxp_start(struct ifnet *ifp)
1190 {
1191 	struct fxp_softc *sc = ifp->if_softc;
1192 
1193 	FXP_LOCK(sc);
1194 	fxp_start_body(ifp);
1195 	FXP_UNLOCK(sc);
1196 }
1197 
1198 /*
1199  * Start packet transmission on the interface.
1200  * This routine must be called with the softc lock held, and is an
1201  * internal entry point only.
1202  */
1203 static void
1204 fxp_start_body(struct ifnet *ifp)
1205 {
1206 	struct fxp_softc *sc = ifp->if_softc;
1207 	struct mbuf *mb_head;
1208 	int error, txqueued;
1209 
1210 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1211 
1212 	/*
1213 	 * See if we need to suspend xmit until the multicast filter
1214 	 * has been reprogrammed (which can only be done at the head
1215 	 * of the command chain).
1216 	 */
1217 	if (sc->need_mcsetup)
1218 		return;
1219 
1220 	/*
1221 	 * We're finished if there is nothing more to add to the list or if
1222 	 * we're all filled up with buffers to transmit.
1223 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1224 	 *       a NOP command when needed.
1225 	 */
1226 	txqueued = 0;
1227 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1228 	    sc->tx_queued < FXP_NTXCB - 1) {
1229 
1230 		/*
1231 		 * Grab a packet to transmit.
1232 		 */
1233 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1234 		if (mb_head == NULL)
1235 			break;
1236 
1237 		error = fxp_encap(sc, mb_head);
1238 		if (error)
1239 			break;
1240 		txqueued = 1;
1241 	}
1242 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1243 
1244 	/*
1245 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1246 	 * going again if suspended.
1247 	 */
1248 	if (txqueued) {
1249 		fxp_scb_wait(sc);
1250 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1251 	}
1252 }
1253 
1254 static int
1255 fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1256 {
1257 	struct ifnet *ifp;
1258 	struct mbuf *m;
1259 	struct fxp_tx *txp;
1260 	struct fxp_cb_tx *cbp;
1261 	bus_dma_segment_t segs[FXP_NTXSEG];
1262 	int chainlen, error, i, nseg;
1263 
1264 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1265 	ifp = &sc->sc_if;
1266 
1267 	/*
1268 	 * Get pointer to next available tx desc.
1269 	 */
1270 	txp = sc->fxp_desc.tx_last->tx_next;
1271 
1272 	/*
1273 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1274 	 * Ethernet Controller Family Open Source Software
1275 	 * Developer Manual says:
1276 	 *   Using software parsing is only allowed with legal
1277 	 *   TCP/IP or UDP/IP packets.
1278 	 *   ...
1279 	 *   For all other datagrams, hardware parsing must
1280 	 *   be used.
1281 	 * Software parsing appears to truncate ICMP and
1282 	 * fragmented UDP packets that contain one to three
1283 	 * bytes in the second (and final) mbuf of the packet.
1284 	 */
1285 	if (sc->flags & FXP_FLAG_EXT_RFA)
1286 		txp->tx_cb->ipcb_ip_activation_high =
1287 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1288 
1289 	/*
1290 	 * Deal with TCP/IP checksum offload. Note that
1291 	 * in order for TCP checksum offload to work,
1292 	 * the pseudo header checksum must have already
1293 	 * been computed and stored in the checksum field
1294 	 * in the TCP header. The stack should have
1295 	 * already done this for us.
1296 	 */
1297 	if (m_head->m_pkthdr.csum_flags) {
1298 		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1299 			txp->tx_cb->ipcb_ip_schedule =
1300 			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1301 			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1302 				txp->tx_cb->ipcb_ip_schedule |=
1303 				    FXP_IPCB_TCP_PACKET;
1304 		}
1305 
1306 #ifdef FXP_IP_CSUM_WAR
1307 		/*
1308 		 * XXX The 82550 chip appears to have trouble
1309 		 * dealing with IP header checksums in very small
1310 		 * datagrams, namely fragments from 1 to 3 bytes
1311 		 * in size. For example, say you want to transmit
1312 		 * a UDP packet of 1473 bytes. The packet will be
1313 		 * fragmented over two IP datagrams, the latter
1314 		 * containing only one byte of data. The 82550 will
1315 		 * botch the header checksum on the 1-byte fragment.
1316 		 * As long as the datagram contains 4 or more bytes
1317 		 * of data, you're ok.
1318 		 *
1319                  * The following code attempts to work around this
1320 		 * problem: if the datagram is less than 38 bytes
1321 		 * in size (14 bytes ether header, 20 bytes IP header,
1322 		 * plus 4 bytes of data), we punt and compute the IP
1323 		 * header checksum by hand. This workaround doesn't
1324 		 * work very well, however, since it can be fooled
1325 		 * by things like VLAN tags and IP options that make
1326 		 * the header sizes/offsets vary.
1327 		 */
1328 
1329 		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1330 			if (m_head->m_pkthdr.len < 38) {
1331 				struct ip *ip;
1332 				m_head->m_data += ETHER_HDR_LEN;
1333 				ip = mtod(mb_head, struct ip *);
1334 				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1335 				m_head->m_data -= ETHER_HDR_LEN;
1336 			} else {
1337 				txp->tx_cb->ipcb_ip_activation_high =
1338 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1339 				txp->tx_cb->ipcb_ip_schedule |=
1340 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1341 			}
1342 		}
1343 #endif
1344 	}
1345 
1346 	chainlen = 0;
1347 	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1348 		chainlen++;
1349 	if (chainlen > sc->maxtxseg) {
1350 		struct mbuf *mn;
1351 
1352 		/*
1353 		 * We ran out of segments. We have to recopy this
1354 		 * mbuf chain first. Bail out if we can't get the
1355 		 * new buffers.
1356 		 */
1357 		mn = m_defrag(m_head, M_DONTWAIT);
1358 		if (mn == NULL) {
1359 			m_freem(m_head);
1360 			return (-1);
1361 		} else {
1362 			m_head = mn;
1363 		}
1364 	}
1365 
1366 	/*
1367 	 * Go through each of the mbufs in the chain and initialize
1368 	 * the transmit buffer descriptors with the physical address
1369 	 * and size of the mbuf.
1370 	 */
1371 	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1372 	    m_head, segs, &nseg, 0);
1373 	if (error) {
1374 		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1375 		m_freem(m_head);
1376 		return (-1);
1377 	}
1378 
1379 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1380 
1381 	cbp = txp->tx_cb;
1382 	for (i = 0; i < nseg; i++) {
1383 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1384 		/*
1385 		 * If this is an 82550/82551, then we're using extended
1386 		 * TxCBs _and_ we're using checksum offload. This means
1387 		 * that the TxCB is really an IPCB. One major difference
1388 		 * between the two is that with plain extended TxCBs,
1389 		 * the bottom half of the TxCB contains two entries from
1390 		 * the TBD array, whereas IPCBs contain just one entry:
1391 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1392 		 * checksum offload control bits. So to make things work
1393 		 * right, we have to start filling in the TBD array
1394 		 * starting from a different place depending on whether
1395 		 * the chip is an 82550/82551 or not.
1396 		 */
1397 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1398 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1399 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1400 		} else {
1401 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1402 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1403 		}
1404 	}
1405 	cbp->tbd_number = nseg;
1406 
1407 	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1408 	txp->tx_mbuf = m_head;
1409 	txp->tx_cb->cb_status = 0;
1410 	txp->tx_cb->byte_count = 0;
1411 	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1412 		txp->tx_cb->cb_command =
1413 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1414 		    FXP_CB_COMMAND_S);
1415 	} else {
1416 		txp->tx_cb->cb_command =
1417 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1418 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1419 		/*
1420 		 * Set a 5 second timer just in case we don't hear
1421 		 * from the card again.
1422 		 */
1423 		ifp->if_timer = 5;
1424 	}
1425 	txp->tx_cb->tx_threshold = tx_threshold;
1426 
1427 	/*
1428 	 * Advance the end of list forward.
1429 	 */
1430 
1431 #ifdef __alpha__
1432 	/*
1433 	 * On platforms which can't access memory in 16-bit
1434 	 * granularities, we must prevent the card from DMA'ing
1435 	 * up the status while we update the command field.
1436 	 * This could cause us to overwrite the completion status.
1437 	 * XXX This is probably bogus and we're _not_ looking
1438 	 * for atomicity here.
1439 	 */
1440 	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1441 	    htole16(FXP_CB_COMMAND_S));
1442 #else
1443 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1444 #endif /*__alpha__*/
1445 	sc->fxp_desc.tx_last = txp;
1446 
1447 	/*
1448 	 * Advance the beginning of the list forward if there are
1449 	 * no other packets queued (when nothing is queued, tx_first
1450 	 * sits on the last TxCB that was sent out).
1451 	 */
1452 	if (sc->tx_queued == 0)
1453 		sc->fxp_desc.tx_first = txp;
1454 
1455 	sc->tx_queued++;
1456 
1457 	/*
1458 	 * Pass packet to bpf if there is a listener.
1459 	 */
1460 	BPF_MTAP(ifp, m_head);
1461 	return (0);
1462 }
1463 
1464 #ifdef DEVICE_POLLING
1465 static poll_handler_t fxp_poll;
1466 
1467 static void
1468 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1469 {
1470 	struct fxp_softc *sc = ifp->if_softc;
1471 	uint8_t statack;
1472 
1473 	FXP_LOCK(sc);
1474 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1475 		ether_poll_deregister(ifp);
1476 		cmd = POLL_DEREGISTER;
1477 	}
1478 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1479 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1480 		FXP_UNLOCK(sc);
1481 		return;
1482 	}
1483 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1484 	    FXP_SCB_STATACK_FR;
1485 	if (cmd == POLL_AND_CHECK_STATUS) {
1486 		uint8_t tmp;
1487 
1488 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1489 		if (tmp == 0xff || tmp == 0) {
1490 			FXP_UNLOCK(sc);
1491 			return; /* nothing to do */
1492 		}
1493 		tmp &= ~statack;
1494 		/* ack what we can */
1495 		if (tmp != 0)
1496 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1497 		statack |= tmp;
1498 	}
1499 	fxp_intr_body(sc, ifp, statack, count);
1500 	FXP_UNLOCK(sc);
1501 }
1502 #endif /* DEVICE_POLLING */
1503 
1504 /*
1505  * Process interface interrupts.
1506  */
1507 static void
1508 fxp_intr(void *xsc)
1509 {
1510 	struct fxp_softc *sc = xsc;
1511 	struct ifnet *ifp = &sc->sc_if;
1512 	uint8_t statack;
1513 
1514 	FXP_LOCK(sc);
1515 	if (sc->suspended) {
1516 		FXP_UNLOCK(sc);
1517 		return;
1518 	}
1519 
1520 #ifdef DEVICE_POLLING
1521 	if (ifp->if_flags & IFF_POLLING) {
1522 		FXP_UNLOCK(sc);
1523 		return;
1524 	}
1525 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1526 	    ether_poll_register(fxp_poll, ifp)) {
1527 		/* disable interrupts */
1528 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1529 		FXP_UNLOCK(sc);
1530 		fxp_poll(ifp, 0, 1);
1531 		return;
1532 	}
1533 #endif
1534 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1535 		/*
1536 		 * It should not be possible to have all bits set; the
1537 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1538 		 * all bits are set, this may indicate that the card has
1539 		 * been physically ejected, so ignore it.
1540 		 */
1541 		if (statack == 0xff) {
1542 			FXP_UNLOCK(sc);
1543 			return;
1544 		}
1545 
1546 		/*
1547 		 * First ACK all the interrupts in this pass.
1548 		 */
1549 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1550 		fxp_intr_body(sc, ifp, statack, -1);
1551 	}
1552 	FXP_UNLOCK(sc);
1553 }
1554 
1555 static void
1556 fxp_txeof(struct fxp_softc *sc)
1557 {
1558 	struct fxp_tx *txp;
1559 
1560 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1561 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1562 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1563 	    txp = txp->tx_next) {
1564 		if (txp->tx_mbuf != NULL) {
1565 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1566 			    BUS_DMASYNC_POSTWRITE);
1567 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1568 			m_freem(txp->tx_mbuf);
1569 			txp->tx_mbuf = NULL;
1570 			/* clear this to reset csum offload bits */
1571 			txp->tx_cb->tbd[0].tb_addr = 0;
1572 		}
1573 		sc->tx_queued--;
1574 	}
1575 	sc->fxp_desc.tx_first = txp;
1576 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1577 }
1578 
1579 static void
1580 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1581     int count)
1582 {
1583 	struct mbuf *m;
1584 	struct fxp_rx *rxp;
1585 	struct fxp_rfa *rfa;
1586 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1587 
1588 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1589 	if (rnr)
1590 		sc->rnr++;
1591 #ifdef DEVICE_POLLING
1592 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1593 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1594 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1595 		rnr = 1;
1596 	}
1597 #endif
1598 
1599 	/*
1600 	 * Free any finished transmit mbuf chains.
1601 	 *
1602 	 * Handle the CNA event likt a CXTNO event. It used to
1603 	 * be that this event (control unit not ready) was not
1604 	 * encountered, but it is now with the SMPng modifications.
1605 	 * The exact sequence of events that occur when the interface
1606 	 * is brought up are different now, and if this event
1607 	 * goes unhandled, the configuration/rxfilter setup sequence
1608 	 * can stall for several seconds. The result is that no
1609 	 * packets go out onto the wire for about 5 to 10 seconds
1610 	 * after the interface is ifconfig'ed for the first time.
1611 	 */
1612 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1613 		fxp_txeof(sc);
1614 
1615 		ifp->if_timer = 0;
1616 		if (sc->tx_queued == 0) {
1617 			if (sc->need_mcsetup)
1618 				fxp_mc_setup(sc);
1619 		}
1620 		/*
1621 		 * Try to start more packets transmitting.
1622 		 */
1623 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1624 			fxp_start_body(ifp);
1625 	}
1626 
1627 	/*
1628 	 * Just return if nothing happened on the receive side.
1629 	 */
1630 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1631 		return;
1632 
1633 	/*
1634 	 * Process receiver interrupts. If a no-resource (RNR)
1635 	 * condition exists, get whatever packets we can and
1636 	 * re-start the receiver.
1637 	 *
1638 	 * When using polling, we do not process the list to completion,
1639 	 * so when we get an RNR interrupt we must defer the restart
1640 	 * until we hit the last buffer with the C bit set.
1641 	 * If we run out of cycles and rfa_headm has the C bit set,
1642 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1643 	 * that the info will be used in the subsequent polling cycle.
1644 	 */
1645 	for (;;) {
1646 		rxp = sc->fxp_desc.rx_head;
1647 		m = rxp->rx_mbuf;
1648 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1649 		    RFA_ALIGNMENT_FUDGE);
1650 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1651 		    BUS_DMASYNC_POSTREAD);
1652 
1653 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1654 		if (count >= 0 && count-- == 0) {
1655 			if (rnr) {
1656 				/* Defer RNR processing until the next time. */
1657 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1658 				rnr = 0;
1659 			}
1660 			break;
1661 		}
1662 #endif /* DEVICE_POLLING */
1663 
1664 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1665 			break;
1666 
1667 		/*
1668 		 * Advance head forward.
1669 		 */
1670 		sc->fxp_desc.rx_head = rxp->rx_next;
1671 
1672 		/*
1673 		 * Add a new buffer to the receive chain.
1674 		 * If this fails, the old buffer is recycled
1675 		 * instead.
1676 		 */
1677 		if (fxp_add_rfabuf(sc, rxp) == 0) {
1678 			int total_len;
1679 
1680 			/*
1681 			 * Fetch packet length (the top 2 bits of
1682 			 * actual_size are flags set by the controller
1683 			 * upon completion), and drop the packet in case
1684 			 * of bogus length or CRC errors.
1685 			 */
1686 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1687 			if (total_len < sizeof(struct ether_header) ||
1688 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1689 				sc->rfa_size ||
1690 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1691 				m_freem(m);
1692 				continue;
1693 			}
1694 
1695                         /* Do IP checksum checking. */
1696 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1697 				if (rfa->rfax_csum_sts &
1698 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1699 					m->m_pkthdr.csum_flags |=
1700 					    CSUM_IP_CHECKED;
1701 				if (rfa->rfax_csum_sts &
1702 				    FXP_RFDX_CS_IP_CSUM_VALID)
1703 					m->m_pkthdr.csum_flags |=
1704 					    CSUM_IP_VALID;
1705 				if ((rfa->rfax_csum_sts &
1706 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1707 				    (rfa->rfax_csum_sts &
1708 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1709 					m->m_pkthdr.csum_flags |=
1710 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1711 					m->m_pkthdr.csum_data = 0xffff;
1712 				}
1713 			}
1714 
1715 			m->m_pkthdr.len = m->m_len = total_len;
1716 			m->m_pkthdr.rcvif = ifp;
1717 
1718 			/*
1719 			 * Drop locks before calling if_input() since it
1720 			 * may re-enter fxp_start() in the netisr case.
1721 			 * This would result in a lock reversal.  Better
1722 			 * performance might be obtained by chaining all
1723 			 * packets received, dropping the lock, and then
1724 			 * calling if_input() on each one.
1725 			 */
1726 			FXP_UNLOCK(sc);
1727 			(*ifp->if_input)(ifp, m);
1728 			FXP_LOCK(sc);
1729 		}
1730 	}
1731 	if (rnr) {
1732 		fxp_scb_wait(sc);
1733 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1734 		    sc->fxp_desc.rx_head->rx_addr);
1735 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1736 	}
1737 }
1738 
1739 /*
1740  * Update packet in/out/collision statistics. The i82557 doesn't
1741  * allow you to access these counters without doing a fairly
1742  * expensive DMA to get _all_ of the statistics it maintains, so
1743  * we do this operation here only once per second. The statistics
1744  * counters in the kernel are updated from the previous dump-stats
1745  * DMA and then a new dump-stats DMA is started. The on-chip
1746  * counters are zeroed when the DMA completes. If we can't start
1747  * the DMA immediately, we don't wait - we just prepare to read
1748  * them again next time.
1749  */
1750 static void
1751 fxp_tick(void *xsc)
1752 {
1753 	struct fxp_softc *sc = xsc;
1754 	struct ifnet *ifp = &sc->sc_if;
1755 	struct fxp_stats *sp = sc->fxp_stats;
1756 	int s;
1757 
1758 	FXP_LOCK(sc);
1759 	s = splimp();
1760 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1761 	ifp->if_opackets += le32toh(sp->tx_good);
1762 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1763 	if (sp->rx_good) {
1764 		ifp->if_ipackets += le32toh(sp->rx_good);
1765 		sc->rx_idle_secs = 0;
1766 	} else {
1767 		/*
1768 		 * Receiver's been idle for another second.
1769 		 */
1770 		sc->rx_idle_secs++;
1771 	}
1772 	ifp->if_ierrors +=
1773 	    le32toh(sp->rx_crc_errors) +
1774 	    le32toh(sp->rx_alignment_errors) +
1775 	    le32toh(sp->rx_rnr_errors) +
1776 	    le32toh(sp->rx_overrun_errors);
1777 	/*
1778 	 * If any transmit underruns occured, bump up the transmit
1779 	 * threshold by another 512 bytes (64 * 8).
1780 	 */
1781 	if (sp->tx_underruns) {
1782 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1783 		if (tx_threshold < 192)
1784 			tx_threshold += 64;
1785 	}
1786 
1787 	/*
1788 	 * Release any xmit buffers that have completed DMA. This isn't
1789 	 * strictly necessary to do here, but it's advantagous for mbufs
1790 	 * with external storage to be released in a timely manner rather
1791 	 * than being defered for a potentially long time. This limits
1792 	 * the delay to a maximum of one second.
1793 	 */
1794 	fxp_txeof(sc);
1795 
1796 	/*
1797 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1798 	 * then assume the receiver has locked up and attempt to clear
1799 	 * the condition by reprogramming the multicast filter. This is
1800 	 * a work-around for a bug in the 82557 where the receiver locks
1801 	 * up if it gets certain types of garbage in the syncronization
1802 	 * bits prior to the packet header. This bug is supposed to only
1803 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1804 	 * mode as well (perhaps due to a 10/100 speed transition).
1805 	 */
1806 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1807 		sc->rx_idle_secs = 0;
1808 		fxp_mc_setup(sc);
1809 	}
1810 	/*
1811 	 * If there is no pending command, start another stats
1812 	 * dump. Otherwise punt for now.
1813 	 */
1814 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1815 		/*
1816 		 * Start another stats dump.
1817 		 */
1818 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1819 		    BUS_DMASYNC_PREREAD);
1820 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1821 	} else {
1822 		/*
1823 		 * A previous command is still waiting to be accepted.
1824 		 * Just zero our copy of the stats and wait for the
1825 		 * next timer event to update them.
1826 		 */
1827 		sp->tx_good = 0;
1828 		sp->tx_underruns = 0;
1829 		sp->tx_total_collisions = 0;
1830 
1831 		sp->rx_good = 0;
1832 		sp->rx_crc_errors = 0;
1833 		sp->rx_alignment_errors = 0;
1834 		sp->rx_rnr_errors = 0;
1835 		sp->rx_overrun_errors = 0;
1836 	}
1837 	if (sc->miibus != NULL)
1838 		mii_tick(device_get_softc(sc->miibus));
1839 
1840 	/*
1841 	 * Schedule another timeout one second from now.
1842 	 */
1843 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1844 	FXP_UNLOCK(sc);
1845 	splx(s);
1846 }
1847 
1848 /*
1849  * Stop the interface. Cancels the statistics updater and resets
1850  * the interface.
1851  */
1852 static void
1853 fxp_stop(struct fxp_softc *sc)
1854 {
1855 	struct ifnet *ifp = &sc->sc_if;
1856 	struct fxp_tx *txp;
1857 	int i;
1858 
1859 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1860 	ifp->if_timer = 0;
1861 
1862 #ifdef DEVICE_POLLING
1863 	ether_poll_deregister(ifp);
1864 #endif
1865 	/*
1866 	 * Cancel stats updater.
1867 	 */
1868 	callout_stop(&sc->stat_ch);
1869 
1870 	/*
1871 	 * Issue software reset, which also unloads the microcode.
1872 	 */
1873 	sc->flags &= ~FXP_FLAG_UCODE;
1874 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1875 	DELAY(50);
1876 
1877 	/*
1878 	 * Release any xmit buffers.
1879 	 */
1880 	txp = sc->fxp_desc.tx_list;
1881 	if (txp != NULL) {
1882 		for (i = 0; i < FXP_NTXCB; i++) {
1883  			if (txp[i].tx_mbuf != NULL) {
1884 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1885 				    BUS_DMASYNC_POSTWRITE);
1886 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1887 				m_freem(txp[i].tx_mbuf);
1888 				txp[i].tx_mbuf = NULL;
1889 				/* clear this to reset csum offload bits */
1890 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1891 			}
1892 		}
1893 	}
1894 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1895 	sc->tx_queued = 0;
1896 }
1897 
1898 /*
1899  * Watchdog/transmission transmit timeout handler. Called when a
1900  * transmission is started on the interface, but no interrupt is
1901  * received before the timeout. This usually indicates that the
1902  * card has wedged for some reason.
1903  */
1904 static void
1905 fxp_watchdog(struct ifnet *ifp)
1906 {
1907 	struct fxp_softc *sc = ifp->if_softc;
1908 
1909 	FXP_LOCK(sc);
1910 	device_printf(sc->dev, "device timeout\n");
1911 	ifp->if_oerrors++;
1912 
1913 	fxp_init_body(sc);
1914 	FXP_UNLOCK(sc);
1915 }
1916 
1917 /*
1918  * Acquire locks and then call the real initialization function.  This
1919  * is necessary because ether_ioctl() calls if_init() and this would
1920  * result in mutex recursion if the mutex was held.
1921  */
1922 static void
1923 fxp_init(void *xsc)
1924 {
1925 	struct fxp_softc *sc = xsc;
1926 
1927 	FXP_LOCK(sc);
1928 	fxp_init_body(sc);
1929 	FXP_UNLOCK(sc);
1930 }
1931 
1932 /*
1933  * Perform device initialization. This routine must be called with the
1934  * softc lock held.
1935  */
1936 static void
1937 fxp_init_body(struct fxp_softc *sc)
1938 {
1939 	struct ifnet *ifp = &sc->sc_if;
1940 	struct fxp_cb_config *cbp;
1941 	struct fxp_cb_ias *cb_ias;
1942 	struct fxp_cb_tx *tcbp;
1943 	struct fxp_tx *txp;
1944 	struct fxp_cb_mcs *mcsp;
1945 	int i, prm, s;
1946 
1947 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1948 	s = splimp();
1949 	/*
1950 	 * Cancel any pending I/O
1951 	 */
1952 	fxp_stop(sc);
1953 
1954 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1955 
1956 	/*
1957 	 * Initialize base of CBL and RFA memory. Loading with zero
1958 	 * sets it up for regular linear addressing.
1959 	 */
1960 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1961 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1962 
1963 	fxp_scb_wait(sc);
1964 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1965 
1966 	/*
1967 	 * Initialize base of dump-stats buffer.
1968 	 */
1969 	fxp_scb_wait(sc);
1970 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1971 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1972 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1973 
1974 	/*
1975 	 * Attempt to load microcode if requested.
1976 	 */
1977 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1978 		fxp_load_ucode(sc);
1979 
1980 	/*
1981 	 * Initialize the multicast address list.
1982 	 */
1983 	if (fxp_mc_addrs(sc)) {
1984 		mcsp = sc->mcsp;
1985 		mcsp->cb_status = 0;
1986 		mcsp->cb_command =
1987 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1988 		mcsp->link_addr = 0xffffffff;
1989 		/*
1990 	 	 * Start the multicast setup command.
1991 		 */
1992 		fxp_scb_wait(sc);
1993 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1994 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1995 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1996 		/* ...and wait for it to complete. */
1997 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1998 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1999 		    BUS_DMASYNC_POSTWRITE);
2000 	}
2001 
2002 	/*
2003 	 * We temporarily use memory that contains the TxCB list to
2004 	 * construct the config CB. The TxCB list memory is rebuilt
2005 	 * later.
2006 	 */
2007 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2008 
2009 	/*
2010 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2011 	 * zero and must be one bits in this structure and this is the easiest
2012 	 * way to initialize them all to proper values.
2013 	 */
2014 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2015 
2016 	cbp->cb_status =	0;
2017 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2018 	    FXP_CB_COMMAND_EL);
2019 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2020 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2021 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2022 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2023 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2024 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2025 	cbp->type_enable =	0;	/* actually reserved */
2026 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2027 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2028 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2029 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2030 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2031 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2032 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2033 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2034 	cbp->ci_int =		1;	/* interrupt on CU idle */
2035 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2036 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2037 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2038 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2039 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2040 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2041 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2042 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2043 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2044 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2045 	cbp->csma_dis =		0;	/* (don't) disable link */
2046 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2047 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2048 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2049 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2050 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2051 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2052 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2053 	cbp->loopback =		0;	/* (don't) loopback */
2054 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2055 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2056 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2057 	cbp->promiscuous =	prm;	/* promiscuous mode */
2058 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2059 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2060 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2061 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2062 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2063 
2064 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2065 	cbp->padding =		1;	/* (do) pad short tx packets */
2066 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2067 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2068 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2069 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2070 					/* must set wake_en in PMCSR also */
2071 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2072 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2073 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2074 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2075 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2076 
2077 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2078 		/*
2079 		 * The 82557 has no hardware flow control, the values
2080 		 * below are the defaults for the chip.
2081 		 */
2082 		cbp->fc_delay_lsb =	0;
2083 		cbp->fc_delay_msb =	0x40;
2084 		cbp->pri_fc_thresh =	3;
2085 		cbp->tx_fc_dis =	0;
2086 		cbp->rx_fc_restop =	0;
2087 		cbp->rx_fc_restart =	0;
2088 		cbp->fc_filter =	0;
2089 		cbp->pri_fc_loc =	1;
2090 	} else {
2091 		cbp->fc_delay_lsb =	0x1f;
2092 		cbp->fc_delay_msb =	0x01;
2093 		cbp->pri_fc_thresh =	3;
2094 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2095 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2096 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2097 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2098 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2099 	}
2100 
2101 	/*
2102 	 * Start the config command/DMA.
2103 	 */
2104 	fxp_scb_wait(sc);
2105 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2106 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2107 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2108 	/* ...and wait for it to complete. */
2109 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2110 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2111 
2112 	/*
2113 	 * Now initialize the station address. Temporarily use the TxCB
2114 	 * memory area like we did above for the config CB.
2115 	 */
2116 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2117 	cb_ias->cb_status = 0;
2118 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2119 	cb_ias->link_addr = 0xffffffff;
2120 	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2121 	    sizeof(sc->arpcom.ac_enaddr));
2122 
2123 	/*
2124 	 * Start the IAS (Individual Address Setup) command/DMA.
2125 	 */
2126 	fxp_scb_wait(sc);
2127 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2128 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2129 	/* ...and wait for it to complete. */
2130 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2131 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2132 
2133 	/*
2134 	 * Initialize transmit control block (TxCB) list.
2135 	 */
2136 	txp = sc->fxp_desc.tx_list;
2137 	tcbp = sc->fxp_desc.cbl_list;
2138 	bzero(tcbp, FXP_TXCB_SZ);
2139 	for (i = 0; i < FXP_NTXCB; i++) {
2140 		txp[i].tx_mbuf = NULL;
2141 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2142 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2143 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2144 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2145 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2146 			tcbp[i].tbd_array_addr =
2147 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2148 		else
2149 			tcbp[i].tbd_array_addr =
2150 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2151 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2152 	}
2153 	/*
2154 	 * Set the suspend flag on the first TxCB and start the control
2155 	 * unit. It will execute the NOP and then suspend.
2156 	 */
2157 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2158 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2159 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2160 	sc->tx_queued = 1;
2161 
2162 	fxp_scb_wait(sc);
2163 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2164 
2165 	/*
2166 	 * Initialize receiver buffer area - RFA.
2167 	 */
2168 	fxp_scb_wait(sc);
2169 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2170 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2171 
2172 	/*
2173 	 * Set current media.
2174 	 */
2175 	if (sc->miibus != NULL)
2176 		mii_mediachg(device_get_softc(sc->miibus));
2177 
2178 	ifp->if_flags |= IFF_RUNNING;
2179 	ifp->if_flags &= ~IFF_OACTIVE;
2180 
2181 	/*
2182 	 * Enable interrupts.
2183 	 */
2184 #ifdef DEVICE_POLLING
2185 	/*
2186 	 * ... but only do that if we are not polling. And because (presumably)
2187 	 * the default is interrupts on, we need to disable them explicitly!
2188 	 */
2189 	if ( ifp->if_flags & IFF_POLLING )
2190 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2191 	else
2192 #endif /* DEVICE_POLLING */
2193 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2194 
2195 	/*
2196 	 * Start stats updater.
2197 	 */
2198 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2199 	splx(s);
2200 }
2201 
2202 static int
2203 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2204 {
2205 
2206 	return (0);
2207 }
2208 
2209 static void
2210 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2211 {
2212 
2213 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2214 }
2215 
2216 /*
2217  * Change media according to request.
2218  */
2219 static int
2220 fxp_ifmedia_upd(struct ifnet *ifp)
2221 {
2222 	struct fxp_softc *sc = ifp->if_softc;
2223 	struct mii_data *mii;
2224 
2225 	mii = device_get_softc(sc->miibus);
2226 	mii_mediachg(mii);
2227 	return (0);
2228 }
2229 
2230 /*
2231  * Notify the world which media we're using.
2232  */
2233 static void
2234 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2235 {
2236 	struct fxp_softc *sc = ifp->if_softc;
2237 	struct mii_data *mii;
2238 
2239 	mii = device_get_softc(sc->miibus);
2240 	mii_pollstat(mii);
2241 	ifmr->ifm_active = mii->mii_media_active;
2242 	ifmr->ifm_status = mii->mii_media_status;
2243 
2244 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2245 		sc->cu_resume_bug = 1;
2246 	else
2247 		sc->cu_resume_bug = 0;
2248 }
2249 
2250 /*
2251  * Add a buffer to the end of the RFA buffer list.
2252  * Return 0 if successful, 1 for failure. A failure results in
2253  * adding the 'oldm' (if non-NULL) on to the end of the list -
2254  * tossing out its old contents and recycling it.
2255  * The RFA struct is stuck at the beginning of mbuf cluster and the
2256  * data pointer is fixed up to point just past it.
2257  */
2258 static int
2259 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2260 {
2261 	struct mbuf *m;
2262 	struct fxp_rfa *rfa, *p_rfa;
2263 	struct fxp_rx *p_rx;
2264 	bus_dmamap_t tmp_map;
2265 	int error;
2266 
2267 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2268 	if (m == NULL)
2269 		return (ENOBUFS);
2270 
2271 	/*
2272 	 * Move the data pointer up so that the incoming data packet
2273 	 * will be 32-bit aligned.
2274 	 */
2275 	m->m_data += RFA_ALIGNMENT_FUDGE;
2276 
2277 	/*
2278 	 * Get a pointer to the base of the mbuf cluster and move
2279 	 * data start past it.
2280 	 */
2281 	rfa = mtod(m, struct fxp_rfa *);
2282 	m->m_data += sc->rfa_size;
2283 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2284 
2285 	rfa->rfa_status = 0;
2286 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2287 	rfa->actual_size = 0;
2288 
2289 	/*
2290 	 * Initialize the rest of the RFA.  Note that since the RFA
2291 	 * is misaligned, we cannot store values directly.  We're thus
2292 	 * using the le32enc() function which handles endianness and
2293 	 * is also alignment-safe.
2294 	 */
2295 	le32enc(&rfa->link_addr, 0xffffffff);
2296 	le32enc(&rfa->rbd_addr, 0xffffffff);
2297 
2298 	/* Map the RFA into DMA memory. */
2299 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2300 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2301 	    &rxp->rx_addr, 0);
2302 	if (error) {
2303 		m_freem(m);
2304 		return (error);
2305 	}
2306 
2307 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2308 	tmp_map = sc->spare_map;
2309 	sc->spare_map = rxp->rx_map;
2310 	rxp->rx_map = tmp_map;
2311 	rxp->rx_mbuf = m;
2312 
2313 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2314 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2315 
2316 	/*
2317 	 * If there are other buffers already on the list, attach this
2318 	 * one to the end by fixing up the tail to point to this one.
2319 	 */
2320 	if (sc->fxp_desc.rx_head != NULL) {
2321 		p_rx = sc->fxp_desc.rx_tail;
2322 		p_rfa = (struct fxp_rfa *)
2323 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2324 		p_rx->rx_next = rxp;
2325 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2326 		p_rfa->rfa_control = 0;
2327 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2328 		    BUS_DMASYNC_PREWRITE);
2329 	} else {
2330 		rxp->rx_next = NULL;
2331 		sc->fxp_desc.rx_head = rxp;
2332 	}
2333 	sc->fxp_desc.rx_tail = rxp;
2334 	return (0);
2335 }
2336 
2337 static volatile int
2338 fxp_miibus_readreg(device_t dev, int phy, int reg)
2339 {
2340 	struct fxp_softc *sc = device_get_softc(dev);
2341 	int count = 10000;
2342 	int value;
2343 
2344 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2345 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2346 
2347 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2348 	    && count--)
2349 		DELAY(10);
2350 
2351 	if (count <= 0)
2352 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2353 
2354 	return (value & 0xffff);
2355 }
2356 
2357 static void
2358 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2359 {
2360 	struct fxp_softc *sc = device_get_softc(dev);
2361 	int count = 10000;
2362 
2363 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2364 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2365 	    (value & 0xffff));
2366 
2367 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2368 	    count--)
2369 		DELAY(10);
2370 
2371 	if (count <= 0)
2372 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2373 }
2374 
2375 static int
2376 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2377 {
2378 	struct fxp_softc *sc = ifp->if_softc;
2379 	struct ifreq *ifr = (struct ifreq *)data;
2380 	struct mii_data *mii;
2381 	int flag, mask, s, error = 0;
2382 
2383 	/*
2384 	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2385 	 * that by saying we're busy if the lock is already held.
2386 	 */
2387 	if (FXP_LOCKED(sc))
2388 		return (EBUSY);
2389 
2390 	FXP_LOCK(sc);
2391 	s = splimp();
2392 
2393 	switch (command) {
2394 	case SIOCSIFFLAGS:
2395 		if (ifp->if_flags & IFF_ALLMULTI)
2396 			sc->flags |= FXP_FLAG_ALL_MCAST;
2397 		else
2398 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2399 
2400 		/*
2401 		 * If interface is marked up and not running, then start it.
2402 		 * If it is marked down and running, stop it.
2403 		 * XXX If it's up then re-initialize it. This is so flags
2404 		 * such as IFF_PROMISC are handled.
2405 		 */
2406 		if (ifp->if_flags & IFF_UP) {
2407 			fxp_init_body(sc);
2408 		} else {
2409 			if (ifp->if_flags & IFF_RUNNING)
2410 				fxp_stop(sc);
2411 		}
2412 		break;
2413 
2414 	case SIOCADDMULTI:
2415 	case SIOCDELMULTI:
2416 		if (ifp->if_flags & IFF_ALLMULTI)
2417 			sc->flags |= FXP_FLAG_ALL_MCAST;
2418 		else
2419 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2420 		/*
2421 		 * Multicast list has changed; set the hardware filter
2422 		 * accordingly.
2423 		 */
2424 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2425 			fxp_mc_setup(sc);
2426 		/*
2427 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2428 		 * again rather than else {}.
2429 		 */
2430 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2431 			fxp_init_body(sc);
2432 		error = 0;
2433 		break;
2434 
2435 	case SIOCSIFMEDIA:
2436 	case SIOCGIFMEDIA:
2437 		if (sc->miibus != NULL) {
2438 			mii = device_get_softc(sc->miibus);
2439                         error = ifmedia_ioctl(ifp, ifr,
2440                             &mii->mii_media, command);
2441 		} else {
2442                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2443 		}
2444 		break;
2445 
2446 	case SIOCSIFCAP:
2447 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2448 		if (mask & IFCAP_POLLING)
2449 			ifp->if_capenable ^= IFCAP_POLLING;
2450 		if (mask & IFCAP_VLAN_MTU) {
2451 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2452 			if (sc->revision != FXP_REV_82557)
2453 				flag = FXP_FLAG_LONG_PKT_EN;
2454 			else /* a hack to get long frames on the old chip */
2455 				flag = FXP_FLAG_SAVE_BAD;
2456 			sc->flags ^= flag;
2457 			if (ifp->if_flags & IFF_UP)
2458 				fxp_init_body(sc);
2459 		}
2460 		break;
2461 
2462 	default:
2463 		/*
2464 		 * ether_ioctl() will eventually call fxp_start() which
2465 		 * will result in mutex recursion so drop it first.
2466 		 */
2467 		FXP_UNLOCK(sc);
2468 		error = ether_ioctl(ifp, command, data);
2469 	}
2470 	if (FXP_LOCKED(sc))
2471 		FXP_UNLOCK(sc);
2472 	splx(s);
2473 	return (error);
2474 }
2475 
2476 /*
2477  * Fill in the multicast address list and return number of entries.
2478  */
2479 static int
2480 fxp_mc_addrs(struct fxp_softc *sc)
2481 {
2482 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2483 	struct ifnet *ifp = &sc->sc_if;
2484 	struct ifmultiaddr *ifma;
2485 	int nmcasts;
2486 
2487 	nmcasts = 0;
2488 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2489 #if __FreeBSD_version < 500000
2490 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2491 #else
2492 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2493 #endif
2494 			if (ifma->ifma_addr->sa_family != AF_LINK)
2495 				continue;
2496 			if (nmcasts >= MAXMCADDR) {
2497 				sc->flags |= FXP_FLAG_ALL_MCAST;
2498 				nmcasts = 0;
2499 				break;
2500 			}
2501 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2502 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2503 			nmcasts++;
2504 		}
2505 	}
2506 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2507 	return (nmcasts);
2508 }
2509 
2510 /*
2511  * Program the multicast filter.
2512  *
2513  * We have an artificial restriction that the multicast setup command
2514  * must be the first command in the chain, so we take steps to ensure
2515  * this. By requiring this, it allows us to keep up the performance of
2516  * the pre-initialized command ring (esp. link pointers) by not actually
2517  * inserting the mcsetup command in the ring - i.e. its link pointer
2518  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2519  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2520  * lead into the regular TxCB ring when it completes.
2521  *
2522  * This function must be called at splimp.
2523  */
2524 static void
2525 fxp_mc_setup(struct fxp_softc *sc)
2526 {
2527 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2528 	struct ifnet *ifp = &sc->sc_if;
2529 	struct fxp_tx *txp;
2530 	int count;
2531 
2532 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2533 	/*
2534 	 * If there are queued commands, we must wait until they are all
2535 	 * completed. If we are already waiting, then add a NOP command
2536 	 * with interrupt option so that we're notified when all commands
2537 	 * have been completed - fxp_start() ensures that no additional
2538 	 * TX commands will be added when need_mcsetup is true.
2539 	 */
2540 	if (sc->tx_queued) {
2541 		/*
2542 		 * need_mcsetup will be true if we are already waiting for the
2543 		 * NOP command to be completed (see below). In this case, bail.
2544 		 */
2545 		if (sc->need_mcsetup)
2546 			return;
2547 		sc->need_mcsetup = 1;
2548 
2549 		/*
2550 		 * Add a NOP command with interrupt so that we are notified
2551 		 * when all TX commands have been processed.
2552 		 */
2553 		txp = sc->fxp_desc.tx_last->tx_next;
2554 		txp->tx_mbuf = NULL;
2555 		txp->tx_cb->cb_status = 0;
2556 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2557 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2558 		/*
2559 		 * Advance the end of list forward.
2560 		 */
2561 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2562 		    htole16(~FXP_CB_COMMAND_S);
2563 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2564 		sc->fxp_desc.tx_last = txp;
2565 		sc->tx_queued++;
2566 		/*
2567 		 * Issue a resume in case the CU has just suspended.
2568 		 */
2569 		fxp_scb_wait(sc);
2570 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2571 		/*
2572 		 * Set a 5 second timer just in case we don't hear from the
2573 		 * card again.
2574 		 */
2575 		ifp->if_timer = 5;
2576 
2577 		return;
2578 	}
2579 	sc->need_mcsetup = 0;
2580 
2581 	/*
2582 	 * Initialize multicast setup descriptor.
2583 	 */
2584 	mcsp->cb_status = 0;
2585 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2586 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2587 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2588 	txp = &sc->fxp_desc.mcs_tx;
2589 	txp->tx_mbuf = NULL;
2590 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2591 	txp->tx_next = sc->fxp_desc.tx_list;
2592 	(void) fxp_mc_addrs(sc);
2593 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2594 	sc->tx_queued = 1;
2595 
2596 	/*
2597 	 * Wait until command unit is not active. This should never
2598 	 * be the case when nothing is queued, but make sure anyway.
2599 	 */
2600 	count = 100;
2601 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2602 	    FXP_SCB_CUS_ACTIVE && --count)
2603 		DELAY(10);
2604 	if (count == 0) {
2605 		device_printf(sc->dev, "command queue timeout\n");
2606 		return;
2607 	}
2608 
2609 	/*
2610 	 * Start the multicast setup command.
2611 	 */
2612 	fxp_scb_wait(sc);
2613 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2614 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2615 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2616 
2617 	ifp->if_timer = 2;
2618 	return;
2619 }
2620 
2621 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2622 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2623 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2624 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2625 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2626 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2627 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2628 
2629 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2630 
2631 struct ucode {
2632 	uint32_t	revision;
2633 	uint32_t	*ucode;
2634 	int		length;
2635 	u_short		int_delay_offset;
2636 	u_short		bundle_max_offset;
2637 } ucode_table[] = {
2638 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2639 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2640 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2641 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2642 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2643 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2644 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2645 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2646 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2647 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2648 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2649 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2650 	{ 0, NULL, 0, 0, 0 }
2651 };
2652 
2653 static void
2654 fxp_load_ucode(struct fxp_softc *sc)
2655 {
2656 	struct ucode *uc;
2657 	struct fxp_cb_ucode *cbp;
2658 	int i;
2659 
2660 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2661 		if (sc->revision == uc->revision)
2662 			break;
2663 	if (uc->ucode == NULL)
2664 		return;
2665 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2666 	cbp->cb_status = 0;
2667 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2668 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2669 	for (i = 0; i < uc->length; i++)
2670 		cbp->ucode[i] = htole32(uc->ucode[i]);
2671 	if (uc->int_delay_offset)
2672 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2673 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2674 	if (uc->bundle_max_offset)
2675 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2676 		    htole16(sc->tunable_bundle_max);
2677 	/*
2678 	 * Download the ucode to the chip.
2679 	 */
2680 	fxp_scb_wait(sc);
2681 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2682 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2683 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2684 	/* ...and wait for it to complete. */
2685 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2686 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2687 	device_printf(sc->dev,
2688 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2689 	    sc->tunable_int_delay,
2690 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2691 	sc->flags |= FXP_FLAG_UCODE;
2692 }
2693 
2694 static int
2695 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2696 {
2697 	int error, value;
2698 
2699 	value = *(int *)arg1;
2700 	error = sysctl_handle_int(oidp, &value, 0, req);
2701 	if (error || !req->newptr)
2702 		return (error);
2703 	if (value < low || value > high)
2704 		return (EINVAL);
2705 	*(int *)arg1 = value;
2706 	return (0);
2707 }
2708 
2709 /*
2710  * Interrupt delay is expressed in microseconds, a multiplier is used
2711  * to convert this to the appropriate clock ticks before using.
2712  */
2713 static int
2714 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2715 {
2716 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2717 }
2718 
2719 static int
2720 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2721 {
2722 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2723 }
2724