xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 6af83ee0d2941d18880b6aaa2b4facd1d30c6106)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/endian.h>
40 #include <sys/mbuf.h>
41 		/* #include <sys/mutex.h> */
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sysctl.h>
46 
47 #include <net/if.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 
51 #include <net/bpf.h>
52 #include <sys/sockio.h>
53 #include <sys/bus.h>
54 #include <machine/bus.h>
55 #include <sys/rman.h>
56 #include <machine/resource.h>
57 
58 #include <net/ethernet.h>
59 #include <net/if_arp.h>
60 
61 #include <machine/clock.h>	/* for DELAY */
62 
63 #include <net/if_types.h>
64 #include <net/if_vlan_var.h>
65 
66 #ifdef FXP_IP_CSUM_WAR
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <machine/in_cksum.h>
71 #endif
72 
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75 
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 
79 #include <dev/fxp/if_fxpreg.h>
80 #include <dev/fxp/if_fxpvar.h>
81 #include <dev/fxp/rcvbundl.h>
82 
83 MODULE_DEPEND(fxp, pci, 1, 1, 1);
84 MODULE_DEPEND(fxp, ether, 1, 1, 1);
85 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86 #include "miibus_if.h"
87 
88 /*
89  * NOTE!  On the Alpha, we have an alignment constraint.  The
90  * card DMAs the packet immediately following the RFA.  However,
91  * the first thing in the packet is a 14-byte Ethernet header.
92  * This means that the packet is misaligned.  To compensate,
93  * we actually offset the RFA 2 bytes into the cluster.  This
94  * alignes the packet after the Ethernet header at a 32-bit
95  * boundary.  HOWEVER!  This means that the RFA is misaligned!
96  */
97 #define	RFA_ALIGNMENT_FUDGE	2
98 
99 /*
100  * Set initial transmit threshold at 64 (512 bytes). This is
101  * increased by 64 (512 bytes) at a time, to maximum of 192
102  * (1536 bytes), if an underrun occurs.
103  */
104 static int tx_threshold = 64;
105 
106 /*
107  * The configuration byte map has several undefined fields which
108  * must be one or must be zero.  Set up a template for these bits
109  * only, (assuming a 82557 chip) leaving the actual configuration
110  * to fxp_init.
111  *
112  * See struct fxp_cb_config for the bit definitions.
113  */
114 static u_char fxp_cb_config_template[] = {
115 	0x0, 0x0,		/* cb_status */
116 	0x0, 0x0,		/* cb_command */
117 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118 	0x0,	/*  0 */
119 	0x0,	/*  1 */
120 	0x0,	/*  2 */
121 	0x0,	/*  3 */
122 	0x0,	/*  4 */
123 	0x0,	/*  5 */
124 	0x32,	/*  6 */
125 	0x0,	/*  7 */
126 	0x0,	/*  8 */
127 	0x0,	/*  9 */
128 	0x6,	/* 10 */
129 	0x0,	/* 11 */
130 	0x0,	/* 12 */
131 	0x0,	/* 13 */
132 	0xf2,	/* 14 */
133 	0x48,	/* 15 */
134 	0x0,	/* 16 */
135 	0x40,	/* 17 */
136 	0xf0,	/* 18 */
137 	0x0,	/* 19 */
138 	0x3f,	/* 20 */
139 	0x5	/* 21 */
140 };
141 
142 struct fxp_ident {
143 	u_int16_t	devid;
144 	int16_t		revid;		/* -1 matches anything */
145 	char 		*name;
146 };
147 
148 /*
149  * Claim various Intel PCI device identifiers for this driver.  The
150  * sub-vendor and sub-device field are extensively used to identify
151  * particular variants, but we don't currently differentiate between
152  * them.
153  */
154 static struct fxp_ident fxp_ident_table[] = {
155     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172     { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174     { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
175     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
176     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
177     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
178     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
179     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
180     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
181     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
182     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
183     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
184     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
185     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
186     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
187     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
188     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
189     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
190     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
191     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
192     { 0,	-1,	NULL },
193 };
194 
195 #ifdef FXP_IP_CSUM_WAR
196 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
197 #else
198 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
199 #endif
200 
201 static int		fxp_probe(device_t dev);
202 static int		fxp_attach(device_t dev);
203 static int		fxp_detach(device_t dev);
204 static int		fxp_shutdown(device_t dev);
205 static int		fxp_suspend(device_t dev);
206 static int		fxp_resume(device_t dev);
207 
208 static void		fxp_intr(void *xsc);
209 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
210 			    u_int8_t statack, int count);
211 static void 		fxp_init(void *xsc);
212 static void 		fxp_init_body(struct fxp_softc *sc);
213 static void 		fxp_tick(void *xsc);
214 static void 		fxp_start(struct ifnet *ifp);
215 static void 		fxp_start_body(struct ifnet *ifp);
216 static void		fxp_stop(struct fxp_softc *sc);
217 static void 		fxp_release(struct fxp_softc *sc);
218 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
219 			    caddr_t data);
220 static void 		fxp_watchdog(struct ifnet *ifp);
221 static int		fxp_add_rfabuf(struct fxp_softc *sc,
222     			    struct fxp_rx *rxp);
223 static int		fxp_mc_addrs(struct fxp_softc *sc);
224 static void		fxp_mc_setup(struct fxp_softc *sc);
225 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
226 			    int autosize);
227 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
228 			    u_int16_t data);
229 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
230 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
231 			    int offset, int words);
232 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
233 			    int offset, int words);
234 static int		fxp_ifmedia_upd(struct ifnet *ifp);
235 static void		fxp_ifmedia_sts(struct ifnet *ifp,
236 			    struct ifmediareq *ifmr);
237 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
238 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
239 			    struct ifmediareq *ifmr);
240 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
241 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
242 			    int value);
243 static void		fxp_load_ucode(struct fxp_softc *sc);
244 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
245 			    int low, int high);
246 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
247 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
248 static void 		fxp_scb_wait(struct fxp_softc *sc);
249 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
250 static void		fxp_dma_wait(struct fxp_softc *sc,
251     			    volatile u_int16_t *status, bus_dma_tag_t dmat,
252 			    bus_dmamap_t map);
253 
254 static device_method_t fxp_methods[] = {
255 	/* Device interface */
256 	DEVMETHOD(device_probe,		fxp_probe),
257 	DEVMETHOD(device_attach,	fxp_attach),
258 	DEVMETHOD(device_detach,	fxp_detach),
259 	DEVMETHOD(device_shutdown,	fxp_shutdown),
260 	DEVMETHOD(device_suspend,	fxp_suspend),
261 	DEVMETHOD(device_resume,	fxp_resume),
262 
263 	/* MII interface */
264 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
265 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
266 
267 	{ 0, 0 }
268 };
269 
270 static driver_t fxp_driver = {
271 	"fxp",
272 	fxp_methods,
273 	sizeof(struct fxp_softc),
274 };
275 
276 static devclass_t fxp_devclass;
277 
278 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
279 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
280 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
281 
282 /*
283  * Wait for the previous command to be accepted (but not necessarily
284  * completed).
285  */
286 static void
287 fxp_scb_wait(struct fxp_softc *sc)
288 {
289 	int i = 10000;
290 
291 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
292 		DELAY(2);
293 	if (i == 0)
294 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
295 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
296 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
297 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
298 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
299 }
300 
301 static void
302 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
303 {
304 
305 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
306 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
307 		fxp_scb_wait(sc);
308 	}
309 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
310 }
311 
312 static void
313 fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
314     bus_dma_tag_t dmat, bus_dmamap_t map)
315 {
316 	int i = 10000;
317 
318 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
319 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
320 		DELAY(2);
321 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
322 	}
323 	if (i == 0)
324 		device_printf(sc->dev, "DMA timeout\n");
325 }
326 
327 /*
328  * Return identification string if this device is ours.
329  */
330 static int
331 fxp_probe(device_t dev)
332 {
333 	u_int16_t devid;
334 	u_int8_t revid;
335 	struct fxp_ident *ident;
336 
337 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
338 		devid = pci_get_device(dev);
339 		revid = pci_get_revid(dev);
340 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
341 			if (ident->devid == devid &&
342 			    (ident->revid == revid || ident->revid == -1)) {
343 				device_set_desc(dev, ident->name);
344 				return (0);
345 			}
346 		}
347 	}
348 	return (ENXIO);
349 }
350 
351 static void
352 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
353 {
354 	u_int32_t *addr;
355 
356 	if (error)
357 		return;
358 
359 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
360 	addr = arg;
361 	*addr = segs->ds_addr;
362 }
363 
364 static int
365 fxp_attach(device_t dev)
366 {
367 	int error = 0;
368 	struct fxp_softc *sc = device_get_softc(dev);
369 	struct ifnet *ifp;
370 	struct fxp_rx *rxp;
371 	u_int32_t val;
372 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
373 	int i, rid, m1, m2, prefer_iomap, maxtxseg;
374 	int s;
375 
376 	sc->dev = dev;
377 	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
378 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
379 	    MTX_DEF);
380 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
381 	    fxp_serial_ifmedia_sts);
382 
383 	s = splimp();
384 
385 	/*
386 	 * Enable bus mastering.
387 	 */
388 	pci_enable_busmaster(dev);
389 	val = pci_read_config(dev, PCIR_COMMAND, 2);
390 
391 	/*
392 	 * Figure out which we should try first - memory mapping or i/o mapping?
393 	 * We default to memory mapping. Then we accept an override from the
394 	 * command line. Then we check to see which one is enabled.
395 	 */
396 	m1 = PCIM_CMD_MEMEN;
397 	m2 = PCIM_CMD_PORTEN;
398 	prefer_iomap = 0;
399 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
400 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
401 		m1 = PCIM_CMD_PORTEN;
402 		m2 = PCIM_CMD_MEMEN;
403 	}
404 
405 	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
406 	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
407 	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
408 	if (sc->mem == NULL) {
409 		sc->rtp =
410 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
411 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
412 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
413                                             RF_ACTIVE);
414 	}
415 
416 	if (!sc->mem) {
417 		error = ENXIO;
418 		goto fail;
419         }
420 	if (bootverbose) {
421 		device_printf(dev, "using %s space register mapping\n",
422 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
423 	}
424 
425 	sc->sc_st = rman_get_bustag(sc->mem);
426 	sc->sc_sh = rman_get_bushandle(sc->mem);
427 
428 	/*
429 	 * Allocate our interrupt.
430 	 */
431 	rid = 0;
432 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
433 				 RF_SHAREABLE | RF_ACTIVE);
434 	if (sc->irq == NULL) {
435 		device_printf(dev, "could not map interrupt\n");
436 		error = ENXIO;
437 		goto fail;
438 	}
439 
440 	/*
441 	 * Reset to a stable state.
442 	 */
443 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
444 	DELAY(10);
445 
446 	/*
447 	 * Find out how large of an SEEPROM we have.
448 	 */
449 	fxp_autosize_eeprom(sc);
450 
451 	/*
452 	 * Determine whether we must use the 503 serial interface.
453 	 */
454 	fxp_read_eeprom(sc, &data, 6, 1);
455 	if (sc->revision <= FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
456 	    && (data & FXP_PHY_SERIAL_ONLY))
457 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
458 
459 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
460 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
461 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
462 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
463 	    "FXP driver receive interrupt microcode bundling delay");
464 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
465 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
466 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
467 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
468 	    "FXP driver receive interrupt microcode bundle size limit");
469 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
470 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
471 	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
472 	    "FXP RNR events");
473 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
474 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
475 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
476 	    "FXP flow control disabled");
477 
478 	/*
479 	 * Pull in device tunables.
480 	 */
481 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
482 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
483 	sc->tunable_noflow = 1;
484 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
485 	    "int_delay", &sc->tunable_int_delay);
486 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
487 	    "bundle_max", &sc->tunable_bundle_max);
488 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
489 	    "noflow", &sc->tunable_noflow);
490 	sc->rnr = 0;
491 
492 	/*
493 	 * Find out the chip revision; lump all 82557 revs together.
494 	 */
495 	fxp_read_eeprom(sc, &data, 5, 1);
496 	if ((data >> 8) == 1)
497 		sc->revision = FXP_REV_82557;
498 	else
499 		sc->revision = pci_get_revid(dev);
500 
501 	/*
502 	 * Enable workarounds for certain chip revision deficiencies.
503 	 *
504 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
505 	 * some systems based a normal 82559 design, have a defect where
506 	 * the chip can cause a PCI protocol violation if it receives
507 	 * a CU_RESUME command when it is entering the IDLE state.  The
508 	 * workaround is to disable Dynamic Standby Mode, so the chip never
509 	 * deasserts CLKRUN#, and always remains in an active state.
510 	 *
511 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
512 	 */
513 	i = pci_get_device(dev);
514 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
515 	    sc->revision >= FXP_REV_82559_A0) {
516 		fxp_read_eeprom(sc, &data, 10, 1);
517 		if (data & 0x02) {			/* STB enable */
518 			u_int16_t cksum;
519 			int i;
520 
521 			device_printf(dev,
522 			    "Disabling dynamic standby mode in EEPROM\n");
523 			data &= ~0x02;
524 			fxp_write_eeprom(sc, &data, 10, 1);
525 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
526 			cksum = 0;
527 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
528 				fxp_read_eeprom(sc, &data, i, 1);
529 				cksum += data;
530 			}
531 			i = (1 << sc->eeprom_size) - 1;
532 			cksum = 0xBABA - cksum;
533 			fxp_read_eeprom(sc, &data, i, 1);
534 			fxp_write_eeprom(sc, &cksum, i, 1);
535 			device_printf(dev,
536 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
537 			    i, data, cksum);
538 #if 1
539 			/*
540 			 * If the user elects to continue, try the software
541 			 * workaround, as it is better than nothing.
542 			 */
543 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
544 #endif
545 		}
546 	}
547 
548 	/*
549 	 * If we are not a 82557 chip, we can enable extended features.
550 	 */
551 	if (sc->revision != FXP_REV_82557) {
552 		/*
553 		 * If MWI is enabled in the PCI configuration, and there
554 		 * is a valid cacheline size (8 or 16 dwords), then tell
555 		 * the board to turn on MWI.
556 		 */
557 		if (val & PCIM_CMD_MWRICEN &&
558 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
559 			sc->flags |= FXP_FLAG_MWI_ENABLE;
560 
561 		/* turn on the extended TxCB feature */
562 		sc->flags |= FXP_FLAG_EXT_TXCB;
563 
564 		/* enable reception of long frames for VLAN */
565 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
566 	} else {
567 		/* a hack to get long VLAN frames on a 82557 */
568 		sc->flags |= FXP_FLAG_SAVE_BAD;
569 	}
570 
571 	/*
572 	 * Enable use of extended RFDs and TCBs for 82550
573 	 * and later chips. Note: we need extended TXCB support
574 	 * too, but that's already enabled by the code above.
575 	 * Be careful to do this only on the right devices.
576 	 */
577 
578 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C) {
579 		sc->rfa_size = sizeof (struct fxp_rfa);
580 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
581 		sc->flags |= FXP_FLAG_EXT_RFA;
582 	} else {
583 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
584 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
585 	}
586 
587 	/*
588 	 * Allocate DMA tags and DMA safe memory.
589 	 */
590 	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
591 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
592 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
593 	    maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->fxp_mtag);
594 	if (error) {
595 		device_printf(dev, "could not allocate dma tag\n");
596 		goto fail;
597 	}
598 
599 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
600 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
601 	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
602 	    &sc->fxp_stag);
603 	if (error) {
604 		device_printf(dev, "could not allocate dma tag\n");
605 		goto fail;
606 	}
607 
608 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
609 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
610 	if (error)
611 		goto fail;
612 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
613 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
614 	if (error) {
615 		device_printf(dev, "could not map the stats buffer\n");
616 		goto fail;
617 	}
618 
619 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
620 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
621 	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
622 	if (error) {
623 		device_printf(dev, "could not allocate dma tag\n");
624 		goto fail;
625 	}
626 
627 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
628 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
629 	if (error)
630 		goto fail;
631 
632 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
633 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
634 	    &sc->fxp_desc.cbl_addr, 0);
635 	if (error) {
636 		device_printf(dev, "could not map DMA memory\n");
637 		goto fail;
638 	}
639 
640 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
641 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
642 	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
643 	    &sc->mcs_tag);
644 	if (error) {
645 		device_printf(dev, "could not allocate dma tag\n");
646 		goto fail;
647 	}
648 
649 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
650 	    BUS_DMA_NOWAIT, &sc->mcs_map);
651 	if (error)
652 		goto fail;
653 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
654 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
655 	if (error) {
656 		device_printf(dev, "can't map the multicast setup command\n");
657 		goto fail;
658 	}
659 
660 	/*
661 	 * Pre-allocate the TX DMA maps.
662 	 */
663 	for (i = 0; i < FXP_NTXCB; i++) {
664 		error = bus_dmamap_create(sc->fxp_mtag, 0,
665 		    &sc->fxp_desc.tx_list[i].tx_map);
666 		if (error) {
667 			device_printf(dev, "can't create DMA map for TX\n");
668 			goto fail;
669 		}
670 	}
671 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
672 	if (error) {
673 		device_printf(dev, "can't create spare DMA map\n");
674 		goto fail;
675 	}
676 
677 	/*
678 	 * Pre-allocate our receive buffers.
679 	 */
680 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
681 	for (i = 0; i < FXP_NRFABUFS; i++) {
682 		rxp = &sc->fxp_desc.rx_list[i];
683 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
684 		if (error) {
685 			device_printf(dev, "can't create DMA map for RX\n");
686 			goto fail;
687 		}
688 		if (fxp_add_rfabuf(sc, rxp) != 0) {
689 			error = ENOMEM;
690 			goto fail;
691 		}
692 	}
693 
694 	/*
695 	 * Read MAC address.
696 	 */
697 	fxp_read_eeprom(sc, myea, 0, 3);
698 	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
699 	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
700 	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
701 	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
702 	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
703 	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
704 	if (bootverbose) {
705 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
706 		    pci_get_vendor(dev), pci_get_device(dev),
707 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
708 		    pci_get_revid(dev));
709 		fxp_read_eeprom(sc, &data, 10, 1);
710 		device_printf(dev, "Dynamic Standby mode is %s\n",
711 		    data & 0x02 ? "enabled" : "disabled");
712 	}
713 
714 	/*
715 	 * If this is only a 10Mbps device, then there is no MII, and
716 	 * the PHY will use a serial interface instead.
717 	 *
718 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
719 	 * doesn't have a programming interface of any sort.  The
720 	 * media is sensed automatically based on how the link partner
721 	 * is configured.  This is, in essence, manual configuration.
722 	 */
723 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
724 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
725 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
726 	} else {
727 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
728 		    fxp_ifmedia_sts)) {
729 	                device_printf(dev, "MII without any PHY!\n");
730 			error = ENXIO;
731 			goto fail;
732 		}
733 	}
734 
735 	ifp = &sc->arpcom.ac_if;
736 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
737 	ifp->if_baudrate = 100000000;
738 	ifp->if_init = fxp_init;
739 	ifp->if_softc = sc;
740 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
741 	ifp->if_ioctl = fxp_ioctl;
742 	ifp->if_start = fxp_start;
743 	ifp->if_watchdog = fxp_watchdog;
744 
745 	ifp->if_capabilities = ifp->if_capenable = 0;
746 
747 	/* Enable checksum offload for 82550 or better chips */
748 	if (sc->flags & FXP_FLAG_EXT_RFA) {
749 		ifp->if_hwassist = FXP_CSUM_FEATURES;
750 		ifp->if_capabilities |= IFCAP_HWCSUM;
751 		ifp->if_capenable |= IFCAP_HWCSUM;
752 	}
753 
754 #ifdef DEVICE_POLLING
755 	/* Inform the world we support polling. */
756 	ifp->if_capabilities |= IFCAP_POLLING;
757 	ifp->if_capenable |= IFCAP_POLLING;
758 #endif
759 
760 	/*
761 	 * Attach the interface.
762 	 */
763 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
764 
765 	/*
766 	 * Tell the upper layer(s) we support long frames.
767 	 * Must appear after the call to ether_ifattach() because
768 	 * ether_ifattach() sets ifi_hdrlen to the default value.
769 	 */
770 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
771 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
772 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
773 
774 	/*
775 	 * Let the system queue as many packets as we have available
776 	 * TX descriptors.
777 	 */
778 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
779 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
780 	IFQ_SET_READY(&ifp->if_snd);
781 
782 	/*
783 	 * Hook our interrupt after all initialization is complete.
784 	 * XXX This driver has been tested with the INTR_MPSAFFE flag set
785 	 * however, ifp and its functions are not fully locked so MPSAFE
786 	 * should not be used unless you can handle potential data loss.
787 	 */
788 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
789 			       fxp_intr, sc, &sc->ih);
790 	if (error) {
791 		device_printf(dev, "could not setup irq\n");
792 		ether_ifdetach(&sc->arpcom.ac_if);
793 		goto fail;
794 	}
795 
796 fail:
797 	splx(s);
798 	if (error)
799 		fxp_release(sc);
800 	return (error);
801 }
802 
803 /*
804  * Release all resources.  The softc lock should not be held and the
805  * interrupt should already be torn down.
806  */
807 static void
808 fxp_release(struct fxp_softc *sc)
809 {
810 	struct fxp_rx *rxp;
811 	struct fxp_tx *txp;
812 	int i;
813 
814 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
815 	KASSERT(sc->ih == NULL,
816 	    ("fxp_release() called with intr handle still active"));
817 	if (sc->miibus)
818 		device_delete_child(sc->dev, sc->miibus);
819 	bus_generic_detach(sc->dev);
820 	ifmedia_removeall(&sc->sc_media);
821 	if (sc->fxp_desc.cbl_list) {
822 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
823 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
824 		    sc->cbl_map);
825 	}
826 	if (sc->fxp_stats) {
827 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
828 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
829 	}
830 	if (sc->mcsp) {
831 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
832 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
833 	}
834 	if (sc->irq)
835 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
836 	if (sc->mem)
837 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
838 	if (sc->fxp_mtag) {
839 		for (i = 0; i < FXP_NRFABUFS; i++) {
840 			rxp = &sc->fxp_desc.rx_list[i];
841 			if (rxp->rx_mbuf != NULL) {
842 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
843 				    BUS_DMASYNC_POSTREAD);
844 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
845 				m_freem(rxp->rx_mbuf);
846 			}
847 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
848 		}
849 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
850 		bus_dma_tag_destroy(sc->fxp_mtag);
851 	}
852 	if (sc->fxp_stag) {
853 		for (i = 0; i < FXP_NTXCB; i++) {
854 			txp = &sc->fxp_desc.tx_list[i];
855 			if (txp->tx_mbuf != NULL) {
856 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
857 				    BUS_DMASYNC_POSTWRITE);
858 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
859 				m_freem(txp->tx_mbuf);
860 			}
861 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
862 		}
863 		bus_dma_tag_destroy(sc->fxp_stag);
864 	}
865 	if (sc->cbl_tag)
866 		bus_dma_tag_destroy(sc->cbl_tag);
867 	if (sc->mcs_tag)
868 		bus_dma_tag_destroy(sc->mcs_tag);
869 
870 	mtx_destroy(&sc->sc_mtx);
871 }
872 
873 /*
874  * Detach interface.
875  */
876 static int
877 fxp_detach(device_t dev)
878 {
879 	struct fxp_softc *sc = device_get_softc(dev);
880 	int s;
881 
882 	FXP_LOCK(sc);
883 	s = splimp();
884 
885 	sc->suspended = 1;	/* Do same thing as we do for suspend */
886 	/*
887 	 * Close down routes etc.
888 	 */
889 	ether_ifdetach(&sc->arpcom.ac_if);
890 
891 	/*
892 	 * Stop DMA and drop transmit queue, but disable interrupts first.
893 	 */
894 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
895 	fxp_stop(sc);
896 	FXP_UNLOCK(sc);
897 
898 	/*
899 	 * Unhook interrupt before dropping lock. This is to prevent
900 	 * races with fxp_intr().
901 	 */
902 	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
903 	sc->ih = NULL;
904 
905 	splx(s);
906 
907 	/* Release our allocated resources. */
908 	fxp_release(sc);
909 	return (0);
910 }
911 
912 /*
913  * Device shutdown routine. Called at system shutdown after sync. The
914  * main purpose of this routine is to shut off receiver DMA so that
915  * kernel memory doesn't get clobbered during warmboot.
916  */
917 static int
918 fxp_shutdown(device_t dev)
919 {
920 	/*
921 	 * Make sure that DMA is disabled prior to reboot. Not doing
922 	 * do could allow DMA to corrupt kernel memory during the
923 	 * reboot before the driver initializes.
924 	 */
925 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
926 	return (0);
927 }
928 
929 /*
930  * Device suspend routine.  Stop the interface and save some PCI
931  * settings in case the BIOS doesn't restore them properly on
932  * resume.
933  */
934 static int
935 fxp_suspend(device_t dev)
936 {
937 	struct fxp_softc *sc = device_get_softc(dev);
938 	int i, s;
939 
940 	FXP_LOCK(sc);
941 	s = splimp();
942 
943 	fxp_stop(sc);
944 
945 	for (i = 0; i < 5; i++)
946 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
947 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
948 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
949 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
950 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
951 
952 	sc->suspended = 1;
953 
954 	FXP_UNLOCK(sc);
955 	splx(s);
956 	return (0);
957 }
958 
959 /*
960  * Device resume routine.  Restore some PCI settings in case the BIOS
961  * doesn't, re-enable busmastering, and restart the interface if
962  * appropriate.
963  */
964 static int
965 fxp_resume(device_t dev)
966 {
967 	struct fxp_softc *sc = device_get_softc(dev);
968 	struct ifnet *ifp = &sc->sc_if;
969 	u_int16_t pci_command;
970 	int i, s;
971 
972 	FXP_LOCK(sc);
973 	s = splimp();
974 
975 	/* better way to do this? */
976 	for (i = 0; i < 5; i++)
977 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
978 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
979 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
980 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
981 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
982 
983 	/* reenable busmastering */
984 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
985 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
986 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
987 
988 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
989 	DELAY(10);
990 
991 	/* reinitialize interface if necessary */
992 	if (ifp->if_flags & IFF_UP)
993 		fxp_init_body(sc);
994 
995 	sc->suspended = 0;
996 
997 	FXP_UNLOCK(sc);
998 	splx(s);
999 	return (0);
1000 }
1001 
1002 static void
1003 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1004 {
1005 	u_int16_t reg;
1006 	int x;
1007 
1008 	/*
1009 	 * Shift in data.
1010 	 */
1011 	for (x = 1 << (length - 1); x; x >>= 1) {
1012 		if (data & x)
1013 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1014 		else
1015 			reg = FXP_EEPROM_EECS;
1016 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1017 		DELAY(1);
1018 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1019 		DELAY(1);
1020 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1021 		DELAY(1);
1022 	}
1023 }
1024 
1025 /*
1026  * Read from the serial EEPROM. Basically, you manually shift in
1027  * the read opcode (one bit at a time) and then shift in the address,
1028  * and then you shift out the data (all of this one bit at a time).
1029  * The word size is 16 bits, so you have to provide the address for
1030  * every 16 bits of data.
1031  */
1032 static u_int16_t
1033 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1034 {
1035 	u_int16_t reg, data;
1036 	int x;
1037 
1038 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1039 	/*
1040 	 * Shift in read opcode.
1041 	 */
1042 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1043 	/*
1044 	 * Shift in address.
1045 	 */
1046 	data = 0;
1047 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1048 		if (offset & x)
1049 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1050 		else
1051 			reg = FXP_EEPROM_EECS;
1052 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1053 		DELAY(1);
1054 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1055 		DELAY(1);
1056 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1057 		DELAY(1);
1058 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1059 		data++;
1060 		if (autosize && reg == 0) {
1061 			sc->eeprom_size = data;
1062 			break;
1063 		}
1064 	}
1065 	/*
1066 	 * Shift out data.
1067 	 */
1068 	data = 0;
1069 	reg = FXP_EEPROM_EECS;
1070 	for (x = 1 << 15; x; x >>= 1) {
1071 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1072 		DELAY(1);
1073 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1074 			data |= x;
1075 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1076 		DELAY(1);
1077 	}
1078 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1079 	DELAY(1);
1080 
1081 	return (data);
1082 }
1083 
1084 static void
1085 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1086 {
1087 	int i;
1088 
1089 	/*
1090 	 * Erase/write enable.
1091 	 */
1092 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1093 	fxp_eeprom_shiftin(sc, 0x4, 3);
1094 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1095 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1096 	DELAY(1);
1097 	/*
1098 	 * Shift in write opcode, address, data.
1099 	 */
1100 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1101 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1102 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1103 	fxp_eeprom_shiftin(sc, data, 16);
1104 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1105 	DELAY(1);
1106 	/*
1107 	 * Wait for EEPROM to finish up.
1108 	 */
1109 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1110 	DELAY(1);
1111 	for (i = 0; i < 1000; i++) {
1112 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1113 			break;
1114 		DELAY(50);
1115 	}
1116 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1117 	DELAY(1);
1118 	/*
1119 	 * Erase/write disable.
1120 	 */
1121 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1122 	fxp_eeprom_shiftin(sc, 0x4, 3);
1123 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1124 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1125 	DELAY(1);
1126 }
1127 
1128 /*
1129  * From NetBSD:
1130  *
1131  * Figure out EEPROM size.
1132  *
1133  * 559's can have either 64-word or 256-word EEPROMs, the 558
1134  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1135  * talks about the existance of 16 to 256 word EEPROMs.
1136  *
1137  * The only known sizes are 64 and 256, where the 256 version is used
1138  * by CardBus cards to store CIS information.
1139  *
1140  * The address is shifted in msb-to-lsb, and after the last
1141  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1142  * after which follows the actual data. We try to detect this zero, by
1143  * probing the data-out bit in the EEPROM control register just after
1144  * having shifted in a bit. If the bit is zero, we assume we've
1145  * shifted enough address bits. The data-out should be tri-state,
1146  * before this, which should translate to a logical one.
1147  */
1148 static void
1149 fxp_autosize_eeprom(struct fxp_softc *sc)
1150 {
1151 
1152 	/* guess maximum size of 256 words */
1153 	sc->eeprom_size = 8;
1154 
1155 	/* autosize */
1156 	(void) fxp_eeprom_getword(sc, 0, 1);
1157 }
1158 
1159 static void
1160 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1161 {
1162 	int i;
1163 
1164 	for (i = 0; i < words; i++)
1165 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1166 }
1167 
1168 static void
1169 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1170 {
1171 	int i;
1172 
1173 	for (i = 0; i < words; i++)
1174 		fxp_eeprom_putword(sc, offset + i, data[i]);
1175 }
1176 
1177 static void
1178 fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1179     bus_size_t mapsize, int error)
1180 {
1181 	struct fxp_softc *sc;
1182 	struct fxp_cb_tx *txp;
1183 	int i;
1184 
1185 	if (error)
1186 		return;
1187 
1188 	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1189 
1190 	sc = arg;
1191 	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1192 	for (i = 0; i < nseg; i++) {
1193 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1194 		/*
1195 		 * If this is an 82550/82551, then we're using extended
1196 		 * TxCBs _and_ we're using checksum offload. This means
1197 		 * that the TxCB is really an IPCB. One major difference
1198 		 * between the two is that with plain extended TxCBs,
1199 		 * the bottom half of the TxCB contains two entries from
1200 		 * the TBD array, whereas IPCBs contain just one entry:
1201 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1202 		 * checksum offload control bits. So to make things work
1203 		 * right, we have to start filling in the TBD array
1204 		 * starting from a different place depending on whether
1205 		 * the chip is an 82550/82551 or not.
1206 		 */
1207 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1208 			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1209 			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1210 		} else {
1211 			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1212 			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1213 		}
1214 	}
1215 	txp->tbd_number = nseg;
1216 }
1217 
1218 /*
1219  * Grab the softc lock and call the real fxp_start_body() routine
1220  */
1221 static void
1222 fxp_start(struct ifnet *ifp)
1223 {
1224 	struct fxp_softc *sc = ifp->if_softc;
1225 
1226 	FXP_LOCK(sc);
1227 	fxp_start_body(ifp);
1228 	FXP_UNLOCK(sc);
1229 }
1230 
1231 /*
1232  * Start packet transmission on the interface.
1233  * This routine must be called with the softc lock held, and is an
1234  * internal entry point only.
1235  */
1236 static void
1237 fxp_start_body(struct ifnet *ifp)
1238 {
1239 	struct fxp_softc *sc = ifp->if_softc;
1240 	struct fxp_tx *txp;
1241 	struct mbuf *mb_head;
1242 	int error;
1243 
1244 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1245 	/*
1246 	 * See if we need to suspend xmit until the multicast filter
1247 	 * has been reprogrammed (which can only be done at the head
1248 	 * of the command chain).
1249 	 */
1250 	if (sc->need_mcsetup) {
1251 		return;
1252 	}
1253 
1254 	txp = NULL;
1255 
1256 	/*
1257 	 * We're finished if there is nothing more to add to the list or if
1258 	 * we're all filled up with buffers to transmit.
1259 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1260 	 *       a NOP command when needed.
1261 	 */
1262 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1263 	    sc->tx_queued < FXP_NTXCB - 1) {
1264 
1265 		/*
1266 		 * Grab a packet to transmit.
1267 		 */
1268 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1269 		if (mb_head == NULL)
1270 			break;
1271 
1272 		/*
1273 		 * Get pointer to next available tx desc.
1274 		 */
1275 		txp = sc->fxp_desc.tx_last->tx_next;
1276 
1277 		/*
1278 		 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1279 		 * Ethernet Controller Family Open Source Software
1280 		 * Developer Manual says:
1281 		 *   Using software parsing is only allowed with legal
1282 		 *   TCP/IP or UDP/IP packets.
1283 		 *   ...
1284 		 *   For all other datagrams, hardware parsing must
1285 		 *   be used.
1286 		 * Software parsing appears to truncate ICMP and
1287 		 * fragmented UDP packets that contain one to three
1288 		 * bytes in the second (and final) mbuf of the packet.
1289 		 */
1290 		if (sc->flags & FXP_FLAG_EXT_RFA)
1291 			txp->tx_cb->ipcb_ip_activation_high =
1292 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1293 
1294 		/*
1295 		 * Deal with TCP/IP checksum offload. Note that
1296 		 * in order for TCP checksum offload to work,
1297 		 * the pseudo header checksum must have already
1298 		 * been computed and stored in the checksum field
1299 		 * in the TCP header. The stack should have
1300 		 * already done this for us.
1301 		 */
1302 
1303 		if (mb_head->m_pkthdr.csum_flags) {
1304 			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1305 				txp->tx_cb->ipcb_ip_schedule =
1306 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1307 				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1308 					txp->tx_cb->ipcb_ip_schedule |=
1309 					    FXP_IPCB_TCP_PACKET;
1310 			}
1311 #ifdef FXP_IP_CSUM_WAR
1312 		/*
1313 		 * XXX The 82550 chip appears to have trouble
1314 		 * dealing with IP header checksums in very small
1315 		 * datagrams, namely fragments from 1 to 3 bytes
1316 		 * in size. For example, say you want to transmit
1317 		 * a UDP packet of 1473 bytes. The packet will be
1318 		 * fragmented over two IP datagrams, the latter
1319 		 * containing only one byte of data. The 82550 will
1320 		 * botch the header checksum on the 1-byte fragment.
1321 		 * As long as the datagram contains 4 or more bytes
1322 		 * of data, you're ok.
1323 		 *
1324                  * The following code attempts to work around this
1325 		 * problem: if the datagram is less than 38 bytes
1326 		 * in size (14 bytes ether header, 20 bytes IP header,
1327 		 * plus 4 bytes of data), we punt and compute the IP
1328 		 * header checksum by hand. This workaround doesn't
1329 		 * work very well, however, since it can be fooled
1330 		 * by things like VLAN tags and IP options that make
1331 		 * the header sizes/offsets vary.
1332 		 */
1333 
1334 			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1335 				if (mb_head->m_pkthdr.len < 38) {
1336 					struct ip *ip;
1337 					mb_head->m_data += ETHER_HDR_LEN;
1338 					ip = mtod(mb_head, struct ip *);
1339 					ip->ip_sum = in_cksum(mb_head,
1340 					    ip->ip_hl << 2);
1341 					mb_head->m_data -= ETHER_HDR_LEN;
1342 				} else {
1343 					txp->tx_cb->ipcb_ip_activation_high =
1344 					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1345 					txp->tx_cb->ipcb_ip_schedule |=
1346 					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1347 				}
1348 			}
1349 #endif
1350 		}
1351 
1352 		/*
1353 		 * Go through each of the mbufs in the chain and initialize
1354 		 * the transmit buffer descriptors with the physical address
1355 		 * and size of the mbuf.
1356 		 */
1357 		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1358 		    mb_head, fxp_dma_map_txbuf, sc, 0);
1359 
1360 		if (error && error != EFBIG) {
1361 			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1362 			    error);
1363 			m_freem(mb_head);
1364 			break;
1365 		}
1366 
1367 		if (error) {
1368 			struct mbuf *mn;
1369 
1370 			/*
1371 			 * We ran out of segments. We have to recopy this
1372 			 * mbuf chain first. Bail out if we can't get the
1373 			 * new buffers.
1374 			 */
1375 			mn = m_defrag(mb_head, M_DONTWAIT);
1376 			if (mn == NULL) {
1377 				m_freem(mb_head);
1378 				break;
1379 			} else {
1380 				mb_head = mn;
1381 			}
1382 			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1383 			    mb_head, fxp_dma_map_txbuf, sc, 0);
1384 			if (error) {
1385 				device_printf(sc->dev,
1386 				    "can't map mbuf (error %d)\n", error);
1387 				m_freem(mb_head);
1388 				break;
1389 			}
1390 		}
1391 
1392 		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1393 		    BUS_DMASYNC_PREWRITE);
1394 
1395 		txp->tx_mbuf = mb_head;
1396 		txp->tx_cb->cb_status = 0;
1397 		txp->tx_cb->byte_count = 0;
1398 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1399 			txp->tx_cb->cb_command =
1400 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1401 			    FXP_CB_COMMAND_S);
1402 		} else {
1403 			txp->tx_cb->cb_command =
1404 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1405 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1406 			/*
1407 			 * Set a 5 second timer just in case we don't hear
1408 			 * from the card again.
1409 			 */
1410 			ifp->if_timer = 5;
1411 		}
1412 		txp->tx_cb->tx_threshold = tx_threshold;
1413 
1414 		/*
1415 		 * Advance the end of list forward.
1416 		 */
1417 
1418 #ifdef __alpha__
1419 		/*
1420 		 * On platforms which can't access memory in 16-bit
1421 		 * granularities, we must prevent the card from DMA'ing
1422 		 * up the status while we update the command field.
1423 		 * This could cause us to overwrite the completion status.
1424 		 * XXX This is probably bogus and we're _not_ looking
1425 		 * for atomicity here.
1426 		 */
1427 		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1428 		    htole16(FXP_CB_COMMAND_S));
1429 #else
1430 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1431 		    htole16(~FXP_CB_COMMAND_S);
1432 #endif /*__alpha__*/
1433 		sc->fxp_desc.tx_last = txp;
1434 
1435 		/*
1436 		 * Advance the beginning of the list forward if there are
1437 		 * no other packets queued (when nothing is queued, tx_first
1438 		 * sits on the last TxCB that was sent out).
1439 		 */
1440 		if (sc->tx_queued == 0)
1441 			sc->fxp_desc.tx_first = txp;
1442 
1443 		sc->tx_queued++;
1444 
1445 		/*
1446 		 * Pass packet to bpf if there is a listener.
1447 		 */
1448 		BPF_MTAP(ifp, mb_head);
1449 	}
1450 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1451 
1452 	/*
1453 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1454 	 * going again if suspended.
1455 	 */
1456 	if (txp != NULL) {
1457 		fxp_scb_wait(sc);
1458 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1459 	}
1460 }
1461 
1462 #ifdef DEVICE_POLLING
1463 static poll_handler_t fxp_poll;
1464 
1465 static void
1466 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1467 {
1468 	struct fxp_softc *sc = ifp->if_softc;
1469 	u_int8_t statack;
1470 
1471 	FXP_LOCK(sc);
1472 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1473 		ether_poll_deregister(ifp);
1474 		cmd = POLL_DEREGISTER;
1475 	}
1476 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1477 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1478 		FXP_UNLOCK(sc);
1479 		return;
1480 	}
1481 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1482 	    FXP_SCB_STATACK_FR;
1483 	if (cmd == POLL_AND_CHECK_STATUS) {
1484 		u_int8_t tmp;
1485 
1486 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1487 		if (tmp == 0xff || tmp == 0) {
1488 			FXP_UNLOCK(sc);
1489 			return; /* nothing to do */
1490 		}
1491 		tmp &= ~statack;
1492 		/* ack what we can */
1493 		if (tmp != 0)
1494 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1495 		statack |= tmp;
1496 	}
1497 	fxp_intr_body(sc, ifp, statack, count);
1498 	FXP_UNLOCK(sc);
1499 }
1500 #endif /* DEVICE_POLLING */
1501 
1502 /*
1503  * Process interface interrupts.
1504  */
1505 static void
1506 fxp_intr(void *xsc)
1507 {
1508 	struct fxp_softc *sc = xsc;
1509 	struct ifnet *ifp = &sc->sc_if;
1510 	u_int8_t statack;
1511 
1512 	FXP_LOCK(sc);
1513 	if (sc->suspended) {
1514 		FXP_UNLOCK(sc);
1515 		return;
1516 	}
1517 
1518 #ifdef DEVICE_POLLING
1519 	if (ifp->if_flags & IFF_POLLING) {
1520 		FXP_UNLOCK(sc);
1521 		return;
1522 	}
1523 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1524 	    ether_poll_register(fxp_poll, ifp)) {
1525 		/* disable interrupts */
1526 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1527 		FXP_UNLOCK(sc);
1528 		fxp_poll(ifp, 0, 1);
1529 		return;
1530 	}
1531 #endif
1532 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1533 		/*
1534 		 * It should not be possible to have all bits set; the
1535 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1536 		 * all bits are set, this may indicate that the card has
1537 		 * been physically ejected, so ignore it.
1538 		 */
1539 		if (statack == 0xff) {
1540 			FXP_UNLOCK(sc);
1541 			return;
1542 		}
1543 
1544 		/*
1545 		 * First ACK all the interrupts in this pass.
1546 		 */
1547 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1548 		fxp_intr_body(sc, ifp, statack, -1);
1549 	}
1550 	FXP_UNLOCK(sc);
1551 }
1552 
1553 static void
1554 fxp_txeof(struct fxp_softc *sc)
1555 {
1556 	struct fxp_tx *txp;
1557 
1558 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1559 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1560 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1561 	    txp = txp->tx_next) {
1562 		if (txp->tx_mbuf != NULL) {
1563 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1564 			    BUS_DMASYNC_POSTWRITE);
1565 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1566 			m_freem(txp->tx_mbuf);
1567 			txp->tx_mbuf = NULL;
1568 			/* clear this to reset csum offload bits */
1569 			txp->tx_cb->tbd[0].tb_addr = 0;
1570 		}
1571 		sc->tx_queued--;
1572 	}
1573 	sc->fxp_desc.tx_first = txp;
1574 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1575 }
1576 
1577 static void
1578 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1579     int count)
1580 {
1581 	struct mbuf *m;
1582 	struct fxp_rx *rxp;
1583 	struct fxp_rfa *rfa;
1584 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1585 
1586 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1587 	if (rnr)
1588 		sc->rnr++;
1589 #ifdef DEVICE_POLLING
1590 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1591 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1592 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1593 		rnr = 1;
1594 	}
1595 #endif
1596 
1597 	/*
1598 	 * Free any finished transmit mbuf chains.
1599 	 *
1600 	 * Handle the CNA event likt a CXTNO event. It used to
1601 	 * be that this event (control unit not ready) was not
1602 	 * encountered, but it is now with the SMPng modifications.
1603 	 * The exact sequence of events that occur when the interface
1604 	 * is brought up are different now, and if this event
1605 	 * goes unhandled, the configuration/rxfilter setup sequence
1606 	 * can stall for several seconds. The result is that no
1607 	 * packets go out onto the wire for about 5 to 10 seconds
1608 	 * after the interface is ifconfig'ed for the first time.
1609 	 */
1610 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1611 		fxp_txeof(sc);
1612 
1613 		ifp->if_timer = 0;
1614 		if (sc->tx_queued == 0) {
1615 			if (sc->need_mcsetup)
1616 				fxp_mc_setup(sc);
1617 		}
1618 		/*
1619 		 * Try to start more packets transmitting.
1620 		 */
1621 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1622 			fxp_start_body(ifp);
1623 	}
1624 
1625 	/*
1626 	 * Just return if nothing happened on the receive side.
1627 	 */
1628 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1629 		return;
1630 
1631 	/*
1632 	 * Process receiver interrupts. If a no-resource (RNR)
1633 	 * condition exists, get whatever packets we can and
1634 	 * re-start the receiver.
1635 	 *
1636 	 * When using polling, we do not process the list to completion,
1637 	 * so when we get an RNR interrupt we must defer the restart
1638 	 * until we hit the last buffer with the C bit set.
1639 	 * If we run out of cycles and rfa_headm has the C bit set,
1640 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1641 	 * that the info will be used in the subsequent polling cycle.
1642 	 */
1643 	for (;;) {
1644 		rxp = sc->fxp_desc.rx_head;
1645 		m = rxp->rx_mbuf;
1646 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1647 		    RFA_ALIGNMENT_FUDGE);
1648 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1649 		    BUS_DMASYNC_POSTREAD);
1650 
1651 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1652 		if (count >= 0 && count-- == 0) {
1653 			if (rnr) {
1654 				/* Defer RNR processing until the next time. */
1655 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1656 				rnr = 0;
1657 			}
1658 			break;
1659 		}
1660 #endif /* DEVICE_POLLING */
1661 
1662 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1663 			break;
1664 
1665 		/*
1666 		 * Advance head forward.
1667 		 */
1668 		sc->fxp_desc.rx_head = rxp->rx_next;
1669 
1670 		/*
1671 		 * Add a new buffer to the receive chain.
1672 		 * If this fails, the old buffer is recycled
1673 		 * instead.
1674 		 */
1675 		if (fxp_add_rfabuf(sc, rxp) == 0) {
1676 			int total_len;
1677 
1678 			/*
1679 			 * Fetch packet length (the top 2 bits of
1680 			 * actual_size are flags set by the controller
1681 			 * upon completion), and drop the packet in case
1682 			 * of bogus length or CRC errors.
1683 			 */
1684 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1685 			if (total_len < sizeof(struct ether_header) ||
1686 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1687 				sc->rfa_size ||
1688 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1689 				m_freem(m);
1690 				continue;
1691 			}
1692 
1693                         /* Do IP checksum checking. */
1694 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1695 				if (rfa->rfax_csum_sts &
1696 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1697 					m->m_pkthdr.csum_flags |=
1698 					    CSUM_IP_CHECKED;
1699 				if (rfa->rfax_csum_sts &
1700 				    FXP_RFDX_CS_IP_CSUM_VALID)
1701 					m->m_pkthdr.csum_flags |=
1702 					    CSUM_IP_VALID;
1703 				if ((rfa->rfax_csum_sts &
1704 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1705 				    (rfa->rfax_csum_sts &
1706 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1707 					m->m_pkthdr.csum_flags |=
1708 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1709 					m->m_pkthdr.csum_data = 0xffff;
1710 				}
1711 			}
1712 
1713 			m->m_pkthdr.len = m->m_len = total_len;
1714 			m->m_pkthdr.rcvif = ifp;
1715 
1716 			/*
1717 			 * Drop locks before calling if_input() since it
1718 			 * may re-enter fxp_start() in the netisr case.
1719 			 * This would result in a lock reversal.  Better
1720 			 * performance might be obtained by chaining all
1721 			 * packets received, dropping the lock, and then
1722 			 * calling if_input() on each one.
1723 			 */
1724 			FXP_UNLOCK(sc);
1725 			(*ifp->if_input)(ifp, m);
1726 			FXP_LOCK(sc);
1727 		}
1728 	}
1729 	if (rnr) {
1730 		fxp_scb_wait(sc);
1731 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1732 		    sc->fxp_desc.rx_head->rx_addr);
1733 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1734 	}
1735 }
1736 
1737 /*
1738  * Update packet in/out/collision statistics. The i82557 doesn't
1739  * allow you to access these counters without doing a fairly
1740  * expensive DMA to get _all_ of the statistics it maintains, so
1741  * we do this operation here only once per second. The statistics
1742  * counters in the kernel are updated from the previous dump-stats
1743  * DMA and then a new dump-stats DMA is started. The on-chip
1744  * counters are zeroed when the DMA completes. If we can't start
1745  * the DMA immediately, we don't wait - we just prepare to read
1746  * them again next time.
1747  */
1748 static void
1749 fxp_tick(void *xsc)
1750 {
1751 	struct fxp_softc *sc = xsc;
1752 	struct ifnet *ifp = &sc->sc_if;
1753 	struct fxp_stats *sp = sc->fxp_stats;
1754 	int s;
1755 
1756 	FXP_LOCK(sc);
1757 	s = splimp();
1758 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1759 	ifp->if_opackets += le32toh(sp->tx_good);
1760 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1761 	if (sp->rx_good) {
1762 		ifp->if_ipackets += le32toh(sp->rx_good);
1763 		sc->rx_idle_secs = 0;
1764 	} else {
1765 		/*
1766 		 * Receiver's been idle for another second.
1767 		 */
1768 		sc->rx_idle_secs++;
1769 	}
1770 	ifp->if_ierrors +=
1771 	    le32toh(sp->rx_crc_errors) +
1772 	    le32toh(sp->rx_alignment_errors) +
1773 	    le32toh(sp->rx_rnr_errors) +
1774 	    le32toh(sp->rx_overrun_errors);
1775 	/*
1776 	 * If any transmit underruns occured, bump up the transmit
1777 	 * threshold by another 512 bytes (64 * 8).
1778 	 */
1779 	if (sp->tx_underruns) {
1780 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1781 		if (tx_threshold < 192)
1782 			tx_threshold += 64;
1783 	}
1784 
1785 	/*
1786 	 * Release any xmit buffers that have completed DMA. This isn't
1787 	 * strictly necessary to do here, but it's advantagous for mbufs
1788 	 * with external storage to be released in a timely manner rather
1789 	 * than being defered for a potentially long time. This limits
1790 	 * the delay to a maximum of one second.
1791 	 */
1792 	fxp_txeof(sc);
1793 
1794 	/*
1795 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1796 	 * then assume the receiver has locked up and attempt to clear
1797 	 * the condition by reprogramming the multicast filter. This is
1798 	 * a work-around for a bug in the 82557 where the receiver locks
1799 	 * up if it gets certain types of garbage in the syncronization
1800 	 * bits prior to the packet header. This bug is supposed to only
1801 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1802 	 * mode as well (perhaps due to a 10/100 speed transition).
1803 	 */
1804 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1805 		sc->rx_idle_secs = 0;
1806 		fxp_mc_setup(sc);
1807 	}
1808 	/*
1809 	 * If there is no pending command, start another stats
1810 	 * dump. Otherwise punt for now.
1811 	 */
1812 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1813 		/*
1814 		 * Start another stats dump.
1815 		 */
1816 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1817 		    BUS_DMASYNC_PREREAD);
1818 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1819 	} else {
1820 		/*
1821 		 * A previous command is still waiting to be accepted.
1822 		 * Just zero our copy of the stats and wait for the
1823 		 * next timer event to update them.
1824 		 */
1825 		sp->tx_good = 0;
1826 		sp->tx_underruns = 0;
1827 		sp->tx_total_collisions = 0;
1828 
1829 		sp->rx_good = 0;
1830 		sp->rx_crc_errors = 0;
1831 		sp->rx_alignment_errors = 0;
1832 		sp->rx_rnr_errors = 0;
1833 		sp->rx_overrun_errors = 0;
1834 	}
1835 	if (sc->miibus != NULL)
1836 		mii_tick(device_get_softc(sc->miibus));
1837 
1838 	/*
1839 	 * Schedule another timeout one second from now.
1840 	 */
1841 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1842 	FXP_UNLOCK(sc);
1843 	splx(s);
1844 }
1845 
1846 /*
1847  * Stop the interface. Cancels the statistics updater and resets
1848  * the interface.
1849  */
1850 static void
1851 fxp_stop(struct fxp_softc *sc)
1852 {
1853 	struct ifnet *ifp = &sc->sc_if;
1854 	struct fxp_tx *txp;
1855 	int i;
1856 
1857 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1858 	ifp->if_timer = 0;
1859 
1860 #ifdef DEVICE_POLLING
1861 	ether_poll_deregister(ifp);
1862 #endif
1863 	/*
1864 	 * Cancel stats updater.
1865 	 */
1866 	callout_stop(&sc->stat_ch);
1867 
1868 	/*
1869 	 * Issue software reset, which also unloads the microcode.
1870 	 */
1871 	sc->flags &= ~FXP_FLAG_UCODE;
1872 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1873 	DELAY(50);
1874 
1875 	/*
1876 	 * Release any xmit buffers.
1877 	 */
1878 	txp = sc->fxp_desc.tx_list;
1879 	if (txp != NULL) {
1880 		for (i = 0; i < FXP_NTXCB; i++) {
1881  			if (txp[i].tx_mbuf != NULL) {
1882 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1883 				    BUS_DMASYNC_POSTWRITE);
1884 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1885 				m_freem(txp[i].tx_mbuf);
1886 				txp[i].tx_mbuf = NULL;
1887 				/* clear this to reset csum offload bits */
1888 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1889 			}
1890 		}
1891 	}
1892 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1893 	sc->tx_queued = 0;
1894 }
1895 
1896 /*
1897  * Watchdog/transmission transmit timeout handler. Called when a
1898  * transmission is started on the interface, but no interrupt is
1899  * received before the timeout. This usually indicates that the
1900  * card has wedged for some reason.
1901  */
1902 static void
1903 fxp_watchdog(struct ifnet *ifp)
1904 {
1905 	struct fxp_softc *sc = ifp->if_softc;
1906 
1907 	FXP_LOCK(sc);
1908 	device_printf(sc->dev, "device timeout\n");
1909 	ifp->if_oerrors++;
1910 
1911 	fxp_init_body(sc);
1912 	FXP_UNLOCK(sc);
1913 }
1914 
1915 /*
1916  * Acquire locks and then call the real initialization function.  This
1917  * is necessary because ether_ioctl() calls if_init() and this would
1918  * result in mutex recursion if the mutex was held.
1919  */
1920 static void
1921 fxp_init(void *xsc)
1922 {
1923 	struct fxp_softc *sc = xsc;
1924 
1925 	FXP_LOCK(sc);
1926 	fxp_init_body(sc);
1927 	FXP_UNLOCK(sc);
1928 }
1929 
1930 /*
1931  * Perform device initialization. This routine must be called with the
1932  * softc lock held.
1933  */
1934 static void
1935 fxp_init_body(struct fxp_softc *sc)
1936 {
1937 	struct ifnet *ifp = &sc->sc_if;
1938 	struct fxp_cb_config *cbp;
1939 	struct fxp_cb_ias *cb_ias;
1940 	struct fxp_cb_tx *tcbp;
1941 	struct fxp_tx *txp;
1942 	struct fxp_cb_mcs *mcsp;
1943 	int i, prm, s;
1944 
1945 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1946 	s = splimp();
1947 	/*
1948 	 * Cancel any pending I/O
1949 	 */
1950 	fxp_stop(sc);
1951 
1952 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1953 
1954 	/*
1955 	 * Initialize base of CBL and RFA memory. Loading with zero
1956 	 * sets it up for regular linear addressing.
1957 	 */
1958 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1959 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1960 
1961 	fxp_scb_wait(sc);
1962 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1963 
1964 	/*
1965 	 * Initialize base of dump-stats buffer.
1966 	 */
1967 	fxp_scb_wait(sc);
1968 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1969 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1970 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1971 
1972 	/*
1973 	 * Attempt to load microcode if requested.
1974 	 */
1975 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1976 		fxp_load_ucode(sc);
1977 
1978 	/*
1979 	 * Initialize the multicast address list.
1980 	 */
1981 	if (fxp_mc_addrs(sc)) {
1982 		mcsp = sc->mcsp;
1983 		mcsp->cb_status = 0;
1984 		mcsp->cb_command =
1985 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1986 		mcsp->link_addr = 0xffffffff;
1987 		/*
1988 	 	 * Start the multicast setup command.
1989 		 */
1990 		fxp_scb_wait(sc);
1991 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1992 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1993 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1994 		/* ...and wait for it to complete. */
1995 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1996 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1997 		    BUS_DMASYNC_POSTWRITE);
1998 	}
1999 
2000 	/*
2001 	 * We temporarily use memory that contains the TxCB list to
2002 	 * construct the config CB. The TxCB list memory is rebuilt
2003 	 * later.
2004 	 */
2005 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2006 
2007 	/*
2008 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2009 	 * zero and must be one bits in this structure and this is the easiest
2010 	 * way to initialize them all to proper values.
2011 	 */
2012 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2013 
2014 	cbp->cb_status =	0;
2015 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2016 	    FXP_CB_COMMAND_EL);
2017 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2018 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2019 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2020 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2021 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2022 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2023 	cbp->type_enable =	0;	/* actually reserved */
2024 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2025 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2026 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2027 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2028 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2029 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2030 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2031 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2032 	cbp->ci_int =		1;	/* interrupt on CU idle */
2033 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2034 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2035 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2036 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2037 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2038 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2039 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2040 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2041 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2042 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2043 	cbp->csma_dis =		0;	/* (don't) disable link */
2044 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2045 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2046 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2047 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2048 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2049 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2050 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2051 	cbp->loopback =		0;	/* (don't) loopback */
2052 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2053 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2054 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2055 	cbp->promiscuous =	prm;	/* promiscuous mode */
2056 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2057 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2058 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2059 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2060 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2061 
2062 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2063 	cbp->padding =		1;	/* (do) pad short tx packets */
2064 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2065 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2066 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2067 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2068 					/* must set wake_en in PMCSR also */
2069 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2070 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2071 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2072 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2073 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2074 
2075 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2076 		/*
2077 		 * The 82557 has no hardware flow control, the values
2078 		 * below are the defaults for the chip.
2079 		 */
2080 		cbp->fc_delay_lsb =	0;
2081 		cbp->fc_delay_msb =	0x40;
2082 		cbp->pri_fc_thresh =	3;
2083 		cbp->tx_fc_dis =	0;
2084 		cbp->rx_fc_restop =	0;
2085 		cbp->rx_fc_restart =	0;
2086 		cbp->fc_filter =	0;
2087 		cbp->pri_fc_loc =	1;
2088 	} else {
2089 		cbp->fc_delay_lsb =	0x1f;
2090 		cbp->fc_delay_msb =	0x01;
2091 		cbp->pri_fc_thresh =	3;
2092 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2093 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2094 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2095 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2096 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2097 	}
2098 
2099 	/*
2100 	 * Start the config command/DMA.
2101 	 */
2102 	fxp_scb_wait(sc);
2103 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2104 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2105 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2106 	/* ...and wait for it to complete. */
2107 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2108 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2109 
2110 	/*
2111 	 * Now initialize the station address. Temporarily use the TxCB
2112 	 * memory area like we did above for the config CB.
2113 	 */
2114 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2115 	cb_ias->cb_status = 0;
2116 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2117 	cb_ias->link_addr = 0xffffffff;
2118 	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2119 	    sizeof(sc->arpcom.ac_enaddr));
2120 
2121 	/*
2122 	 * Start the IAS (Individual Address Setup) command/DMA.
2123 	 */
2124 	fxp_scb_wait(sc);
2125 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2126 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2127 	/* ...and wait for it to complete. */
2128 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2129 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2130 
2131 	/*
2132 	 * Initialize transmit control block (TxCB) list.
2133 	 */
2134 	txp = sc->fxp_desc.tx_list;
2135 	tcbp = sc->fxp_desc.cbl_list;
2136 	bzero(tcbp, FXP_TXCB_SZ);
2137 	for (i = 0; i < FXP_NTXCB; i++) {
2138 		txp[i].tx_cb = tcbp + i;
2139 		txp[i].tx_mbuf = NULL;
2140 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2141 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2142 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2143 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2144 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2145 			tcbp[i].tbd_array_addr =
2146 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2147 		else
2148 			tcbp[i].tbd_array_addr =
2149 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2150 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2151 	}
2152 	/*
2153 	 * Set the suspend flag on the first TxCB and start the control
2154 	 * unit. It will execute the NOP and then suspend.
2155 	 */
2156 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2157 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2158 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2159 	sc->tx_queued = 1;
2160 
2161 	fxp_scb_wait(sc);
2162 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2163 
2164 	/*
2165 	 * Initialize receiver buffer area - RFA.
2166 	 */
2167 	fxp_scb_wait(sc);
2168 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2169 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2170 
2171 	/*
2172 	 * Set current media.
2173 	 */
2174 	if (sc->miibus != NULL)
2175 		mii_mediachg(device_get_softc(sc->miibus));
2176 
2177 	ifp->if_flags |= IFF_RUNNING;
2178 	ifp->if_flags &= ~IFF_OACTIVE;
2179 
2180 	/*
2181 	 * Enable interrupts.
2182 	 */
2183 #ifdef DEVICE_POLLING
2184 	/*
2185 	 * ... but only do that if we are not polling. And because (presumably)
2186 	 * the default is interrupts on, we need to disable them explicitly!
2187 	 */
2188 	if ( ifp->if_flags & IFF_POLLING )
2189 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2190 	else
2191 #endif /* DEVICE_POLLING */
2192 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2193 
2194 	/*
2195 	 * Start stats updater.
2196 	 */
2197 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2198 	splx(s);
2199 }
2200 
2201 static int
2202 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2203 {
2204 
2205 	return (0);
2206 }
2207 
2208 static void
2209 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2210 {
2211 
2212 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2213 }
2214 
2215 /*
2216  * Change media according to request.
2217  */
2218 static int
2219 fxp_ifmedia_upd(struct ifnet *ifp)
2220 {
2221 	struct fxp_softc *sc = ifp->if_softc;
2222 	struct mii_data *mii;
2223 
2224 	mii = device_get_softc(sc->miibus);
2225 	mii_mediachg(mii);
2226 	return (0);
2227 }
2228 
2229 /*
2230  * Notify the world which media we're using.
2231  */
2232 static void
2233 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2234 {
2235 	struct fxp_softc *sc = ifp->if_softc;
2236 	struct mii_data *mii;
2237 
2238 	mii = device_get_softc(sc->miibus);
2239 	mii_pollstat(mii);
2240 	ifmr->ifm_active = mii->mii_media_active;
2241 	ifmr->ifm_status = mii->mii_media_status;
2242 
2243 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2244 		sc->cu_resume_bug = 1;
2245 	else
2246 		sc->cu_resume_bug = 0;
2247 }
2248 
2249 /*
2250  * Add a buffer to the end of the RFA buffer list.
2251  * Return 0 if successful, 1 for failure. A failure results in
2252  * adding the 'oldm' (if non-NULL) on to the end of the list -
2253  * tossing out its old contents and recycling it.
2254  * The RFA struct is stuck at the beginning of mbuf cluster and the
2255  * data pointer is fixed up to point just past it.
2256  */
2257 static int
2258 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2259 {
2260 	struct mbuf *m;
2261 	struct fxp_rfa *rfa, *p_rfa;
2262 	struct fxp_rx *p_rx;
2263 	bus_dmamap_t tmp_map;
2264 	int error;
2265 
2266 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2267 	if (m == NULL)
2268 		return (ENOBUFS);
2269 
2270 	/*
2271 	 * Move the data pointer up so that the incoming data packet
2272 	 * will be 32-bit aligned.
2273 	 */
2274 	m->m_data += RFA_ALIGNMENT_FUDGE;
2275 
2276 	/*
2277 	 * Get a pointer to the base of the mbuf cluster and move
2278 	 * data start past it.
2279 	 */
2280 	rfa = mtod(m, struct fxp_rfa *);
2281 	m->m_data += sc->rfa_size;
2282 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2283 
2284 	rfa->rfa_status = 0;
2285 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2286 	rfa->actual_size = 0;
2287 
2288 	/*
2289 	 * Initialize the rest of the RFA.  Note that since the RFA
2290 	 * is misaligned, we cannot store values directly.  We're thus
2291 	 * using the le32enc() function which handles endianness and
2292 	 * is also alignment-safe.
2293 	 */
2294 	le32enc(&rfa->link_addr, 0xffffffff);
2295 	le32enc(&rfa->rbd_addr, 0xffffffff);
2296 
2297 	/* Map the RFA into DMA memory. */
2298 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2299 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2300 	    &rxp->rx_addr, 0);
2301 	if (error) {
2302 		m_freem(m);
2303 		return (error);
2304 	}
2305 
2306 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2307 	tmp_map = sc->spare_map;
2308 	sc->spare_map = rxp->rx_map;
2309 	rxp->rx_map = tmp_map;
2310 	rxp->rx_mbuf = m;
2311 
2312 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2313 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2314 
2315 	/*
2316 	 * If there are other buffers already on the list, attach this
2317 	 * one to the end by fixing up the tail to point to this one.
2318 	 */
2319 	if (sc->fxp_desc.rx_head != NULL) {
2320 		p_rx = sc->fxp_desc.rx_tail;
2321 		p_rfa = (struct fxp_rfa *)
2322 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2323 		p_rx->rx_next = rxp;
2324 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2325 		p_rfa->rfa_control = 0;
2326 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2327 		    BUS_DMASYNC_PREWRITE);
2328 	} else {
2329 		rxp->rx_next = NULL;
2330 		sc->fxp_desc.rx_head = rxp;
2331 	}
2332 	sc->fxp_desc.rx_tail = rxp;
2333 	return (0);
2334 }
2335 
2336 static volatile int
2337 fxp_miibus_readreg(device_t dev, int phy, int reg)
2338 {
2339 	struct fxp_softc *sc = device_get_softc(dev);
2340 	int count = 10000;
2341 	int value;
2342 
2343 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2344 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2345 
2346 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2347 	    && count--)
2348 		DELAY(10);
2349 
2350 	if (count <= 0)
2351 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2352 
2353 	return (value & 0xffff);
2354 }
2355 
2356 static void
2357 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2358 {
2359 	struct fxp_softc *sc = device_get_softc(dev);
2360 	int count = 10000;
2361 
2362 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2363 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2364 	    (value & 0xffff));
2365 
2366 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2367 	    count--)
2368 		DELAY(10);
2369 
2370 	if (count <= 0)
2371 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2372 }
2373 
2374 static int
2375 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2376 {
2377 	struct fxp_softc *sc = ifp->if_softc;
2378 	struct ifreq *ifr = (struct ifreq *)data;
2379 	struct mii_data *mii;
2380 	int flag, mask, s, error = 0;
2381 
2382 	/*
2383 	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2384 	 * that by saying we're busy if the lock is already held.
2385 	 */
2386 	if (FXP_LOCKED(sc))
2387 		return (EBUSY);
2388 
2389 	FXP_LOCK(sc);
2390 	s = splimp();
2391 
2392 	switch (command) {
2393 	case SIOCSIFFLAGS:
2394 		if (ifp->if_flags & IFF_ALLMULTI)
2395 			sc->flags |= FXP_FLAG_ALL_MCAST;
2396 		else
2397 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2398 
2399 		/*
2400 		 * If interface is marked up and not running, then start it.
2401 		 * If it is marked down and running, stop it.
2402 		 * XXX If it's up then re-initialize it. This is so flags
2403 		 * such as IFF_PROMISC are handled.
2404 		 */
2405 		if (ifp->if_flags & IFF_UP) {
2406 			fxp_init_body(sc);
2407 		} else {
2408 			if (ifp->if_flags & IFF_RUNNING)
2409 				fxp_stop(sc);
2410 		}
2411 		break;
2412 
2413 	case SIOCADDMULTI:
2414 	case SIOCDELMULTI:
2415 		if (ifp->if_flags & IFF_ALLMULTI)
2416 			sc->flags |= FXP_FLAG_ALL_MCAST;
2417 		else
2418 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2419 		/*
2420 		 * Multicast list has changed; set the hardware filter
2421 		 * accordingly.
2422 		 */
2423 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2424 			fxp_mc_setup(sc);
2425 		/*
2426 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2427 		 * again rather than else {}.
2428 		 */
2429 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2430 			fxp_init_body(sc);
2431 		error = 0;
2432 		break;
2433 
2434 	case SIOCSIFMEDIA:
2435 	case SIOCGIFMEDIA:
2436 		if (sc->miibus != NULL) {
2437 			mii = device_get_softc(sc->miibus);
2438                         error = ifmedia_ioctl(ifp, ifr,
2439                             &mii->mii_media, command);
2440 		} else {
2441                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2442 		}
2443 		break;
2444 
2445 	case SIOCSIFCAP:
2446 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2447 		if (mask & IFCAP_POLLING)
2448 			ifp->if_capenable ^= IFCAP_POLLING;
2449 		if (mask & IFCAP_VLAN_MTU) {
2450 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2451 			if (sc->revision != FXP_REV_82557)
2452 				flag = FXP_FLAG_LONG_PKT_EN;
2453 			else /* a hack to get long frames on the old chip */
2454 				flag = FXP_FLAG_SAVE_BAD;
2455 			sc->flags ^= flag;
2456 			if (ifp->if_flags & IFF_UP)
2457 				fxp_init_body(sc);
2458 		}
2459 		break;
2460 
2461 	default:
2462 		/*
2463 		 * ether_ioctl() will eventually call fxp_start() which
2464 		 * will result in mutex recursion so drop it first.
2465 		 */
2466 		FXP_UNLOCK(sc);
2467 		error = ether_ioctl(ifp, command, data);
2468 	}
2469 	if (FXP_LOCKED(sc))
2470 		FXP_UNLOCK(sc);
2471 	splx(s);
2472 	return (error);
2473 }
2474 
2475 /*
2476  * Fill in the multicast address list and return number of entries.
2477  */
2478 static int
2479 fxp_mc_addrs(struct fxp_softc *sc)
2480 {
2481 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2482 	struct ifnet *ifp = &sc->sc_if;
2483 	struct ifmultiaddr *ifma;
2484 	int nmcasts;
2485 
2486 	nmcasts = 0;
2487 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2488 #if __FreeBSD_version < 500000
2489 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2490 #else
2491 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2492 #endif
2493 			if (ifma->ifma_addr->sa_family != AF_LINK)
2494 				continue;
2495 			if (nmcasts >= MAXMCADDR) {
2496 				sc->flags |= FXP_FLAG_ALL_MCAST;
2497 				nmcasts = 0;
2498 				break;
2499 			}
2500 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2501 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2502 			nmcasts++;
2503 		}
2504 	}
2505 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2506 	return (nmcasts);
2507 }
2508 
2509 /*
2510  * Program the multicast filter.
2511  *
2512  * We have an artificial restriction that the multicast setup command
2513  * must be the first command in the chain, so we take steps to ensure
2514  * this. By requiring this, it allows us to keep up the performance of
2515  * the pre-initialized command ring (esp. link pointers) by not actually
2516  * inserting the mcsetup command in the ring - i.e. its link pointer
2517  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2518  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2519  * lead into the regular TxCB ring when it completes.
2520  *
2521  * This function must be called at splimp.
2522  */
2523 static void
2524 fxp_mc_setup(struct fxp_softc *sc)
2525 {
2526 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2527 	struct ifnet *ifp = &sc->sc_if;
2528 	struct fxp_tx *txp;
2529 	int count;
2530 
2531 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2532 	/*
2533 	 * If there are queued commands, we must wait until they are all
2534 	 * completed. If we are already waiting, then add a NOP command
2535 	 * with interrupt option so that we're notified when all commands
2536 	 * have been completed - fxp_start() ensures that no additional
2537 	 * TX commands will be added when need_mcsetup is true.
2538 	 */
2539 	if (sc->tx_queued) {
2540 		/*
2541 		 * need_mcsetup will be true if we are already waiting for the
2542 		 * NOP command to be completed (see below). In this case, bail.
2543 		 */
2544 		if (sc->need_mcsetup)
2545 			return;
2546 		sc->need_mcsetup = 1;
2547 
2548 		/*
2549 		 * Add a NOP command with interrupt so that we are notified
2550 		 * when all TX commands have been processed.
2551 		 */
2552 		txp = sc->fxp_desc.tx_last->tx_next;
2553 		txp->tx_mbuf = NULL;
2554 		txp->tx_cb->cb_status = 0;
2555 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2556 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2557 		/*
2558 		 * Advance the end of list forward.
2559 		 */
2560 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2561 		    htole16(~FXP_CB_COMMAND_S);
2562 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2563 		sc->fxp_desc.tx_last = txp;
2564 		sc->tx_queued++;
2565 		/*
2566 		 * Issue a resume in case the CU has just suspended.
2567 		 */
2568 		fxp_scb_wait(sc);
2569 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2570 		/*
2571 		 * Set a 5 second timer just in case we don't hear from the
2572 		 * card again.
2573 		 */
2574 		ifp->if_timer = 5;
2575 
2576 		return;
2577 	}
2578 	sc->need_mcsetup = 0;
2579 
2580 	/*
2581 	 * Initialize multicast setup descriptor.
2582 	 */
2583 	mcsp->cb_status = 0;
2584 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2585 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2586 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2587 	txp = &sc->fxp_desc.mcs_tx;
2588 	txp->tx_mbuf = NULL;
2589 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2590 	txp->tx_next = sc->fxp_desc.tx_list;
2591 	(void) fxp_mc_addrs(sc);
2592 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2593 	sc->tx_queued = 1;
2594 
2595 	/*
2596 	 * Wait until command unit is not active. This should never
2597 	 * be the case when nothing is queued, but make sure anyway.
2598 	 */
2599 	count = 100;
2600 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2601 	    FXP_SCB_CUS_ACTIVE && --count)
2602 		DELAY(10);
2603 	if (count == 0) {
2604 		device_printf(sc->dev, "command queue timeout\n");
2605 		return;
2606 	}
2607 
2608 	/*
2609 	 * Start the multicast setup command.
2610 	 */
2611 	fxp_scb_wait(sc);
2612 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2613 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2614 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2615 
2616 	ifp->if_timer = 2;
2617 	return;
2618 }
2619 
2620 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2621 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2622 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2623 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2624 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2625 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2626 
2627 #define UCODE(x)	x, sizeof(x)/sizeof(u_int32_t)
2628 
2629 struct ucode {
2630 	u_int32_t	revision;
2631 	u_int32_t	*ucode;
2632 	int		length;
2633 	u_short		int_delay_offset;
2634 	u_short		bundle_max_offset;
2635 } ucode_table[] = {
2636 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2637 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2638 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2639 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2640 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2641 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2642 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2643 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2644 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2645 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2646 	{ 0, NULL, 0, 0, 0 }
2647 };
2648 
2649 static void
2650 fxp_load_ucode(struct fxp_softc *sc)
2651 {
2652 	struct ucode *uc;
2653 	struct fxp_cb_ucode *cbp;
2654 	int i;
2655 
2656 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2657 		if (sc->revision == uc->revision)
2658 			break;
2659 	if (uc->ucode == NULL)
2660 		return;
2661 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2662 	cbp->cb_status = 0;
2663 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2664 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2665 	for (i = 0; i < uc->length; i++)
2666 		cbp->ucode[i] = htole32(uc->ucode[i]);
2667 	if (uc->int_delay_offset)
2668 		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2669 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2670 	if (uc->bundle_max_offset)
2671 		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2672 		    htole16(sc->tunable_bundle_max);
2673 	/*
2674 	 * Download the ucode to the chip.
2675 	 */
2676 	fxp_scb_wait(sc);
2677 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2678 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2679 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2680 	/* ...and wait for it to complete. */
2681 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2682 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2683 	device_printf(sc->dev,
2684 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2685 	    sc->tunable_int_delay,
2686 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2687 	sc->flags |= FXP_FLAG_UCODE;
2688 }
2689 
2690 static int
2691 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2692 {
2693 	int error, value;
2694 
2695 	value = *(int *)arg1;
2696 	error = sysctl_handle_int(oidp, &value, 0, req);
2697 	if (error || !req->newptr)
2698 		return (error);
2699 	if (value < low || value > high)
2700 		return (EINVAL);
2701 	*(int *)arg1 = value;
2702 	return (0);
2703 }
2704 
2705 /*
2706  * Interrupt delay is expressed in microseconds, a multiplier is used
2707  * to convert this to the appropriate clock ticks before using.
2708  */
2709 static int
2710 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2711 {
2712 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2713 }
2714 
2715 static int
2716 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2717 {
2718 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2719 }
2720