xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 7773002178c8dbc52b44e4d705f07706409af8e4)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/endian.h>
43 #include <sys/mbuf.h>
44 		/* #include <sys/mutex.h> */
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/sysctl.h>
48 
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 
53 #include <net/bpf.h>
54 #include <sys/sockio.h>
55 #include <sys/bus.h>
56 #include <machine/bus.h>
57 #include <sys/rman.h>
58 #include <machine/resource.h>
59 
60 #include <net/ethernet.h>
61 #include <net/if_arp.h>
62 
63 #include <machine/clock.h>	/* for DELAY */
64 
65 #include <net/if_types.h>
66 #include <net/if_vlan_var.h>
67 
68 #ifdef FXP_IP_CSUM_WAR
69 #include <netinet/in.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/ip.h>
72 #include <machine/in_cksum.h>
73 #endif
74 
75 #include <dev/pci/pcivar.h>
76 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
77 
78 #include <dev/mii/mii.h>
79 #include <dev/mii/miivar.h>
80 
81 #include <dev/fxp/if_fxpreg.h>
82 #include <dev/fxp/if_fxpvar.h>
83 #include <dev/fxp/rcvbundl.h>
84 
85 MODULE_DEPEND(fxp, pci, 1, 1, 1);
86 MODULE_DEPEND(fxp, ether, 1, 1, 1);
87 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
88 #include "miibus_if.h"
89 
90 /*
91  * NOTE!  On the Alpha, we have an alignment constraint.  The
92  * card DMAs the packet immediately following the RFA.  However,
93  * the first thing in the packet is a 14-byte Ethernet header.
94  * This means that the packet is misaligned.  To compensate,
95  * we actually offset the RFA 2 bytes into the cluster.  This
96  * alignes the packet after the Ethernet header at a 32-bit
97  * boundary.  HOWEVER!  This means that the RFA is misaligned!
98  */
99 #define	RFA_ALIGNMENT_FUDGE	2
100 
101 /*
102  * Set initial transmit threshold at 64 (512 bytes). This is
103  * increased by 64 (512 bytes) at a time, to maximum of 192
104  * (1536 bytes), if an underrun occurs.
105  */
106 static int tx_threshold = 64;
107 
108 /*
109  * The configuration byte map has several undefined fields which
110  * must be one or must be zero.  Set up a template for these bits
111  * only, (assuming a 82557 chip) leaving the actual configuration
112  * to fxp_init.
113  *
114  * See struct fxp_cb_config for the bit definitions.
115  */
116 static u_char fxp_cb_config_template[] = {
117 	0x0, 0x0,		/* cb_status */
118 	0x0, 0x0,		/* cb_command */
119 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
120 	0x0,	/*  0 */
121 	0x0,	/*  1 */
122 	0x0,	/*  2 */
123 	0x0,	/*  3 */
124 	0x0,	/*  4 */
125 	0x0,	/*  5 */
126 	0x32,	/*  6 */
127 	0x0,	/*  7 */
128 	0x0,	/*  8 */
129 	0x0,	/*  9 */
130 	0x6,	/* 10 */
131 	0x0,	/* 11 */
132 	0x0,	/* 12 */
133 	0x0,	/* 13 */
134 	0xf2,	/* 14 */
135 	0x48,	/* 15 */
136 	0x0,	/* 16 */
137 	0x40,	/* 17 */
138 	0xf0,	/* 18 */
139 	0x0,	/* 19 */
140 	0x3f,	/* 20 */
141 	0x5	/* 21 */
142 };
143 
144 struct fxp_ident {
145 	u_int16_t	devid;
146 	int16_t		revid;		/* -1 matches anything */
147 	char 		*name;
148 };
149 
150 /*
151  * Claim various Intel PCI device identifiers for this driver.  The
152  * sub-vendor and sub-device field are extensively used to identify
153  * particular variants, but we don't currently differentiate between
154  * them.
155  */
156 static struct fxp_ident fxp_ident_table[] = {
157     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
158     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
159     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
160     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
161     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
162     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
163     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
165     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
167     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
168     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
170     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
171     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
172     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
173     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
174     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
175     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
176     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
177     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
178     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
179     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
180     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
181     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
182     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
183     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
184     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
185     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
186     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
187     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
188     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
189     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
190     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
191     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
192     { 0,	-1,	NULL },
193 };
194 
195 #ifdef FXP_IP_CSUM_WAR
196 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
197 #else
198 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
199 #endif
200 
201 static int		fxp_probe(device_t dev);
202 static int		fxp_attach(device_t dev);
203 static int		fxp_detach(device_t dev);
204 static int		fxp_shutdown(device_t dev);
205 static int		fxp_suspend(device_t dev);
206 static int		fxp_resume(device_t dev);
207 
208 static void		fxp_intr(void *xsc);
209 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
210 			    u_int8_t statack, int count);
211 static void 		fxp_init(void *xsc);
212 static void 		fxp_init_body(struct fxp_softc *sc);
213 static void 		fxp_tick(void *xsc);
214 #ifndef BURN_BRIDGES
215 static void		fxp_powerstate_d0(device_t dev);
216 #endif
217 static void 		fxp_start(struct ifnet *ifp);
218 static void 		fxp_start_body(struct ifnet *ifp);
219 static void		fxp_stop(struct fxp_softc *sc);
220 static void 		fxp_release(struct fxp_softc *sc);
221 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
222 			    caddr_t data);
223 static void 		fxp_watchdog(struct ifnet *ifp);
224 static int		fxp_add_rfabuf(struct fxp_softc *sc,
225     			    struct fxp_rx *rxp);
226 static int		fxp_mc_addrs(struct fxp_softc *sc);
227 static void		fxp_mc_setup(struct fxp_softc *sc);
228 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
229 			    int autosize);
230 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
231 			    u_int16_t data);
232 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
233 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
234 			    int offset, int words);
235 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
236 			    int offset, int words);
237 static int		fxp_ifmedia_upd(struct ifnet *ifp);
238 static void		fxp_ifmedia_sts(struct ifnet *ifp,
239 			    struct ifmediareq *ifmr);
240 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
241 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
242 			    struct ifmediareq *ifmr);
243 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
244 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
245 			    int value);
246 static void		fxp_load_ucode(struct fxp_softc *sc);
247 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
248 			    int low, int high);
249 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
250 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
251 static void 		fxp_scb_wait(struct fxp_softc *sc);
252 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
253 static void		fxp_dma_wait(struct fxp_softc *sc,
254     			    volatile u_int16_t *status, bus_dma_tag_t dmat,
255 			    bus_dmamap_t map);
256 
257 static device_method_t fxp_methods[] = {
258 	/* Device interface */
259 	DEVMETHOD(device_probe,		fxp_probe),
260 	DEVMETHOD(device_attach,	fxp_attach),
261 	DEVMETHOD(device_detach,	fxp_detach),
262 	DEVMETHOD(device_shutdown,	fxp_shutdown),
263 	DEVMETHOD(device_suspend,	fxp_suspend),
264 	DEVMETHOD(device_resume,	fxp_resume),
265 
266 	/* MII interface */
267 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
268 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
269 
270 	{ 0, 0 }
271 };
272 
273 static driver_t fxp_driver = {
274 	"fxp",
275 	fxp_methods,
276 	sizeof(struct fxp_softc),
277 };
278 
279 static devclass_t fxp_devclass;
280 
281 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
282 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
283 
284 static int fxp_rnr;
285 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
286 
287 static int fxp_noflow;
288 SYSCTL_INT(_hw, OID_AUTO, fxp_noflow, CTLFLAG_RW, &fxp_noflow, 0, "fxp flow control disabled");
289 TUNABLE_INT("hw.fxp_noflow", &fxp_noflow);
290 
291 /*
292  * Wait for the previous command to be accepted (but not necessarily
293  * completed).
294  */
295 static void
296 fxp_scb_wait(struct fxp_softc *sc)
297 {
298 	int i = 10000;
299 
300 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
301 		DELAY(2);
302 	if (i == 0)
303 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
304 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
305 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
306 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
307 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
308 }
309 
310 static void
311 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
312 {
313 
314 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
315 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
316 		fxp_scb_wait(sc);
317 	}
318 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
319 }
320 
321 static void
322 fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
323     bus_dma_tag_t dmat, bus_dmamap_t map)
324 {
325 	int i = 10000;
326 
327 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
328 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
329 		DELAY(2);
330 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
331 	}
332 	if (i == 0)
333 		device_printf(sc->dev, "DMA timeout\n");
334 }
335 
336 /*
337  * Return identification string if this device is ours.
338  */
339 static int
340 fxp_probe(device_t dev)
341 {
342 	u_int16_t devid;
343 	u_int8_t revid;
344 	struct fxp_ident *ident;
345 
346 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
347 		devid = pci_get_device(dev);
348 		revid = pci_get_revid(dev);
349 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
350 			if (ident->devid == devid &&
351 			    (ident->revid == revid || ident->revid == -1)) {
352 				device_set_desc(dev, ident->name);
353 				return (0);
354 			}
355 		}
356 	}
357 	return (ENXIO);
358 }
359 
360 #ifndef BURN_BRIDGES
361 static void
362 fxp_powerstate_d0(device_t dev)
363 {
364 #if __FreeBSD_version >= 430002
365 	u_int32_t iobase, membase, irq;
366 
367 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
368 		/* Save important PCI config data. */
369 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
370 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
371 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
372 
373 		/* Reset the power state. */
374 		device_printf(dev, "chip is in D%d power mode "
375 		    "-- setting to D0\n", pci_get_powerstate(dev));
376 
377 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
378 
379 		/* Restore PCI config data. */
380 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
381 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
382 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
383 	}
384 #endif
385 }
386 #endif
387 
388 static void
389 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
390 {
391 	u_int32_t *addr;
392 
393 	if (error)
394 		return;
395 
396 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
397 	addr = arg;
398 	*addr = segs->ds_addr;
399 }
400 
401 static int
402 fxp_attach(device_t dev)
403 {
404 	int error = 0;
405 	struct fxp_softc *sc = device_get_softc(dev);
406 	struct ifnet *ifp;
407 	struct fxp_rx *rxp;
408 	u_int32_t val;
409 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
410 	int i, rid, m1, m2, prefer_iomap, maxtxseg;
411 	int s, ipcbxmit_disable;
412 
413 	sc->dev = dev;
414 	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
415 	sysctl_ctx_init(&sc->sysctl_ctx);
416 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
417 	    MTX_DEF);
418 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
419 	    fxp_serial_ifmedia_sts);
420 
421 	s = splimp();
422 
423 	/*
424 	 * Enable bus mastering.
425 	 */
426 	pci_enable_busmaster(dev);
427 	val = pci_read_config(dev, PCIR_COMMAND, 2);
428 #ifndef BURN_BRIDGES
429 	fxp_powerstate_d0(dev);
430 #endif
431 	/*
432 	 * Figure out which we should try first - memory mapping or i/o mapping?
433 	 * We default to memory mapping. Then we accept an override from the
434 	 * command line. Then we check to see which one is enabled.
435 	 */
436 	m1 = PCIM_CMD_MEMEN;
437 	m2 = PCIM_CMD_PORTEN;
438 	prefer_iomap = 0;
439 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
440 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
441 		m1 = PCIM_CMD_PORTEN;
442 		m2 = PCIM_CMD_MEMEN;
443 	}
444 
445 	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
446 	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
447 	sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
448 	                                     0, ~0, 1, RF_ACTIVE);
449 	if (sc->mem == NULL) {
450 		sc->rtp =
451 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
452 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
453 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
454                                             0, ~0, 1, RF_ACTIVE);
455 	}
456 
457 	if (!sc->mem) {
458 		error = ENXIO;
459 		goto fail;
460         }
461 	if (bootverbose) {
462 		device_printf(dev, "using %s space register mapping\n",
463 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
464 	}
465 
466 	sc->sc_st = rman_get_bustag(sc->mem);
467 	sc->sc_sh = rman_get_bushandle(sc->mem);
468 
469 	/*
470 	 * Allocate our interrupt.
471 	 */
472 	rid = 0;
473 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
474 				 RF_SHAREABLE | RF_ACTIVE);
475 	if (sc->irq == NULL) {
476 		device_printf(dev, "could not map interrupt\n");
477 		error = ENXIO;
478 		goto fail;
479 	}
480 
481 	/*
482 	 * Reset to a stable state.
483 	 */
484 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
485 	DELAY(10);
486 
487 	/*
488 	 * Find out how large of an SEEPROM we have.
489 	 */
490 	fxp_autosize_eeprom(sc);
491 
492 	/*
493 	 * Determine whether we must use the 503 serial interface.
494 	 */
495 	fxp_read_eeprom(sc, &data, 6, 1);
496 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
497 	    (data & FXP_PHY_SERIAL_ONLY))
498 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
499 
500 	/*
501 	 * Create the sysctl tree
502 	 */
503 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
504 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
505 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
506 	if (sc->sysctl_tree == NULL) {
507 		error = ENXIO;
508 		goto fail;
509 	}
510 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
511 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
512 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
513 	    "FXP driver receive interrupt microcode bundling delay");
514 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
515 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
516 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
517 	    "FXP driver receive interrupt microcode bundle size limit");
518 
519 	/*
520 	 * Pull in device tunables.
521 	 */
522 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
523 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
524 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
525 	    "int_delay", &sc->tunable_int_delay);
526 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
527 	    "bundle_max", &sc->tunable_bundle_max);
528 
529 	/*
530 	 * Find out the chip revision; lump all 82557 revs together.
531 	 */
532 	fxp_read_eeprom(sc, &data, 5, 1);
533 	if ((data >> 8) == 1)
534 		sc->revision = FXP_REV_82557;
535 	else
536 		sc->revision = pci_get_revid(dev);
537 
538 	/*
539 	 * Enable workarounds for certain chip revision deficiencies.
540 	 *
541 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
542 	 * some systems based a normal 82559 design, have a defect where
543 	 * the chip can cause a PCI protocol violation if it receives
544 	 * a CU_RESUME command when it is entering the IDLE state.  The
545 	 * workaround is to disable Dynamic Standby Mode, so the chip never
546 	 * deasserts CLKRUN#, and always remains in an active state.
547 	 *
548 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
549 	 */
550 	i = pci_get_device(dev);
551 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
552 	    sc->revision >= FXP_REV_82559_A0) {
553 		fxp_read_eeprom(sc, &data, 10, 1);
554 		if (data & 0x02) {			/* STB enable */
555 			u_int16_t cksum;
556 			int i;
557 
558 			device_printf(dev,
559 			    "Disabling dynamic standby mode in EEPROM\n");
560 			data &= ~0x02;
561 			fxp_write_eeprom(sc, &data, 10, 1);
562 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
563 			cksum = 0;
564 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
565 				fxp_read_eeprom(sc, &data, i, 1);
566 				cksum += data;
567 			}
568 			i = (1 << sc->eeprom_size) - 1;
569 			cksum = 0xBABA - cksum;
570 			fxp_read_eeprom(sc, &data, i, 1);
571 			fxp_write_eeprom(sc, &cksum, i, 1);
572 			device_printf(dev,
573 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
574 			    i, data, cksum);
575 #if 1
576 			/*
577 			 * If the user elects to continue, try the software
578 			 * workaround, as it is better than nothing.
579 			 */
580 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
581 #endif
582 		}
583 	}
584 
585 	/*
586 	 * If we are not a 82557 chip, we can enable extended features.
587 	 */
588 	if (sc->revision != FXP_REV_82557) {
589 		/*
590 		 * If MWI is enabled in the PCI configuration, and there
591 		 * is a valid cacheline size (8 or 16 dwords), then tell
592 		 * the board to turn on MWI.
593 		 */
594 		if (val & PCIM_CMD_MWRICEN &&
595 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
596 			sc->flags |= FXP_FLAG_MWI_ENABLE;
597 
598 		/* turn on the extended TxCB feature */
599 		sc->flags |= FXP_FLAG_EXT_TXCB;
600 
601 		/* enable reception of long frames for VLAN */
602 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
603 	}
604 
605 	/*
606 	 * Enable use of extended RFDs and TCBs for 82550
607 	 * and later chips. Note: we need extended TXCB support
608 	 * too, but that's already enabled by the code above.
609 	 * Be careful to do this only on the right devices.
610 	 *
611 	 * At least some 82550 cards probed as "chip=0x12298086 rev=0x0d"
612 	 * truncate packets that end with an mbuf containing 1 to 3 bytes
613 	 * when used with this feature enabled in the previous version of the
614 	 * driver.  This problem appears to be fixed now that the driver
615 	 * always sets the hardware parse bit in the IPCB structure, which
616 	 * the "Intel 8255x 10/100 Mbps Ethernet Controller Family Open
617 	 * Source Software Developer Manual" says is necessary in the
618 	 * cases where packet truncation was observed.
619 	 *
620 	 * The device hint "hint.fxp.UNIT_NUMBER.ipcbxmit_disable"
621 	 * allows this feature to be disabled at boot time.
622 	 *
623 	 * If fxp is not compiled into the kernel, this feature may also
624 	 * be disabled at run time:
625 	 *    # kldunload fxp
626 	 *    # kenv hint.fxp.0.ipcbxmit_disable=1
627 	 *    # kldload fxp
628 	 */
629 
630 	if (resource_int_value("fxp", device_get_unit(dev), "ipcbxmit_disable",
631 	    &ipcbxmit_disable) != 0)
632 		ipcbxmit_disable = 0;
633 	if (ipcbxmit_disable == 0 && (sc->revision == FXP_REV_82550 ||
634 	    sc->revision == FXP_REV_82550_C)) {
635 		sc->rfa_size = sizeof (struct fxp_rfa);
636 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
637 		sc->flags |= FXP_FLAG_EXT_RFA;
638 	} else {
639 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
640 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
641 	}
642 
643 	/*
644 	 * Allocate DMA tags and DMA safe memory.
645 	 */
646 	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
647 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
648 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
649 	    maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->fxp_mtag);
650 	if (error) {
651 		device_printf(dev, "could not allocate dma tag\n");
652 		goto fail;
653 	}
654 
655 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
656 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
657 	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
658 	    &sc->fxp_stag);
659 	if (error) {
660 		device_printf(dev, "could not allocate dma tag\n");
661 		goto fail;
662 	}
663 
664 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
665 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
666 	if (error)
667 		goto fail;
668 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
669 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
670 	if (error) {
671 		device_printf(dev, "could not map the stats buffer\n");
672 		goto fail;
673 	}
674 
675 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
676 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
677 	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
678 	if (error) {
679 		device_printf(dev, "could not allocate dma tag\n");
680 		goto fail;
681 	}
682 
683 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
684 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
685 	if (error)
686 		goto fail;
687 
688 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
689 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
690 	    &sc->fxp_desc.cbl_addr, 0);
691 	if (error) {
692 		device_printf(dev, "could not map DMA memory\n");
693 		goto fail;
694 	}
695 
696 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
697 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
698 	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
699 	    &sc->mcs_tag);
700 	if (error) {
701 		device_printf(dev, "could not allocate dma tag\n");
702 		goto fail;
703 	}
704 
705 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
706 	    BUS_DMA_NOWAIT, &sc->mcs_map);
707 	if (error)
708 		goto fail;
709 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
710 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
711 	if (error) {
712 		device_printf(dev, "can't map the multicast setup command\n");
713 		goto fail;
714 	}
715 
716 	/*
717 	 * Pre-allocate the TX DMA maps.
718 	 */
719 	for (i = 0; i < FXP_NTXCB; i++) {
720 		error = bus_dmamap_create(sc->fxp_mtag, 0,
721 		    &sc->fxp_desc.tx_list[i].tx_map);
722 		if (error) {
723 			device_printf(dev, "can't create DMA map for TX\n");
724 			goto fail;
725 		}
726 	}
727 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
728 	if (error) {
729 		device_printf(dev, "can't create spare DMA map\n");
730 		goto fail;
731 	}
732 
733 	/*
734 	 * Pre-allocate our receive buffers.
735 	 */
736 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
737 	for (i = 0; i < FXP_NRFABUFS; i++) {
738 		rxp = &sc->fxp_desc.rx_list[i];
739 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
740 		if (error) {
741 			device_printf(dev, "can't create DMA map for RX\n");
742 			goto fail;
743 		}
744 		if (fxp_add_rfabuf(sc, rxp) != 0) {
745 			error = ENOMEM;
746 			goto fail;
747 		}
748 	}
749 
750 	/*
751 	 * Read MAC address.
752 	 */
753 	fxp_read_eeprom(sc, myea, 0, 3);
754 	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
755 	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
756 	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
757 	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
758 	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
759 	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
760 	device_printf(dev, "Ethernet address %6D%s\n",
761 	    sc->arpcom.ac_enaddr, ":",
762 	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
763 	if (bootverbose) {
764 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
765 		    pci_get_vendor(dev), pci_get_device(dev),
766 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
767 		    pci_get_revid(dev));
768 		fxp_read_eeprom(sc, &data, 10, 1);
769 		device_printf(dev, "Dynamic Standby mode is %s\n",
770 		    data & 0x02 ? "enabled" : "disabled");
771 	}
772 
773 	/*
774 	 * If this is only a 10Mbps device, then there is no MII, and
775 	 * the PHY will use a serial interface instead.
776 	 *
777 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
778 	 * doesn't have a programming interface of any sort.  The
779 	 * media is sensed automatically based on how the link partner
780 	 * is configured.  This is, in essence, manual configuration.
781 	 */
782 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
783 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
784 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
785 	} else {
786 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
787 		    fxp_ifmedia_sts)) {
788 	                device_printf(dev, "MII without any PHY!\n");
789 			error = ENXIO;
790 			goto fail;
791 		}
792 	}
793 
794 	ifp = &sc->arpcom.ac_if;
795 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
796 	ifp->if_output = ether_output;
797 	ifp->if_baudrate = 100000000;
798 	ifp->if_init = fxp_init;
799 	ifp->if_softc = sc;
800 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
801 	ifp->if_ioctl = fxp_ioctl;
802 	ifp->if_start = fxp_start;
803 	ifp->if_watchdog = fxp_watchdog;
804 
805 	/* Enable checksum offload for 82550 or better chips */
806 	if (sc->flags & FXP_FLAG_EXT_RFA) {
807 		ifp->if_hwassist = FXP_CSUM_FEATURES;
808 		ifp->if_capabilities = IFCAP_HWCSUM;
809 		ifp->if_capenable = ifp->if_capabilities;
810 	}
811 
812 	/*
813 	 * Attach the interface.
814 	 */
815 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
816 
817 	/*
818 	 * Tell the upper layer(s) we support long frames.
819 	 */
820 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
821 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
822 
823 	/*
824 	 * Let the system queue as many packets as we have available
825 	 * TX descriptors.
826 	 */
827 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
828 
829 	/*
830 	 * Hook our interrupt after all initialization is complete.
831 	 * XXX This driver has been tested with the INTR_MPSAFFE flag set
832 	 * however, ifp and its functions are not fully locked so MPSAFE
833 	 * should not be used unless you can handle potential data loss.
834 	 */
835 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
836 			       fxp_intr, sc, &sc->ih);
837 	if (error) {
838 		device_printf(dev, "could not setup irq\n");
839 		ether_ifdetach(&sc->arpcom.ac_if);
840 		goto fail;
841 	}
842 
843 fail:
844 	splx(s);
845 	if (error)
846 		fxp_release(sc);
847 	return (error);
848 }
849 
850 /*
851  * Release all resources.  The softc lock should not be held and the
852  * interrupt should already be torn down.
853  */
854 static void
855 fxp_release(struct fxp_softc *sc)
856 {
857 	struct fxp_rx *rxp;
858 	struct fxp_tx *txp;
859 	int i;
860 
861 	mtx_assert(&sc->sc_mtx, MA_NOTOWNED);
862 	if (sc->ih)
863 		panic("fxp_release() called with intr handle still active");
864 	if (sc->miibus)
865 		device_delete_child(sc->dev, sc->miibus);
866 	bus_generic_detach(sc->dev);
867 	ifmedia_removeall(&sc->sc_media);
868 	if (sc->fxp_desc.cbl_list) {
869 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
870 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
871 		    sc->cbl_map);
872 	}
873 	if (sc->fxp_stats) {
874 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
875 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
876 	}
877 	if (sc->mcsp) {
878 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
879 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
880 	}
881 	if (sc->irq)
882 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
883 	if (sc->mem)
884 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
885 	if (sc->fxp_mtag) {
886 		for (i = 0; i < FXP_NRFABUFS; i++) {
887 			rxp = &sc->fxp_desc.rx_list[i];
888 			if (rxp->rx_mbuf != NULL) {
889 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
890 				    BUS_DMASYNC_POSTREAD);
891 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
892 				m_freem(rxp->rx_mbuf);
893 			}
894 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
895 		}
896 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
897 		bus_dma_tag_destroy(sc->fxp_mtag);
898 	}
899 	if (sc->fxp_stag) {
900 		for (i = 0; i < FXP_NTXCB; i++) {
901 			txp = &sc->fxp_desc.tx_list[i];
902 			if (txp->tx_mbuf != NULL) {
903 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
904 				    BUS_DMASYNC_POSTWRITE);
905 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
906 				m_freem(txp->tx_mbuf);
907 			}
908 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
909 		}
910 		bus_dma_tag_destroy(sc->fxp_stag);
911 	}
912 	if (sc->cbl_tag)
913 		bus_dma_tag_destroy(sc->cbl_tag);
914 	if (sc->mcs_tag)
915 		bus_dma_tag_destroy(sc->mcs_tag);
916 
917         sysctl_ctx_free(&sc->sysctl_ctx);
918 
919 	mtx_destroy(&sc->sc_mtx);
920 }
921 
922 /*
923  * Detach interface.
924  */
925 static int
926 fxp_detach(device_t dev)
927 {
928 	struct fxp_softc *sc = device_get_softc(dev);
929 	int s;
930 
931 	FXP_LOCK(sc);
932 	s = splimp();
933 
934 	sc->suspended = 1;	/* Do same thing as we do for suspend */
935 	/*
936 	 * Close down routes etc.
937 	 */
938 	ether_ifdetach(&sc->arpcom.ac_if);
939 
940 	/*
941 	 * Stop DMA and drop transmit queue, but disable interrupts first.
942 	 */
943 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
944 	fxp_stop(sc);
945 	FXP_UNLOCK(sc);
946 
947 	/*
948 	 * Unhook interrupt before dropping lock. This is to prevent
949 	 * races with fxp_intr().
950 	 */
951 	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
952 	sc->ih = NULL;
953 
954 	splx(s);
955 
956 	/* Release our allocated resources. */
957 	fxp_release(sc);
958 	return (0);
959 }
960 
961 /*
962  * Device shutdown routine. Called at system shutdown after sync. The
963  * main purpose of this routine is to shut off receiver DMA so that
964  * kernel memory doesn't get clobbered during warmboot.
965  */
966 static int
967 fxp_shutdown(device_t dev)
968 {
969 	/*
970 	 * Make sure that DMA is disabled prior to reboot. Not doing
971 	 * do could allow DMA to corrupt kernel memory during the
972 	 * reboot before the driver initializes.
973 	 */
974 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
975 	return (0);
976 }
977 
978 /*
979  * Device suspend routine.  Stop the interface and save some PCI
980  * settings in case the BIOS doesn't restore them properly on
981  * resume.
982  */
983 static int
984 fxp_suspend(device_t dev)
985 {
986 	struct fxp_softc *sc = device_get_softc(dev);
987 	int i, s;
988 
989 	FXP_LOCK(sc);
990 	s = splimp();
991 
992 	fxp_stop(sc);
993 
994 	for (i = 0; i < 5; i++)
995 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
996 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
997 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
998 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
999 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1000 
1001 	sc->suspended = 1;
1002 
1003 	FXP_UNLOCK(sc);
1004 	splx(s);
1005 	return (0);
1006 }
1007 
1008 /*
1009  * Device resume routine.  Restore some PCI settings in case the BIOS
1010  * doesn't, re-enable busmastering, and restart the interface if
1011  * appropriate.
1012  */
1013 static int
1014 fxp_resume(device_t dev)
1015 {
1016 	struct fxp_softc *sc = device_get_softc(dev);
1017 	struct ifnet *ifp = &sc->sc_if;
1018 	u_int16_t pci_command;
1019 	int i, s;
1020 
1021 	FXP_LOCK(sc);
1022 	s = splimp();
1023 #ifndef BURN_BRIDGES
1024 	fxp_powerstate_d0(dev);
1025 #endif
1026 	/* better way to do this? */
1027 	for (i = 0; i < 5; i++)
1028 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
1029 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1030 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1031 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1032 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1033 
1034 	/* reenable busmastering */
1035 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
1036 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1037 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
1038 
1039 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1040 	DELAY(10);
1041 
1042 	/* reinitialize interface if necessary */
1043 	if (ifp->if_flags & IFF_UP)
1044 		fxp_init_body(sc);
1045 
1046 	sc->suspended = 0;
1047 
1048 	FXP_UNLOCK(sc);
1049 	splx(s);
1050 	return (0);
1051 }
1052 
1053 static void
1054 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1055 {
1056 	u_int16_t reg;
1057 	int x;
1058 
1059 	/*
1060 	 * Shift in data.
1061 	 */
1062 	for (x = 1 << (length - 1); x; x >>= 1) {
1063 		if (data & x)
1064 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1065 		else
1066 			reg = FXP_EEPROM_EECS;
1067 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1068 		DELAY(1);
1069 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1070 		DELAY(1);
1071 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1072 		DELAY(1);
1073 	}
1074 }
1075 
1076 /*
1077  * Read from the serial EEPROM. Basically, you manually shift in
1078  * the read opcode (one bit at a time) and then shift in the address,
1079  * and then you shift out the data (all of this one bit at a time).
1080  * The word size is 16 bits, so you have to provide the address for
1081  * every 16 bits of data.
1082  */
1083 static u_int16_t
1084 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1085 {
1086 	u_int16_t reg, data;
1087 	int x;
1088 
1089 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1090 	/*
1091 	 * Shift in read opcode.
1092 	 */
1093 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1094 	/*
1095 	 * Shift in address.
1096 	 */
1097 	data = 0;
1098 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1099 		if (offset & x)
1100 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1101 		else
1102 			reg = FXP_EEPROM_EECS;
1103 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1104 		DELAY(1);
1105 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1106 		DELAY(1);
1107 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1108 		DELAY(1);
1109 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1110 		data++;
1111 		if (autosize && reg == 0) {
1112 			sc->eeprom_size = data;
1113 			break;
1114 		}
1115 	}
1116 	/*
1117 	 * Shift out data.
1118 	 */
1119 	data = 0;
1120 	reg = FXP_EEPROM_EECS;
1121 	for (x = 1 << 15; x; x >>= 1) {
1122 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1123 		DELAY(1);
1124 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1125 			data |= x;
1126 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1127 		DELAY(1);
1128 	}
1129 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1130 	DELAY(1);
1131 
1132 	return (data);
1133 }
1134 
1135 static void
1136 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1137 {
1138 	int i;
1139 
1140 	/*
1141 	 * Erase/write enable.
1142 	 */
1143 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1144 	fxp_eeprom_shiftin(sc, 0x4, 3);
1145 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1146 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1147 	DELAY(1);
1148 	/*
1149 	 * Shift in write opcode, address, data.
1150 	 */
1151 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1152 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1153 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1154 	fxp_eeprom_shiftin(sc, data, 16);
1155 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1156 	DELAY(1);
1157 	/*
1158 	 * Wait for EEPROM to finish up.
1159 	 */
1160 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1161 	DELAY(1);
1162 	for (i = 0; i < 1000; i++) {
1163 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1164 			break;
1165 		DELAY(50);
1166 	}
1167 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1168 	DELAY(1);
1169 	/*
1170 	 * Erase/write disable.
1171 	 */
1172 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1173 	fxp_eeprom_shiftin(sc, 0x4, 3);
1174 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1175 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1176 	DELAY(1);
1177 }
1178 
1179 /*
1180  * From NetBSD:
1181  *
1182  * Figure out EEPROM size.
1183  *
1184  * 559's can have either 64-word or 256-word EEPROMs, the 558
1185  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1186  * talks about the existance of 16 to 256 word EEPROMs.
1187  *
1188  * The only known sizes are 64 and 256, where the 256 version is used
1189  * by CardBus cards to store CIS information.
1190  *
1191  * The address is shifted in msb-to-lsb, and after the last
1192  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1193  * after which follows the actual data. We try to detect this zero, by
1194  * probing the data-out bit in the EEPROM control register just after
1195  * having shifted in a bit. If the bit is zero, we assume we've
1196  * shifted enough address bits. The data-out should be tri-state,
1197  * before this, which should translate to a logical one.
1198  */
1199 static void
1200 fxp_autosize_eeprom(struct fxp_softc *sc)
1201 {
1202 
1203 	/* guess maximum size of 256 words */
1204 	sc->eeprom_size = 8;
1205 
1206 	/* autosize */
1207 	(void) fxp_eeprom_getword(sc, 0, 1);
1208 }
1209 
1210 static void
1211 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1212 {
1213 	int i;
1214 
1215 	for (i = 0; i < words; i++)
1216 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1217 }
1218 
1219 static void
1220 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1221 {
1222 	int i;
1223 
1224 	for (i = 0; i < words; i++)
1225 		fxp_eeprom_putword(sc, offset + i, data[i]);
1226 }
1227 
1228 static void
1229 fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1230     bus_size_t mapsize, int error)
1231 {
1232 	struct fxp_softc *sc;
1233 	struct fxp_cb_tx *txp;
1234 	int i;
1235 
1236 	if (error)
1237 		return;
1238 
1239 	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1240 
1241 	sc = arg;
1242 	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1243 	for (i = 0; i < nseg; i++) {
1244 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1245 		/*
1246 		 * If this is an 82550/82551, then we're using extended
1247 		 * TxCBs _and_ we're using checksum offload. This means
1248 		 * that the TxCB is really an IPCB. One major difference
1249 		 * between the two is that with plain extended TxCBs,
1250 		 * the bottom half of the TxCB contains two entries from
1251 		 * the TBD array, whereas IPCBs contain just one entry:
1252 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1253 		 * checksum offload control bits. So to make things work
1254 		 * right, we have to start filling in the TBD array
1255 		 * starting from a different place depending on whether
1256 		 * the chip is an 82550/82551 or not.
1257 		 */
1258 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1259 			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1260 			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1261 		} else {
1262 			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1263 			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1264 		}
1265 	}
1266 	txp->tbd_number = nseg;
1267 }
1268 
1269 /*
1270  * Grab the softc lock and call the real fxp_start_body() routine
1271  */
1272 static void
1273 fxp_start(struct ifnet *ifp)
1274 {
1275 	struct fxp_softc *sc = ifp->if_softc;
1276 
1277 	FXP_LOCK(sc);
1278 	fxp_start_body(ifp);
1279 	FXP_UNLOCK(sc);
1280 }
1281 
1282 /*
1283  * Start packet transmission on the interface.
1284  * This routine must be called with the softc lock held, and is an
1285  * internal entry point only.
1286  */
1287 static void
1288 fxp_start_body(struct ifnet *ifp)
1289 {
1290 	struct fxp_softc *sc = ifp->if_softc;
1291 	struct fxp_tx *txp;
1292 	struct mbuf *mb_head;
1293 	int error;
1294 
1295 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1296 	/*
1297 	 * See if we need to suspend xmit until the multicast filter
1298 	 * has been reprogrammed (which can only be done at the head
1299 	 * of the command chain).
1300 	 */
1301 	if (sc->need_mcsetup) {
1302 		return;
1303 	}
1304 
1305 	txp = NULL;
1306 
1307 	/*
1308 	 * We're finished if there is nothing more to add to the list or if
1309 	 * we're all filled up with buffers to transmit.
1310 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1311 	 *       a NOP command when needed.
1312 	 */
1313 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1314 
1315 		/*
1316 		 * Grab a packet to transmit.
1317 		 */
1318 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1319 
1320 		/*
1321 		 * Get pointer to next available tx desc.
1322 		 */
1323 		txp = sc->fxp_desc.tx_last->tx_next;
1324 
1325 		/*
1326 		 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1327 		 * Ethernet Controller Family Open Source Software
1328 		 * Developer Manual says:
1329 		 *   Using software parsing is only allowed with legal
1330 		 *   TCP/IP or UDP/IP packets.
1331 		 *   ...
1332 		 *   For all other datagrams, hardware parsing must
1333 		 *   be used.
1334 		 * Software parsing appears to truncate ICMP and
1335 		 * fragmented UDP packets that contain one to three
1336 		 * bytes in the second (and final) mbuf of the packet.
1337 		 */
1338 		if (sc->flags & FXP_FLAG_EXT_RFA)
1339 			txp->tx_cb->ipcb_ip_activation_high =
1340 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1341 
1342 		/*
1343 		 * Deal with TCP/IP checksum offload. Note that
1344 		 * in order for TCP checksum offload to work,
1345 		 * the pseudo header checksum must have already
1346 		 * been computed and stored in the checksum field
1347 		 * in the TCP header. The stack should have
1348 		 * already done this for us.
1349 		 */
1350 
1351 		if (mb_head->m_pkthdr.csum_flags) {
1352 			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1353 				txp->tx_cb->ipcb_ip_schedule =
1354 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1355 				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1356 					txp->tx_cb->ipcb_ip_schedule |=
1357 					    FXP_IPCB_TCP_PACKET;
1358 			}
1359 #ifdef FXP_IP_CSUM_WAR
1360 		/*
1361 		 * XXX The 82550 chip appears to have trouble
1362 		 * dealing with IP header checksums in very small
1363 		 * datagrams, namely fragments from 1 to 3 bytes
1364 		 * in size. For example, say you want to transmit
1365 		 * a UDP packet of 1473 bytes. The packet will be
1366 		 * fragmented over two IP datagrams, the latter
1367 		 * containing only one byte of data. The 82550 will
1368 		 * botch the header checksum on the 1-byte fragment.
1369 		 * As long as the datagram contains 4 or more bytes
1370 		 * of data, you're ok.
1371 		 *
1372                  * The following code attempts to work around this
1373 		 * problem: if the datagram is less than 38 bytes
1374 		 * in size (14 bytes ether header, 20 bytes IP header,
1375 		 * plus 4 bytes of data), we punt and compute the IP
1376 		 * header checksum by hand. This workaround doesn't
1377 		 * work very well, however, since it can be fooled
1378 		 * by things like VLAN tags and IP options that make
1379 		 * the header sizes/offsets vary.
1380 		 */
1381 
1382 			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1383 				if (mb_head->m_pkthdr.len < 38) {
1384 					struct ip *ip;
1385 					mb_head->m_data += ETHER_HDR_LEN;
1386 					ip = mtod(mb_head, struct ip *);
1387 					ip->ip_sum = in_cksum(mb_head,
1388 					    ip->ip_hl << 2);
1389 					mb_head->m_data -= ETHER_HDR_LEN;
1390 				} else {
1391 					txp->tx_cb->ipcb_ip_activation_high =
1392 					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1393 					txp->tx_cb->ipcb_ip_schedule |=
1394 					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1395 				}
1396 			}
1397 #endif
1398 		}
1399 
1400 		/*
1401 		 * Go through each of the mbufs in the chain and initialize
1402 		 * the transmit buffer descriptors with the physical address
1403 		 * and size of the mbuf.
1404 		 */
1405 		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1406 		    mb_head, fxp_dma_map_txbuf, sc, 0);
1407 
1408 		if (error && error != EFBIG) {
1409 			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1410 			    error);
1411 			m_freem(mb_head);
1412 			break;
1413 		}
1414 
1415 		if (error) {
1416 			struct mbuf *mn;
1417 
1418 			/*
1419 			 * We ran out of segments. We have to recopy this
1420 			 * mbuf chain first. Bail out if we can't get the
1421 			 * new buffers.
1422 			 */
1423 			mn = m_defrag(mb_head, M_DONTWAIT);
1424 			if (mn == NULL) {
1425 				m_freem(mb_head);
1426 				break;
1427 			} else {
1428 				mb_head = mn;
1429 			}
1430 			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1431 			    mb_head, fxp_dma_map_txbuf, sc, 0);
1432 			if (error) {
1433 				device_printf(sc->dev,
1434 				    "can't map mbuf (error %d)\n", error);
1435 				m_freem(mb_head);
1436 				break;
1437 			}
1438 		}
1439 
1440 		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1441 		    BUS_DMASYNC_PREWRITE);
1442 
1443 		txp->tx_mbuf = mb_head;
1444 		txp->tx_cb->cb_status = 0;
1445 		txp->tx_cb->byte_count = 0;
1446 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1447 			txp->tx_cb->cb_command =
1448 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1449 			    FXP_CB_COMMAND_S);
1450 		} else {
1451 			txp->tx_cb->cb_command =
1452 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1453 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1454 			/*
1455 			 * Set a 5 second timer just in case we don't hear
1456 			 * from the card again.
1457 			 */
1458 			ifp->if_timer = 5;
1459 		}
1460 		txp->tx_cb->tx_threshold = tx_threshold;
1461 
1462 		/*
1463 		 * Advance the end of list forward.
1464 		 */
1465 
1466 #ifdef __alpha__
1467 		/*
1468 		 * On platforms which can't access memory in 16-bit
1469 		 * granularities, we must prevent the card from DMA'ing
1470 		 * up the status while we update the command field.
1471 		 * This could cause us to overwrite the completion status.
1472 		 * XXX This is probably bogus and we're _not_ looking
1473 		 * for atomicity here.
1474 		 */
1475 		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1476 		    htole16(FXP_CB_COMMAND_S));
1477 #else
1478 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1479 		    htole16(~FXP_CB_COMMAND_S);
1480 #endif /*__alpha__*/
1481 		sc->fxp_desc.tx_last = txp;
1482 
1483 		/*
1484 		 * Advance the beginning of the list forward if there are
1485 		 * no other packets queued (when nothing is queued, tx_first
1486 		 * sits on the last TxCB that was sent out).
1487 		 */
1488 		if (sc->tx_queued == 0)
1489 			sc->fxp_desc.tx_first = txp;
1490 
1491 		sc->tx_queued++;
1492 
1493 		/*
1494 		 * Pass packet to bpf if there is a listener.
1495 		 */
1496 		BPF_MTAP(ifp, mb_head);
1497 	}
1498 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1499 
1500 	/*
1501 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1502 	 * going again if suspended.
1503 	 */
1504 	if (txp != NULL) {
1505 		fxp_scb_wait(sc);
1506 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1507 	}
1508 }
1509 
1510 #ifdef DEVICE_POLLING
1511 static poll_handler_t fxp_poll;
1512 
1513 static void
1514 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1515 {
1516 	struct fxp_softc *sc = ifp->if_softc;
1517 	u_int8_t statack;
1518 
1519 	FXP_LOCK(sc);
1520 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1521 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1522 		FXP_UNLOCK(sc);
1523 		return;
1524 	}
1525 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1526 	    FXP_SCB_STATACK_FR;
1527 	if (cmd == POLL_AND_CHECK_STATUS) {
1528 		u_int8_t tmp;
1529 
1530 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1531 		if (tmp == 0xff || tmp == 0) {
1532 			FXP_UNLOCK(sc);
1533 			return; /* nothing to do */
1534 		}
1535 		tmp &= ~statack;
1536 		/* ack what we can */
1537 		if (tmp != 0)
1538 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1539 		statack |= tmp;
1540 	}
1541 	fxp_intr_body(sc, ifp, statack, count);
1542 	FXP_UNLOCK(sc);
1543 }
1544 #endif /* DEVICE_POLLING */
1545 
1546 /*
1547  * Process interface interrupts.
1548  */
1549 static void
1550 fxp_intr(void *xsc)
1551 {
1552 	struct fxp_softc *sc = xsc;
1553 	struct ifnet *ifp = &sc->sc_if;
1554 	u_int8_t statack;
1555 
1556 	FXP_LOCK(sc);
1557 	if (sc->suspended) {
1558 		FXP_UNLOCK(sc);
1559 		return;
1560 	}
1561 
1562 #ifdef DEVICE_POLLING
1563 	if (ifp->if_flags & IFF_POLLING) {
1564 		FXP_UNLOCK(sc);
1565 		return;
1566 	}
1567 	if (ether_poll_register(fxp_poll, ifp)) {
1568 		/* disable interrupts */
1569 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1570 		FXP_UNLOCK(sc);
1571 		fxp_poll(ifp, 0, 1);
1572 		return;
1573 	}
1574 #endif
1575 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1576 		/*
1577 		 * It should not be possible to have all bits set; the
1578 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1579 		 * all bits are set, this may indicate that the card has
1580 		 * been physically ejected, so ignore it.
1581 		 */
1582 		if (statack == 0xff) {
1583 			FXP_UNLOCK(sc);
1584 			return;
1585 		}
1586 
1587 		/*
1588 		 * First ACK all the interrupts in this pass.
1589 		 */
1590 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1591 		fxp_intr_body(sc, ifp, statack, -1);
1592 	}
1593 	FXP_UNLOCK(sc);
1594 }
1595 
1596 static void
1597 fxp_txeof(struct fxp_softc *sc)
1598 {
1599 	struct fxp_tx *txp;
1600 
1601 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1602 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1603 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1604 	    txp = txp->tx_next) {
1605 		if (txp->tx_mbuf != NULL) {
1606 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1607 			    BUS_DMASYNC_POSTWRITE);
1608 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1609 			m_freem(txp->tx_mbuf);
1610 			txp->tx_mbuf = NULL;
1611 			/* clear this to reset csum offload bits */
1612 			txp->tx_cb->tbd[0].tb_addr = 0;
1613 		}
1614 		sc->tx_queued--;
1615 	}
1616 	sc->fxp_desc.tx_first = txp;
1617 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1618 }
1619 
1620 static void
1621 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1622     int count)
1623 {
1624 	struct mbuf *m;
1625 	struct fxp_rx *rxp;
1626 	struct fxp_rfa *rfa;
1627 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1628 
1629 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1630 	if (rnr)
1631 		fxp_rnr++;
1632 #ifdef DEVICE_POLLING
1633 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1634 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1635 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1636 		rnr = 1;
1637 	}
1638 #endif
1639 
1640 	/*
1641 	 * Free any finished transmit mbuf chains.
1642 	 *
1643 	 * Handle the CNA event likt a CXTNO event. It used to
1644 	 * be that this event (control unit not ready) was not
1645 	 * encountered, but it is now with the SMPng modifications.
1646 	 * The exact sequence of events that occur when the interface
1647 	 * is brought up are different now, and if this event
1648 	 * goes unhandled, the configuration/rxfilter setup sequence
1649 	 * can stall for several seconds. The result is that no
1650 	 * packets go out onto the wire for about 5 to 10 seconds
1651 	 * after the interface is ifconfig'ed for the first time.
1652 	 */
1653 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1654 		fxp_txeof(sc);
1655 
1656 		ifp->if_timer = 0;
1657 		if (sc->tx_queued == 0) {
1658 			if (sc->need_mcsetup)
1659 				fxp_mc_setup(sc);
1660 		}
1661 		/*
1662 		 * Try to start more packets transmitting.
1663 		 */
1664 		if (ifp->if_snd.ifq_head != NULL)
1665 			fxp_start_body(ifp);
1666 	}
1667 
1668 	/*
1669 	 * Just return if nothing happened on the receive side.
1670 	 */
1671 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1672 		return;
1673 
1674 	/*
1675 	 * Process receiver interrupts. If a no-resource (RNR)
1676 	 * condition exists, get whatever packets we can and
1677 	 * re-start the receiver.
1678 	 *
1679 	 * When using polling, we do not process the list to completion,
1680 	 * so when we get an RNR interrupt we must defer the restart
1681 	 * until we hit the last buffer with the C bit set.
1682 	 * If we run out of cycles and rfa_headm has the C bit set,
1683 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1684 	 * that the info will be used in the subsequent polling cycle.
1685 	 */
1686 	for (;;) {
1687 		rxp = sc->fxp_desc.rx_head;
1688 		m = rxp->rx_mbuf;
1689 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1690 		    RFA_ALIGNMENT_FUDGE);
1691 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1692 		    BUS_DMASYNC_POSTREAD);
1693 
1694 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1695 		if (count >= 0 && count-- == 0) {
1696 			if (rnr) {
1697 				/* Defer RNR processing until the next time. */
1698 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1699 				rnr = 0;
1700 			}
1701 			break;
1702 		}
1703 #endif /* DEVICE_POLLING */
1704 
1705 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1706 			break;
1707 
1708 		/*
1709 		 * Advance head forward.
1710 		 */
1711 		sc->fxp_desc.rx_head = rxp->rx_next;
1712 
1713 		/*
1714 		 * Add a new buffer to the receive chain.
1715 		 * If this fails, the old buffer is recycled
1716 		 * instead.
1717 		 */
1718 		if (fxp_add_rfabuf(sc, rxp) == 0) {
1719 			int total_len;
1720 
1721 			/*
1722 			 * Fetch packet length (the top 2 bits of
1723 			 * actual_size are flags set by the controller
1724 			 * upon completion), and drop the packet in case
1725 			 * of bogus length or CRC errors.
1726 			 */
1727 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1728 			if (total_len < sizeof(struct ether_header) ||
1729 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1730 				sc->rfa_size ||
1731 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1732 				m_freem(m);
1733 				continue;
1734 			}
1735 
1736                         /* Do IP checksum checking. */
1737 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1738 				if (rfa->rfax_csum_sts &
1739 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1740 					m->m_pkthdr.csum_flags |=
1741 					    CSUM_IP_CHECKED;
1742 				if (rfa->rfax_csum_sts &
1743 				    FXP_RFDX_CS_IP_CSUM_VALID)
1744 					m->m_pkthdr.csum_flags |=
1745 					    CSUM_IP_VALID;
1746 				if ((rfa->rfax_csum_sts &
1747 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1748 				    (rfa->rfax_csum_sts &
1749 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1750 					m->m_pkthdr.csum_flags |=
1751 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1752 					m->m_pkthdr.csum_data = 0xffff;
1753 				}
1754 			}
1755 
1756 			m->m_pkthdr.len = m->m_len = total_len;
1757 			m->m_pkthdr.rcvif = ifp;
1758 
1759 			/*
1760 			 * Drop locks before calling if_input() since it
1761 			 * may re-enter fxp_start() in the netisr case.
1762 			 * This would result in a lock reversal.  Better
1763 			 * performance might be obtained by chaining all
1764 			 * packets received, dropping the lock, and then
1765 			 * calling if_input() on each one.
1766 			 */
1767 			FXP_UNLOCK(sc);
1768 			(*ifp->if_input)(ifp, m);
1769 			FXP_LOCK(sc);
1770 		}
1771 	}
1772 	if (rnr) {
1773 		fxp_scb_wait(sc);
1774 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1775 		    sc->fxp_desc.rx_head->rx_addr);
1776 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1777 	}
1778 }
1779 
1780 /*
1781  * Update packet in/out/collision statistics. The i82557 doesn't
1782  * allow you to access these counters without doing a fairly
1783  * expensive DMA to get _all_ of the statistics it maintains, so
1784  * we do this operation here only once per second. The statistics
1785  * counters in the kernel are updated from the previous dump-stats
1786  * DMA and then a new dump-stats DMA is started. The on-chip
1787  * counters are zeroed when the DMA completes. If we can't start
1788  * the DMA immediately, we don't wait - we just prepare to read
1789  * them again next time.
1790  */
1791 static void
1792 fxp_tick(void *xsc)
1793 {
1794 	struct fxp_softc *sc = xsc;
1795 	struct ifnet *ifp = &sc->sc_if;
1796 	struct fxp_stats *sp = sc->fxp_stats;
1797 	int s;
1798 
1799 	FXP_LOCK(sc);
1800 	s = splimp();
1801 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1802 	ifp->if_opackets += le32toh(sp->tx_good);
1803 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1804 	if (sp->rx_good) {
1805 		ifp->if_ipackets += le32toh(sp->rx_good);
1806 		sc->rx_idle_secs = 0;
1807 	} else {
1808 		/*
1809 		 * Receiver's been idle for another second.
1810 		 */
1811 		sc->rx_idle_secs++;
1812 	}
1813 	ifp->if_ierrors +=
1814 	    le32toh(sp->rx_crc_errors) +
1815 	    le32toh(sp->rx_alignment_errors) +
1816 	    le32toh(sp->rx_rnr_errors) +
1817 	    le32toh(sp->rx_overrun_errors);
1818 	/*
1819 	 * If any transmit underruns occured, bump up the transmit
1820 	 * threshold by another 512 bytes (64 * 8).
1821 	 */
1822 	if (sp->tx_underruns) {
1823 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1824 		if (tx_threshold < 192)
1825 			tx_threshold += 64;
1826 	}
1827 
1828 	/*
1829 	 * Release any xmit buffers that have completed DMA. This isn't
1830 	 * strictly necessary to do here, but it's advantagous for mbufs
1831 	 * with external storage to be released in a timely manner rather
1832 	 * than being defered for a potentially long time. This limits
1833 	 * the delay to a maximum of one second.
1834 	 */
1835 	fxp_txeof(sc);
1836 
1837 	/*
1838 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1839 	 * then assume the receiver has locked up and attempt to clear
1840 	 * the condition by reprogramming the multicast filter. This is
1841 	 * a work-around for a bug in the 82557 where the receiver locks
1842 	 * up if it gets certain types of garbage in the syncronization
1843 	 * bits prior to the packet header. This bug is supposed to only
1844 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1845 	 * mode as well (perhaps due to a 10/100 speed transition).
1846 	 */
1847 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1848 		sc->rx_idle_secs = 0;
1849 		fxp_mc_setup(sc);
1850 	}
1851 	/*
1852 	 * If there is no pending command, start another stats
1853 	 * dump. Otherwise punt for now.
1854 	 */
1855 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1856 		/*
1857 		 * Start another stats dump.
1858 		 */
1859 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1860 		    BUS_DMASYNC_PREREAD);
1861 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1862 	} else {
1863 		/*
1864 		 * A previous command is still waiting to be accepted.
1865 		 * Just zero our copy of the stats and wait for the
1866 		 * next timer event to update them.
1867 		 */
1868 		sp->tx_good = 0;
1869 		sp->tx_underruns = 0;
1870 		sp->tx_total_collisions = 0;
1871 
1872 		sp->rx_good = 0;
1873 		sp->rx_crc_errors = 0;
1874 		sp->rx_alignment_errors = 0;
1875 		sp->rx_rnr_errors = 0;
1876 		sp->rx_overrun_errors = 0;
1877 	}
1878 	if (sc->miibus != NULL)
1879 		mii_tick(device_get_softc(sc->miibus));
1880 
1881 	/*
1882 	 * Schedule another timeout one second from now.
1883 	 */
1884 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1885 	FXP_UNLOCK(sc);
1886 	splx(s);
1887 }
1888 
1889 /*
1890  * Stop the interface. Cancels the statistics updater and resets
1891  * the interface.
1892  */
1893 static void
1894 fxp_stop(struct fxp_softc *sc)
1895 {
1896 	struct ifnet *ifp = &sc->sc_if;
1897 	struct fxp_tx *txp;
1898 	int i;
1899 
1900 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1901 	ifp->if_timer = 0;
1902 
1903 #ifdef DEVICE_POLLING
1904 	ether_poll_deregister(ifp);
1905 #endif
1906 	/*
1907 	 * Cancel stats updater.
1908 	 */
1909 	callout_stop(&sc->stat_ch);
1910 
1911 	/*
1912 	 * Issue software reset, which also unloads the microcode.
1913 	 */
1914 	sc->flags &= ~FXP_FLAG_UCODE;
1915 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1916 	DELAY(50);
1917 
1918 	/*
1919 	 * Release any xmit buffers.
1920 	 */
1921 	txp = sc->fxp_desc.tx_list;
1922 	if (txp != NULL) {
1923 		for (i = 0; i < FXP_NTXCB; i++) {
1924  			if (txp[i].tx_mbuf != NULL) {
1925 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1926 				    BUS_DMASYNC_POSTWRITE);
1927 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1928 				m_freem(txp[i].tx_mbuf);
1929 				txp[i].tx_mbuf = NULL;
1930 				/* clear this to reset csum offload bits */
1931 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1932 			}
1933 		}
1934 	}
1935 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1936 	sc->tx_queued = 0;
1937 }
1938 
1939 /*
1940  * Watchdog/transmission transmit timeout handler. Called when a
1941  * transmission is started on the interface, but no interrupt is
1942  * received before the timeout. This usually indicates that the
1943  * card has wedged for some reason.
1944  */
1945 static void
1946 fxp_watchdog(struct ifnet *ifp)
1947 {
1948 	struct fxp_softc *sc = ifp->if_softc;
1949 
1950 	FXP_LOCK(sc);
1951 	device_printf(sc->dev, "device timeout\n");
1952 	ifp->if_oerrors++;
1953 
1954 	fxp_init_body(sc);
1955 	FXP_UNLOCK(sc);
1956 }
1957 
1958 /*
1959  * Acquire locks and then call the real initialization function.  This
1960  * is necessary because ether_ioctl() calls if_init() and this would
1961  * result in mutex recursion if the mutex was held.
1962  */
1963 static void
1964 fxp_init(void *xsc)
1965 {
1966 	struct fxp_softc *sc = xsc;
1967 
1968 	FXP_LOCK(sc);
1969 	fxp_init_body(sc);
1970 	FXP_UNLOCK(sc);
1971 }
1972 
1973 /*
1974  * Perform device initialization. This routine must be called with the
1975  * softc lock held.
1976  */
1977 static void
1978 fxp_init_body(struct fxp_softc *sc)
1979 {
1980 	struct ifnet *ifp = &sc->sc_if;
1981 	struct fxp_cb_config *cbp;
1982 	struct fxp_cb_ias *cb_ias;
1983 	struct fxp_cb_tx *tcbp;
1984 	struct fxp_tx *txp;
1985 	struct fxp_cb_mcs *mcsp;
1986 	int i, prm, s;
1987 
1988 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1989 	s = splimp();
1990 	/*
1991 	 * Cancel any pending I/O
1992 	 */
1993 	fxp_stop(sc);
1994 
1995 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1996 
1997 	/*
1998 	 * Initialize base of CBL and RFA memory. Loading with zero
1999 	 * sets it up for regular linear addressing.
2000 	 */
2001 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2002 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2003 
2004 	fxp_scb_wait(sc);
2005 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2006 
2007 	/*
2008 	 * Initialize base of dump-stats buffer.
2009 	 */
2010 	fxp_scb_wait(sc);
2011 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
2012 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2013 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2014 
2015 	/*
2016 	 * Attempt to load microcode if requested.
2017 	 */
2018 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
2019 		fxp_load_ucode(sc);
2020 
2021 	/*
2022 	 * Initialize the multicast address list.
2023 	 */
2024 	if (fxp_mc_addrs(sc)) {
2025 		mcsp = sc->mcsp;
2026 		mcsp->cb_status = 0;
2027 		mcsp->cb_command =
2028 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2029 		mcsp->link_addr = 0xffffffff;
2030 		/*
2031 	 	 * Start the multicast setup command.
2032 		 */
2033 		fxp_scb_wait(sc);
2034 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2035 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2036 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2037 		/* ...and wait for it to complete. */
2038 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2039 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2040 		    BUS_DMASYNC_POSTWRITE);
2041 	}
2042 
2043 	/*
2044 	 * We temporarily use memory that contains the TxCB list to
2045 	 * construct the config CB. The TxCB list memory is rebuilt
2046 	 * later.
2047 	 */
2048 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2049 
2050 	/*
2051 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2052 	 * zero and must be one bits in this structure and this is the easiest
2053 	 * way to initialize them all to proper values.
2054 	 */
2055 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2056 
2057 	cbp->cb_status =	0;
2058 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2059 	    FXP_CB_COMMAND_EL);
2060 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2061 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2062 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2063 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2064 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2065 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2066 	cbp->type_enable =	0;	/* actually reserved */
2067 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2068 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2069 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2070 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2071 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2072 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2073 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2074 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2075 	cbp->ci_int =		1;	/* interrupt on CU idle */
2076 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2077 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2078 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2079 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
2080 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2081 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2082 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2083 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2084 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2085 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2086 	cbp->csma_dis =		0;	/* (don't) disable link */
2087 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2088 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2089 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2090 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2091 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2092 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2093 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2094 	cbp->loopback =		0;	/* (don't) loopback */
2095 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2096 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2097 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2098 	cbp->promiscuous =	prm;	/* promiscuous mode */
2099 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2100 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2101 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2102 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2103 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2104 
2105 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2106 	cbp->padding =		1;	/* (do) pad short tx packets */
2107 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2108 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2109 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2110 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2111 					/* must set wake_en in PMCSR also */
2112 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2113 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2114 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2115 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2116 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2117 
2118 	if (fxp_noflow || sc->revision == FXP_REV_82557) {
2119 		/*
2120 		 * The 82557 has no hardware flow control, the values
2121 		 * below are the defaults for the chip.
2122 		 */
2123 		cbp->fc_delay_lsb =	0;
2124 		cbp->fc_delay_msb =	0x40;
2125 		cbp->pri_fc_thresh =	3;
2126 		cbp->tx_fc_dis =	0;
2127 		cbp->rx_fc_restop =	0;
2128 		cbp->rx_fc_restart =	0;
2129 		cbp->fc_filter =	0;
2130 		cbp->pri_fc_loc =	1;
2131 	} else {
2132 		cbp->fc_delay_lsb =	0x1f;
2133 		cbp->fc_delay_msb =	0x01;
2134 		cbp->pri_fc_thresh =	3;
2135 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2136 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2137 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2138 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2139 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2140 	}
2141 
2142 	/*
2143 	 * Start the config command/DMA.
2144 	 */
2145 	fxp_scb_wait(sc);
2146 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2147 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2148 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2149 	/* ...and wait for it to complete. */
2150 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2151 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2152 
2153 	/*
2154 	 * Now initialize the station address. Temporarily use the TxCB
2155 	 * memory area like we did above for the config CB.
2156 	 */
2157 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2158 	cb_ias->cb_status = 0;
2159 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2160 	cb_ias->link_addr = 0xffffffff;
2161 	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2162 	    sizeof(sc->arpcom.ac_enaddr));
2163 
2164 	/*
2165 	 * Start the IAS (Individual Address Setup) command/DMA.
2166 	 */
2167 	fxp_scb_wait(sc);
2168 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2169 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2170 	/* ...and wait for it to complete. */
2171 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2172 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2173 
2174 	/*
2175 	 * Initialize transmit control block (TxCB) list.
2176 	 */
2177 	txp = sc->fxp_desc.tx_list;
2178 	tcbp = sc->fxp_desc.cbl_list;
2179 	bzero(tcbp, FXP_TXCB_SZ);
2180 	for (i = 0; i < FXP_NTXCB; i++) {
2181 		txp[i].tx_cb = tcbp + i;
2182 		txp[i].tx_mbuf = NULL;
2183 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2184 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2185 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2186 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2187 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2188 			tcbp[i].tbd_array_addr =
2189 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2190 		else
2191 			tcbp[i].tbd_array_addr =
2192 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2193 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2194 	}
2195 	/*
2196 	 * Set the suspend flag on the first TxCB and start the control
2197 	 * unit. It will execute the NOP and then suspend.
2198 	 */
2199 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2200 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2201 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2202 	sc->tx_queued = 1;
2203 
2204 	fxp_scb_wait(sc);
2205 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2206 
2207 	/*
2208 	 * Initialize receiver buffer area - RFA.
2209 	 */
2210 	fxp_scb_wait(sc);
2211 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2212 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2213 
2214 	/*
2215 	 * Set current media.
2216 	 */
2217 	if (sc->miibus != NULL)
2218 		mii_mediachg(device_get_softc(sc->miibus));
2219 
2220 	ifp->if_flags |= IFF_RUNNING;
2221 	ifp->if_flags &= ~IFF_OACTIVE;
2222 
2223 	/*
2224 	 * Enable interrupts.
2225 	 */
2226 #ifdef DEVICE_POLLING
2227 	/*
2228 	 * ... but only do that if we are not polling. And because (presumably)
2229 	 * the default is interrupts on, we need to disable them explicitly!
2230 	 */
2231 	if ( ifp->if_flags & IFF_POLLING )
2232 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2233 	else
2234 #endif /* DEVICE_POLLING */
2235 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2236 
2237 	/*
2238 	 * Start stats updater.
2239 	 */
2240 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2241 	splx(s);
2242 }
2243 
2244 static int
2245 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2246 {
2247 
2248 	return (0);
2249 }
2250 
2251 static void
2252 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2253 {
2254 
2255 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2256 }
2257 
2258 /*
2259  * Change media according to request.
2260  */
2261 static int
2262 fxp_ifmedia_upd(struct ifnet *ifp)
2263 {
2264 	struct fxp_softc *sc = ifp->if_softc;
2265 	struct mii_data *mii;
2266 
2267 	mii = device_get_softc(sc->miibus);
2268 	mii_mediachg(mii);
2269 	return (0);
2270 }
2271 
2272 /*
2273  * Notify the world which media we're using.
2274  */
2275 static void
2276 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2277 {
2278 	struct fxp_softc *sc = ifp->if_softc;
2279 	struct mii_data *mii;
2280 
2281 	mii = device_get_softc(sc->miibus);
2282 	mii_pollstat(mii);
2283 	ifmr->ifm_active = mii->mii_media_active;
2284 	ifmr->ifm_status = mii->mii_media_status;
2285 
2286 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2287 		sc->cu_resume_bug = 1;
2288 	else
2289 		sc->cu_resume_bug = 0;
2290 }
2291 
2292 /*
2293  * Add a buffer to the end of the RFA buffer list.
2294  * Return 0 if successful, 1 for failure. A failure results in
2295  * adding the 'oldm' (if non-NULL) on to the end of the list -
2296  * tossing out its old contents and recycling it.
2297  * The RFA struct is stuck at the beginning of mbuf cluster and the
2298  * data pointer is fixed up to point just past it.
2299  */
2300 static int
2301 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2302 {
2303 	struct mbuf *m;
2304 	struct fxp_rfa *rfa, *p_rfa;
2305 	struct fxp_rx *p_rx;
2306 	bus_dmamap_t tmp_map;
2307 	int error;
2308 
2309 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2310 	if (m == NULL)
2311 		return (ENOBUFS);
2312 
2313 	/*
2314 	 * Move the data pointer up so that the incoming data packet
2315 	 * will be 32-bit aligned.
2316 	 */
2317 	m->m_data += RFA_ALIGNMENT_FUDGE;
2318 
2319 	/*
2320 	 * Get a pointer to the base of the mbuf cluster and move
2321 	 * data start past it.
2322 	 */
2323 	rfa = mtod(m, struct fxp_rfa *);
2324 	m->m_data += sc->rfa_size;
2325 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2326 
2327 	rfa->rfa_status = 0;
2328 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2329 	rfa->actual_size = 0;
2330 
2331 	/*
2332 	 * Initialize the rest of the RFA.  Note that since the RFA
2333 	 * is misaligned, we cannot store values directly.  We're thus
2334 	 * using the le32enc() function which handles endianness and
2335 	 * is also alignment-safe.
2336 	 */
2337 	le32enc(&rfa->link_addr, 0xffffffff);
2338 	le32enc(&rfa->rbd_addr, 0xffffffff);
2339 
2340 	/* Map the RFA into DMA memory. */
2341 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2342 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2343 	    &rxp->rx_addr, 0);
2344 	if (error) {
2345 		m_freem(m);
2346 		return (error);
2347 	}
2348 
2349 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2350 	tmp_map = sc->spare_map;
2351 	sc->spare_map = rxp->rx_map;
2352 	rxp->rx_map = tmp_map;
2353 	rxp->rx_mbuf = m;
2354 
2355 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2356 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2357 
2358 	/*
2359 	 * If there are other buffers already on the list, attach this
2360 	 * one to the end by fixing up the tail to point to this one.
2361 	 */
2362 	if (sc->fxp_desc.rx_head != NULL) {
2363 		p_rx = sc->fxp_desc.rx_tail;
2364 		p_rfa = (struct fxp_rfa *)
2365 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2366 		p_rx->rx_next = rxp;
2367 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2368 		p_rfa->rfa_control = 0;
2369 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2370 		    BUS_DMASYNC_PREWRITE);
2371 	} else {
2372 		rxp->rx_next = NULL;
2373 		sc->fxp_desc.rx_head = rxp;
2374 	}
2375 	sc->fxp_desc.rx_tail = rxp;
2376 	return (0);
2377 }
2378 
2379 static volatile int
2380 fxp_miibus_readreg(device_t dev, int phy, int reg)
2381 {
2382 	struct fxp_softc *sc = device_get_softc(dev);
2383 	int count = 10000;
2384 	int value;
2385 
2386 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2387 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2388 
2389 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2390 	    && count--)
2391 		DELAY(10);
2392 
2393 	if (count <= 0)
2394 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2395 
2396 	return (value & 0xffff);
2397 }
2398 
2399 static void
2400 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2401 {
2402 	struct fxp_softc *sc = device_get_softc(dev);
2403 	int count = 10000;
2404 
2405 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2406 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2407 	    (value & 0xffff));
2408 
2409 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2410 	    count--)
2411 		DELAY(10);
2412 
2413 	if (count <= 0)
2414 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2415 }
2416 
2417 static int
2418 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2419 {
2420 	struct fxp_softc *sc = ifp->if_softc;
2421 	struct ifreq *ifr = (struct ifreq *)data;
2422 	struct mii_data *mii;
2423 	int s, error = 0;
2424 
2425 	/*
2426 	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2427 	 * that by saying we're busy if the lock is already held.
2428 	 */
2429 	if (mtx_owned(&sc->sc_mtx))
2430 		return (EBUSY);
2431 
2432 	FXP_LOCK(sc);
2433 	s = splimp();
2434 
2435 	switch (command) {
2436 	case SIOCSIFFLAGS:
2437 		if (ifp->if_flags & IFF_ALLMULTI)
2438 			sc->flags |= FXP_FLAG_ALL_MCAST;
2439 		else
2440 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2441 
2442 		/*
2443 		 * If interface is marked up and not running, then start it.
2444 		 * If it is marked down and running, stop it.
2445 		 * XXX If it's up then re-initialize it. This is so flags
2446 		 * such as IFF_PROMISC are handled.
2447 		 */
2448 		if (ifp->if_flags & IFF_UP) {
2449 			fxp_init_body(sc);
2450 		} else {
2451 			if (ifp->if_flags & IFF_RUNNING)
2452 				fxp_stop(sc);
2453 		}
2454 		break;
2455 
2456 	case SIOCADDMULTI:
2457 	case SIOCDELMULTI:
2458 		if (ifp->if_flags & IFF_ALLMULTI)
2459 			sc->flags |= FXP_FLAG_ALL_MCAST;
2460 		else
2461 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2462 		/*
2463 		 * Multicast list has changed; set the hardware filter
2464 		 * accordingly.
2465 		 */
2466 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2467 			fxp_mc_setup(sc);
2468 		/*
2469 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2470 		 * again rather than else {}.
2471 		 */
2472 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2473 			fxp_init_body(sc);
2474 		error = 0;
2475 		break;
2476 
2477 	case SIOCSIFMEDIA:
2478 	case SIOCGIFMEDIA:
2479 		if (sc->miibus != NULL) {
2480 			mii = device_get_softc(sc->miibus);
2481                         error = ifmedia_ioctl(ifp, ifr,
2482                             &mii->mii_media, command);
2483 		} else {
2484                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2485 		}
2486 		break;
2487 
2488 	default:
2489 		/*
2490 		 * ether_ioctl() will eventually call fxp_start() which
2491 		 * will result in mutex recursion so drop it first.
2492 		 */
2493 		FXP_UNLOCK(sc);
2494 		error = ether_ioctl(ifp, command, data);
2495 	}
2496 	if (mtx_owned(&sc->sc_mtx))
2497 		FXP_UNLOCK(sc);
2498 	splx(s);
2499 	return (error);
2500 }
2501 
2502 /*
2503  * Fill in the multicast address list and return number of entries.
2504  */
2505 static int
2506 fxp_mc_addrs(struct fxp_softc *sc)
2507 {
2508 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2509 	struct ifnet *ifp = &sc->sc_if;
2510 	struct ifmultiaddr *ifma;
2511 	int nmcasts;
2512 
2513 	nmcasts = 0;
2514 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2515 #if __FreeBSD_version < 500000
2516 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2517 #else
2518 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2519 #endif
2520 			if (ifma->ifma_addr->sa_family != AF_LINK)
2521 				continue;
2522 			if (nmcasts >= MAXMCADDR) {
2523 				sc->flags |= FXP_FLAG_ALL_MCAST;
2524 				nmcasts = 0;
2525 				break;
2526 			}
2527 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2528 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2529 			nmcasts++;
2530 		}
2531 	}
2532 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2533 	return (nmcasts);
2534 }
2535 
2536 /*
2537  * Program the multicast filter.
2538  *
2539  * We have an artificial restriction that the multicast setup command
2540  * must be the first command in the chain, so we take steps to ensure
2541  * this. By requiring this, it allows us to keep up the performance of
2542  * the pre-initialized command ring (esp. link pointers) by not actually
2543  * inserting the mcsetup command in the ring - i.e. its link pointer
2544  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2545  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2546  * lead into the regular TxCB ring when it completes.
2547  *
2548  * This function must be called at splimp.
2549  */
2550 static void
2551 fxp_mc_setup(struct fxp_softc *sc)
2552 {
2553 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2554 	struct ifnet *ifp = &sc->sc_if;
2555 	struct fxp_tx *txp;
2556 	int count;
2557 
2558 	/*
2559 	 * If there are queued commands, we must wait until they are all
2560 	 * completed. If we are already waiting, then add a NOP command
2561 	 * with interrupt option so that we're notified when all commands
2562 	 * have been completed - fxp_start() ensures that no additional
2563 	 * TX commands will be added when need_mcsetup is true.
2564 	 */
2565 	if (sc->tx_queued) {
2566 		/*
2567 		 * need_mcsetup will be true if we are already waiting for the
2568 		 * NOP command to be completed (see below). In this case, bail.
2569 		 */
2570 		if (sc->need_mcsetup)
2571 			return;
2572 		sc->need_mcsetup = 1;
2573 
2574 		/*
2575 		 * Add a NOP command with interrupt so that we are notified
2576 		 * when all TX commands have been processed.
2577 		 */
2578 		txp = sc->fxp_desc.tx_last->tx_next;
2579 		txp->tx_mbuf = NULL;
2580 		txp->tx_cb->cb_status = 0;
2581 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2582 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2583 		/*
2584 		 * Advance the end of list forward.
2585 		 */
2586 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2587 		    htole16(~FXP_CB_COMMAND_S);
2588 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2589 		sc->fxp_desc.tx_last = txp;
2590 		sc->tx_queued++;
2591 		/*
2592 		 * Issue a resume in case the CU has just suspended.
2593 		 */
2594 		fxp_scb_wait(sc);
2595 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2596 		/*
2597 		 * Set a 5 second timer just in case we don't hear from the
2598 		 * card again.
2599 		 */
2600 		ifp->if_timer = 5;
2601 
2602 		return;
2603 	}
2604 	sc->need_mcsetup = 0;
2605 
2606 	/*
2607 	 * Initialize multicast setup descriptor.
2608 	 */
2609 	mcsp->cb_status = 0;
2610 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2611 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2612 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2613 	txp = &sc->fxp_desc.mcs_tx;
2614 	txp->tx_mbuf = NULL;
2615 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2616 	txp->tx_next = sc->fxp_desc.tx_list;
2617 	(void) fxp_mc_addrs(sc);
2618 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2619 	sc->tx_queued = 1;
2620 
2621 	/*
2622 	 * Wait until command unit is not active. This should never
2623 	 * be the case when nothing is queued, but make sure anyway.
2624 	 */
2625 	count = 100;
2626 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2627 	    FXP_SCB_CUS_ACTIVE && --count)
2628 		DELAY(10);
2629 	if (count == 0) {
2630 		device_printf(sc->dev, "command queue timeout\n");
2631 		return;
2632 	}
2633 
2634 	/*
2635 	 * Start the multicast setup command.
2636 	 */
2637 	fxp_scb_wait(sc);
2638 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2639 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2640 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2641 
2642 	ifp->if_timer = 2;
2643 	return;
2644 }
2645 
2646 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2647 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2648 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2649 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2650 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2651 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2652 
2653 #define UCODE(x)	x, sizeof(x)
2654 
2655 struct ucode {
2656 	u_int32_t	revision;
2657 	u_int32_t	*ucode;
2658 	int		length;
2659 	u_short		int_delay_offset;
2660 	u_short		bundle_max_offset;
2661 } ucode_table[] = {
2662 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2663 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2664 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2665 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2666 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2667 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2668 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2669 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2670 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2671 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2672 	{ 0, NULL, 0, 0, 0 }
2673 };
2674 
2675 static void
2676 fxp_load_ucode(struct fxp_softc *sc)
2677 {
2678 	struct ucode *uc;
2679 	struct fxp_cb_ucode *cbp;
2680 
2681 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2682 		if (sc->revision == uc->revision)
2683 			break;
2684 	if (uc->ucode == NULL)
2685 		return;
2686 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2687 	cbp->cb_status = 0;
2688 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2689 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2690 	memcpy(cbp->ucode, uc->ucode, uc->length);
2691 	if (uc->int_delay_offset)
2692 		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2693 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2694 	if (uc->bundle_max_offset)
2695 		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2696 		    htole16(sc->tunable_bundle_max);
2697 	/*
2698 	 * Download the ucode to the chip.
2699 	 */
2700 	fxp_scb_wait(sc);
2701 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2702 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2703 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2704 	/* ...and wait for it to complete. */
2705 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2706 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2707 	device_printf(sc->dev,
2708 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2709 	    sc->tunable_int_delay,
2710 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2711 	sc->flags |= FXP_FLAG_UCODE;
2712 }
2713 
2714 static int
2715 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2716 {
2717 	int error, value;
2718 
2719 	value = *(int *)arg1;
2720 	error = sysctl_handle_int(oidp, &value, 0, req);
2721 	if (error || !req->newptr)
2722 		return (error);
2723 	if (value < low || value > high)
2724 		return (EINVAL);
2725 	*(int *)arg1 = value;
2726 	return (0);
2727 }
2728 
2729 /*
2730  * Interrupt delay is expressed in microseconds, a multiplier is used
2731  * to convert this to the appropriate clock ticks before using.
2732  */
2733 static int
2734 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2735 {
2736 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2737 }
2738 
2739 static int
2740 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2741 {
2742 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2743 }
2744