1 /*- 2 * Copyright (c) 1995, David Greenman 3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice unmodified, this list of conditions, and the following 11 * disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 */ 29 30 /* 31 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/endian.h> 40 #include <sys/mbuf.h> 41 /* #include <sys/mutex.h> */ 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/sysctl.h> 45 46 #include <net/if.h> 47 #include <net/if_dl.h> 48 #include <net/if_media.h> 49 50 #include <net/bpf.h> 51 #include <sys/sockio.h> 52 #include <sys/bus.h> 53 #include <machine/bus.h> 54 #include <sys/rman.h> 55 #include <machine/resource.h> 56 57 #include <net/ethernet.h> 58 #include <net/if_arp.h> 59 60 #include <machine/clock.h> /* for DELAY */ 61 62 #include <net/if_types.h> 63 #include <net/if_vlan_var.h> 64 65 #ifdef FXP_IP_CSUM_WAR 66 #include <netinet/in.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #include <machine/in_cksum.h> 70 #endif 71 72 #include <pci/pcivar.h> 73 #include <pci/pcireg.h> /* for PCIM_CMD_xxx */ 74 75 #include <dev/mii/mii.h> 76 #include <dev/mii/miivar.h> 77 78 #include <dev/fxp/if_fxpreg.h> 79 #include <dev/fxp/if_fxpvar.h> 80 #include <dev/fxp/rcvbundl.h> 81 82 MODULE_DEPEND(fxp, pci, 1, 1, 1); 83 MODULE_DEPEND(fxp, ether, 1, 1, 1); 84 MODULE_DEPEND(fxp, miibus, 1, 1, 1); 85 #include "miibus_if.h" 86 87 /* 88 * NOTE! On the Alpha, we have an alignment constraint. The 89 * card DMAs the packet immediately following the RFA. However, 90 * the first thing in the packet is a 14-byte Ethernet header. 91 * This means that the packet is misaligned. To compensate, 92 * we actually offset the RFA 2 bytes into the cluster. This 93 * alignes the packet after the Ethernet header at a 32-bit 94 * boundary. HOWEVER! This means that the RFA is misaligned! 95 */ 96 #define RFA_ALIGNMENT_FUDGE 2 97 98 /* 99 * Set initial transmit threshold at 64 (512 bytes). This is 100 * increased by 64 (512 bytes) at a time, to maximum of 192 101 * (1536 bytes), if an underrun occurs. 102 */ 103 static int tx_threshold = 64; 104 105 /* 106 * The configuration byte map has several undefined fields which 107 * must be one or must be zero. Set up a template for these bits 108 * only, (assuming a 82557 chip) leaving the actual configuration 109 * to fxp_init. 110 * 111 * See struct fxp_cb_config for the bit definitions. 112 */ 113 static u_char fxp_cb_config_template[] = { 114 0x0, 0x0, /* cb_status */ 115 0x0, 0x0, /* cb_command */ 116 0x0, 0x0, 0x0, 0x0, /* link_addr */ 117 0x0, /* 0 */ 118 0x0, /* 1 */ 119 0x0, /* 2 */ 120 0x0, /* 3 */ 121 0x0, /* 4 */ 122 0x0, /* 5 */ 123 0x32, /* 6 */ 124 0x0, /* 7 */ 125 0x0, /* 8 */ 126 0x0, /* 9 */ 127 0x6, /* 10 */ 128 0x0, /* 11 */ 129 0x0, /* 12 */ 130 0x0, /* 13 */ 131 0xf2, /* 14 */ 132 0x48, /* 15 */ 133 0x0, /* 16 */ 134 0x40, /* 17 */ 135 0xf0, /* 18 */ 136 0x0, /* 19 */ 137 0x3f, /* 20 */ 138 0x5 /* 21 */ 139 }; 140 141 struct fxp_ident { 142 u_int16_t devid; 143 char *name; 144 }; 145 146 /* 147 * Claim various Intel PCI device identifiers for this driver. The 148 * sub-vendor and sub-device field are extensively used to identify 149 * particular variants, but we don't currently differentiate between 150 * them. 151 */ 152 static struct fxp_ident fxp_ident_table[] = { 153 { 0x1029, "Intel 82559 PCI/CardBus Pro/100" }, 154 { 0x1030, "Intel 82559 Pro/100 Ethernet" }, 155 { 0x1031, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 156 { 0x1032, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 157 { 0x1033, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 158 { 0x1034, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 159 { 0x1035, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 160 { 0x1036, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 161 { 0x1037, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 162 { 0x1038, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 163 { 0x1039, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 164 { 0x103A, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 165 { 0x103B, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 166 { 0x103C, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 167 { 0x103D, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 168 { 0x103E, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 169 { 0x1059, "Intel 82551QM Pro/100 M Mobile Connection" }, 170 { 0x1209, "Intel 82559ER Embedded 10/100 Ethernet" }, 171 { 0x1229, "Intel 82557/8/9 EtherExpress Pro/100(B) Ethernet" }, 172 { 0x2449, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" }, 173 { 0, NULL }, 174 }; 175 176 #ifdef FXP_IP_CSUM_WAR 177 #define FXP_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 178 #else 179 #define FXP_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 180 #endif 181 182 static int fxp_probe(device_t dev); 183 static int fxp_attach(device_t dev); 184 static int fxp_detach(device_t dev); 185 static int fxp_shutdown(device_t dev); 186 static int fxp_suspend(device_t dev); 187 static int fxp_resume(device_t dev); 188 189 static void fxp_intr(void *xsc); 190 static void fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, 191 u_int8_t statack, int count); 192 static void fxp_init(void *xsc); 193 static void fxp_init_body(struct fxp_softc *sc); 194 static void fxp_tick(void *xsc); 195 static void fxp_powerstate_d0(device_t dev); 196 static void fxp_start(struct ifnet *ifp); 197 static void fxp_start_body(struct ifnet *ifp); 198 static void fxp_stop(struct fxp_softc *sc); 199 static void fxp_release(struct fxp_softc *sc); 200 static int fxp_ioctl(struct ifnet *ifp, u_long command, 201 caddr_t data); 202 static void fxp_watchdog(struct ifnet *ifp); 203 static int fxp_add_rfabuf(struct fxp_softc *sc, 204 struct fxp_rx *rxp); 205 static int fxp_mc_addrs(struct fxp_softc *sc); 206 static void fxp_mc_setup(struct fxp_softc *sc); 207 static u_int16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, 208 int autosize); 209 static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, 210 u_int16_t data); 211 static void fxp_autosize_eeprom(struct fxp_softc *sc); 212 static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, 213 int offset, int words); 214 static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, 215 int offset, int words); 216 static int fxp_ifmedia_upd(struct ifnet *ifp); 217 static void fxp_ifmedia_sts(struct ifnet *ifp, 218 struct ifmediareq *ifmr); 219 static int fxp_serial_ifmedia_upd(struct ifnet *ifp); 220 static void fxp_serial_ifmedia_sts(struct ifnet *ifp, 221 struct ifmediareq *ifmr); 222 static volatile int fxp_miibus_readreg(device_t dev, int phy, int reg); 223 static void fxp_miibus_writereg(device_t dev, int phy, int reg, 224 int value); 225 static void fxp_load_ucode(struct fxp_softc *sc); 226 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, 227 int low, int high); 228 static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS); 229 static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS); 230 static __inline void fxp_scb_wait(struct fxp_softc *sc); 231 static __inline void fxp_scb_cmd(struct fxp_softc *sc, int cmd); 232 static __inline void fxp_dma_wait(struct fxp_softc *sc, 233 volatile u_int16_t *status, bus_dma_tag_t dmat, 234 bus_dmamap_t map); 235 236 static device_method_t fxp_methods[] = { 237 /* Device interface */ 238 DEVMETHOD(device_probe, fxp_probe), 239 DEVMETHOD(device_attach, fxp_attach), 240 DEVMETHOD(device_detach, fxp_detach), 241 DEVMETHOD(device_shutdown, fxp_shutdown), 242 DEVMETHOD(device_suspend, fxp_suspend), 243 DEVMETHOD(device_resume, fxp_resume), 244 245 /* MII interface */ 246 DEVMETHOD(miibus_readreg, fxp_miibus_readreg), 247 DEVMETHOD(miibus_writereg, fxp_miibus_writereg), 248 249 { 0, 0 } 250 }; 251 252 static driver_t fxp_driver = { 253 "fxp", 254 fxp_methods, 255 sizeof(struct fxp_softc), 256 }; 257 258 static devclass_t fxp_devclass; 259 260 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0); 261 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0); 262 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0); 263 264 static int fxp_rnr; 265 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events"); 266 267 /* 268 * Wait for the previous command to be accepted (but not necessarily 269 * completed). 270 */ 271 static __inline void 272 fxp_scb_wait(struct fxp_softc *sc) 273 { 274 int i = 10000; 275 276 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) 277 DELAY(2); 278 if (i == 0) 279 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n", 280 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND), 281 CSR_READ_1(sc, FXP_CSR_SCB_STATACK), 282 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), 283 CSR_READ_2(sc, FXP_CSR_FLOWCONTROL)); 284 } 285 286 static __inline void 287 fxp_scb_cmd(struct fxp_softc *sc, int cmd) 288 { 289 290 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) { 291 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP); 292 fxp_scb_wait(sc); 293 } 294 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); 295 } 296 297 static __inline void 298 fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status, 299 bus_dma_tag_t dmat, bus_dmamap_t map) 300 { 301 int i = 10000; 302 303 bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD); 304 while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) { 305 DELAY(2); 306 bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD); 307 } 308 if (i == 0) 309 device_printf(sc->dev, "DMA timeout\n"); 310 } 311 312 /* 313 * Return identification string if this is device is ours. 314 */ 315 static int 316 fxp_probe(device_t dev) 317 { 318 u_int16_t devid; 319 struct fxp_ident *ident; 320 321 if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) { 322 devid = pci_get_device(dev); 323 for (ident = fxp_ident_table; ident->name != NULL; ident++) { 324 if (ident->devid == devid) { 325 device_set_desc(dev, ident->name); 326 return (0); 327 } 328 } 329 } 330 return (ENXIO); 331 } 332 333 static void 334 fxp_powerstate_d0(device_t dev) 335 { 336 #if __FreeBSD_version >= 430002 337 u_int32_t iobase, membase, irq; 338 339 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 340 /* Save important PCI config data. */ 341 iobase = pci_read_config(dev, FXP_PCI_IOBA, 4); 342 membase = pci_read_config(dev, FXP_PCI_MMBA, 4); 343 irq = pci_read_config(dev, PCIR_INTLINE, 4); 344 345 /* Reset the power state. */ 346 device_printf(dev, "chip is in D%d power mode " 347 "-- setting to D0\n", pci_get_powerstate(dev)); 348 349 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 350 351 /* Restore PCI config data. */ 352 pci_write_config(dev, FXP_PCI_IOBA, iobase, 4); 353 pci_write_config(dev, FXP_PCI_MMBA, membase, 4); 354 pci_write_config(dev, PCIR_INTLINE, irq, 4); 355 } 356 #endif 357 } 358 359 static void 360 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 361 { 362 u_int32_t *addr; 363 364 if (error) 365 return; 366 367 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 368 addr = arg; 369 *addr = segs->ds_addr; 370 } 371 372 static int 373 fxp_attach(device_t dev) 374 { 375 int error = 0; 376 struct fxp_softc *sc = device_get_softc(dev); 377 struct ifnet *ifp; 378 struct fxp_rx *rxp; 379 u_int32_t val; 380 u_int16_t data, myea[ETHER_ADDR_LEN / 2]; 381 int i, rid, m1, m2, prefer_iomap, maxtxseg; 382 int s; 383 384 sc->dev = dev; 385 callout_handle_init(&sc->stat_ch); 386 sysctl_ctx_init(&sc->sysctl_ctx); 387 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 388 MTX_DEF); 389 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd, 390 fxp_serial_ifmedia_sts); 391 392 s = splimp(); 393 394 /* 395 * Enable bus mastering. 396 */ 397 pci_enable_busmaster(dev); 398 val = pci_read_config(dev, PCIR_COMMAND, 2); 399 400 fxp_powerstate_d0(dev); 401 402 /* 403 * Figure out which we should try first - memory mapping or i/o mapping? 404 * We default to memory mapping. Then we accept an override from the 405 * command line. Then we check to see which one is enabled. 406 */ 407 m1 = PCIM_CMD_MEMEN; 408 m2 = PCIM_CMD_PORTEN; 409 prefer_iomap = 0; 410 if (resource_int_value(device_get_name(dev), device_get_unit(dev), 411 "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) { 412 m1 = PCIM_CMD_PORTEN; 413 m2 = PCIM_CMD_MEMEN; 414 } 415 416 sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; 417 sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA; 418 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd, 419 0, ~0, 1, RF_ACTIVE); 420 if (sc->mem == NULL) { 421 sc->rtp = 422 (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; 423 sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA; 424 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd, 425 0, ~0, 1, RF_ACTIVE); 426 } 427 428 if (!sc->mem) { 429 error = ENXIO; 430 goto fail; 431 } 432 if (bootverbose) { 433 device_printf(dev, "using %s space register mapping\n", 434 sc->rtp == SYS_RES_MEMORY? "memory" : "I/O"); 435 } 436 437 sc->sc_st = rman_get_bustag(sc->mem); 438 sc->sc_sh = rman_get_bushandle(sc->mem); 439 440 /* 441 * Allocate our interrupt. 442 */ 443 rid = 0; 444 sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 445 RF_SHAREABLE | RF_ACTIVE); 446 if (sc->irq == NULL) { 447 device_printf(dev, "could not map interrupt\n"); 448 error = ENXIO; 449 goto fail; 450 } 451 452 /* 453 * Reset to a stable state. 454 */ 455 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 456 DELAY(10); 457 458 /* 459 * Find out how large of an SEEPROM we have. 460 */ 461 fxp_autosize_eeprom(sc); 462 463 /* 464 * Determine whether we must use the 503 serial interface. 465 */ 466 fxp_read_eeprom(sc, &data, 6, 1); 467 if ((data & FXP_PHY_DEVICE_MASK) != 0 && 468 (data & FXP_PHY_SERIAL_ONLY)) 469 sc->flags |= FXP_FLAG_SERIAL_MEDIA; 470 471 /* 472 * Create the sysctl tree 473 */ 474 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 475 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 476 device_get_nameunit(dev), CTLFLAG_RD, 0, ""); 477 if (sc->sysctl_tree == NULL) { 478 error = ENXIO; 479 goto fail; 480 } 481 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 482 OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON, 483 &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I", 484 "FXP driver receive interrupt microcode bundling delay"); 485 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 486 OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON, 487 &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I", 488 "FXP driver receive interrupt microcode bundle size limit"); 489 490 /* 491 * Pull in device tunables. 492 */ 493 sc->tunable_int_delay = TUNABLE_INT_DELAY; 494 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX; 495 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 496 "int_delay", &sc->tunable_int_delay); 497 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 498 "bundle_max", &sc->tunable_bundle_max); 499 500 /* 501 * Find out the chip revision; lump all 82557 revs together. 502 */ 503 fxp_read_eeprom(sc, &data, 5, 1); 504 if ((data >> 8) == 1) 505 sc->revision = FXP_REV_82557; 506 else 507 sc->revision = pci_get_revid(dev); 508 509 /* 510 * Enable workarounds for certain chip revision deficiencies. 511 * 512 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly 513 * some systems based a normal 82559 design, have a defect where 514 * the chip can cause a PCI protocol violation if it receives 515 * a CU_RESUME command when it is entering the IDLE state. The 516 * workaround is to disable Dynamic Standby Mode, so the chip never 517 * deasserts CLKRUN#, and always remains in an active state. 518 * 519 * See Intel 82801BA/82801BAM Specification Update, Errata #30. 520 */ 521 i = pci_get_device(dev); 522 if (i == 0x2449 || (i > 0x1030 && i < 0x1039) || 523 sc->revision >= FXP_REV_82559_A0) { 524 fxp_read_eeprom(sc, &data, 10, 1); 525 if (data & 0x02) { /* STB enable */ 526 u_int16_t cksum; 527 int i; 528 529 device_printf(dev, 530 "Disabling dynamic standby mode in EEPROM\n"); 531 data &= ~0x02; 532 fxp_write_eeprom(sc, &data, 10, 1); 533 device_printf(dev, "New EEPROM ID: 0x%x\n", data); 534 cksum = 0; 535 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) { 536 fxp_read_eeprom(sc, &data, i, 1); 537 cksum += data; 538 } 539 i = (1 << sc->eeprom_size) - 1; 540 cksum = 0xBABA - cksum; 541 fxp_read_eeprom(sc, &data, i, 1); 542 fxp_write_eeprom(sc, &cksum, i, 1); 543 device_printf(dev, 544 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n", 545 i, data, cksum); 546 #if 1 547 /* 548 * If the user elects to continue, try the software 549 * workaround, as it is better than nothing. 550 */ 551 sc->flags |= FXP_FLAG_CU_RESUME_BUG; 552 #endif 553 } 554 } 555 556 /* 557 * If we are not a 82557 chip, we can enable extended features. 558 */ 559 if (sc->revision != FXP_REV_82557) { 560 /* 561 * If MWI is enabled in the PCI configuration, and there 562 * is a valid cacheline size (8 or 16 dwords), then tell 563 * the board to turn on MWI. 564 */ 565 if (val & PCIM_CMD_MWRICEN && 566 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0) 567 sc->flags |= FXP_FLAG_MWI_ENABLE; 568 569 /* turn on the extended TxCB feature */ 570 sc->flags |= FXP_FLAG_EXT_TXCB; 571 572 /* enable reception of long frames for VLAN */ 573 sc->flags |= FXP_FLAG_LONG_PKT_EN; 574 } 575 576 /* 577 * Enable use of extended RFDs and TCBs for 82550 578 * and later chips. Note: we need extended TXCB support 579 * too, but that's already enabled by the code above. 580 * Be careful to do this only on the right devices. 581 */ 582 583 if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C) { 584 sc->rfa_size = sizeof (struct fxp_rfa); 585 sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT; 586 sc->flags |= FXP_FLAG_EXT_RFA; 587 } else { 588 sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN; 589 sc->tx_cmd = FXP_CB_COMMAND_XMIT; 590 } 591 592 /* 593 * Allocate DMA tags and DMA safe memory. 594 */ 595 maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG; 596 error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT, 597 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg, 598 maxtxseg, MCLBYTES, 0, &sc->fxp_mtag); 599 if (error) { 600 device_printf(dev, "could not allocate dma tag\n"); 601 goto fail; 602 } 603 604 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 605 BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1, 606 sizeof(struct fxp_stats), 0, &sc->fxp_stag); 607 if (error) { 608 device_printf(dev, "could not allocate dma tag\n"); 609 goto fail; 610 } 611 612 error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats, 613 BUS_DMA_NOWAIT, &sc->fxp_smap); 614 if (error) 615 goto fail; 616 error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats, 617 sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0); 618 if (error) { 619 device_printf(dev, "could not map the stats buffer\n"); 620 goto fail; 621 } 622 bzero(sc->fxp_stats, sizeof(struct fxp_stats)); 623 624 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 625 BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1, 626 FXP_TXCB_SZ, 0, &sc->cbl_tag); 627 if (error) { 628 device_printf(dev, "could not allocate dma tag\n"); 629 goto fail; 630 } 631 632 error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list, 633 BUS_DMA_NOWAIT, &sc->cbl_map); 634 if (error) 635 goto fail; 636 bzero(sc->fxp_desc.cbl_list, FXP_TXCB_SZ); 637 638 error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map, 639 sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr, 640 &sc->fxp_desc.cbl_addr, 0); 641 if (error) { 642 device_printf(dev, "could not map DMA memory\n"); 643 goto fail; 644 } 645 646 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 647 BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1, 648 sizeof(struct fxp_cb_mcs), 0, &sc->mcs_tag); 649 if (error) { 650 device_printf(dev, "could not allocate dma tag\n"); 651 goto fail; 652 } 653 654 error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp, 655 BUS_DMA_NOWAIT, &sc->mcs_map); 656 if (error) 657 goto fail; 658 error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp, 659 sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0); 660 if (error) { 661 device_printf(dev, "can't map the multicast setup command\n"); 662 goto fail; 663 } 664 665 /* 666 * Pre-allocate the TX DMA maps. 667 */ 668 for (i = 0; i < FXP_NTXCB; i++) { 669 error = bus_dmamap_create(sc->fxp_mtag, 0, 670 &sc->fxp_desc.tx_list[i].tx_map); 671 if (error) { 672 device_printf(dev, "can't create DMA map for TX\n"); 673 goto fail; 674 } 675 } 676 error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map); 677 if (error) { 678 device_printf(dev, "can't create spare DMA map\n"); 679 goto fail; 680 } 681 682 /* 683 * Pre-allocate our receive buffers. 684 */ 685 sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL; 686 for (i = 0; i < FXP_NRFABUFS; i++) { 687 rxp = &sc->fxp_desc.rx_list[i]; 688 error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map); 689 if (error) { 690 device_printf(dev, "can't create DMA map for RX\n"); 691 goto fail; 692 } 693 if (fxp_add_rfabuf(sc, rxp) != 0) { 694 error = ENOMEM; 695 goto fail; 696 } 697 } 698 699 /* 700 * Read MAC address. 701 */ 702 fxp_read_eeprom(sc, myea, 0, 3); 703 sc->arpcom.ac_enaddr[0] = myea[0] & 0xff; 704 sc->arpcom.ac_enaddr[1] = myea[0] >> 8; 705 sc->arpcom.ac_enaddr[2] = myea[1] & 0xff; 706 sc->arpcom.ac_enaddr[3] = myea[1] >> 8; 707 sc->arpcom.ac_enaddr[4] = myea[2] & 0xff; 708 sc->arpcom.ac_enaddr[5] = myea[2] >> 8; 709 device_printf(dev, "Ethernet address %6D%s\n", 710 sc->arpcom.ac_enaddr, ":", 711 sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : ""); 712 if (bootverbose) { 713 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n", 714 pci_get_vendor(dev), pci_get_device(dev), 715 pci_get_subvendor(dev), pci_get_subdevice(dev), 716 pci_get_revid(dev)); 717 fxp_read_eeprom(sc, &data, 10, 1); 718 device_printf(dev, "Dynamic Standby mode is %s\n", 719 data & 0x02 ? "enabled" : "disabled"); 720 } 721 722 /* 723 * If this is only a 10Mbps device, then there is no MII, and 724 * the PHY will use a serial interface instead. 725 * 726 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 727 * doesn't have a programming interface of any sort. The 728 * media is sensed automatically based on how the link partner 729 * is configured. This is, in essence, manual configuration. 730 */ 731 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) { 732 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 733 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); 734 } else { 735 if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd, 736 fxp_ifmedia_sts)) { 737 device_printf(dev, "MII without any PHY!\n"); 738 error = ENXIO; 739 goto fail; 740 } 741 } 742 743 ifp = &sc->arpcom.ac_if; 744 ifp->if_unit = device_get_unit(dev); 745 ifp->if_name = "fxp"; 746 ifp->if_output = ether_output; 747 ifp->if_baudrate = 100000000; 748 ifp->if_init = fxp_init; 749 ifp->if_softc = sc; 750 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 751 ifp->if_ioctl = fxp_ioctl; 752 ifp->if_start = fxp_start; 753 ifp->if_watchdog = fxp_watchdog; 754 755 /* Enable checksum offload for 82550 or better chips */ 756 if (sc->flags & FXP_FLAG_EXT_RFA) { 757 ifp->if_hwassist = FXP_CSUM_FEATURES; 758 ifp->if_capabilities = IFCAP_HWCSUM; 759 ifp->if_capenable = ifp->if_capabilities; 760 } 761 762 /* 763 * Attach the interface. 764 */ 765 ether_ifattach(ifp, sc->arpcom.ac_enaddr); 766 767 /* 768 * Tell the upper layer(s) we support long frames. 769 */ 770 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 771 ifp->if_capabilities |= IFCAP_VLAN_MTU; 772 773 /* 774 * Let the system queue as many packets as we have available 775 * TX descriptors. 776 */ 777 ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1; 778 779 /* 780 * Hook our interrupt after all initialization is complete. 781 * XXX This driver has been tested with the INTR_MPSAFFE flag set 782 * however, ifp and its functions are not fully locked so MPSAFE 783 * should not be used unless you can handle potential data loss. 784 */ 785 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET /*|INTR_MPSAFE*/, 786 fxp_intr, sc, &sc->ih); 787 if (error) { 788 device_printf(dev, "could not setup irq\n"); 789 ether_ifdetach(&sc->arpcom.ac_if); 790 goto fail; 791 } 792 793 fail: 794 splx(s); 795 if (error) 796 fxp_release(sc); 797 return (error); 798 } 799 800 /* 801 * Release all resources. The softc lock should not be held and the 802 * interrupt should already be torn down. 803 */ 804 static void 805 fxp_release(struct fxp_softc *sc) 806 { 807 struct fxp_rx *rxp; 808 struct fxp_tx *txp; 809 int i; 810 811 mtx_assert(&sc->sc_mtx, MA_NOTOWNED); 812 if (sc->ih) 813 panic("fxp_release() called with intr handle still active"); 814 if (sc->miibus) 815 device_delete_child(sc->dev, sc->miibus); 816 bus_generic_detach(sc->dev); 817 ifmedia_removeall(&sc->sc_media); 818 if (sc->fxp_desc.cbl_list) { 819 bus_dmamap_unload(sc->cbl_tag, sc->cbl_map); 820 bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list, 821 sc->cbl_map); 822 } 823 if (sc->fxp_stats) { 824 bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap); 825 bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap); 826 } 827 if (sc->mcsp) { 828 bus_dmamap_unload(sc->mcs_tag, sc->mcs_map); 829 bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map); 830 } 831 if (sc->irq) 832 bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq); 833 if (sc->mem) 834 bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem); 835 if (sc->fxp_mtag) { 836 for (i = 0; i < FXP_NRFABUFS; i++) { 837 rxp = &sc->fxp_desc.rx_list[i]; 838 if (rxp->rx_mbuf != NULL) { 839 bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map, 840 BUS_DMASYNC_POSTREAD); 841 bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map); 842 m_freem(rxp->rx_mbuf); 843 } 844 bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map); 845 } 846 bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map); 847 bus_dma_tag_destroy(sc->fxp_mtag); 848 } 849 if (sc->fxp_stag) { 850 for (i = 0; i < FXP_NTXCB; i++) { 851 txp = &sc->fxp_desc.tx_list[i]; 852 if (txp->tx_mbuf != NULL) { 853 bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, 854 BUS_DMASYNC_POSTWRITE); 855 bus_dmamap_unload(sc->fxp_mtag, txp->tx_map); 856 m_freem(txp->tx_mbuf); 857 } 858 bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map); 859 } 860 bus_dma_tag_destroy(sc->fxp_stag); 861 } 862 if (sc->cbl_tag) 863 bus_dma_tag_destroy(sc->cbl_tag); 864 if (sc->mcs_tag) 865 bus_dma_tag_destroy(sc->mcs_tag); 866 867 sysctl_ctx_free(&sc->sysctl_ctx); 868 869 mtx_destroy(&sc->sc_mtx); 870 } 871 872 /* 873 * Detach interface. 874 */ 875 static int 876 fxp_detach(device_t dev) 877 { 878 struct fxp_softc *sc = device_get_softc(dev); 879 int s; 880 881 FXP_LOCK(sc); 882 s = splimp(); 883 884 sc->suspended = 1; /* Do same thing as we do for suspend */ 885 /* 886 * Close down routes etc. 887 */ 888 ether_ifdetach(&sc->arpcom.ac_if); 889 890 /* 891 * Stop DMA and drop transmit queue, but disable interrupts first. 892 */ 893 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 894 fxp_stop(sc); 895 FXP_UNLOCK(sc); 896 897 /* 898 * Unhook interrupt before dropping lock. This is to prevent 899 * races with fxp_intr(). 900 */ 901 bus_teardown_intr(sc->dev, sc->irq, sc->ih); 902 sc->ih = NULL; 903 904 splx(s); 905 906 /* Release our allocated resources. */ 907 fxp_release(sc); 908 return (0); 909 } 910 911 /* 912 * Device shutdown routine. Called at system shutdown after sync. The 913 * main purpose of this routine is to shut off receiver DMA so that 914 * kernel memory doesn't get clobbered during warmboot. 915 */ 916 static int 917 fxp_shutdown(device_t dev) 918 { 919 /* 920 * Make sure that DMA is disabled prior to reboot. Not doing 921 * do could allow DMA to corrupt kernel memory during the 922 * reboot before the driver initializes. 923 */ 924 fxp_stop((struct fxp_softc *) device_get_softc(dev)); 925 return (0); 926 } 927 928 /* 929 * Device suspend routine. Stop the interface and save some PCI 930 * settings in case the BIOS doesn't restore them properly on 931 * resume. 932 */ 933 static int 934 fxp_suspend(device_t dev) 935 { 936 struct fxp_softc *sc = device_get_softc(dev); 937 int i, s; 938 939 FXP_LOCK(sc); 940 s = splimp(); 941 942 fxp_stop(sc); 943 944 for (i = 0; i < 5; i++) 945 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4); 946 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4); 947 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1); 948 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 949 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); 950 951 sc->suspended = 1; 952 953 FXP_UNLOCK(sc); 954 splx(s); 955 return (0); 956 } 957 958 /* 959 * Device resume routine. Restore some PCI settings in case the BIOS 960 * doesn't, re-enable busmastering, and restart the interface if 961 * appropriate. 962 */ 963 static int 964 fxp_resume(device_t dev) 965 { 966 struct fxp_softc *sc = device_get_softc(dev); 967 struct ifnet *ifp = &sc->sc_if; 968 u_int16_t pci_command; 969 int i, s; 970 971 FXP_LOCK(sc); 972 s = splimp(); 973 974 fxp_powerstate_d0(dev); 975 976 /* better way to do this? */ 977 for (i = 0; i < 5; i++) 978 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4); 979 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4); 980 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1); 981 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1); 982 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1); 983 984 /* reenable busmastering */ 985 pci_command = pci_read_config(dev, PCIR_COMMAND, 2); 986 pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); 987 pci_write_config(dev, PCIR_COMMAND, pci_command, 2); 988 989 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 990 DELAY(10); 991 992 /* reinitialize interface if necessary */ 993 if (ifp->if_flags & IFF_UP) 994 fxp_init_body(sc); 995 996 sc->suspended = 0; 997 998 FXP_UNLOCK(sc); 999 splx(s); 1000 return (0); 1001 } 1002 1003 static void 1004 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) 1005 { 1006 u_int16_t reg; 1007 int x; 1008 1009 /* 1010 * Shift in data. 1011 */ 1012 for (x = 1 << (length - 1); x; x >>= 1) { 1013 if (data & x) 1014 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1015 else 1016 reg = FXP_EEPROM_EECS; 1017 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1018 DELAY(1); 1019 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1020 DELAY(1); 1021 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1022 DELAY(1); 1023 } 1024 } 1025 1026 /* 1027 * Read from the serial EEPROM. Basically, you manually shift in 1028 * the read opcode (one bit at a time) and then shift in the address, 1029 * and then you shift out the data (all of this one bit at a time). 1030 * The word size is 16 bits, so you have to provide the address for 1031 * every 16 bits of data. 1032 */ 1033 static u_int16_t 1034 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize) 1035 { 1036 u_int16_t reg, data; 1037 int x; 1038 1039 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1040 /* 1041 * Shift in read opcode. 1042 */ 1043 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); 1044 /* 1045 * Shift in address. 1046 */ 1047 data = 0; 1048 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) { 1049 if (offset & x) 1050 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1051 else 1052 reg = FXP_EEPROM_EECS; 1053 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1054 DELAY(1); 1055 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1056 DELAY(1); 1057 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1058 DELAY(1); 1059 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO; 1060 data++; 1061 if (autosize && reg == 0) { 1062 sc->eeprom_size = data; 1063 break; 1064 } 1065 } 1066 /* 1067 * Shift out data. 1068 */ 1069 data = 0; 1070 reg = FXP_EEPROM_EECS; 1071 for (x = 1 << 15; x; x >>= 1) { 1072 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1073 DELAY(1); 1074 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1075 data |= x; 1076 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1077 DELAY(1); 1078 } 1079 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1080 DELAY(1); 1081 1082 return (data); 1083 } 1084 1085 static void 1086 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data) 1087 { 1088 int i; 1089 1090 /* 1091 * Erase/write enable. 1092 */ 1093 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1094 fxp_eeprom_shiftin(sc, 0x4, 3); 1095 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); 1096 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1097 DELAY(1); 1098 /* 1099 * Shift in write opcode, address, data. 1100 */ 1101 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1102 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); 1103 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); 1104 fxp_eeprom_shiftin(sc, data, 16); 1105 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1106 DELAY(1); 1107 /* 1108 * Wait for EEPROM to finish up. 1109 */ 1110 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1111 DELAY(1); 1112 for (i = 0; i < 1000; i++) { 1113 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1114 break; 1115 DELAY(50); 1116 } 1117 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1118 DELAY(1); 1119 /* 1120 * Erase/write disable. 1121 */ 1122 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1123 fxp_eeprom_shiftin(sc, 0x4, 3); 1124 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); 1125 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1126 DELAY(1); 1127 } 1128 1129 /* 1130 * From NetBSD: 1131 * 1132 * Figure out EEPROM size. 1133 * 1134 * 559's can have either 64-word or 256-word EEPROMs, the 558 1135 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet 1136 * talks about the existance of 16 to 256 word EEPROMs. 1137 * 1138 * The only known sizes are 64 and 256, where the 256 version is used 1139 * by CardBus cards to store CIS information. 1140 * 1141 * The address is shifted in msb-to-lsb, and after the last 1142 * address-bit the EEPROM is supposed to output a `dummy zero' bit, 1143 * after which follows the actual data. We try to detect this zero, by 1144 * probing the data-out bit in the EEPROM control register just after 1145 * having shifted in a bit. If the bit is zero, we assume we've 1146 * shifted enough address bits. The data-out should be tri-state, 1147 * before this, which should translate to a logical one. 1148 */ 1149 static void 1150 fxp_autosize_eeprom(struct fxp_softc *sc) 1151 { 1152 1153 /* guess maximum size of 256 words */ 1154 sc->eeprom_size = 8; 1155 1156 /* autosize */ 1157 (void) fxp_eeprom_getword(sc, 0, 1); 1158 } 1159 1160 static void 1161 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1162 { 1163 int i; 1164 1165 for (i = 0; i < words; i++) 1166 data[i] = fxp_eeprom_getword(sc, offset + i, 0); 1167 } 1168 1169 static void 1170 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1171 { 1172 int i; 1173 1174 for (i = 0; i < words; i++) 1175 fxp_eeprom_putword(sc, offset + i, data[i]); 1176 } 1177 1178 static void 1179 fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg, 1180 bus_size_t mapsize, int error) 1181 { 1182 struct fxp_softc *sc; 1183 struct fxp_cb_tx *txp; 1184 int i; 1185 1186 if (error) 1187 return; 1188 1189 KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments")); 1190 1191 sc = arg; 1192 txp = sc->fxp_desc.tx_last->tx_next->tx_cb; 1193 for (i = 0; i < nseg; i++) { 1194 KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large")); 1195 /* 1196 * If this is an 82550/82551, then we're using extended 1197 * TxCBs _and_ we're using checksum offload. This means 1198 * that the TxCB is really an IPCB. One major difference 1199 * between the two is that with plain extended TxCBs, 1200 * the bottom half of the TxCB contains two entries from 1201 * the TBD array, whereas IPCBs contain just one entry: 1202 * one entry (8 bytes) has been sacrificed for the TCP/IP 1203 * checksum offload control bits. So to make things work 1204 * right, we have to start filling in the TBD array 1205 * starting from a different place depending on whether 1206 * the chip is an 82550/82551 or not. 1207 */ 1208 if (sc->flags & FXP_FLAG_EXT_RFA) { 1209 txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr); 1210 txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len); 1211 } else { 1212 txp->tbd[i].tb_addr = htole32(segs[i].ds_addr); 1213 txp->tbd[i].tb_size = htole32(segs[i].ds_len); 1214 } 1215 } 1216 txp->tbd_number = nseg; 1217 } 1218 1219 /* 1220 * Grab the softc lock and call the real fxp_start_body() routine 1221 */ 1222 static void 1223 fxp_start(struct ifnet *ifp) 1224 { 1225 struct fxp_softc *sc = ifp->if_softc; 1226 1227 FXP_LOCK(sc); 1228 fxp_start_body(ifp); 1229 FXP_UNLOCK(sc); 1230 } 1231 1232 /* 1233 * Start packet transmission on the interface. 1234 * This routine must be called with the softc lock held, and is an 1235 * internal entry point only. 1236 */ 1237 static void 1238 fxp_start_body(struct ifnet *ifp) 1239 { 1240 struct fxp_softc *sc = ifp->if_softc; 1241 struct fxp_tx *txp; 1242 struct mbuf *mb_head; 1243 int error; 1244 1245 mtx_assert(&sc->sc_mtx, MA_OWNED); 1246 /* 1247 * See if we need to suspend xmit until the multicast filter 1248 * has been reprogrammed (which can only be done at the head 1249 * of the command chain). 1250 */ 1251 if (sc->need_mcsetup) { 1252 return; 1253 } 1254 1255 txp = NULL; 1256 1257 /* 1258 * We're finished if there is nothing more to add to the list or if 1259 * we're all filled up with buffers to transmit. 1260 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add 1261 * a NOP command when needed. 1262 */ 1263 while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) { 1264 1265 /* 1266 * Grab a packet to transmit. 1267 */ 1268 IF_DEQUEUE(&ifp->if_snd, mb_head); 1269 1270 /* 1271 * Get pointer to next available tx desc. 1272 */ 1273 txp = sc->fxp_desc.tx_last->tx_next; 1274 1275 /* 1276 * Deal with TCP/IP checksum offload. Note that 1277 * in order for TCP checksum offload to work, 1278 * the pseudo header checksum must have already 1279 * been computed and stored in the checksum field 1280 * in the TCP header. The stack should have 1281 * already done this for us. 1282 */ 1283 1284 if (mb_head->m_pkthdr.csum_flags) { 1285 if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1286 txp->tx_cb->ipcb_ip_activation_high = 1287 FXP_IPCB_HARDWAREPARSING_ENABLE; 1288 txp->tx_cb->ipcb_ip_schedule = 1289 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; 1290 if (mb_head->m_pkthdr.csum_flags & CSUM_TCP) 1291 txp->tx_cb->ipcb_ip_schedule |= 1292 FXP_IPCB_TCP_PACKET; 1293 } 1294 #ifdef FXP_IP_CSUM_WAR 1295 /* 1296 * XXX The 82550 chip appears to have trouble 1297 * dealing with IP header checksums in very small 1298 * datagrams, namely fragments from 1 to 3 bytes 1299 * in size. For example, say you want to transmit 1300 * a UDP packet of 1473 bytes. The packet will be 1301 * fragmented over two IP datagrams, the latter 1302 * containing only one byte of data. The 82550 will 1303 * botch the header checksum on the 1-byte fragment. 1304 * As long as the datagram contains 4 or more bytes 1305 * of data, you're ok. 1306 * 1307 * The following code attempts to work around this 1308 * problem: if the datagram is less than 38 bytes 1309 * in size (14 bytes ether header, 20 bytes IP header, 1310 * plus 4 bytes of data), we punt and compute the IP 1311 * header checksum by hand. This workaround doesn't 1312 * work very well, however, since it can be fooled 1313 * by things like VLAN tags and IP options that make 1314 * the header sizes/offsets vary. 1315 */ 1316 1317 if (mb_head->m_pkthdr.csum_flags & CSUM_IP) { 1318 if (mb_head->m_pkthdr.len < 38) { 1319 struct ip *ip; 1320 mb_head->m_data += ETHER_HDR_LEN; 1321 ip = mtod(mb_head, struct ip *); 1322 ip->ip_sum = in_cksum(mb_head, 1323 ip->ip_hl << 2); 1324 mb_head->m_data -= ETHER_HDR_LEN; 1325 } else { 1326 txp->tx_cb->ipcb_ip_activation_high = 1327 FXP_IPCB_HARDWAREPARSING_ENABLE; 1328 txp->tx_cb->ipcb_ip_schedule |= 1329 FXP_IPCB_IP_CHECKSUM_ENABLE; 1330 } 1331 } 1332 #endif 1333 } 1334 1335 /* 1336 * Go through each of the mbufs in the chain and initialize 1337 * the transmit buffer descriptors with the physical address 1338 * and size of the mbuf. 1339 */ 1340 error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map, 1341 mb_head, fxp_dma_map_txbuf, sc, 0); 1342 1343 if (error && error != EFBIG) { 1344 device_printf(sc->dev, "can't map mbuf (error %d)\n", 1345 error); 1346 m_freem(mb_head); 1347 break; 1348 } 1349 1350 if (error) { 1351 struct mbuf *mn; 1352 1353 /* 1354 * We ran out of segments. We have to recopy this 1355 * mbuf chain first. Bail out if we can't get the 1356 * new buffers. 1357 */ 1358 MGETHDR(mn, M_DONTWAIT, MT_DATA); 1359 if (mn == NULL) { 1360 m_freem(mb_head); 1361 break; 1362 } 1363 if (mb_head->m_pkthdr.len > MHLEN) { 1364 MCLGET(mn, M_DONTWAIT); 1365 if ((mn->m_flags & M_EXT) == 0) { 1366 m_freem(mn); 1367 m_freem(mb_head); 1368 break; 1369 } 1370 } 1371 m_copydata(mb_head, 0, mb_head->m_pkthdr.len, 1372 mtod(mn, caddr_t)); 1373 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len; 1374 m_freem(mb_head); 1375 mb_head = mn; 1376 error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map, 1377 mb_head, fxp_dma_map_txbuf, sc, 0); 1378 if (error) { 1379 device_printf(sc->dev, 1380 "can't map mbuf (error %d)\n", error); 1381 m_freem(mb_head); 1382 break; 1383 } 1384 } 1385 1386 bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, 1387 BUS_DMASYNC_PREWRITE); 1388 1389 txp->tx_mbuf = mb_head; 1390 txp->tx_cb->cb_status = 0; 1391 txp->tx_cb->byte_count = 0; 1392 if (sc->tx_queued != FXP_CXINT_THRESH - 1) { 1393 txp->tx_cb->cb_command = 1394 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1395 FXP_CB_COMMAND_S); 1396 } else { 1397 txp->tx_cb->cb_command = 1398 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1399 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); 1400 /* 1401 * Set a 5 second timer just in case we don't hear 1402 * from the card again. 1403 */ 1404 ifp->if_timer = 5; 1405 } 1406 txp->tx_cb->tx_threshold = tx_threshold; 1407 1408 /* 1409 * Advance the end of list forward. 1410 */ 1411 1412 #ifdef __alpha__ 1413 /* 1414 * On platforms which can't access memory in 16-bit 1415 * granularities, we must prevent the card from DMA'ing 1416 * up the status while we update the command field. 1417 * This could cause us to overwrite the completion status. 1418 * XXX This is probably bogus and we're _not_ looking 1419 * for atomicity here. 1420 */ 1421 atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command, 1422 htole16(FXP_CB_COMMAND_S)); 1423 #else 1424 sc->fxp_desc.tx_last->tx_cb->cb_command &= 1425 htole16(~FXP_CB_COMMAND_S); 1426 #endif /*__alpha__*/ 1427 sc->fxp_desc.tx_last = txp; 1428 1429 /* 1430 * Advance the beginning of the list forward if there are 1431 * no other packets queued (when nothing is queued, tx_first 1432 * sits on the last TxCB that was sent out). 1433 */ 1434 if (sc->tx_queued == 0) 1435 sc->fxp_desc.tx_first = txp; 1436 1437 sc->tx_queued++; 1438 1439 /* 1440 * Pass packet to bpf if there is a listener. 1441 */ 1442 BPF_MTAP(ifp, mb_head); 1443 } 1444 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 1445 1446 /* 1447 * We're finished. If we added to the list, issue a RESUME to get DMA 1448 * going again if suspended. 1449 */ 1450 if (txp != NULL) { 1451 fxp_scb_wait(sc); 1452 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 1453 } 1454 } 1455 1456 #ifdef DEVICE_POLLING 1457 static poll_handler_t fxp_poll; 1458 1459 static void 1460 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1461 { 1462 struct fxp_softc *sc = ifp->if_softc; 1463 u_int8_t statack; 1464 1465 FXP_LOCK(sc); 1466 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */ 1467 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 1468 FXP_UNLOCK(sc); 1469 return; 1470 } 1471 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA | 1472 FXP_SCB_STATACK_FR; 1473 if (cmd == POLL_AND_CHECK_STATUS) { 1474 u_int8_t tmp; 1475 1476 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK); 1477 if (tmp == 0xff || tmp == 0) { 1478 FXP_UNLOCK(sc); 1479 return; /* nothing to do */ 1480 } 1481 tmp &= ~statack; 1482 /* ack what we can */ 1483 if (tmp != 0) 1484 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp); 1485 statack |= tmp; 1486 } 1487 fxp_intr_body(sc, ifp, statack, count); 1488 FXP_UNLOCK(sc); 1489 } 1490 #endif /* DEVICE_POLLING */ 1491 1492 /* 1493 * Process interface interrupts. 1494 */ 1495 static void 1496 fxp_intr(void *xsc) 1497 { 1498 struct fxp_softc *sc = xsc; 1499 struct ifnet *ifp = &sc->sc_if; 1500 u_int8_t statack; 1501 1502 FXP_LOCK(sc); 1503 if (sc->suspended) { 1504 FXP_UNLOCK(sc); 1505 return; 1506 } 1507 1508 #ifdef DEVICE_POLLING 1509 if (ifp->if_flags & IFF_POLLING) { 1510 FXP_UNLOCK(sc); 1511 return; 1512 } 1513 if (ether_poll_register(fxp_poll, ifp)) { 1514 /* disable interrupts */ 1515 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 1516 fxp_poll(ifp, 0, 1); 1517 FXP_UNLOCK(sc); 1518 return; 1519 } 1520 #endif 1521 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { 1522 /* 1523 * It should not be possible to have all bits set; the 1524 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If 1525 * all bits are set, this may indicate that the card has 1526 * been physically ejected, so ignore it. 1527 */ 1528 if (statack == 0xff) { 1529 FXP_UNLOCK(sc); 1530 return; 1531 } 1532 1533 /* 1534 * First ACK all the interrupts in this pass. 1535 */ 1536 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); 1537 fxp_intr_body(sc, ifp, statack, -1); 1538 } 1539 FXP_UNLOCK(sc); 1540 } 1541 1542 static void 1543 fxp_txeof(struct fxp_softc *sc) 1544 { 1545 struct fxp_tx *txp; 1546 1547 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD); 1548 for (txp = sc->fxp_desc.tx_first; sc->tx_queued && 1549 (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0; 1550 txp = txp->tx_next) { 1551 if (txp->tx_mbuf != NULL) { 1552 bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, 1553 BUS_DMASYNC_POSTWRITE); 1554 bus_dmamap_unload(sc->fxp_mtag, txp->tx_map); 1555 m_freem(txp->tx_mbuf); 1556 txp->tx_mbuf = NULL; 1557 /* clear this to reset csum offload bits */ 1558 txp->tx_cb->tbd[0].tb_addr = 0; 1559 } 1560 sc->tx_queued--; 1561 } 1562 sc->fxp_desc.tx_first = txp; 1563 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 1564 } 1565 1566 static void 1567 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack, 1568 int count) 1569 { 1570 struct mbuf *m; 1571 struct fxp_rx *rxp; 1572 struct fxp_rfa *rfa; 1573 int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0; 1574 1575 mtx_assert(&sc->sc_mtx, MA_OWNED); 1576 if (rnr) 1577 fxp_rnr++; 1578 #ifdef DEVICE_POLLING 1579 /* Pick up a deferred RNR condition if `count' ran out last time. */ 1580 if (sc->flags & FXP_FLAG_DEFERRED_RNR) { 1581 sc->flags &= ~FXP_FLAG_DEFERRED_RNR; 1582 rnr = 1; 1583 } 1584 #endif 1585 1586 /* 1587 * Free any finished transmit mbuf chains. 1588 * 1589 * Handle the CNA event likt a CXTNO event. It used to 1590 * be that this event (control unit not ready) was not 1591 * encountered, but it is now with the SMPng modifications. 1592 * The exact sequence of events that occur when the interface 1593 * is brought up are different now, and if this event 1594 * goes unhandled, the configuration/rxfilter setup sequence 1595 * can stall for several seconds. The result is that no 1596 * packets go out onto the wire for about 5 to 10 seconds 1597 * after the interface is ifconfig'ed for the first time. 1598 */ 1599 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) { 1600 fxp_txeof(sc); 1601 1602 ifp->if_timer = 0; 1603 if (sc->tx_queued == 0) { 1604 if (sc->need_mcsetup) 1605 fxp_mc_setup(sc); 1606 } 1607 /* 1608 * Try to start more packets transmitting. 1609 */ 1610 if (ifp->if_snd.ifq_head != NULL) 1611 fxp_start_body(ifp); 1612 } 1613 1614 /* 1615 * Just return if nothing happened on the receive side. 1616 */ 1617 if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0) 1618 return; 1619 1620 /* 1621 * Process receiver interrupts. If a no-resource (RNR) 1622 * condition exists, get whatever packets we can and 1623 * re-start the receiver. 1624 * 1625 * When using polling, we do not process the list to completion, 1626 * so when we get an RNR interrupt we must defer the restart 1627 * until we hit the last buffer with the C bit set. 1628 * If we run out of cycles and rfa_headm has the C bit set, 1629 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so 1630 * that the info will be used in the subsequent polling cycle. 1631 */ 1632 for (;;) { 1633 rxp = sc->fxp_desc.rx_head; 1634 m = rxp->rx_mbuf; 1635 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + 1636 RFA_ALIGNMENT_FUDGE); 1637 bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map, 1638 BUS_DMASYNC_POSTREAD); 1639 1640 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */ 1641 if (count >= 0 && count-- == 0) { 1642 if (rnr) { 1643 /* Defer RNR processing until the next time. */ 1644 sc->flags |= FXP_FLAG_DEFERRED_RNR; 1645 rnr = 0; 1646 } 1647 break; 1648 } 1649 #endif /* DEVICE_POLLING */ 1650 1651 if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0) 1652 break; 1653 1654 /* 1655 * Advance head forward. 1656 */ 1657 sc->fxp_desc.rx_head = rxp->rx_next; 1658 1659 /* 1660 * Add a new buffer to the receive chain. 1661 * If this fails, the old buffer is recycled 1662 * instead. 1663 */ 1664 if (fxp_add_rfabuf(sc, rxp) == 0) { 1665 int total_len; 1666 1667 /* 1668 * Fetch packet length (the top 2 bits of 1669 * actual_size are flags set by the controller 1670 * upon completion), and drop the packet in case 1671 * of bogus length or CRC errors. 1672 */ 1673 total_len = le16toh(rfa->actual_size) & 0x3fff; 1674 if (total_len < sizeof(struct ether_header) || 1675 total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE - 1676 sc->rfa_size || 1677 le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) { 1678 m_freem(m); 1679 continue; 1680 } 1681 1682 /* Do IP checksum checking. */ 1683 if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) { 1684 if (rfa->rfax_csum_sts & 1685 FXP_RFDX_CS_IP_CSUM_BIT_VALID) 1686 m->m_pkthdr.csum_flags |= 1687 CSUM_IP_CHECKED; 1688 if (rfa->rfax_csum_sts & 1689 FXP_RFDX_CS_IP_CSUM_VALID) 1690 m->m_pkthdr.csum_flags |= 1691 CSUM_IP_VALID; 1692 if ((rfa->rfax_csum_sts & 1693 FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) && 1694 (rfa->rfax_csum_sts & 1695 FXP_RFDX_CS_TCPUDP_CSUM_VALID)) { 1696 m->m_pkthdr.csum_flags |= 1697 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 1698 m->m_pkthdr.csum_data = 0xffff; 1699 } 1700 } 1701 1702 m->m_pkthdr.len = m->m_len = total_len; 1703 m->m_pkthdr.rcvif = ifp; 1704 1705 (*ifp->if_input)(ifp, m); 1706 } 1707 } 1708 if (rnr) { 1709 fxp_scb_wait(sc); 1710 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 1711 sc->fxp_desc.rx_head->rx_addr); 1712 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 1713 } 1714 } 1715 1716 /* 1717 * Update packet in/out/collision statistics. The i82557 doesn't 1718 * allow you to access these counters without doing a fairly 1719 * expensive DMA to get _all_ of the statistics it maintains, so 1720 * we do this operation here only once per second. The statistics 1721 * counters in the kernel are updated from the previous dump-stats 1722 * DMA and then a new dump-stats DMA is started. The on-chip 1723 * counters are zeroed when the DMA completes. If we can't start 1724 * the DMA immediately, we don't wait - we just prepare to read 1725 * them again next time. 1726 */ 1727 static void 1728 fxp_tick(void *xsc) 1729 { 1730 struct fxp_softc *sc = xsc; 1731 struct ifnet *ifp = &sc->sc_if; 1732 struct fxp_stats *sp = sc->fxp_stats; 1733 int s; 1734 1735 FXP_LOCK(sc); 1736 s = splimp(); 1737 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD); 1738 ifp->if_opackets += le32toh(sp->tx_good); 1739 ifp->if_collisions += le32toh(sp->tx_total_collisions); 1740 if (sp->rx_good) { 1741 ifp->if_ipackets += le32toh(sp->rx_good); 1742 sc->rx_idle_secs = 0; 1743 } else { 1744 /* 1745 * Receiver's been idle for another second. 1746 */ 1747 sc->rx_idle_secs++; 1748 } 1749 ifp->if_ierrors += 1750 le32toh(sp->rx_crc_errors) + 1751 le32toh(sp->rx_alignment_errors) + 1752 le32toh(sp->rx_rnr_errors) + 1753 le32toh(sp->rx_overrun_errors); 1754 /* 1755 * If any transmit underruns occured, bump up the transmit 1756 * threshold by another 512 bytes (64 * 8). 1757 */ 1758 if (sp->tx_underruns) { 1759 ifp->if_oerrors += le32toh(sp->tx_underruns); 1760 if (tx_threshold < 192) 1761 tx_threshold += 64; 1762 } 1763 1764 /* 1765 * Release any xmit buffers that have completed DMA. This isn't 1766 * strictly necessary to do here, but it's advantagous for mbufs 1767 * with external storage to be released in a timely manner rather 1768 * than being defered for a potentially long time. This limits 1769 * the delay to a maximum of one second. 1770 */ 1771 fxp_txeof(sc); 1772 1773 /* 1774 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, 1775 * then assume the receiver has locked up and attempt to clear 1776 * the condition by reprogramming the multicast filter. This is 1777 * a work-around for a bug in the 82557 where the receiver locks 1778 * up if it gets certain types of garbage in the syncronization 1779 * bits prior to the packet header. This bug is supposed to only 1780 * occur in 10Mbps mode, but has been seen to occur in 100Mbps 1781 * mode as well (perhaps due to a 10/100 speed transition). 1782 */ 1783 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { 1784 sc->rx_idle_secs = 0; 1785 fxp_mc_setup(sc); 1786 } 1787 /* 1788 * If there is no pending command, start another stats 1789 * dump. Otherwise punt for now. 1790 */ 1791 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { 1792 /* 1793 * Start another stats dump. 1794 */ 1795 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 1796 BUS_DMASYNC_PREREAD); 1797 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); 1798 } else { 1799 /* 1800 * A previous command is still waiting to be accepted. 1801 * Just zero our copy of the stats and wait for the 1802 * next timer event to update them. 1803 */ 1804 sp->tx_good = 0; 1805 sp->tx_underruns = 0; 1806 sp->tx_total_collisions = 0; 1807 1808 sp->rx_good = 0; 1809 sp->rx_crc_errors = 0; 1810 sp->rx_alignment_errors = 0; 1811 sp->rx_rnr_errors = 0; 1812 sp->rx_overrun_errors = 0; 1813 } 1814 if (sc->miibus != NULL) 1815 mii_tick(device_get_softc(sc->miibus)); 1816 1817 /* 1818 * Schedule another timeout one second from now. 1819 */ 1820 sc->stat_ch = timeout(fxp_tick, sc, hz); 1821 FXP_UNLOCK(sc); 1822 splx(s); 1823 } 1824 1825 /* 1826 * Stop the interface. Cancels the statistics updater and resets 1827 * the interface. 1828 */ 1829 static void 1830 fxp_stop(struct fxp_softc *sc) 1831 { 1832 struct ifnet *ifp = &sc->sc_if; 1833 struct fxp_tx *txp; 1834 int i; 1835 1836 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1837 ifp->if_timer = 0; 1838 1839 #ifdef DEVICE_POLLING 1840 ether_poll_deregister(ifp); 1841 #endif 1842 /* 1843 * Cancel stats updater. 1844 */ 1845 untimeout(fxp_tick, sc, sc->stat_ch); 1846 1847 /* 1848 * Issue software reset, which also unloads the microcode. 1849 */ 1850 sc->flags &= ~FXP_FLAG_UCODE; 1851 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 1852 DELAY(50); 1853 1854 /* 1855 * Release any xmit buffers. 1856 */ 1857 txp = sc->fxp_desc.tx_list; 1858 if (txp != NULL) { 1859 for (i = 0; i < FXP_NTXCB; i++) { 1860 if (txp[i].tx_mbuf != NULL) { 1861 bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map, 1862 BUS_DMASYNC_POSTWRITE); 1863 bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map); 1864 m_freem(txp[i].tx_mbuf); 1865 txp[i].tx_mbuf = NULL; 1866 /* clear this to reset csum offload bits */ 1867 txp[i].tx_cb->tbd[0].tb_addr = 0; 1868 } 1869 } 1870 } 1871 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 1872 sc->tx_queued = 0; 1873 } 1874 1875 /* 1876 * Watchdog/transmission transmit timeout handler. Called when a 1877 * transmission is started on the interface, but no interrupt is 1878 * received before the timeout. This usually indicates that the 1879 * card has wedged for some reason. 1880 */ 1881 static void 1882 fxp_watchdog(struct ifnet *ifp) 1883 { 1884 struct fxp_softc *sc = ifp->if_softc; 1885 1886 FXP_LOCK(sc); 1887 device_printf(sc->dev, "device timeout\n"); 1888 ifp->if_oerrors++; 1889 1890 fxp_init_body(sc); 1891 FXP_UNLOCK(sc); 1892 } 1893 1894 /* 1895 * Acquire locks and then call the real initialization function. This 1896 * is necessary because ether_ioctl() calls if_init() and this would 1897 * result in mutex recursion if the mutex was held. 1898 */ 1899 static void 1900 fxp_init(void *xsc) 1901 { 1902 struct fxp_softc *sc = xsc; 1903 1904 FXP_LOCK(sc); 1905 fxp_init_body(sc); 1906 FXP_UNLOCK(sc); 1907 } 1908 1909 /* 1910 * Perform device initialization. This routine must be called with the 1911 * softc lock held. 1912 */ 1913 static void 1914 fxp_init_body(struct fxp_softc *sc) 1915 { 1916 struct ifnet *ifp = &sc->sc_if; 1917 struct fxp_cb_config *cbp; 1918 struct fxp_cb_ias *cb_ias; 1919 struct fxp_cb_tx *tcbp; 1920 struct fxp_tx *txp; 1921 struct fxp_cb_mcs *mcsp; 1922 int i, prm, s; 1923 1924 mtx_assert(&sc->sc_mtx, MA_OWNED); 1925 s = splimp(); 1926 /* 1927 * Cancel any pending I/O 1928 */ 1929 fxp_stop(sc); 1930 1931 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; 1932 1933 /* 1934 * Initialize base of CBL and RFA memory. Loading with zero 1935 * sets it up for regular linear addressing. 1936 */ 1937 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); 1938 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); 1939 1940 fxp_scb_wait(sc); 1941 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); 1942 1943 /* 1944 * Initialize base of dump-stats buffer. 1945 */ 1946 fxp_scb_wait(sc); 1947 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD); 1948 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr); 1949 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); 1950 1951 /* 1952 * Attempt to load microcode if requested. 1953 */ 1954 if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0) 1955 fxp_load_ucode(sc); 1956 1957 /* 1958 * Initialize the multicast address list. 1959 */ 1960 if (fxp_mc_addrs(sc)) { 1961 mcsp = sc->mcsp; 1962 mcsp->cb_status = 0; 1963 mcsp->cb_command = 1964 htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL); 1965 mcsp->link_addr = 0xffffffff; 1966 /* 1967 * Start the multicast setup command. 1968 */ 1969 fxp_scb_wait(sc); 1970 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE); 1971 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr); 1972 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1973 /* ...and wait for it to complete. */ 1974 fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map); 1975 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, 1976 BUS_DMASYNC_POSTWRITE); 1977 } 1978 1979 /* 1980 * We temporarily use memory that contains the TxCB list to 1981 * construct the config CB. The TxCB list memory is rebuilt 1982 * later. 1983 */ 1984 cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list; 1985 1986 /* 1987 * This bcopy is kind of disgusting, but there are a bunch of must be 1988 * zero and must be one bits in this structure and this is the easiest 1989 * way to initialize them all to proper values. 1990 */ 1991 bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template)); 1992 1993 cbp->cb_status = 0; 1994 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG | 1995 FXP_CB_COMMAND_EL); 1996 cbp->link_addr = 0xffffffff; /* (no) next command */ 1997 cbp->byte_count = sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22; 1998 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ 1999 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ 2000 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ 2001 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0; 2002 cbp->type_enable = 0; /* actually reserved */ 2003 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0; 2004 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0; 2005 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ 2006 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ 2007 cbp->dma_mbce = 0; /* (disable) dma max counters */ 2008 cbp->late_scb = 0; /* (don't) defer SCB update */ 2009 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */ 2010 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */ 2011 cbp->ci_int = 1; /* interrupt on CU idle */ 2012 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1; 2013 cbp->ext_stats_dis = 1; /* disable extended counters */ 2014 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */ 2015 cbp->save_bf = sc->revision == FXP_REV_82557 ? 1 : prm; 2016 cbp->disc_short_rx = !prm; /* discard short packets */ 2017 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */ 2018 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */ 2019 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */ 2020 cbp->ext_rfa = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2021 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1; 2022 cbp->csma_dis = 0; /* (don't) disable link */ 2023 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */ 2024 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */ 2025 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */ 2026 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */ 2027 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */ 2028 cbp->nsai = 1; /* (don't) disable source addr insert */ 2029 cbp->preamble_length = 2; /* (7 byte) preamble */ 2030 cbp->loopback = 0; /* (don't) loopback */ 2031 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ 2032 cbp->linear_pri_mode = 0; /* (wait after xmit only) */ 2033 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ 2034 cbp->promiscuous = prm; /* promiscuous mode */ 2035 cbp->bcast_disable = 0; /* (don't) disable broadcasts */ 2036 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/ 2037 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */ 2038 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */ 2039 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0; 2040 2041 cbp->stripping = !prm; /* truncate rx packet to byte count */ 2042 cbp->padding = 1; /* (do) pad short tx packets */ 2043 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ 2044 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0; 2045 cbp->ia_wake_en = 0; /* (don't) wake up on address match */ 2046 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */ 2047 /* must set wake_en in PMCSR also */ 2048 cbp->force_fdx = 0; /* (don't) force full duplex */ 2049 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ 2050 cbp->multi_ia = 0; /* (don't) accept multiple IAs */ 2051 cbp->mc_all = sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0; 2052 cbp->gamla_rx = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2053 2054 if (sc->revision == FXP_REV_82557) { 2055 /* 2056 * The 82557 has no hardware flow control, the values 2057 * below are the defaults for the chip. 2058 */ 2059 cbp->fc_delay_lsb = 0; 2060 cbp->fc_delay_msb = 0x40; 2061 cbp->pri_fc_thresh = 3; 2062 cbp->tx_fc_dis = 0; 2063 cbp->rx_fc_restop = 0; 2064 cbp->rx_fc_restart = 0; 2065 cbp->fc_filter = 0; 2066 cbp->pri_fc_loc = 1; 2067 } else { 2068 cbp->fc_delay_lsb = 0x1f; 2069 cbp->fc_delay_msb = 0x01; 2070 cbp->pri_fc_thresh = 3; 2071 cbp->tx_fc_dis = 0; /* enable transmit FC */ 2072 cbp->rx_fc_restop = 1; /* enable FC restop frames */ 2073 cbp->rx_fc_restart = 1; /* enable FC restart frames */ 2074 cbp->fc_filter = !prm; /* drop FC frames to host */ 2075 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */ 2076 } 2077 2078 /* 2079 * Start the config command/DMA. 2080 */ 2081 fxp_scb_wait(sc); 2082 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 2083 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2084 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2085 /* ...and wait for it to complete. */ 2086 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 2087 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE); 2088 2089 /* 2090 * Now initialize the station address. Temporarily use the TxCB 2091 * memory area like we did above for the config CB. 2092 */ 2093 cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list; 2094 cb_ias->cb_status = 0; 2095 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL); 2096 cb_ias->link_addr = 0xffffffff; 2097 bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr, 2098 sizeof(sc->arpcom.ac_enaddr)); 2099 2100 /* 2101 * Start the IAS (Individual Address Setup) command/DMA. 2102 */ 2103 fxp_scb_wait(sc); 2104 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 2105 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2106 /* ...and wait for it to complete. */ 2107 fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map); 2108 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE); 2109 2110 /* 2111 * Initialize transmit control block (TxCB) list. 2112 */ 2113 txp = sc->fxp_desc.tx_list; 2114 tcbp = sc->fxp_desc.cbl_list; 2115 bzero(tcbp, FXP_TXCB_SZ); 2116 for (i = 0; i < FXP_NTXCB; i++) { 2117 txp[i].tx_cb = tcbp + i; 2118 txp[i].tx_mbuf = NULL; 2119 tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK); 2120 tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP); 2121 tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr + 2122 (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx))); 2123 if (sc->flags & FXP_FLAG_EXT_TXCB) 2124 tcbp[i].tbd_array_addr = 2125 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2])); 2126 else 2127 tcbp[i].tbd_array_addr = 2128 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0])); 2129 txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK]; 2130 } 2131 /* 2132 * Set the suspend flag on the first TxCB and start the control 2133 * unit. It will execute the NOP and then suspend. 2134 */ 2135 tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S); 2136 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 2137 sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp; 2138 sc->tx_queued = 1; 2139 2140 fxp_scb_wait(sc); 2141 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2142 2143 /* 2144 * Initialize receiver buffer area - RFA. 2145 */ 2146 fxp_scb_wait(sc); 2147 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr); 2148 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 2149 2150 /* 2151 * Set current media. 2152 */ 2153 if (sc->miibus != NULL) 2154 mii_mediachg(device_get_softc(sc->miibus)); 2155 2156 ifp->if_flags |= IFF_RUNNING; 2157 ifp->if_flags &= ~IFF_OACTIVE; 2158 2159 /* 2160 * Enable interrupts. 2161 */ 2162 #ifdef DEVICE_POLLING 2163 /* 2164 * ... but only do that if we are not polling. And because (presumably) 2165 * the default is interrupts on, we need to disable them explicitly! 2166 */ 2167 if ( ifp->if_flags & IFF_POLLING ) 2168 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 2169 else 2170 #endif /* DEVICE_POLLING */ 2171 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 2172 2173 /* 2174 * Start stats updater. 2175 */ 2176 sc->stat_ch = timeout(fxp_tick, sc, hz); 2177 splx(s); 2178 } 2179 2180 static int 2181 fxp_serial_ifmedia_upd(struct ifnet *ifp) 2182 { 2183 2184 return (0); 2185 } 2186 2187 static void 2188 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2189 { 2190 2191 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2192 } 2193 2194 /* 2195 * Change media according to request. 2196 */ 2197 static int 2198 fxp_ifmedia_upd(struct ifnet *ifp) 2199 { 2200 struct fxp_softc *sc = ifp->if_softc; 2201 struct mii_data *mii; 2202 2203 mii = device_get_softc(sc->miibus); 2204 mii_mediachg(mii); 2205 return (0); 2206 } 2207 2208 /* 2209 * Notify the world which media we're using. 2210 */ 2211 static void 2212 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2213 { 2214 struct fxp_softc *sc = ifp->if_softc; 2215 struct mii_data *mii; 2216 2217 mii = device_get_softc(sc->miibus); 2218 mii_pollstat(mii); 2219 ifmr->ifm_active = mii->mii_media_active; 2220 ifmr->ifm_status = mii->mii_media_status; 2221 2222 if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG) 2223 sc->cu_resume_bug = 1; 2224 else 2225 sc->cu_resume_bug = 0; 2226 } 2227 2228 /* 2229 * Add a buffer to the end of the RFA buffer list. 2230 * Return 0 if successful, 1 for failure. A failure results in 2231 * adding the 'oldm' (if non-NULL) on to the end of the list - 2232 * tossing out its old contents and recycling it. 2233 * The RFA struct is stuck at the beginning of mbuf cluster and the 2234 * data pointer is fixed up to point just past it. 2235 */ 2236 static int 2237 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2238 { 2239 struct mbuf *m; 2240 struct fxp_rfa *rfa, *p_rfa; 2241 struct fxp_rx *p_rx; 2242 bus_dmamap_t tmp_map; 2243 int error; 2244 2245 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2246 if (m == NULL) 2247 return (ENOBUFS); 2248 2249 /* 2250 * Move the data pointer up so that the incoming data packet 2251 * will be 32-bit aligned. 2252 */ 2253 m->m_data += RFA_ALIGNMENT_FUDGE; 2254 2255 /* 2256 * Get a pointer to the base of the mbuf cluster and move 2257 * data start past it. 2258 */ 2259 rfa = mtod(m, struct fxp_rfa *); 2260 m->m_data += sc->rfa_size; 2261 rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE); 2262 2263 /* 2264 * Initialize the rest of the RFA. Note that since the RFA 2265 * is misaligned, we cannot store values directly. Instead, 2266 * we use an optimized, inline copy. 2267 */ 2268 2269 rfa->rfa_status = 0; 2270 rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL); 2271 rfa->actual_size = 0; 2272 2273 le32enc(&rfa->link_addr, 0xffffffff); 2274 le32enc(&rfa->rbd_addr, 0xffffffff); 2275 2276 /* Map the RFA into DMA memory. */ 2277 error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa, 2278 MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr, 2279 &rxp->rx_addr, 0); 2280 if (error) { 2281 m_freem(m); 2282 return (error); 2283 } 2284 2285 bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map); 2286 tmp_map = sc->spare_map; 2287 sc->spare_map = rxp->rx_map; 2288 rxp->rx_map = tmp_map; 2289 rxp->rx_mbuf = m; 2290 2291 bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map, 2292 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2293 2294 /* 2295 * If there are other buffers already on the list, attach this 2296 * one to the end by fixing up the tail to point to this one. 2297 */ 2298 if (sc->fxp_desc.rx_head != NULL) { 2299 p_rx = sc->fxp_desc.rx_tail; 2300 p_rfa = (struct fxp_rfa *) 2301 (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE); 2302 p_rx->rx_next = rxp; 2303 le32enc(&p_rfa->link_addr, rxp->rx_addr); 2304 p_rfa->rfa_control = 0; 2305 bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map, 2306 BUS_DMASYNC_PREWRITE); 2307 } else { 2308 rxp->rx_next = NULL; 2309 sc->fxp_desc.rx_head = rxp; 2310 } 2311 sc->fxp_desc.rx_tail = rxp; 2312 return (0); 2313 } 2314 2315 static volatile int 2316 fxp_miibus_readreg(device_t dev, int phy, int reg) 2317 { 2318 struct fxp_softc *sc = device_get_softc(dev); 2319 int count = 10000; 2320 int value; 2321 2322 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2323 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); 2324 2325 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 2326 && count--) 2327 DELAY(10); 2328 2329 if (count <= 0) 2330 device_printf(dev, "fxp_miibus_readreg: timed out\n"); 2331 2332 return (value & 0xffff); 2333 } 2334 2335 static void 2336 fxp_miibus_writereg(device_t dev, int phy, int reg, int value) 2337 { 2338 struct fxp_softc *sc = device_get_softc(dev); 2339 int count = 10000; 2340 2341 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2342 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | 2343 (value & 0xffff)); 2344 2345 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && 2346 count--) 2347 DELAY(10); 2348 2349 if (count <= 0) 2350 device_printf(dev, "fxp_miibus_writereg: timed out\n"); 2351 } 2352 2353 static int 2354 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 2355 { 2356 struct fxp_softc *sc = ifp->if_softc; 2357 struct ifreq *ifr = (struct ifreq *)data; 2358 struct mii_data *mii; 2359 int s, error = 0; 2360 2361 /* 2362 * Detaching causes us to call ioctl with the mutex owned. Preclude 2363 * that by saying we're busy if the lock is already held. 2364 */ 2365 if (mtx_owned(&sc->sc_mtx)) 2366 return (EBUSY); 2367 2368 FXP_LOCK(sc); 2369 s = splimp(); 2370 2371 switch (command) { 2372 case SIOCSIFFLAGS: 2373 if (ifp->if_flags & IFF_ALLMULTI) 2374 sc->flags |= FXP_FLAG_ALL_MCAST; 2375 else 2376 sc->flags &= ~FXP_FLAG_ALL_MCAST; 2377 2378 /* 2379 * If interface is marked up and not running, then start it. 2380 * If it is marked down and running, stop it. 2381 * XXX If it's up then re-initialize it. This is so flags 2382 * such as IFF_PROMISC are handled. 2383 */ 2384 if (ifp->if_flags & IFF_UP) { 2385 fxp_init_body(sc); 2386 } else { 2387 if (ifp->if_flags & IFF_RUNNING) 2388 fxp_stop(sc); 2389 } 2390 break; 2391 2392 case SIOCADDMULTI: 2393 case SIOCDELMULTI: 2394 if (ifp->if_flags & IFF_ALLMULTI) 2395 sc->flags |= FXP_FLAG_ALL_MCAST; 2396 else 2397 sc->flags &= ~FXP_FLAG_ALL_MCAST; 2398 /* 2399 * Multicast list has changed; set the hardware filter 2400 * accordingly. 2401 */ 2402 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) 2403 fxp_mc_setup(sc); 2404 /* 2405 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it 2406 * again rather than else {}. 2407 */ 2408 if (sc->flags & FXP_FLAG_ALL_MCAST) 2409 fxp_init_body(sc); 2410 error = 0; 2411 break; 2412 2413 case SIOCSIFMEDIA: 2414 case SIOCGIFMEDIA: 2415 if (sc->miibus != NULL) { 2416 mii = device_get_softc(sc->miibus); 2417 error = ifmedia_ioctl(ifp, ifr, 2418 &mii->mii_media, command); 2419 } else { 2420 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); 2421 } 2422 break; 2423 2424 default: 2425 /* 2426 * ether_ioctl() will eventually call fxp_start() which 2427 * will result in mutex recursion so drop it first. 2428 */ 2429 FXP_UNLOCK(sc); 2430 error = ether_ioctl(ifp, command, data); 2431 } 2432 if (mtx_owned(&sc->sc_mtx)) 2433 FXP_UNLOCK(sc); 2434 splx(s); 2435 return (error); 2436 } 2437 2438 /* 2439 * Fill in the multicast address list and return number of entries. 2440 */ 2441 static int 2442 fxp_mc_addrs(struct fxp_softc *sc) 2443 { 2444 struct fxp_cb_mcs *mcsp = sc->mcsp; 2445 struct ifnet *ifp = &sc->sc_if; 2446 struct ifmultiaddr *ifma; 2447 int nmcasts; 2448 2449 nmcasts = 0; 2450 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) { 2451 #if __FreeBSD_version < 500000 2452 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2453 #else 2454 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2455 #endif 2456 if (ifma->ifma_addr->sa_family != AF_LINK) 2457 continue; 2458 if (nmcasts >= MAXMCADDR) { 2459 sc->flags |= FXP_FLAG_ALL_MCAST; 2460 nmcasts = 0; 2461 break; 2462 } 2463 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 2464 &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN); 2465 nmcasts++; 2466 } 2467 } 2468 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN); 2469 return (nmcasts); 2470 } 2471 2472 /* 2473 * Program the multicast filter. 2474 * 2475 * We have an artificial restriction that the multicast setup command 2476 * must be the first command in the chain, so we take steps to ensure 2477 * this. By requiring this, it allows us to keep up the performance of 2478 * the pre-initialized command ring (esp. link pointers) by not actually 2479 * inserting the mcsetup command in the ring - i.e. its link pointer 2480 * points to the TxCB ring, but the mcsetup descriptor itself is not part 2481 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it 2482 * lead into the regular TxCB ring when it completes. 2483 * 2484 * This function must be called at splimp. 2485 */ 2486 static void 2487 fxp_mc_setup(struct fxp_softc *sc) 2488 { 2489 struct fxp_cb_mcs *mcsp = sc->mcsp; 2490 struct ifnet *ifp = &sc->sc_if; 2491 struct fxp_tx *txp; 2492 int count; 2493 2494 /* 2495 * If there are queued commands, we must wait until they are all 2496 * completed. If we are already waiting, then add a NOP command 2497 * with interrupt option so that we're notified when all commands 2498 * have been completed - fxp_start() ensures that no additional 2499 * TX commands will be added when need_mcsetup is true. 2500 */ 2501 if (sc->tx_queued) { 2502 /* 2503 * need_mcsetup will be true if we are already waiting for the 2504 * NOP command to be completed (see below). In this case, bail. 2505 */ 2506 if (sc->need_mcsetup) 2507 return; 2508 sc->need_mcsetup = 1; 2509 2510 /* 2511 * Add a NOP command with interrupt so that we are notified 2512 * when all TX commands have been processed. 2513 */ 2514 txp = sc->fxp_desc.tx_last->tx_next; 2515 txp->tx_mbuf = NULL; 2516 txp->tx_cb->cb_status = 0; 2517 txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP | 2518 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); 2519 /* 2520 * Advance the end of list forward. 2521 */ 2522 sc->fxp_desc.tx_last->tx_cb->cb_command &= 2523 htole16(~FXP_CB_COMMAND_S); 2524 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 2525 sc->fxp_desc.tx_last = txp; 2526 sc->tx_queued++; 2527 /* 2528 * Issue a resume in case the CU has just suspended. 2529 */ 2530 fxp_scb_wait(sc); 2531 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 2532 /* 2533 * Set a 5 second timer just in case we don't hear from the 2534 * card again. 2535 */ 2536 ifp->if_timer = 5; 2537 2538 return; 2539 } 2540 sc->need_mcsetup = 0; 2541 2542 /* 2543 * Initialize multicast setup descriptor. 2544 */ 2545 mcsp->cb_status = 0; 2546 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | 2547 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); 2548 mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr); 2549 txp = &sc->fxp_desc.mcs_tx; 2550 txp->tx_mbuf = NULL; 2551 txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp; 2552 txp->tx_next = sc->fxp_desc.tx_list; 2553 (void) fxp_mc_addrs(sc); 2554 sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp; 2555 sc->tx_queued = 1; 2556 2557 /* 2558 * Wait until command unit is not active. This should never 2559 * be the case when nothing is queued, but make sure anyway. 2560 */ 2561 count = 100; 2562 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) == 2563 FXP_SCB_CUS_ACTIVE && --count) 2564 DELAY(10); 2565 if (count == 0) { 2566 device_printf(sc->dev, "command queue timeout\n"); 2567 return; 2568 } 2569 2570 /* 2571 * Start the multicast setup command. 2572 */ 2573 fxp_scb_wait(sc); 2574 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE); 2575 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr); 2576 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2577 2578 ifp->if_timer = 2; 2579 return; 2580 } 2581 2582 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE; 2583 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE; 2584 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE; 2585 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE; 2586 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE; 2587 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE; 2588 2589 #define UCODE(x) x, sizeof(x) 2590 2591 struct ucode { 2592 u_int32_t revision; 2593 u_int32_t *ucode; 2594 int length; 2595 u_short int_delay_offset; 2596 u_short bundle_max_offset; 2597 } ucode_table[] = { 2598 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 }, 2599 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 }, 2600 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma), 2601 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD }, 2602 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s), 2603 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD }, 2604 { FXP_REV_82550, UCODE(fxp_ucode_d102), 2605 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD }, 2606 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c), 2607 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD }, 2608 { 0, NULL, 0, 0, 0 } 2609 }; 2610 2611 static void 2612 fxp_load_ucode(struct fxp_softc *sc) 2613 { 2614 struct ucode *uc; 2615 struct fxp_cb_ucode *cbp; 2616 2617 for (uc = ucode_table; uc->ucode != NULL; uc++) 2618 if (sc->revision == uc->revision) 2619 break; 2620 if (uc->ucode == NULL) 2621 return; 2622 cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list; 2623 cbp->cb_status = 0; 2624 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL); 2625 cbp->link_addr = 0xffffffff; /* (no) next command */ 2626 memcpy(cbp->ucode, uc->ucode, uc->length); 2627 if (uc->int_delay_offset) 2628 *(u_int16_t *)&cbp->ucode[uc->int_delay_offset] = 2629 htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2); 2630 if (uc->bundle_max_offset) 2631 *(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] = 2632 htole16(sc->tunable_bundle_max); 2633 /* 2634 * Download the ucode to the chip. 2635 */ 2636 fxp_scb_wait(sc); 2637 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 2638 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2639 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2640 /* ...and wait for it to complete. */ 2641 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 2642 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE); 2643 device_printf(sc->dev, 2644 "Microcode loaded, int_delay: %d usec bundle_max: %d\n", 2645 sc->tunable_int_delay, 2646 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max); 2647 sc->flags |= FXP_FLAG_UCODE; 2648 } 2649 2650 static int 2651 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 2652 { 2653 int error, value; 2654 2655 value = *(int *)arg1; 2656 error = sysctl_handle_int(oidp, &value, 0, req); 2657 if (error || !req->newptr) 2658 return (error); 2659 if (value < low || value > high) 2660 return (EINVAL); 2661 *(int *)arg1 = value; 2662 return (0); 2663 } 2664 2665 /* 2666 * Interrupt delay is expressed in microseconds, a multiplier is used 2667 * to convert this to the appropriate clock ticks before using. 2668 */ 2669 static int 2670 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS) 2671 { 2672 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000)); 2673 } 2674 2675 static int 2676 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS) 2677 { 2678 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff)); 2679 } 2680