xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/endian.h>
43 #include <sys/mbuf.h>
44 		/* #include <sys/mutex.h> */
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/sysctl.h>
48 
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 
53 #include <net/bpf.h>
54 #include <sys/sockio.h>
55 #include <sys/bus.h>
56 #include <machine/bus.h>
57 #include <sys/rman.h>
58 #include <machine/resource.h>
59 
60 #include <net/ethernet.h>
61 #include <net/if_arp.h>
62 
63 #include <machine/clock.h>	/* for DELAY */
64 
65 #include <net/if_types.h>
66 #include <net/if_vlan_var.h>
67 
68 #ifdef FXP_IP_CSUM_WAR
69 #include <netinet/in.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/ip.h>
72 #include <machine/in_cksum.h>
73 #endif
74 
75 #include <dev/pci/pcivar.h>
76 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
77 
78 #include <dev/mii/mii.h>
79 #include <dev/mii/miivar.h>
80 
81 #include <dev/fxp/if_fxpreg.h>
82 #include <dev/fxp/if_fxpvar.h>
83 #include <dev/fxp/rcvbundl.h>
84 
85 MODULE_DEPEND(fxp, pci, 1, 1, 1);
86 MODULE_DEPEND(fxp, ether, 1, 1, 1);
87 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
88 #include "miibus_if.h"
89 
90 /*
91  * NOTE!  On the Alpha, we have an alignment constraint.  The
92  * card DMAs the packet immediately following the RFA.  However,
93  * the first thing in the packet is a 14-byte Ethernet header.
94  * This means that the packet is misaligned.  To compensate,
95  * we actually offset the RFA 2 bytes into the cluster.  This
96  * alignes the packet after the Ethernet header at a 32-bit
97  * boundary.  HOWEVER!  This means that the RFA is misaligned!
98  */
99 #define	RFA_ALIGNMENT_FUDGE	2
100 
101 /*
102  * Set initial transmit threshold at 64 (512 bytes). This is
103  * increased by 64 (512 bytes) at a time, to maximum of 192
104  * (1536 bytes), if an underrun occurs.
105  */
106 static int tx_threshold = 64;
107 
108 /*
109  * The configuration byte map has several undefined fields which
110  * must be one or must be zero.  Set up a template for these bits
111  * only, (assuming a 82557 chip) leaving the actual configuration
112  * to fxp_init.
113  *
114  * See struct fxp_cb_config for the bit definitions.
115  */
116 static u_char fxp_cb_config_template[] = {
117 	0x0, 0x0,		/* cb_status */
118 	0x0, 0x0,		/* cb_command */
119 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
120 	0x0,	/*  0 */
121 	0x0,	/*  1 */
122 	0x0,	/*  2 */
123 	0x0,	/*  3 */
124 	0x0,	/*  4 */
125 	0x0,	/*  5 */
126 	0x32,	/*  6 */
127 	0x0,	/*  7 */
128 	0x0,	/*  8 */
129 	0x0,	/*  9 */
130 	0x6,	/* 10 */
131 	0x0,	/* 11 */
132 	0x0,	/* 12 */
133 	0x0,	/* 13 */
134 	0xf2,	/* 14 */
135 	0x48,	/* 15 */
136 	0x0,	/* 16 */
137 	0x40,	/* 17 */
138 	0xf0,	/* 18 */
139 	0x0,	/* 19 */
140 	0x3f,	/* 20 */
141 	0x5	/* 21 */
142 };
143 
144 struct fxp_ident {
145 	u_int16_t	devid;
146 	int16_t		revid;		/* -1 matches anything */
147 	char 		*name;
148 };
149 
150 /*
151  * Claim various Intel PCI device identifiers for this driver.  The
152  * sub-vendor and sub-device field are extensively used to identify
153  * particular variants, but we don't currently differentiate between
154  * them.
155  */
156 static struct fxp_ident fxp_ident_table[] = {
157     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
158     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
159     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
160     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
161     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
162     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
163     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
165     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
167     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
168     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
170     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
171     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
172     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
173     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
174     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
175     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
176     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
177     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
178     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
179     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
180     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
181     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
182     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
183     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
184     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
185     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
186     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
187     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
188     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
189     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
190     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
191     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
192     { 0,	-1,	NULL },
193 };
194 
195 #ifdef FXP_IP_CSUM_WAR
196 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
197 #else
198 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
199 #endif
200 
201 static int		fxp_probe(device_t dev);
202 static int		fxp_attach(device_t dev);
203 static int		fxp_detach(device_t dev);
204 static int		fxp_shutdown(device_t dev);
205 static int		fxp_suspend(device_t dev);
206 static int		fxp_resume(device_t dev);
207 
208 static void		fxp_intr(void *xsc);
209 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
210 			    u_int8_t statack, int count);
211 static void 		fxp_init(void *xsc);
212 static void 		fxp_init_body(struct fxp_softc *sc);
213 static void 		fxp_tick(void *xsc);
214 #ifndef BURN_BRIDGES
215 static void		fxp_powerstate_d0(device_t dev);
216 #endif
217 static void 		fxp_start(struct ifnet *ifp);
218 static void 		fxp_start_body(struct ifnet *ifp);
219 static void		fxp_stop(struct fxp_softc *sc);
220 static void 		fxp_release(struct fxp_softc *sc);
221 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
222 			    caddr_t data);
223 static void 		fxp_watchdog(struct ifnet *ifp);
224 static int		fxp_add_rfabuf(struct fxp_softc *sc,
225     			    struct fxp_rx *rxp);
226 static int		fxp_mc_addrs(struct fxp_softc *sc);
227 static void		fxp_mc_setup(struct fxp_softc *sc);
228 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
229 			    int autosize);
230 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
231 			    u_int16_t data);
232 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
233 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
234 			    int offset, int words);
235 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
236 			    int offset, int words);
237 static int		fxp_ifmedia_upd(struct ifnet *ifp);
238 static void		fxp_ifmedia_sts(struct ifnet *ifp,
239 			    struct ifmediareq *ifmr);
240 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
241 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
242 			    struct ifmediareq *ifmr);
243 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
244 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
245 			    int value);
246 static void		fxp_load_ucode(struct fxp_softc *sc);
247 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
248 			    int low, int high);
249 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
250 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
251 static void 		fxp_scb_wait(struct fxp_softc *sc);
252 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
253 static void		fxp_dma_wait(struct fxp_softc *sc,
254     			    volatile u_int16_t *status, bus_dma_tag_t dmat,
255 			    bus_dmamap_t map);
256 
257 static device_method_t fxp_methods[] = {
258 	/* Device interface */
259 	DEVMETHOD(device_probe,		fxp_probe),
260 	DEVMETHOD(device_attach,	fxp_attach),
261 	DEVMETHOD(device_detach,	fxp_detach),
262 	DEVMETHOD(device_shutdown,	fxp_shutdown),
263 	DEVMETHOD(device_suspend,	fxp_suspend),
264 	DEVMETHOD(device_resume,	fxp_resume),
265 
266 	/* MII interface */
267 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
268 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
269 
270 	{ 0, 0 }
271 };
272 
273 static driver_t fxp_driver = {
274 	"fxp",
275 	fxp_methods,
276 	sizeof(struct fxp_softc),
277 };
278 
279 static devclass_t fxp_devclass;
280 
281 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
282 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
283 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
284 
285 static int fxp_rnr;
286 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
287 
288 static int fxp_noflow;
289 SYSCTL_INT(_hw, OID_AUTO, fxp_noflow, CTLFLAG_RW, &fxp_noflow, 0, "fxp flow control disabled");
290 TUNABLE_INT("hw.fxp_noflow", &fxp_noflow);
291 
292 /*
293  * Wait for the previous command to be accepted (but not necessarily
294  * completed).
295  */
296 static void
297 fxp_scb_wait(struct fxp_softc *sc)
298 {
299 	int i = 10000;
300 
301 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
302 		DELAY(2);
303 	if (i == 0)
304 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
305 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
306 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
307 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
308 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
309 }
310 
311 static void
312 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
313 {
314 
315 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
316 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
317 		fxp_scb_wait(sc);
318 	}
319 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
320 }
321 
322 static void
323 fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
324     bus_dma_tag_t dmat, bus_dmamap_t map)
325 {
326 	int i = 10000;
327 
328 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
329 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
330 		DELAY(2);
331 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
332 	}
333 	if (i == 0)
334 		device_printf(sc->dev, "DMA timeout\n");
335 }
336 
337 /*
338  * Return identification string if this device is ours.
339  */
340 static int
341 fxp_probe(device_t dev)
342 {
343 	u_int16_t devid;
344 	u_int8_t revid;
345 	struct fxp_ident *ident;
346 
347 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
348 		devid = pci_get_device(dev);
349 		revid = pci_get_revid(dev);
350 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
351 			if (ident->devid == devid &&
352 			    (ident->revid == revid || ident->revid == -1)) {
353 				device_set_desc(dev, ident->name);
354 				return (0);
355 			}
356 		}
357 	}
358 	return (ENXIO);
359 }
360 
361 #ifndef BURN_BRIDGES
362 static void
363 fxp_powerstate_d0(device_t dev)
364 {
365 #if __FreeBSD_version >= 430002
366 	u_int32_t iobase, membase, irq;
367 
368 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
369 		/* Save important PCI config data. */
370 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
371 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
372 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
373 
374 		/* Reset the power state. */
375 		device_printf(dev, "chip is in D%d power mode "
376 		    "-- setting to D0\n", pci_get_powerstate(dev));
377 
378 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
379 
380 		/* Restore PCI config data. */
381 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
382 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
383 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
384 	}
385 #endif
386 }
387 #endif
388 
389 static void
390 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
391 {
392 	u_int32_t *addr;
393 
394 	if (error)
395 		return;
396 
397 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
398 	addr = arg;
399 	*addr = segs->ds_addr;
400 }
401 
402 static int
403 fxp_attach(device_t dev)
404 {
405 	int error = 0;
406 	struct fxp_softc *sc = device_get_softc(dev);
407 	struct ifnet *ifp;
408 	struct fxp_rx *rxp;
409 	u_int32_t val;
410 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
411 	int i, rid, m1, m2, prefer_iomap, maxtxseg;
412 	int s, ipcbxmit_disable;
413 
414 	sc->dev = dev;
415 	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
416 	sysctl_ctx_init(&sc->sysctl_ctx);
417 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
418 	    MTX_DEF);
419 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
420 	    fxp_serial_ifmedia_sts);
421 
422 	s = splimp();
423 
424 	/*
425 	 * Enable bus mastering.
426 	 */
427 	pci_enable_busmaster(dev);
428 	val = pci_read_config(dev, PCIR_COMMAND, 2);
429 #ifndef BURN_BRIDGES
430 	fxp_powerstate_d0(dev);
431 #endif
432 	/*
433 	 * Figure out which we should try first - memory mapping or i/o mapping?
434 	 * We default to memory mapping. Then we accept an override from the
435 	 * command line. Then we check to see which one is enabled.
436 	 */
437 	m1 = PCIM_CMD_MEMEN;
438 	m2 = PCIM_CMD_PORTEN;
439 	prefer_iomap = 0;
440 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
441 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
442 		m1 = PCIM_CMD_PORTEN;
443 		m2 = PCIM_CMD_MEMEN;
444 	}
445 
446 	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
447 	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
448 	sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
449 	                                     0, ~0, 1, RF_ACTIVE);
450 	if (sc->mem == NULL) {
451 		sc->rtp =
452 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
453 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
454 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
455                                             0, ~0, 1, RF_ACTIVE);
456 	}
457 
458 	if (!sc->mem) {
459 		error = ENXIO;
460 		goto fail;
461         }
462 	if (bootverbose) {
463 		device_printf(dev, "using %s space register mapping\n",
464 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
465 	}
466 
467 	sc->sc_st = rman_get_bustag(sc->mem);
468 	sc->sc_sh = rman_get_bushandle(sc->mem);
469 
470 	/*
471 	 * Allocate our interrupt.
472 	 */
473 	rid = 0;
474 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
475 				 RF_SHAREABLE | RF_ACTIVE);
476 	if (sc->irq == NULL) {
477 		device_printf(dev, "could not map interrupt\n");
478 		error = ENXIO;
479 		goto fail;
480 	}
481 
482 	/*
483 	 * Reset to a stable state.
484 	 */
485 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
486 	DELAY(10);
487 
488 	/*
489 	 * Find out how large of an SEEPROM we have.
490 	 */
491 	fxp_autosize_eeprom(sc);
492 
493 	/*
494 	 * Determine whether we must use the 503 serial interface.
495 	 */
496 	fxp_read_eeprom(sc, &data, 6, 1);
497 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
498 	    (data & FXP_PHY_SERIAL_ONLY))
499 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
500 
501 	/*
502 	 * Create the sysctl tree
503 	 */
504 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
505 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
506 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
507 	if (sc->sysctl_tree == NULL) {
508 		error = ENXIO;
509 		goto fail;
510 	}
511 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
512 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
513 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
514 	    "FXP driver receive interrupt microcode bundling delay");
515 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
516 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
517 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
518 	    "FXP driver receive interrupt microcode bundle size limit");
519 
520 	/*
521 	 * Pull in device tunables.
522 	 */
523 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
524 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
525 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
526 	    "int_delay", &sc->tunable_int_delay);
527 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
528 	    "bundle_max", &sc->tunable_bundle_max);
529 
530 	/*
531 	 * Find out the chip revision; lump all 82557 revs together.
532 	 */
533 	fxp_read_eeprom(sc, &data, 5, 1);
534 	if ((data >> 8) == 1)
535 		sc->revision = FXP_REV_82557;
536 	else
537 		sc->revision = pci_get_revid(dev);
538 
539 	/*
540 	 * Enable workarounds for certain chip revision deficiencies.
541 	 *
542 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
543 	 * some systems based a normal 82559 design, have a defect where
544 	 * the chip can cause a PCI protocol violation if it receives
545 	 * a CU_RESUME command when it is entering the IDLE state.  The
546 	 * workaround is to disable Dynamic Standby Mode, so the chip never
547 	 * deasserts CLKRUN#, and always remains in an active state.
548 	 *
549 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
550 	 */
551 	i = pci_get_device(dev);
552 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
553 	    sc->revision >= FXP_REV_82559_A0) {
554 		fxp_read_eeprom(sc, &data, 10, 1);
555 		if (data & 0x02) {			/* STB enable */
556 			u_int16_t cksum;
557 			int i;
558 
559 			device_printf(dev,
560 			    "Disabling dynamic standby mode in EEPROM\n");
561 			data &= ~0x02;
562 			fxp_write_eeprom(sc, &data, 10, 1);
563 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
564 			cksum = 0;
565 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
566 				fxp_read_eeprom(sc, &data, i, 1);
567 				cksum += data;
568 			}
569 			i = (1 << sc->eeprom_size) - 1;
570 			cksum = 0xBABA - cksum;
571 			fxp_read_eeprom(sc, &data, i, 1);
572 			fxp_write_eeprom(sc, &cksum, i, 1);
573 			device_printf(dev,
574 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
575 			    i, data, cksum);
576 #if 1
577 			/*
578 			 * If the user elects to continue, try the software
579 			 * workaround, as it is better than nothing.
580 			 */
581 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
582 #endif
583 		}
584 	}
585 
586 	/*
587 	 * If we are not a 82557 chip, we can enable extended features.
588 	 */
589 	if (sc->revision != FXP_REV_82557) {
590 		/*
591 		 * If MWI is enabled in the PCI configuration, and there
592 		 * is a valid cacheline size (8 or 16 dwords), then tell
593 		 * the board to turn on MWI.
594 		 */
595 		if (val & PCIM_CMD_MWRICEN &&
596 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
597 			sc->flags |= FXP_FLAG_MWI_ENABLE;
598 
599 		/* turn on the extended TxCB feature */
600 		sc->flags |= FXP_FLAG_EXT_TXCB;
601 
602 		/* enable reception of long frames for VLAN */
603 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
604 	}
605 
606 	/*
607 	 * Enable use of extended RFDs and TCBs for 82550
608 	 * and later chips. Note: we need extended TXCB support
609 	 * too, but that's already enabled by the code above.
610 	 * Be careful to do this only on the right devices.
611 	 *
612 	 * At least some 82550 cards probed as "chip=0x12298086 rev=0x0d"
613 	 * truncate packets that end with an mbuf containing 1 to 3 bytes
614 	 * when used with this feature enabled in the previous version of the
615 	 * driver.  This problem appears to be fixed now that the driver
616 	 * always sets the hardware parse bit in the IPCB structure, which
617 	 * the "Intel 8255x 10/100 Mbps Ethernet Controller Family Open
618 	 * Source Software Developer Manual" says is necessary in the
619 	 * cases where packet truncation was observed.
620 	 *
621 	 * The device hint "hint.fxp.UNIT_NUMBER.ipcbxmit_disable"
622 	 * allows this feature to be disabled at boot time.
623 	 *
624 	 * If fxp is not compiled into the kernel, this feature may also
625 	 * be disabled at run time:
626 	 *    # kldunload fxp
627 	 *    # kenv hint.fxp.0.ipcbxmit_disable=1
628 	 *    # kldload fxp
629 	 */
630 
631 	if (resource_int_value("fxp", device_get_unit(dev), "ipcbxmit_disable",
632 	    &ipcbxmit_disable) != 0)
633 		ipcbxmit_disable = 0;
634 	if (ipcbxmit_disable == 0 && (sc->revision == FXP_REV_82550 ||
635 	    sc->revision == FXP_REV_82550_C)) {
636 		sc->rfa_size = sizeof (struct fxp_rfa);
637 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
638 		sc->flags |= FXP_FLAG_EXT_RFA;
639 	} else {
640 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
641 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
642 	}
643 
644 	/*
645 	 * Allocate DMA tags and DMA safe memory.
646 	 */
647 	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
648 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
649 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
650 	    maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->fxp_mtag);
651 	if (error) {
652 		device_printf(dev, "could not allocate dma tag\n");
653 		goto fail;
654 	}
655 
656 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
657 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
658 	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
659 	    &sc->fxp_stag);
660 	if (error) {
661 		device_printf(dev, "could not allocate dma tag\n");
662 		goto fail;
663 	}
664 
665 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
666 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
667 	if (error)
668 		goto fail;
669 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
670 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
671 	if (error) {
672 		device_printf(dev, "could not map the stats buffer\n");
673 		goto fail;
674 	}
675 
676 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
677 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
678 	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
679 	if (error) {
680 		device_printf(dev, "could not allocate dma tag\n");
681 		goto fail;
682 	}
683 
684 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
685 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
686 	if (error)
687 		goto fail;
688 
689 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
690 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
691 	    &sc->fxp_desc.cbl_addr, 0);
692 	if (error) {
693 		device_printf(dev, "could not map DMA memory\n");
694 		goto fail;
695 	}
696 
697 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
698 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
699 	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
700 	    &sc->mcs_tag);
701 	if (error) {
702 		device_printf(dev, "could not allocate dma tag\n");
703 		goto fail;
704 	}
705 
706 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
707 	    BUS_DMA_NOWAIT, &sc->mcs_map);
708 	if (error)
709 		goto fail;
710 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
711 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
712 	if (error) {
713 		device_printf(dev, "can't map the multicast setup command\n");
714 		goto fail;
715 	}
716 
717 	/*
718 	 * Pre-allocate the TX DMA maps.
719 	 */
720 	for (i = 0; i < FXP_NTXCB; i++) {
721 		error = bus_dmamap_create(sc->fxp_mtag, 0,
722 		    &sc->fxp_desc.tx_list[i].tx_map);
723 		if (error) {
724 			device_printf(dev, "can't create DMA map for TX\n");
725 			goto fail;
726 		}
727 	}
728 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
729 	if (error) {
730 		device_printf(dev, "can't create spare DMA map\n");
731 		goto fail;
732 	}
733 
734 	/*
735 	 * Pre-allocate our receive buffers.
736 	 */
737 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
738 	for (i = 0; i < FXP_NRFABUFS; i++) {
739 		rxp = &sc->fxp_desc.rx_list[i];
740 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
741 		if (error) {
742 			device_printf(dev, "can't create DMA map for RX\n");
743 			goto fail;
744 		}
745 		if (fxp_add_rfabuf(sc, rxp) != 0) {
746 			error = ENOMEM;
747 			goto fail;
748 		}
749 	}
750 
751 	/*
752 	 * Read MAC address.
753 	 */
754 	fxp_read_eeprom(sc, myea, 0, 3);
755 	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
756 	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
757 	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
758 	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
759 	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
760 	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
761 	device_printf(dev, "Ethernet address %6D%s\n",
762 	    sc->arpcom.ac_enaddr, ":",
763 	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
764 	if (bootverbose) {
765 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
766 		    pci_get_vendor(dev), pci_get_device(dev),
767 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
768 		    pci_get_revid(dev));
769 		fxp_read_eeprom(sc, &data, 10, 1);
770 		device_printf(dev, "Dynamic Standby mode is %s\n",
771 		    data & 0x02 ? "enabled" : "disabled");
772 	}
773 
774 	/*
775 	 * If this is only a 10Mbps device, then there is no MII, and
776 	 * the PHY will use a serial interface instead.
777 	 *
778 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
779 	 * doesn't have a programming interface of any sort.  The
780 	 * media is sensed automatically based on how the link partner
781 	 * is configured.  This is, in essence, manual configuration.
782 	 */
783 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
784 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
785 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
786 	} else {
787 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
788 		    fxp_ifmedia_sts)) {
789 	                device_printf(dev, "MII without any PHY!\n");
790 			error = ENXIO;
791 			goto fail;
792 		}
793 	}
794 
795 	ifp = &sc->arpcom.ac_if;
796 	ifp->if_unit = device_get_unit(dev);
797 	ifp->if_name = "fxp";
798 	ifp->if_output = ether_output;
799 	ifp->if_baudrate = 100000000;
800 	ifp->if_init = fxp_init;
801 	ifp->if_softc = sc;
802 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
803 	ifp->if_ioctl = fxp_ioctl;
804 	ifp->if_start = fxp_start;
805 	ifp->if_watchdog = fxp_watchdog;
806 
807 	/* Enable checksum offload for 82550 or better chips */
808 	if (sc->flags & FXP_FLAG_EXT_RFA) {
809 		ifp->if_hwassist = FXP_CSUM_FEATURES;
810 		ifp->if_capabilities = IFCAP_HWCSUM;
811 		ifp->if_capenable = ifp->if_capabilities;
812 	}
813 
814 	/*
815 	 * Attach the interface.
816 	 */
817 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
818 
819 	/*
820 	 * Tell the upper layer(s) we support long frames.
821 	 */
822 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
823 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
824 
825 	/*
826 	 * Let the system queue as many packets as we have available
827 	 * TX descriptors.
828 	 */
829 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
830 
831 	/*
832 	 * Hook our interrupt after all initialization is complete.
833 	 * XXX This driver has been tested with the INTR_MPSAFFE flag set
834 	 * however, ifp and its functions are not fully locked so MPSAFE
835 	 * should not be used unless you can handle potential data loss.
836 	 */
837 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET /*|INTR_MPSAFE*/,
838 			       fxp_intr, sc, &sc->ih);
839 	if (error) {
840 		device_printf(dev, "could not setup irq\n");
841 		ether_ifdetach(&sc->arpcom.ac_if);
842 		goto fail;
843 	}
844 
845 fail:
846 	splx(s);
847 	if (error)
848 		fxp_release(sc);
849 	return (error);
850 }
851 
852 /*
853  * Release all resources.  The softc lock should not be held and the
854  * interrupt should already be torn down.
855  */
856 static void
857 fxp_release(struct fxp_softc *sc)
858 {
859 	struct fxp_rx *rxp;
860 	struct fxp_tx *txp;
861 	int i;
862 
863 	mtx_assert(&sc->sc_mtx, MA_NOTOWNED);
864 	if (sc->ih)
865 		panic("fxp_release() called with intr handle still active");
866 	if (sc->miibus)
867 		device_delete_child(sc->dev, sc->miibus);
868 	bus_generic_detach(sc->dev);
869 	ifmedia_removeall(&sc->sc_media);
870 	if (sc->fxp_desc.cbl_list) {
871 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
872 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
873 		    sc->cbl_map);
874 	}
875 	if (sc->fxp_stats) {
876 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
877 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
878 	}
879 	if (sc->mcsp) {
880 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
881 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
882 	}
883 	if (sc->irq)
884 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
885 	if (sc->mem)
886 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
887 	if (sc->fxp_mtag) {
888 		for (i = 0; i < FXP_NRFABUFS; i++) {
889 			rxp = &sc->fxp_desc.rx_list[i];
890 			if (rxp->rx_mbuf != NULL) {
891 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
892 				    BUS_DMASYNC_POSTREAD);
893 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
894 				m_freem(rxp->rx_mbuf);
895 			}
896 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
897 		}
898 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
899 		bus_dma_tag_destroy(sc->fxp_mtag);
900 	}
901 	if (sc->fxp_stag) {
902 		for (i = 0; i < FXP_NTXCB; i++) {
903 			txp = &sc->fxp_desc.tx_list[i];
904 			if (txp->tx_mbuf != NULL) {
905 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
906 				    BUS_DMASYNC_POSTWRITE);
907 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
908 				m_freem(txp->tx_mbuf);
909 			}
910 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
911 		}
912 		bus_dma_tag_destroy(sc->fxp_stag);
913 	}
914 	if (sc->cbl_tag)
915 		bus_dma_tag_destroy(sc->cbl_tag);
916 	if (sc->mcs_tag)
917 		bus_dma_tag_destroy(sc->mcs_tag);
918 
919         sysctl_ctx_free(&sc->sysctl_ctx);
920 
921 	mtx_destroy(&sc->sc_mtx);
922 }
923 
924 /*
925  * Detach interface.
926  */
927 static int
928 fxp_detach(device_t dev)
929 {
930 	struct fxp_softc *sc = device_get_softc(dev);
931 	int s;
932 
933 	FXP_LOCK(sc);
934 	s = splimp();
935 
936 	sc->suspended = 1;	/* Do same thing as we do for suspend */
937 	/*
938 	 * Close down routes etc.
939 	 */
940 	ether_ifdetach(&sc->arpcom.ac_if);
941 
942 	/*
943 	 * Stop DMA and drop transmit queue, but disable interrupts first.
944 	 */
945 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
946 	fxp_stop(sc);
947 	FXP_UNLOCK(sc);
948 
949 	/*
950 	 * Unhook interrupt before dropping lock. This is to prevent
951 	 * races with fxp_intr().
952 	 */
953 	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
954 	sc->ih = NULL;
955 
956 	splx(s);
957 
958 	/* Release our allocated resources. */
959 	fxp_release(sc);
960 	return (0);
961 }
962 
963 /*
964  * Device shutdown routine. Called at system shutdown after sync. The
965  * main purpose of this routine is to shut off receiver DMA so that
966  * kernel memory doesn't get clobbered during warmboot.
967  */
968 static int
969 fxp_shutdown(device_t dev)
970 {
971 	/*
972 	 * Make sure that DMA is disabled prior to reboot. Not doing
973 	 * do could allow DMA to corrupt kernel memory during the
974 	 * reboot before the driver initializes.
975 	 */
976 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
977 	return (0);
978 }
979 
980 /*
981  * Device suspend routine.  Stop the interface and save some PCI
982  * settings in case the BIOS doesn't restore them properly on
983  * resume.
984  */
985 static int
986 fxp_suspend(device_t dev)
987 {
988 	struct fxp_softc *sc = device_get_softc(dev);
989 	int i, s;
990 
991 	FXP_LOCK(sc);
992 	s = splimp();
993 
994 	fxp_stop(sc);
995 
996 	for (i = 0; i < 5; i++)
997 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
998 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
999 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
1000 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
1001 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1002 
1003 	sc->suspended = 1;
1004 
1005 	FXP_UNLOCK(sc);
1006 	splx(s);
1007 	return (0);
1008 }
1009 
1010 /*
1011  * Device resume routine.  Restore some PCI settings in case the BIOS
1012  * doesn't, re-enable busmastering, and restart the interface if
1013  * appropriate.
1014  */
1015 static int
1016 fxp_resume(device_t dev)
1017 {
1018 	struct fxp_softc *sc = device_get_softc(dev);
1019 	struct ifnet *ifp = &sc->sc_if;
1020 	u_int16_t pci_command;
1021 	int i, s;
1022 
1023 	FXP_LOCK(sc);
1024 	s = splimp();
1025 #ifndef BURN_BRIDGES
1026 	fxp_powerstate_d0(dev);
1027 #endif
1028 	/* better way to do this? */
1029 	for (i = 0; i < 5; i++)
1030 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
1031 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1032 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1033 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1034 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1035 
1036 	/* reenable busmastering */
1037 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
1038 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1039 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
1040 
1041 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1042 	DELAY(10);
1043 
1044 	/* reinitialize interface if necessary */
1045 	if (ifp->if_flags & IFF_UP)
1046 		fxp_init_body(sc);
1047 
1048 	sc->suspended = 0;
1049 
1050 	FXP_UNLOCK(sc);
1051 	splx(s);
1052 	return (0);
1053 }
1054 
1055 static void
1056 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1057 {
1058 	u_int16_t reg;
1059 	int x;
1060 
1061 	/*
1062 	 * Shift in data.
1063 	 */
1064 	for (x = 1 << (length - 1); x; x >>= 1) {
1065 		if (data & x)
1066 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1067 		else
1068 			reg = FXP_EEPROM_EECS;
1069 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1070 		DELAY(1);
1071 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1072 		DELAY(1);
1073 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1074 		DELAY(1);
1075 	}
1076 }
1077 
1078 /*
1079  * Read from the serial EEPROM. Basically, you manually shift in
1080  * the read opcode (one bit at a time) and then shift in the address,
1081  * and then you shift out the data (all of this one bit at a time).
1082  * The word size is 16 bits, so you have to provide the address for
1083  * every 16 bits of data.
1084  */
1085 static u_int16_t
1086 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1087 {
1088 	u_int16_t reg, data;
1089 	int x;
1090 
1091 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1092 	/*
1093 	 * Shift in read opcode.
1094 	 */
1095 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1096 	/*
1097 	 * Shift in address.
1098 	 */
1099 	data = 0;
1100 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1101 		if (offset & x)
1102 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1103 		else
1104 			reg = FXP_EEPROM_EECS;
1105 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1106 		DELAY(1);
1107 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1108 		DELAY(1);
1109 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1110 		DELAY(1);
1111 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1112 		data++;
1113 		if (autosize && reg == 0) {
1114 			sc->eeprom_size = data;
1115 			break;
1116 		}
1117 	}
1118 	/*
1119 	 * Shift out data.
1120 	 */
1121 	data = 0;
1122 	reg = FXP_EEPROM_EECS;
1123 	for (x = 1 << 15; x; x >>= 1) {
1124 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1125 		DELAY(1);
1126 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1127 			data |= x;
1128 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1129 		DELAY(1);
1130 	}
1131 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1132 	DELAY(1);
1133 
1134 	return (data);
1135 }
1136 
1137 static void
1138 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1139 {
1140 	int i;
1141 
1142 	/*
1143 	 * Erase/write enable.
1144 	 */
1145 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1146 	fxp_eeprom_shiftin(sc, 0x4, 3);
1147 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1148 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1149 	DELAY(1);
1150 	/*
1151 	 * Shift in write opcode, address, data.
1152 	 */
1153 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1154 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1155 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1156 	fxp_eeprom_shiftin(sc, data, 16);
1157 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1158 	DELAY(1);
1159 	/*
1160 	 * Wait for EEPROM to finish up.
1161 	 */
1162 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1163 	DELAY(1);
1164 	for (i = 0; i < 1000; i++) {
1165 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1166 			break;
1167 		DELAY(50);
1168 	}
1169 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1170 	DELAY(1);
1171 	/*
1172 	 * Erase/write disable.
1173 	 */
1174 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1175 	fxp_eeprom_shiftin(sc, 0x4, 3);
1176 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1177 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1178 	DELAY(1);
1179 }
1180 
1181 /*
1182  * From NetBSD:
1183  *
1184  * Figure out EEPROM size.
1185  *
1186  * 559's can have either 64-word or 256-word EEPROMs, the 558
1187  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1188  * talks about the existance of 16 to 256 word EEPROMs.
1189  *
1190  * The only known sizes are 64 and 256, where the 256 version is used
1191  * by CardBus cards to store CIS information.
1192  *
1193  * The address is shifted in msb-to-lsb, and after the last
1194  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1195  * after which follows the actual data. We try to detect this zero, by
1196  * probing the data-out bit in the EEPROM control register just after
1197  * having shifted in a bit. If the bit is zero, we assume we've
1198  * shifted enough address bits. The data-out should be tri-state,
1199  * before this, which should translate to a logical one.
1200  */
1201 static void
1202 fxp_autosize_eeprom(struct fxp_softc *sc)
1203 {
1204 
1205 	/* guess maximum size of 256 words */
1206 	sc->eeprom_size = 8;
1207 
1208 	/* autosize */
1209 	(void) fxp_eeprom_getword(sc, 0, 1);
1210 }
1211 
1212 static void
1213 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1214 {
1215 	int i;
1216 
1217 	for (i = 0; i < words; i++)
1218 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1219 }
1220 
1221 static void
1222 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1223 {
1224 	int i;
1225 
1226 	for (i = 0; i < words; i++)
1227 		fxp_eeprom_putword(sc, offset + i, data[i]);
1228 }
1229 
1230 static void
1231 fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1232     bus_size_t mapsize, int error)
1233 {
1234 	struct fxp_softc *sc;
1235 	struct fxp_cb_tx *txp;
1236 	int i;
1237 
1238 	if (error)
1239 		return;
1240 
1241 	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1242 
1243 	sc = arg;
1244 	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1245 	for (i = 0; i < nseg; i++) {
1246 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1247 		/*
1248 		 * If this is an 82550/82551, then we're using extended
1249 		 * TxCBs _and_ we're using checksum offload. This means
1250 		 * that the TxCB is really an IPCB. One major difference
1251 		 * between the two is that with plain extended TxCBs,
1252 		 * the bottom half of the TxCB contains two entries from
1253 		 * the TBD array, whereas IPCBs contain just one entry:
1254 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1255 		 * checksum offload control bits. So to make things work
1256 		 * right, we have to start filling in the TBD array
1257 		 * starting from a different place depending on whether
1258 		 * the chip is an 82550/82551 or not.
1259 		 */
1260 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1261 			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1262 			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1263 		} else {
1264 			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1265 			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1266 		}
1267 	}
1268 	txp->tbd_number = nseg;
1269 }
1270 
1271 /*
1272  * Grab the softc lock and call the real fxp_start_body() routine
1273  */
1274 static void
1275 fxp_start(struct ifnet *ifp)
1276 {
1277 	struct fxp_softc *sc = ifp->if_softc;
1278 
1279 	FXP_LOCK(sc);
1280 	fxp_start_body(ifp);
1281 	FXP_UNLOCK(sc);
1282 }
1283 
1284 /*
1285  * Start packet transmission on the interface.
1286  * This routine must be called with the softc lock held, and is an
1287  * internal entry point only.
1288  */
1289 static void
1290 fxp_start_body(struct ifnet *ifp)
1291 {
1292 	struct fxp_softc *sc = ifp->if_softc;
1293 	struct fxp_tx *txp;
1294 	struct mbuf *mb_head;
1295 	int error;
1296 
1297 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1298 	/*
1299 	 * See if we need to suspend xmit until the multicast filter
1300 	 * has been reprogrammed (which can only be done at the head
1301 	 * of the command chain).
1302 	 */
1303 	if (sc->need_mcsetup) {
1304 		return;
1305 	}
1306 
1307 	txp = NULL;
1308 
1309 	/*
1310 	 * We're finished if there is nothing more to add to the list or if
1311 	 * we're all filled up with buffers to transmit.
1312 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1313 	 *       a NOP command when needed.
1314 	 */
1315 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1316 
1317 		/*
1318 		 * Grab a packet to transmit.
1319 		 */
1320 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1321 
1322 		/*
1323 		 * Get pointer to next available tx desc.
1324 		 */
1325 		txp = sc->fxp_desc.tx_last->tx_next;
1326 
1327 		/*
1328 		 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1329 		 * Ethernet Controller Family Open Source Software
1330 		 * Developer Manual says:
1331 		 *   Using software parsing is only allowed with legal
1332 		 *   TCP/IP or UDP/IP packets.
1333 		 *   ...
1334 		 *   For all other datagrams, hardware parsing must
1335 		 *   be used.
1336 		 * Software parsing appears to truncate ICMP and
1337 		 * fragmented UDP packets that contain one to three
1338 		 * bytes in the second (and final) mbuf of the packet.
1339 		 */
1340 		if (sc->flags & FXP_FLAG_EXT_RFA)
1341 			txp->tx_cb->ipcb_ip_activation_high =
1342 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1343 
1344 		/*
1345 		 * Deal with TCP/IP checksum offload. Note that
1346 		 * in order for TCP checksum offload to work,
1347 		 * the pseudo header checksum must have already
1348 		 * been computed and stored in the checksum field
1349 		 * in the TCP header. The stack should have
1350 		 * already done this for us.
1351 		 */
1352 
1353 		if (mb_head->m_pkthdr.csum_flags) {
1354 			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1355 				txp->tx_cb->ipcb_ip_schedule =
1356 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1357 				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1358 					txp->tx_cb->ipcb_ip_schedule |=
1359 					    FXP_IPCB_TCP_PACKET;
1360 			}
1361 #ifdef FXP_IP_CSUM_WAR
1362 		/*
1363 		 * XXX The 82550 chip appears to have trouble
1364 		 * dealing with IP header checksums in very small
1365 		 * datagrams, namely fragments from 1 to 3 bytes
1366 		 * in size. For example, say you want to transmit
1367 		 * a UDP packet of 1473 bytes. The packet will be
1368 		 * fragmented over two IP datagrams, the latter
1369 		 * containing only one byte of data. The 82550 will
1370 		 * botch the header checksum on the 1-byte fragment.
1371 		 * As long as the datagram contains 4 or more bytes
1372 		 * of data, you're ok.
1373 		 *
1374                  * The following code attempts to work around this
1375 		 * problem: if the datagram is less than 38 bytes
1376 		 * in size (14 bytes ether header, 20 bytes IP header,
1377 		 * plus 4 bytes of data), we punt and compute the IP
1378 		 * header checksum by hand. This workaround doesn't
1379 		 * work very well, however, since it can be fooled
1380 		 * by things like VLAN tags and IP options that make
1381 		 * the header sizes/offsets vary.
1382 		 */
1383 
1384 			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1385 				if (mb_head->m_pkthdr.len < 38) {
1386 					struct ip *ip;
1387 					mb_head->m_data += ETHER_HDR_LEN;
1388 					ip = mtod(mb_head, struct ip *);
1389 					ip->ip_sum = in_cksum(mb_head,
1390 					    ip->ip_hl << 2);
1391 					mb_head->m_data -= ETHER_HDR_LEN;
1392 				} else {
1393 					txp->tx_cb->ipcb_ip_activation_high =
1394 					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1395 					txp->tx_cb->ipcb_ip_schedule |=
1396 					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1397 				}
1398 			}
1399 #endif
1400 		}
1401 
1402 		/*
1403 		 * Go through each of the mbufs in the chain and initialize
1404 		 * the transmit buffer descriptors with the physical address
1405 		 * and size of the mbuf.
1406 		 */
1407 		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1408 		    mb_head, fxp_dma_map_txbuf, sc, 0);
1409 
1410 		if (error && error != EFBIG) {
1411 			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1412 			    error);
1413 			m_freem(mb_head);
1414 			break;
1415 		}
1416 
1417 		if (error) {
1418 			struct mbuf *mn;
1419 
1420 			/*
1421 			 * We ran out of segments. We have to recopy this
1422 			 * mbuf chain first. Bail out if we can't get the
1423 			 * new buffers.
1424 			 */
1425 			mn = m_defrag(mb_head, M_DONTWAIT);
1426 			if (mn == NULL) {
1427 				m_freem(mb_head);
1428 				break;
1429 			} else {
1430 				mb_head = mn;
1431 			}
1432 			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1433 			    mb_head, fxp_dma_map_txbuf, sc, 0);
1434 			if (error) {
1435 				device_printf(sc->dev,
1436 				    "can't map mbuf (error %d)\n", error);
1437 				m_freem(mb_head);
1438 				break;
1439 			}
1440 		}
1441 
1442 		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1443 		    BUS_DMASYNC_PREWRITE);
1444 
1445 		txp->tx_mbuf = mb_head;
1446 		txp->tx_cb->cb_status = 0;
1447 		txp->tx_cb->byte_count = 0;
1448 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1449 			txp->tx_cb->cb_command =
1450 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1451 			    FXP_CB_COMMAND_S);
1452 		} else {
1453 			txp->tx_cb->cb_command =
1454 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1455 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1456 			/*
1457 			 * Set a 5 second timer just in case we don't hear
1458 			 * from the card again.
1459 			 */
1460 			ifp->if_timer = 5;
1461 		}
1462 		txp->tx_cb->tx_threshold = tx_threshold;
1463 
1464 		/*
1465 		 * Advance the end of list forward.
1466 		 */
1467 
1468 #ifdef __alpha__
1469 		/*
1470 		 * On platforms which can't access memory in 16-bit
1471 		 * granularities, we must prevent the card from DMA'ing
1472 		 * up the status while we update the command field.
1473 		 * This could cause us to overwrite the completion status.
1474 		 * XXX This is probably bogus and we're _not_ looking
1475 		 * for atomicity here.
1476 		 */
1477 		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1478 		    htole16(FXP_CB_COMMAND_S));
1479 #else
1480 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1481 		    htole16(~FXP_CB_COMMAND_S);
1482 #endif /*__alpha__*/
1483 		sc->fxp_desc.tx_last = txp;
1484 
1485 		/*
1486 		 * Advance the beginning of the list forward if there are
1487 		 * no other packets queued (when nothing is queued, tx_first
1488 		 * sits on the last TxCB that was sent out).
1489 		 */
1490 		if (sc->tx_queued == 0)
1491 			sc->fxp_desc.tx_first = txp;
1492 
1493 		sc->tx_queued++;
1494 
1495 		/*
1496 		 * Pass packet to bpf if there is a listener.
1497 		 */
1498 		BPF_MTAP(ifp, mb_head);
1499 	}
1500 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1501 
1502 	/*
1503 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1504 	 * going again if suspended.
1505 	 */
1506 	if (txp != NULL) {
1507 		fxp_scb_wait(sc);
1508 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1509 	}
1510 }
1511 
1512 #ifdef DEVICE_POLLING
1513 static poll_handler_t fxp_poll;
1514 
1515 static void
1516 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1517 {
1518 	struct fxp_softc *sc = ifp->if_softc;
1519 	u_int8_t statack;
1520 
1521 	FXP_LOCK(sc);
1522 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1523 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1524 		FXP_UNLOCK(sc);
1525 		return;
1526 	}
1527 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1528 	    FXP_SCB_STATACK_FR;
1529 	if (cmd == POLL_AND_CHECK_STATUS) {
1530 		u_int8_t tmp;
1531 
1532 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1533 		if (tmp == 0xff || tmp == 0) {
1534 			FXP_UNLOCK(sc);
1535 			return; /* nothing to do */
1536 		}
1537 		tmp &= ~statack;
1538 		/* ack what we can */
1539 		if (tmp != 0)
1540 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1541 		statack |= tmp;
1542 	}
1543 	fxp_intr_body(sc, ifp, statack, count);
1544 	FXP_UNLOCK(sc);
1545 }
1546 #endif /* DEVICE_POLLING */
1547 
1548 /*
1549  * Process interface interrupts.
1550  */
1551 static void
1552 fxp_intr(void *xsc)
1553 {
1554 	struct fxp_softc *sc = xsc;
1555 	struct ifnet *ifp = &sc->sc_if;
1556 	u_int8_t statack;
1557 
1558 	FXP_LOCK(sc);
1559 	if (sc->suspended) {
1560 		FXP_UNLOCK(sc);
1561 		return;
1562 	}
1563 
1564 #ifdef DEVICE_POLLING
1565 	if (ifp->if_flags & IFF_POLLING) {
1566 		FXP_UNLOCK(sc);
1567 		return;
1568 	}
1569 	if (ether_poll_register(fxp_poll, ifp)) {
1570 		/* disable interrupts */
1571 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1572 		FXP_UNLOCK(sc);
1573 		fxp_poll(ifp, 0, 1);
1574 		return;
1575 	}
1576 #endif
1577 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1578 		/*
1579 		 * It should not be possible to have all bits set; the
1580 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1581 		 * all bits are set, this may indicate that the card has
1582 		 * been physically ejected, so ignore it.
1583 		 */
1584 		if (statack == 0xff) {
1585 			FXP_UNLOCK(sc);
1586 			return;
1587 		}
1588 
1589 		/*
1590 		 * First ACK all the interrupts in this pass.
1591 		 */
1592 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1593 		fxp_intr_body(sc, ifp, statack, -1);
1594 	}
1595 	FXP_UNLOCK(sc);
1596 }
1597 
1598 static void
1599 fxp_txeof(struct fxp_softc *sc)
1600 {
1601 	struct fxp_tx *txp;
1602 
1603 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1604 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1605 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1606 	    txp = txp->tx_next) {
1607 		if (txp->tx_mbuf != NULL) {
1608 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1609 			    BUS_DMASYNC_POSTWRITE);
1610 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1611 			m_freem(txp->tx_mbuf);
1612 			txp->tx_mbuf = NULL;
1613 			/* clear this to reset csum offload bits */
1614 			txp->tx_cb->tbd[0].tb_addr = 0;
1615 		}
1616 		sc->tx_queued--;
1617 	}
1618 	sc->fxp_desc.tx_first = txp;
1619 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1620 }
1621 
1622 static void
1623 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1624     int count)
1625 {
1626 	struct mbuf *m;
1627 	struct fxp_rx *rxp;
1628 	struct fxp_rfa *rfa;
1629 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1630 
1631 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1632 	if (rnr)
1633 		fxp_rnr++;
1634 #ifdef DEVICE_POLLING
1635 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1636 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1637 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1638 		rnr = 1;
1639 	}
1640 #endif
1641 
1642 	/*
1643 	 * Free any finished transmit mbuf chains.
1644 	 *
1645 	 * Handle the CNA event likt a CXTNO event. It used to
1646 	 * be that this event (control unit not ready) was not
1647 	 * encountered, but it is now with the SMPng modifications.
1648 	 * The exact sequence of events that occur when the interface
1649 	 * is brought up are different now, and if this event
1650 	 * goes unhandled, the configuration/rxfilter setup sequence
1651 	 * can stall for several seconds. The result is that no
1652 	 * packets go out onto the wire for about 5 to 10 seconds
1653 	 * after the interface is ifconfig'ed for the first time.
1654 	 */
1655 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1656 		fxp_txeof(sc);
1657 
1658 		ifp->if_timer = 0;
1659 		if (sc->tx_queued == 0) {
1660 			if (sc->need_mcsetup)
1661 				fxp_mc_setup(sc);
1662 		}
1663 		/*
1664 		 * Try to start more packets transmitting.
1665 		 */
1666 		if (ifp->if_snd.ifq_head != NULL)
1667 			fxp_start_body(ifp);
1668 	}
1669 
1670 	/*
1671 	 * Just return if nothing happened on the receive side.
1672 	 */
1673 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1674 		return;
1675 
1676 	/*
1677 	 * Process receiver interrupts. If a no-resource (RNR)
1678 	 * condition exists, get whatever packets we can and
1679 	 * re-start the receiver.
1680 	 *
1681 	 * When using polling, we do not process the list to completion,
1682 	 * so when we get an RNR interrupt we must defer the restart
1683 	 * until we hit the last buffer with the C bit set.
1684 	 * If we run out of cycles and rfa_headm has the C bit set,
1685 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1686 	 * that the info will be used in the subsequent polling cycle.
1687 	 */
1688 	for (;;) {
1689 		rxp = sc->fxp_desc.rx_head;
1690 		m = rxp->rx_mbuf;
1691 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1692 		    RFA_ALIGNMENT_FUDGE);
1693 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1694 		    BUS_DMASYNC_POSTREAD);
1695 
1696 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1697 		if (count >= 0 && count-- == 0) {
1698 			if (rnr) {
1699 				/* Defer RNR processing until the next time. */
1700 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1701 				rnr = 0;
1702 			}
1703 			break;
1704 		}
1705 #endif /* DEVICE_POLLING */
1706 
1707 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1708 			break;
1709 
1710 		/*
1711 		 * Advance head forward.
1712 		 */
1713 		sc->fxp_desc.rx_head = rxp->rx_next;
1714 
1715 		/*
1716 		 * Add a new buffer to the receive chain.
1717 		 * If this fails, the old buffer is recycled
1718 		 * instead.
1719 		 */
1720 		if (fxp_add_rfabuf(sc, rxp) == 0) {
1721 			int total_len;
1722 
1723 			/*
1724 			 * Fetch packet length (the top 2 bits of
1725 			 * actual_size are flags set by the controller
1726 			 * upon completion), and drop the packet in case
1727 			 * of bogus length or CRC errors.
1728 			 */
1729 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1730 			if (total_len < sizeof(struct ether_header) ||
1731 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1732 				sc->rfa_size ||
1733 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1734 				m_freem(m);
1735 				continue;
1736 			}
1737 
1738                         /* Do IP checksum checking. */
1739 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1740 				if (rfa->rfax_csum_sts &
1741 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1742 					m->m_pkthdr.csum_flags |=
1743 					    CSUM_IP_CHECKED;
1744 				if (rfa->rfax_csum_sts &
1745 				    FXP_RFDX_CS_IP_CSUM_VALID)
1746 					m->m_pkthdr.csum_flags |=
1747 					    CSUM_IP_VALID;
1748 				if ((rfa->rfax_csum_sts &
1749 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1750 				    (rfa->rfax_csum_sts &
1751 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1752 					m->m_pkthdr.csum_flags |=
1753 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1754 					m->m_pkthdr.csum_data = 0xffff;
1755 				}
1756 			}
1757 
1758 			m->m_pkthdr.len = m->m_len = total_len;
1759 			m->m_pkthdr.rcvif = ifp;
1760 
1761 			/*
1762 			 * Drop locks before calling if_input() since it
1763 			 * may re-enter fxp_start() in the netisr case.
1764 			 * This would result in a lock reversal.  Better
1765 			 * performance might be obtained by chaining all
1766 			 * packets received, dropping the lock, and then
1767 			 * calling if_input() on each one.
1768 			 */
1769 			FXP_UNLOCK(sc);
1770 			(*ifp->if_input)(ifp, m);
1771 			FXP_LOCK(sc);
1772 		}
1773 	}
1774 	if (rnr) {
1775 		fxp_scb_wait(sc);
1776 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1777 		    sc->fxp_desc.rx_head->rx_addr);
1778 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1779 	}
1780 }
1781 
1782 /*
1783  * Update packet in/out/collision statistics. The i82557 doesn't
1784  * allow you to access these counters without doing a fairly
1785  * expensive DMA to get _all_ of the statistics it maintains, so
1786  * we do this operation here only once per second. The statistics
1787  * counters in the kernel are updated from the previous dump-stats
1788  * DMA and then a new dump-stats DMA is started. The on-chip
1789  * counters are zeroed when the DMA completes. If we can't start
1790  * the DMA immediately, we don't wait - we just prepare to read
1791  * them again next time.
1792  */
1793 static void
1794 fxp_tick(void *xsc)
1795 {
1796 	struct fxp_softc *sc = xsc;
1797 	struct ifnet *ifp = &sc->sc_if;
1798 	struct fxp_stats *sp = sc->fxp_stats;
1799 	int s;
1800 
1801 	FXP_LOCK(sc);
1802 	s = splimp();
1803 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1804 	ifp->if_opackets += le32toh(sp->tx_good);
1805 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1806 	if (sp->rx_good) {
1807 		ifp->if_ipackets += le32toh(sp->rx_good);
1808 		sc->rx_idle_secs = 0;
1809 	} else {
1810 		/*
1811 		 * Receiver's been idle for another second.
1812 		 */
1813 		sc->rx_idle_secs++;
1814 	}
1815 	ifp->if_ierrors +=
1816 	    le32toh(sp->rx_crc_errors) +
1817 	    le32toh(sp->rx_alignment_errors) +
1818 	    le32toh(sp->rx_rnr_errors) +
1819 	    le32toh(sp->rx_overrun_errors);
1820 	/*
1821 	 * If any transmit underruns occured, bump up the transmit
1822 	 * threshold by another 512 bytes (64 * 8).
1823 	 */
1824 	if (sp->tx_underruns) {
1825 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1826 		if (tx_threshold < 192)
1827 			tx_threshold += 64;
1828 	}
1829 
1830 	/*
1831 	 * Release any xmit buffers that have completed DMA. This isn't
1832 	 * strictly necessary to do here, but it's advantagous for mbufs
1833 	 * with external storage to be released in a timely manner rather
1834 	 * than being defered for a potentially long time. This limits
1835 	 * the delay to a maximum of one second.
1836 	 */
1837 	fxp_txeof(sc);
1838 
1839 	/*
1840 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1841 	 * then assume the receiver has locked up and attempt to clear
1842 	 * the condition by reprogramming the multicast filter. This is
1843 	 * a work-around for a bug in the 82557 where the receiver locks
1844 	 * up if it gets certain types of garbage in the syncronization
1845 	 * bits prior to the packet header. This bug is supposed to only
1846 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1847 	 * mode as well (perhaps due to a 10/100 speed transition).
1848 	 */
1849 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1850 		sc->rx_idle_secs = 0;
1851 		fxp_mc_setup(sc);
1852 	}
1853 	/*
1854 	 * If there is no pending command, start another stats
1855 	 * dump. Otherwise punt for now.
1856 	 */
1857 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1858 		/*
1859 		 * Start another stats dump.
1860 		 */
1861 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1862 		    BUS_DMASYNC_PREREAD);
1863 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1864 	} else {
1865 		/*
1866 		 * A previous command is still waiting to be accepted.
1867 		 * Just zero our copy of the stats and wait for the
1868 		 * next timer event to update them.
1869 		 */
1870 		sp->tx_good = 0;
1871 		sp->tx_underruns = 0;
1872 		sp->tx_total_collisions = 0;
1873 
1874 		sp->rx_good = 0;
1875 		sp->rx_crc_errors = 0;
1876 		sp->rx_alignment_errors = 0;
1877 		sp->rx_rnr_errors = 0;
1878 		sp->rx_overrun_errors = 0;
1879 	}
1880 	if (sc->miibus != NULL)
1881 		mii_tick(device_get_softc(sc->miibus));
1882 
1883 	/*
1884 	 * Schedule another timeout one second from now.
1885 	 */
1886 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1887 	FXP_UNLOCK(sc);
1888 	splx(s);
1889 }
1890 
1891 /*
1892  * Stop the interface. Cancels the statistics updater and resets
1893  * the interface.
1894  */
1895 static void
1896 fxp_stop(struct fxp_softc *sc)
1897 {
1898 	struct ifnet *ifp = &sc->sc_if;
1899 	struct fxp_tx *txp;
1900 	int i;
1901 
1902 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1903 	ifp->if_timer = 0;
1904 
1905 #ifdef DEVICE_POLLING
1906 	ether_poll_deregister(ifp);
1907 #endif
1908 	/*
1909 	 * Cancel stats updater.
1910 	 */
1911 	callout_stop(&sc->stat_ch);
1912 
1913 	/*
1914 	 * Issue software reset, which also unloads the microcode.
1915 	 */
1916 	sc->flags &= ~FXP_FLAG_UCODE;
1917 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1918 	DELAY(50);
1919 
1920 	/*
1921 	 * Release any xmit buffers.
1922 	 */
1923 	txp = sc->fxp_desc.tx_list;
1924 	if (txp != NULL) {
1925 		for (i = 0; i < FXP_NTXCB; i++) {
1926  			if (txp[i].tx_mbuf != NULL) {
1927 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1928 				    BUS_DMASYNC_POSTWRITE);
1929 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1930 				m_freem(txp[i].tx_mbuf);
1931 				txp[i].tx_mbuf = NULL;
1932 				/* clear this to reset csum offload bits */
1933 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1934 			}
1935 		}
1936 	}
1937 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1938 	sc->tx_queued = 0;
1939 }
1940 
1941 /*
1942  * Watchdog/transmission transmit timeout handler. Called when a
1943  * transmission is started on the interface, but no interrupt is
1944  * received before the timeout. This usually indicates that the
1945  * card has wedged for some reason.
1946  */
1947 static void
1948 fxp_watchdog(struct ifnet *ifp)
1949 {
1950 	struct fxp_softc *sc = ifp->if_softc;
1951 
1952 	FXP_LOCK(sc);
1953 	device_printf(sc->dev, "device timeout\n");
1954 	ifp->if_oerrors++;
1955 
1956 	fxp_init_body(sc);
1957 	FXP_UNLOCK(sc);
1958 }
1959 
1960 /*
1961  * Acquire locks and then call the real initialization function.  This
1962  * is necessary because ether_ioctl() calls if_init() and this would
1963  * result in mutex recursion if the mutex was held.
1964  */
1965 static void
1966 fxp_init(void *xsc)
1967 {
1968 	struct fxp_softc *sc = xsc;
1969 
1970 	FXP_LOCK(sc);
1971 	fxp_init_body(sc);
1972 	FXP_UNLOCK(sc);
1973 }
1974 
1975 /*
1976  * Perform device initialization. This routine must be called with the
1977  * softc lock held.
1978  */
1979 static void
1980 fxp_init_body(struct fxp_softc *sc)
1981 {
1982 	struct ifnet *ifp = &sc->sc_if;
1983 	struct fxp_cb_config *cbp;
1984 	struct fxp_cb_ias *cb_ias;
1985 	struct fxp_cb_tx *tcbp;
1986 	struct fxp_tx *txp;
1987 	struct fxp_cb_mcs *mcsp;
1988 	int i, prm, s;
1989 
1990 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1991 	s = splimp();
1992 	/*
1993 	 * Cancel any pending I/O
1994 	 */
1995 	fxp_stop(sc);
1996 
1997 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1998 
1999 	/*
2000 	 * Initialize base of CBL and RFA memory. Loading with zero
2001 	 * sets it up for regular linear addressing.
2002 	 */
2003 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2004 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2005 
2006 	fxp_scb_wait(sc);
2007 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2008 
2009 	/*
2010 	 * Initialize base of dump-stats buffer.
2011 	 */
2012 	fxp_scb_wait(sc);
2013 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
2014 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2015 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2016 
2017 	/*
2018 	 * Attempt to load microcode if requested.
2019 	 */
2020 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
2021 		fxp_load_ucode(sc);
2022 
2023 	/*
2024 	 * Initialize the multicast address list.
2025 	 */
2026 	if (fxp_mc_addrs(sc)) {
2027 		mcsp = sc->mcsp;
2028 		mcsp->cb_status = 0;
2029 		mcsp->cb_command =
2030 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2031 		mcsp->link_addr = 0xffffffff;
2032 		/*
2033 	 	 * Start the multicast setup command.
2034 		 */
2035 		fxp_scb_wait(sc);
2036 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2037 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2038 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2039 		/* ...and wait for it to complete. */
2040 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2041 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2042 		    BUS_DMASYNC_POSTWRITE);
2043 	}
2044 
2045 	/*
2046 	 * We temporarily use memory that contains the TxCB list to
2047 	 * construct the config CB. The TxCB list memory is rebuilt
2048 	 * later.
2049 	 */
2050 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2051 
2052 	/*
2053 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2054 	 * zero and must be one bits in this structure and this is the easiest
2055 	 * way to initialize them all to proper values.
2056 	 */
2057 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2058 
2059 	cbp->cb_status =	0;
2060 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2061 	    FXP_CB_COMMAND_EL);
2062 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2063 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2064 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2065 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2066 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2067 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2068 	cbp->type_enable =	0;	/* actually reserved */
2069 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2070 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2071 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2072 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2073 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2074 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2075 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2076 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2077 	cbp->ci_int =		1;	/* interrupt on CU idle */
2078 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2079 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2080 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2081 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
2082 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2083 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2084 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2085 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2086 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2087 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2088 	cbp->csma_dis =		0;	/* (don't) disable link */
2089 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2090 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2091 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2092 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2093 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2094 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2095 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2096 	cbp->loopback =		0;	/* (don't) loopback */
2097 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2098 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2099 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2100 	cbp->promiscuous =	prm;	/* promiscuous mode */
2101 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2102 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2103 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2104 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2105 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2106 
2107 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2108 	cbp->padding =		1;	/* (do) pad short tx packets */
2109 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2110 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2111 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2112 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2113 					/* must set wake_en in PMCSR also */
2114 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2115 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2116 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2117 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2118 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2119 
2120 	if (fxp_noflow || sc->revision == FXP_REV_82557) {
2121 		/*
2122 		 * The 82557 has no hardware flow control, the values
2123 		 * below are the defaults for the chip.
2124 		 */
2125 		cbp->fc_delay_lsb =	0;
2126 		cbp->fc_delay_msb =	0x40;
2127 		cbp->pri_fc_thresh =	3;
2128 		cbp->tx_fc_dis =	0;
2129 		cbp->rx_fc_restop =	0;
2130 		cbp->rx_fc_restart =	0;
2131 		cbp->fc_filter =	0;
2132 		cbp->pri_fc_loc =	1;
2133 	} else {
2134 		cbp->fc_delay_lsb =	0x1f;
2135 		cbp->fc_delay_msb =	0x01;
2136 		cbp->pri_fc_thresh =	3;
2137 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2138 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2139 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2140 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2141 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2142 	}
2143 
2144 	/*
2145 	 * Start the config command/DMA.
2146 	 */
2147 	fxp_scb_wait(sc);
2148 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2149 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2150 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2151 	/* ...and wait for it to complete. */
2152 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2153 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2154 
2155 	/*
2156 	 * Now initialize the station address. Temporarily use the TxCB
2157 	 * memory area like we did above for the config CB.
2158 	 */
2159 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2160 	cb_ias->cb_status = 0;
2161 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2162 	cb_ias->link_addr = 0xffffffff;
2163 	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2164 	    sizeof(sc->arpcom.ac_enaddr));
2165 
2166 	/*
2167 	 * Start the IAS (Individual Address Setup) command/DMA.
2168 	 */
2169 	fxp_scb_wait(sc);
2170 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2171 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2172 	/* ...and wait for it to complete. */
2173 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2174 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2175 
2176 	/*
2177 	 * Initialize transmit control block (TxCB) list.
2178 	 */
2179 	txp = sc->fxp_desc.tx_list;
2180 	tcbp = sc->fxp_desc.cbl_list;
2181 	bzero(tcbp, FXP_TXCB_SZ);
2182 	for (i = 0; i < FXP_NTXCB; i++) {
2183 		txp[i].tx_cb = tcbp + i;
2184 		txp[i].tx_mbuf = NULL;
2185 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2186 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2187 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2188 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2189 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2190 			tcbp[i].tbd_array_addr =
2191 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2192 		else
2193 			tcbp[i].tbd_array_addr =
2194 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2195 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2196 	}
2197 	/*
2198 	 * Set the suspend flag on the first TxCB and start the control
2199 	 * unit. It will execute the NOP and then suspend.
2200 	 */
2201 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2202 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2203 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2204 	sc->tx_queued = 1;
2205 
2206 	fxp_scb_wait(sc);
2207 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2208 
2209 	/*
2210 	 * Initialize receiver buffer area - RFA.
2211 	 */
2212 	fxp_scb_wait(sc);
2213 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2214 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2215 
2216 	/*
2217 	 * Set current media.
2218 	 */
2219 	if (sc->miibus != NULL)
2220 		mii_mediachg(device_get_softc(sc->miibus));
2221 
2222 	ifp->if_flags |= IFF_RUNNING;
2223 	ifp->if_flags &= ~IFF_OACTIVE;
2224 
2225 	/*
2226 	 * Enable interrupts.
2227 	 */
2228 #ifdef DEVICE_POLLING
2229 	/*
2230 	 * ... but only do that if we are not polling. And because (presumably)
2231 	 * the default is interrupts on, we need to disable them explicitly!
2232 	 */
2233 	if ( ifp->if_flags & IFF_POLLING )
2234 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2235 	else
2236 #endif /* DEVICE_POLLING */
2237 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2238 
2239 	/*
2240 	 * Start stats updater.
2241 	 */
2242 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2243 	splx(s);
2244 }
2245 
2246 static int
2247 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2248 {
2249 
2250 	return (0);
2251 }
2252 
2253 static void
2254 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2255 {
2256 
2257 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2258 }
2259 
2260 /*
2261  * Change media according to request.
2262  */
2263 static int
2264 fxp_ifmedia_upd(struct ifnet *ifp)
2265 {
2266 	struct fxp_softc *sc = ifp->if_softc;
2267 	struct mii_data *mii;
2268 
2269 	mii = device_get_softc(sc->miibus);
2270 	mii_mediachg(mii);
2271 	return (0);
2272 }
2273 
2274 /*
2275  * Notify the world which media we're using.
2276  */
2277 static void
2278 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2279 {
2280 	struct fxp_softc *sc = ifp->if_softc;
2281 	struct mii_data *mii;
2282 
2283 	mii = device_get_softc(sc->miibus);
2284 	mii_pollstat(mii);
2285 	ifmr->ifm_active = mii->mii_media_active;
2286 	ifmr->ifm_status = mii->mii_media_status;
2287 
2288 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2289 		sc->cu_resume_bug = 1;
2290 	else
2291 		sc->cu_resume_bug = 0;
2292 }
2293 
2294 /*
2295  * Add a buffer to the end of the RFA buffer list.
2296  * Return 0 if successful, 1 for failure. A failure results in
2297  * adding the 'oldm' (if non-NULL) on to the end of the list -
2298  * tossing out its old contents and recycling it.
2299  * The RFA struct is stuck at the beginning of mbuf cluster and the
2300  * data pointer is fixed up to point just past it.
2301  */
2302 static int
2303 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2304 {
2305 	struct mbuf *m;
2306 	struct fxp_rfa *rfa, *p_rfa;
2307 	struct fxp_rx *p_rx;
2308 	bus_dmamap_t tmp_map;
2309 	int error;
2310 
2311 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2312 	if (m == NULL)
2313 		return (ENOBUFS);
2314 
2315 	/*
2316 	 * Move the data pointer up so that the incoming data packet
2317 	 * will be 32-bit aligned.
2318 	 */
2319 	m->m_data += RFA_ALIGNMENT_FUDGE;
2320 
2321 	/*
2322 	 * Get a pointer to the base of the mbuf cluster and move
2323 	 * data start past it.
2324 	 */
2325 	rfa = mtod(m, struct fxp_rfa *);
2326 	m->m_data += sc->rfa_size;
2327 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2328 
2329 	rfa->rfa_status = 0;
2330 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2331 	rfa->actual_size = 0;
2332 
2333 	/*
2334 	 * Initialize the rest of the RFA.  Note that since the RFA
2335 	 * is misaligned, we cannot store values directly.  We're thus
2336 	 * using the le32enc() function which handles endianness and
2337 	 * is also alignment-safe.
2338 	 */
2339 	le32enc(&rfa->link_addr, 0xffffffff);
2340 	le32enc(&rfa->rbd_addr, 0xffffffff);
2341 
2342 	/* Map the RFA into DMA memory. */
2343 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2344 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2345 	    &rxp->rx_addr, 0);
2346 	if (error) {
2347 		m_freem(m);
2348 		return (error);
2349 	}
2350 
2351 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2352 	tmp_map = sc->spare_map;
2353 	sc->spare_map = rxp->rx_map;
2354 	rxp->rx_map = tmp_map;
2355 	rxp->rx_mbuf = m;
2356 
2357 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2358 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2359 
2360 	/*
2361 	 * If there are other buffers already on the list, attach this
2362 	 * one to the end by fixing up the tail to point to this one.
2363 	 */
2364 	if (sc->fxp_desc.rx_head != NULL) {
2365 		p_rx = sc->fxp_desc.rx_tail;
2366 		p_rfa = (struct fxp_rfa *)
2367 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2368 		p_rx->rx_next = rxp;
2369 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2370 		p_rfa->rfa_control = 0;
2371 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2372 		    BUS_DMASYNC_PREWRITE);
2373 	} else {
2374 		rxp->rx_next = NULL;
2375 		sc->fxp_desc.rx_head = rxp;
2376 	}
2377 	sc->fxp_desc.rx_tail = rxp;
2378 	return (0);
2379 }
2380 
2381 static volatile int
2382 fxp_miibus_readreg(device_t dev, int phy, int reg)
2383 {
2384 	struct fxp_softc *sc = device_get_softc(dev);
2385 	int count = 10000;
2386 	int value;
2387 
2388 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2389 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2390 
2391 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2392 	    && count--)
2393 		DELAY(10);
2394 
2395 	if (count <= 0)
2396 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2397 
2398 	return (value & 0xffff);
2399 }
2400 
2401 static void
2402 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2403 {
2404 	struct fxp_softc *sc = device_get_softc(dev);
2405 	int count = 10000;
2406 
2407 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2408 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2409 	    (value & 0xffff));
2410 
2411 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2412 	    count--)
2413 		DELAY(10);
2414 
2415 	if (count <= 0)
2416 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2417 }
2418 
2419 static int
2420 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2421 {
2422 	struct fxp_softc *sc = ifp->if_softc;
2423 	struct ifreq *ifr = (struct ifreq *)data;
2424 	struct mii_data *mii;
2425 	int s, error = 0;
2426 
2427 	/*
2428 	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2429 	 * that by saying we're busy if the lock is already held.
2430 	 */
2431 	if (mtx_owned(&sc->sc_mtx))
2432 		return (EBUSY);
2433 
2434 	FXP_LOCK(sc);
2435 	s = splimp();
2436 
2437 	switch (command) {
2438 	case SIOCSIFFLAGS:
2439 		if (ifp->if_flags & IFF_ALLMULTI)
2440 			sc->flags |= FXP_FLAG_ALL_MCAST;
2441 		else
2442 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2443 
2444 		/*
2445 		 * If interface is marked up and not running, then start it.
2446 		 * If it is marked down and running, stop it.
2447 		 * XXX If it's up then re-initialize it. This is so flags
2448 		 * such as IFF_PROMISC are handled.
2449 		 */
2450 		if (ifp->if_flags & IFF_UP) {
2451 			fxp_init_body(sc);
2452 		} else {
2453 			if (ifp->if_flags & IFF_RUNNING)
2454 				fxp_stop(sc);
2455 		}
2456 		break;
2457 
2458 	case SIOCADDMULTI:
2459 	case SIOCDELMULTI:
2460 		if (ifp->if_flags & IFF_ALLMULTI)
2461 			sc->flags |= FXP_FLAG_ALL_MCAST;
2462 		else
2463 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2464 		/*
2465 		 * Multicast list has changed; set the hardware filter
2466 		 * accordingly.
2467 		 */
2468 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2469 			fxp_mc_setup(sc);
2470 		/*
2471 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2472 		 * again rather than else {}.
2473 		 */
2474 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2475 			fxp_init_body(sc);
2476 		error = 0;
2477 		break;
2478 
2479 	case SIOCSIFMEDIA:
2480 	case SIOCGIFMEDIA:
2481 		if (sc->miibus != NULL) {
2482 			mii = device_get_softc(sc->miibus);
2483                         error = ifmedia_ioctl(ifp, ifr,
2484                             &mii->mii_media, command);
2485 		} else {
2486                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2487 		}
2488 		break;
2489 
2490 	default:
2491 		/*
2492 		 * ether_ioctl() will eventually call fxp_start() which
2493 		 * will result in mutex recursion so drop it first.
2494 		 */
2495 		FXP_UNLOCK(sc);
2496 		error = ether_ioctl(ifp, command, data);
2497 	}
2498 	if (mtx_owned(&sc->sc_mtx))
2499 		FXP_UNLOCK(sc);
2500 	splx(s);
2501 	return (error);
2502 }
2503 
2504 /*
2505  * Fill in the multicast address list and return number of entries.
2506  */
2507 static int
2508 fxp_mc_addrs(struct fxp_softc *sc)
2509 {
2510 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2511 	struct ifnet *ifp = &sc->sc_if;
2512 	struct ifmultiaddr *ifma;
2513 	int nmcasts;
2514 
2515 	nmcasts = 0;
2516 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2517 #if __FreeBSD_version < 500000
2518 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2519 #else
2520 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2521 #endif
2522 			if (ifma->ifma_addr->sa_family != AF_LINK)
2523 				continue;
2524 			if (nmcasts >= MAXMCADDR) {
2525 				sc->flags |= FXP_FLAG_ALL_MCAST;
2526 				nmcasts = 0;
2527 				break;
2528 			}
2529 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2530 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2531 			nmcasts++;
2532 		}
2533 	}
2534 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2535 	return (nmcasts);
2536 }
2537 
2538 /*
2539  * Program the multicast filter.
2540  *
2541  * We have an artificial restriction that the multicast setup command
2542  * must be the first command in the chain, so we take steps to ensure
2543  * this. By requiring this, it allows us to keep up the performance of
2544  * the pre-initialized command ring (esp. link pointers) by not actually
2545  * inserting the mcsetup command in the ring - i.e. its link pointer
2546  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2547  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2548  * lead into the regular TxCB ring when it completes.
2549  *
2550  * This function must be called at splimp.
2551  */
2552 static void
2553 fxp_mc_setup(struct fxp_softc *sc)
2554 {
2555 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2556 	struct ifnet *ifp = &sc->sc_if;
2557 	struct fxp_tx *txp;
2558 	int count;
2559 
2560 	/*
2561 	 * If there are queued commands, we must wait until they are all
2562 	 * completed. If we are already waiting, then add a NOP command
2563 	 * with interrupt option so that we're notified when all commands
2564 	 * have been completed - fxp_start() ensures that no additional
2565 	 * TX commands will be added when need_mcsetup is true.
2566 	 */
2567 	if (sc->tx_queued) {
2568 		/*
2569 		 * need_mcsetup will be true if we are already waiting for the
2570 		 * NOP command to be completed (see below). In this case, bail.
2571 		 */
2572 		if (sc->need_mcsetup)
2573 			return;
2574 		sc->need_mcsetup = 1;
2575 
2576 		/*
2577 		 * Add a NOP command with interrupt so that we are notified
2578 		 * when all TX commands have been processed.
2579 		 */
2580 		txp = sc->fxp_desc.tx_last->tx_next;
2581 		txp->tx_mbuf = NULL;
2582 		txp->tx_cb->cb_status = 0;
2583 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2584 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2585 		/*
2586 		 * Advance the end of list forward.
2587 		 */
2588 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2589 		    htole16(~FXP_CB_COMMAND_S);
2590 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2591 		sc->fxp_desc.tx_last = txp;
2592 		sc->tx_queued++;
2593 		/*
2594 		 * Issue a resume in case the CU has just suspended.
2595 		 */
2596 		fxp_scb_wait(sc);
2597 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2598 		/*
2599 		 * Set a 5 second timer just in case we don't hear from the
2600 		 * card again.
2601 		 */
2602 		ifp->if_timer = 5;
2603 
2604 		return;
2605 	}
2606 	sc->need_mcsetup = 0;
2607 
2608 	/*
2609 	 * Initialize multicast setup descriptor.
2610 	 */
2611 	mcsp->cb_status = 0;
2612 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2613 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2614 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2615 	txp = &sc->fxp_desc.mcs_tx;
2616 	txp->tx_mbuf = NULL;
2617 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2618 	txp->tx_next = sc->fxp_desc.tx_list;
2619 	(void) fxp_mc_addrs(sc);
2620 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2621 	sc->tx_queued = 1;
2622 
2623 	/*
2624 	 * Wait until command unit is not active. This should never
2625 	 * be the case when nothing is queued, but make sure anyway.
2626 	 */
2627 	count = 100;
2628 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2629 	    FXP_SCB_CUS_ACTIVE && --count)
2630 		DELAY(10);
2631 	if (count == 0) {
2632 		device_printf(sc->dev, "command queue timeout\n");
2633 		return;
2634 	}
2635 
2636 	/*
2637 	 * Start the multicast setup command.
2638 	 */
2639 	fxp_scb_wait(sc);
2640 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2641 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2642 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2643 
2644 	ifp->if_timer = 2;
2645 	return;
2646 }
2647 
2648 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2649 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2650 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2651 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2652 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2653 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2654 
2655 #define UCODE(x)	x, sizeof(x)
2656 
2657 struct ucode {
2658 	u_int32_t	revision;
2659 	u_int32_t	*ucode;
2660 	int		length;
2661 	u_short		int_delay_offset;
2662 	u_short		bundle_max_offset;
2663 } ucode_table[] = {
2664 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2665 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2666 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2667 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2668 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2669 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2670 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2671 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2672 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2673 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2674 	{ 0, NULL, 0, 0, 0 }
2675 };
2676 
2677 static void
2678 fxp_load_ucode(struct fxp_softc *sc)
2679 {
2680 	struct ucode *uc;
2681 	struct fxp_cb_ucode *cbp;
2682 
2683 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2684 		if (sc->revision == uc->revision)
2685 			break;
2686 	if (uc->ucode == NULL)
2687 		return;
2688 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2689 	cbp->cb_status = 0;
2690 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2691 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2692 	memcpy(cbp->ucode, uc->ucode, uc->length);
2693 	if (uc->int_delay_offset)
2694 		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2695 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2696 	if (uc->bundle_max_offset)
2697 		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2698 		    htole16(sc->tunable_bundle_max);
2699 	/*
2700 	 * Download the ucode to the chip.
2701 	 */
2702 	fxp_scb_wait(sc);
2703 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2704 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2705 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2706 	/* ...and wait for it to complete. */
2707 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2708 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2709 	device_printf(sc->dev,
2710 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2711 	    sc->tunable_int_delay,
2712 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2713 	sc->flags |= FXP_FLAG_UCODE;
2714 }
2715 
2716 static int
2717 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2718 {
2719 	int error, value;
2720 
2721 	value = *(int *)arg1;
2722 	error = sysctl_handle_int(oidp, &value, 0, req);
2723 	if (error || !req->newptr)
2724 		return (error);
2725 	if (value < low || value > high)
2726 		return (EINVAL);
2727 	*(int *)arg1 = value;
2728 	return (0);
2729 }
2730 
2731 /*
2732  * Interrupt delay is expressed in microseconds, a multiplier is used
2733  * to convert this to the appropriate clock ticks before using.
2734  */
2735 static int
2736 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2737 {
2738 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2739 }
2740 
2741 static int
2742 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2743 {
2744 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2745 }
2746