xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 6486b015fc84e96725fef22b0e3363351399ae83)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #ifdef HAVE_KERNEL_OPTION_HEADERS
38 #include "opt_device_polling.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/lock.h>
48 #include <sys/module.h>
49 #include <sys/mutex.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 
55 #include <net/bpf.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_vlan_var.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 
70 #include <machine/bus.h>
71 #include <machine/in_cksum.h>
72 #include <machine/resource.h>
73 
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 
80 #include <dev/fxp/if_fxpreg.h>
81 #include <dev/fxp/if_fxpvar.h>
82 #include <dev/fxp/rcvbundl.h>
83 
84 MODULE_DEPEND(fxp, pci, 1, 1, 1);
85 MODULE_DEPEND(fxp, ether, 1, 1, 1);
86 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
87 #include "miibus_if.h"
88 
89 /*
90  * NOTE!  On !x86 we typically have an alignment constraint.  The
91  * card DMAs the packet immediately following the RFA.  However,
92  * the first thing in the packet is a 14-byte Ethernet header.
93  * This means that the packet is misaligned.  To compensate,
94  * we actually offset the RFA 2 bytes into the cluster.  This
95  * alignes the packet after the Ethernet header at a 32-bit
96  * boundary.  HOWEVER!  This means that the RFA is misaligned!
97  */
98 #define	RFA_ALIGNMENT_FUDGE	2
99 
100 /*
101  * Set initial transmit threshold at 64 (512 bytes). This is
102  * increased by 64 (512 bytes) at a time, to maximum of 192
103  * (1536 bytes), if an underrun occurs.
104  */
105 static int tx_threshold = 64;
106 
107 /*
108  * The configuration byte map has several undefined fields which
109  * must be one or must be zero.  Set up a template for these bits.
110  * The actual configuration is performed in fxp_init_body.
111  *
112  * See struct fxp_cb_config for the bit definitions.
113  */
114 static const u_char const fxp_cb_config_template[] = {
115 	0x0, 0x0,		/* cb_status */
116 	0x0, 0x0,		/* cb_command */
117 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118 	0x0,	/*  0 */
119 	0x0,	/*  1 */
120 	0x0,	/*  2 */
121 	0x0,	/*  3 */
122 	0x0,	/*  4 */
123 	0x0,	/*  5 */
124 	0x32,	/*  6 */
125 	0x0,	/*  7 */
126 	0x0,	/*  8 */
127 	0x0,	/*  9 */
128 	0x6,	/* 10 */
129 	0x0,	/* 11 */
130 	0x0,	/* 12 */
131 	0x0,	/* 13 */
132 	0xf2,	/* 14 */
133 	0x48,	/* 15 */
134 	0x0,	/* 16 */
135 	0x40,	/* 17 */
136 	0xf0,	/* 18 */
137 	0x0,	/* 19 */
138 	0x3f,	/* 20 */
139 	0x5,	/* 21 */
140 	0x0,	/* 22 */
141 	0x0,	/* 23 */
142 	0x0,	/* 24 */
143 	0x0,	/* 25 */
144 	0x0,	/* 26 */
145 	0x0,	/* 27 */
146 	0x0,	/* 28 */
147 	0x0,	/* 29 */
148 	0x0,	/* 30 */
149 	0x0	/* 31 */
150 };
151 
152 /*
153  * Claim various Intel PCI device identifiers for this driver.  The
154  * sub-vendor and sub-device field are extensively used to identify
155  * particular variants, but we don't currently differentiate between
156  * them.
157  */
158 static const struct fxp_ident const fxp_ident_table[] = {
159     { 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
160     { 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
161     { 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
162     { 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
163     { 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164     { 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165     { 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166     { 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
167     { 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
168     { 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
169     { 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170     { 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
171     { 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
172     { 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
173     { 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
174     { 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
175     { 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
176     { 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
177     { 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
178     { 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
179     { 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
180     { 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
181     { 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
182     { 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
183     { 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
184     { 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
185     { 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
186     { 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
187     { 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
188     { 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
189     { 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
190     { 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
191     { 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
192     { 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
193     { 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
194     { 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
195     { 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
196     { 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
197     { 0x1229,	0x0d,	0, "Intel 82550C Pro/100 Ethernet" },
198     { 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
199     { 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
200     { 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
201     { 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
202     { 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
203     { 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
204     { 0,	-1,	0, NULL },
205 };
206 
207 #ifdef FXP_IP_CSUM_WAR
208 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
209 #else
210 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
211 #endif
212 
213 static int		fxp_probe(device_t dev);
214 static int		fxp_attach(device_t dev);
215 static int		fxp_detach(device_t dev);
216 static int		fxp_shutdown(device_t dev);
217 static int		fxp_suspend(device_t dev);
218 static int		fxp_resume(device_t dev);
219 
220 static const struct fxp_ident *fxp_find_ident(device_t dev);
221 static void		fxp_intr(void *xsc);
222 static void		fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp,
223 			    struct mbuf *m, uint16_t status, int pos);
224 static int		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
225 			    uint8_t statack, int count);
226 static void 		fxp_init(void *xsc);
227 static void 		fxp_init_body(struct fxp_softc *sc, int);
228 static void 		fxp_tick(void *xsc);
229 static void 		fxp_start(struct ifnet *ifp);
230 static void 		fxp_start_body(struct ifnet *ifp);
231 static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
232 static void		fxp_txeof(struct fxp_softc *sc);
233 static void		fxp_stop(struct fxp_softc *sc);
234 static void 		fxp_release(struct fxp_softc *sc);
235 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
236 			    caddr_t data);
237 static void 		fxp_watchdog(struct fxp_softc *sc);
238 static void		fxp_add_rfabuf(struct fxp_softc *sc,
239 			    struct fxp_rx *rxp);
240 static void		fxp_discard_rfabuf(struct fxp_softc *sc,
241 			    struct fxp_rx *rxp);
242 static int		fxp_new_rfabuf(struct fxp_softc *sc,
243 			    struct fxp_rx *rxp);
244 static int		fxp_mc_addrs(struct fxp_softc *sc);
245 static void		fxp_mc_setup(struct fxp_softc *sc);
246 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
247 			    int autosize);
248 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
249 			    uint16_t data);
250 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
251 static void		fxp_load_eeprom(struct fxp_softc *sc);
252 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
253 			    int offset, int words);
254 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
255 			    int offset, int words);
256 static int		fxp_ifmedia_upd(struct ifnet *ifp);
257 static void		fxp_ifmedia_sts(struct ifnet *ifp,
258 			    struct ifmediareq *ifmr);
259 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
260 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
261 			    struct ifmediareq *ifmr);
262 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
263 static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
264 			    int value);
265 static void		fxp_miibus_statchg(device_t dev);
266 static void		fxp_load_ucode(struct fxp_softc *sc);
267 static void		fxp_update_stats(struct fxp_softc *sc);
268 static void		fxp_sysctl_node(struct fxp_softc *sc);
269 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
270 			    int low, int high);
271 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
272 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
273 static void 		fxp_scb_wait(struct fxp_softc *sc);
274 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
275 static void		fxp_dma_wait(struct fxp_softc *sc,
276 			    volatile uint16_t *status, bus_dma_tag_t dmat,
277 			    bus_dmamap_t map);
278 
279 static device_method_t fxp_methods[] = {
280 	/* Device interface */
281 	DEVMETHOD(device_probe,		fxp_probe),
282 	DEVMETHOD(device_attach,	fxp_attach),
283 	DEVMETHOD(device_detach,	fxp_detach),
284 	DEVMETHOD(device_shutdown,	fxp_shutdown),
285 	DEVMETHOD(device_suspend,	fxp_suspend),
286 	DEVMETHOD(device_resume,	fxp_resume),
287 
288 	/* MII interface */
289 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
290 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
291 	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
292 
293 	{ 0, 0 }
294 };
295 
296 static driver_t fxp_driver = {
297 	"fxp",
298 	fxp_methods,
299 	sizeof(struct fxp_softc),
300 };
301 
302 static devclass_t fxp_devclass;
303 
304 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
305 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
306 
307 static struct resource_spec fxp_res_spec_mem[] = {
308 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
309 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
310 	{ -1, 0 }
311 };
312 
313 static struct resource_spec fxp_res_spec_io[] = {
314 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
315 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
316 	{ -1, 0 }
317 };
318 
319 /*
320  * Wait for the previous command to be accepted (but not necessarily
321  * completed).
322  */
323 static void
324 fxp_scb_wait(struct fxp_softc *sc)
325 {
326 	union {
327 		uint16_t w;
328 		uint8_t b[2];
329 	} flowctl;
330 	int i = 10000;
331 
332 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
333 		DELAY(2);
334 	if (i == 0) {
335 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
336 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
337 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
338 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
339 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
340 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
341 	}
342 }
343 
344 static void
345 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
346 {
347 
348 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
349 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
350 		fxp_scb_wait(sc);
351 	}
352 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
353 }
354 
355 static void
356 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
357     bus_dma_tag_t dmat, bus_dmamap_t map)
358 {
359 	int i;
360 
361 	for (i = 10000; i > 0; i--) {
362 		DELAY(2);
363 		bus_dmamap_sync(dmat, map,
364 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
365 		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
366 			break;
367 	}
368 	if (i == 0)
369 		device_printf(sc->dev, "DMA timeout\n");
370 }
371 
372 static const struct fxp_ident *
373 fxp_find_ident(device_t dev)
374 {
375 	uint16_t devid;
376 	uint8_t revid;
377 	const struct fxp_ident *ident;
378 
379 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
380 		devid = pci_get_device(dev);
381 		revid = pci_get_revid(dev);
382 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
383 			if (ident->devid == devid &&
384 			    (ident->revid == revid || ident->revid == -1)) {
385 				return (ident);
386 			}
387 		}
388 	}
389 	return (NULL);
390 }
391 
392 /*
393  * Return identification string if this device is ours.
394  */
395 static int
396 fxp_probe(device_t dev)
397 {
398 	const struct fxp_ident *ident;
399 
400 	ident = fxp_find_ident(dev);
401 	if (ident != NULL) {
402 		device_set_desc(dev, ident->name);
403 		return (BUS_PROBE_DEFAULT);
404 	}
405 	return (ENXIO);
406 }
407 
408 static void
409 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
410 {
411 	uint32_t *addr;
412 
413 	if (error)
414 		return;
415 
416 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
417 	addr = arg;
418 	*addr = segs->ds_addr;
419 }
420 
421 static int
422 fxp_attach(device_t dev)
423 {
424 	struct fxp_softc *sc;
425 	struct fxp_cb_tx *tcbp;
426 	struct fxp_tx *txp;
427 	struct fxp_rx *rxp;
428 	struct ifnet *ifp;
429 	uint32_t val;
430 	uint16_t data;
431 	u_char eaddr[ETHER_ADDR_LEN];
432 	int error, flags, i, pmc, prefer_iomap;
433 
434 	error = 0;
435 	sc = device_get_softc(dev);
436 	sc->dev = dev;
437 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
438 	    MTX_DEF);
439 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
440 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
441 	    fxp_serial_ifmedia_sts);
442 
443 	ifp = sc->ifp = if_alloc(IFT_ETHER);
444 	if (ifp == NULL) {
445 		device_printf(dev, "can not if_alloc()\n");
446 		error = ENOSPC;
447 		goto fail;
448 	}
449 
450 	/*
451 	 * Enable bus mastering.
452 	 */
453 	pci_enable_busmaster(dev);
454 	val = pci_read_config(dev, PCIR_COMMAND, 2);
455 
456 	/*
457 	 * Figure out which we should try first - memory mapping or i/o mapping?
458 	 * We default to memory mapping. Then we accept an override from the
459 	 * command line. Then we check to see which one is enabled.
460 	 */
461 	prefer_iomap = 0;
462 	resource_int_value(device_get_name(dev), device_get_unit(dev),
463 	    "prefer_iomap", &prefer_iomap);
464 	if (prefer_iomap)
465 		sc->fxp_spec = fxp_res_spec_io;
466 	else
467 		sc->fxp_spec = fxp_res_spec_mem;
468 
469 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
470 	if (error) {
471 		if (sc->fxp_spec == fxp_res_spec_mem)
472 			sc->fxp_spec = fxp_res_spec_io;
473 		else
474 			sc->fxp_spec = fxp_res_spec_mem;
475 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
476 	}
477 	if (error) {
478 		device_printf(dev, "could not allocate resources\n");
479 		error = ENXIO;
480 		goto fail;
481 	}
482 
483 	if (bootverbose) {
484 		device_printf(dev, "using %s space register mapping\n",
485 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
486 	}
487 
488 	/*
489 	 * Put CU/RU idle state and prepare full reset.
490 	 */
491 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
492 	DELAY(10);
493 	/* Full reset and disable interrupts. */
494 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
495 	DELAY(10);
496 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
497 
498 	/*
499 	 * Find out how large of an SEEPROM we have.
500 	 */
501 	fxp_autosize_eeprom(sc);
502 	fxp_load_eeprom(sc);
503 
504 	/*
505 	 * Find out the chip revision; lump all 82557 revs together.
506 	 */
507 	sc->ident = fxp_find_ident(dev);
508 	if (sc->ident->ich > 0) {
509 		/* Assume ICH controllers are 82559. */
510 		sc->revision = FXP_REV_82559_A0;
511 	} else {
512 		data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
513 		if ((data >> 8) == 1)
514 			sc->revision = FXP_REV_82557;
515 		else
516 			sc->revision = pci_get_revid(dev);
517 	}
518 
519 	/*
520 	 * Check availability of WOL. 82559ER does not support WOL.
521 	 */
522 	if (sc->revision >= FXP_REV_82558_A4 &&
523 	    sc->revision != FXP_REV_82559S_A) {
524 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
525 		if ((data & 0x20) != 0 &&
526 		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
527 			sc->flags |= FXP_FLAG_WOLCAP;
528 	}
529 
530 	if (sc->revision == FXP_REV_82550_C) {
531 		/*
532 		 * 82550C with server extension requires microcode to
533 		 * receive fragmented UDP datagrams.  However if the
534 		 * microcode is used for client-only featured 82550C
535 		 * it locks up controller.
536 		 */
537 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
538 		if ((data & 0x0400) == 0)
539 			sc->flags |= FXP_FLAG_NO_UCODE;
540 	}
541 
542 	/* Receiver lock-up workaround detection. */
543 	if (sc->revision < FXP_REV_82558_A4) {
544 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
545 		if ((data & 0x03) != 0x03) {
546 			sc->flags |= FXP_FLAG_RXBUG;
547 			device_printf(dev, "Enabling Rx lock-up workaround\n");
548 		}
549 	}
550 
551 	/*
552 	 * Determine whether we must use the 503 serial interface.
553 	 */
554 	data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
555 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
556 	    && (data & FXP_PHY_SERIAL_ONLY))
557 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
558 
559 	fxp_sysctl_node(sc);
560 	/*
561 	 * Enable workarounds for certain chip revision deficiencies.
562 	 *
563 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
564 	 * some systems based a normal 82559 design, have a defect where
565 	 * the chip can cause a PCI protocol violation if it receives
566 	 * a CU_RESUME command when it is entering the IDLE state.  The
567 	 * workaround is to disable Dynamic Standby Mode, so the chip never
568 	 * deasserts CLKRUN#, and always remains in an active state.
569 	 *
570 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
571 	 */
572 	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
573 	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
574 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
575 		if (data & 0x02) {			/* STB enable */
576 			uint16_t cksum;
577 			int i;
578 
579 			device_printf(dev,
580 			    "Disabling dynamic standby mode in EEPROM\n");
581 			data &= ~0x02;
582 			sc->eeprom[FXP_EEPROM_MAP_ID] = data;
583 			fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
584 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
585 			cksum = 0;
586 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
587 				cksum += sc->eeprom[i];
588 			i = (1 << sc->eeprom_size) - 1;
589 			cksum = 0xBABA - cksum;
590 			fxp_write_eeprom(sc, &cksum, i, 1);
591 			device_printf(dev,
592 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
593 			    i, sc->eeprom[i], cksum);
594 			sc->eeprom[i] = cksum;
595 			/*
596 			 * If the user elects to continue, try the software
597 			 * workaround, as it is better than nothing.
598 			 */
599 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
600 		}
601 	}
602 
603 	/*
604 	 * If we are not a 82557 chip, we can enable extended features.
605 	 */
606 	if (sc->revision != FXP_REV_82557) {
607 		/*
608 		 * If MWI is enabled in the PCI configuration, and there
609 		 * is a valid cacheline size (8 or 16 dwords), then tell
610 		 * the board to turn on MWI.
611 		 */
612 		if (val & PCIM_CMD_MWRICEN &&
613 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
614 			sc->flags |= FXP_FLAG_MWI_ENABLE;
615 
616 		/* turn on the extended TxCB feature */
617 		sc->flags |= FXP_FLAG_EXT_TXCB;
618 
619 		/* enable reception of long frames for VLAN */
620 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
621 	} else {
622 		/* a hack to get long VLAN frames on a 82557 */
623 		sc->flags |= FXP_FLAG_SAVE_BAD;
624 	}
625 
626 	/* For 82559 or later chips, Rx checksum offload is supported. */
627 	if (sc->revision >= FXP_REV_82559_A0) {
628 		/* 82559ER does not support Rx checksum offloading. */
629 		if (sc->ident->devid != 0x1209)
630 			sc->flags |= FXP_FLAG_82559_RXCSUM;
631 	}
632 	/*
633 	 * Enable use of extended RFDs and TCBs for 82550
634 	 * and later chips. Note: we need extended TXCB support
635 	 * too, but that's already enabled by the code above.
636 	 * Be careful to do this only on the right devices.
637 	 */
638 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
639 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
640 	    || sc->revision == FXP_REV_82551_10) {
641 		sc->rfa_size = sizeof (struct fxp_rfa);
642 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
643 		sc->flags |= FXP_FLAG_EXT_RFA;
644 		/* Use extended RFA instead of 82559 checksum mode. */
645 		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
646 	} else {
647 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
648 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
649 	}
650 
651 	/*
652 	 * Allocate DMA tags and DMA safe memory.
653 	 */
654 	sc->maxtxseg = FXP_NTXSEG;
655 	sc->maxsegsize = MCLBYTES;
656 	if (sc->flags & FXP_FLAG_EXT_RFA) {
657 		sc->maxtxseg--;
658 		sc->maxsegsize = FXP_TSO_SEGSIZE;
659 	}
660 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
661 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
662 	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
663 	    sc->maxtxseg, sc->maxsegsize, 0,
664 	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
665 	if (error) {
666 		device_printf(dev, "could not create TX DMA tag\n");
667 		goto fail;
668 	}
669 
670 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
671 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
672 	    MCLBYTES, 1, MCLBYTES, 0,
673 	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
674 	if (error) {
675 		device_printf(dev, "could not create RX DMA tag\n");
676 		goto fail;
677 	}
678 
679 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
680 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
681 	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
682 	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
683 	if (error) {
684 		device_printf(dev, "could not create stats DMA tag\n");
685 		goto fail;
686 	}
687 
688 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
689 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
690 	if (error) {
691 		device_printf(dev, "could not allocate stats DMA memory\n");
692 		goto fail;
693 	}
694 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
695 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
696 	    BUS_DMA_NOWAIT);
697 	if (error) {
698 		device_printf(dev, "could not load the stats DMA buffer\n");
699 		goto fail;
700 	}
701 
702 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
703 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
704 	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
705 	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
706 	if (error) {
707 		device_printf(dev, "could not create TxCB DMA tag\n");
708 		goto fail;
709 	}
710 
711 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
712 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
713 	if (error) {
714 		device_printf(dev, "could not allocate TxCB DMA memory\n");
715 		goto fail;
716 	}
717 
718 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
719 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
720 	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
721 	if (error) {
722 		device_printf(dev, "could not load TxCB DMA buffer\n");
723 		goto fail;
724 	}
725 
726 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
727 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
728 	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
729 	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
730 	if (error) {
731 		device_printf(dev,
732 		    "could not create multicast setup DMA tag\n");
733 		goto fail;
734 	}
735 
736 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
737 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
738 	if (error) {
739 		device_printf(dev,
740 		    "could not allocate multicast setup DMA memory\n");
741 		goto fail;
742 	}
743 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
744 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
745 	    BUS_DMA_NOWAIT);
746 	if (error) {
747 		device_printf(dev,
748 		    "can't load the multicast setup DMA buffer\n");
749 		goto fail;
750 	}
751 
752 	/*
753 	 * Pre-allocate the TX DMA maps and setup the pointers to
754 	 * the TX command blocks.
755 	 */
756 	txp = sc->fxp_desc.tx_list;
757 	tcbp = sc->fxp_desc.cbl_list;
758 	for (i = 0; i < FXP_NTXCB; i++) {
759 		txp[i].tx_cb = tcbp + i;
760 		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
761 		if (error) {
762 			device_printf(dev, "can't create DMA map for TX\n");
763 			goto fail;
764 		}
765 	}
766 	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
767 	if (error) {
768 		device_printf(dev, "can't create spare DMA map\n");
769 		goto fail;
770 	}
771 
772 	/*
773 	 * Pre-allocate our receive buffers.
774 	 */
775 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
776 	for (i = 0; i < FXP_NRFABUFS; i++) {
777 		rxp = &sc->fxp_desc.rx_list[i];
778 		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
779 		if (error) {
780 			device_printf(dev, "can't create DMA map for RX\n");
781 			goto fail;
782 		}
783 		if (fxp_new_rfabuf(sc, rxp) != 0) {
784 			error = ENOMEM;
785 			goto fail;
786 		}
787 		fxp_add_rfabuf(sc, rxp);
788 	}
789 
790 	/*
791 	 * Read MAC address.
792 	 */
793 	eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
794 	eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
795 	eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
796 	eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
797 	eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
798 	eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
799 	if (bootverbose) {
800 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
801 		    pci_get_vendor(dev), pci_get_device(dev),
802 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
803 		    pci_get_revid(dev));
804 		device_printf(dev, "Dynamic Standby mode is %s\n",
805 		    sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
806 		    "disabled");
807 	}
808 
809 	/*
810 	 * If this is only a 10Mbps device, then there is no MII, and
811 	 * the PHY will use a serial interface instead.
812 	 *
813 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
814 	 * doesn't have a programming interface of any sort.  The
815 	 * media is sensed automatically based on how the link partner
816 	 * is configured.  This is, in essence, manual configuration.
817 	 */
818 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
819 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
820 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
821 	} else {
822 		/*
823 		 * i82557 wedge when isolating all of their PHYs.
824 		 */
825 		flags = MIIF_NOISOLATE;
826 		if (sc->revision >= FXP_REV_82558_A4)
827 			flags |= MIIF_DOPAUSE;
828 		error = mii_attach(dev, &sc->miibus, ifp, fxp_ifmedia_upd,
829 		    fxp_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
830 		    MII_OFFSET_ANY, flags);
831 		if (error != 0) {
832 			device_printf(dev, "attaching PHYs failed\n");
833 			goto fail;
834 		}
835 	}
836 
837 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
838 	ifp->if_init = fxp_init;
839 	ifp->if_softc = sc;
840 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
841 	ifp->if_ioctl = fxp_ioctl;
842 	ifp->if_start = fxp_start;
843 
844 	ifp->if_capabilities = ifp->if_capenable = 0;
845 
846 	/* Enable checksum offload/TSO for 82550 or better chips */
847 	if (sc->flags & FXP_FLAG_EXT_RFA) {
848 		ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO;
849 		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
850 		ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4;
851 	}
852 
853 	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
854 		ifp->if_capabilities |= IFCAP_RXCSUM;
855 		ifp->if_capenable |= IFCAP_RXCSUM;
856 	}
857 
858 	if (sc->flags & FXP_FLAG_WOLCAP) {
859 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
860 		ifp->if_capenable |= IFCAP_WOL_MAGIC;
861 	}
862 
863 #ifdef DEVICE_POLLING
864 	/* Inform the world we support polling. */
865 	ifp->if_capabilities |= IFCAP_POLLING;
866 #endif
867 
868 	/*
869 	 * Attach the interface.
870 	 */
871 	ether_ifattach(ifp, eaddr);
872 
873 	/*
874 	 * Tell the upper layer(s) we support long frames.
875 	 * Must appear after the call to ether_ifattach() because
876 	 * ether_ifattach() sets ifi_hdrlen to the default value.
877 	 */
878 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
879 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
880 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
881 	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
882 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING |
883 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
884 		ifp->if_capenable |= IFCAP_VLAN_HWTAGGING |
885 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
886 	}
887 
888 	/*
889 	 * Let the system queue as many packets as we have available
890 	 * TX descriptors.
891 	 */
892 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
893 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
894 	IFQ_SET_READY(&ifp->if_snd);
895 
896 	/*
897 	 * Hook our interrupt after all initialization is complete.
898 	 */
899 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
900 			       NULL, fxp_intr, sc, &sc->ih);
901 	if (error) {
902 		device_printf(dev, "could not setup irq\n");
903 		ether_ifdetach(sc->ifp);
904 		goto fail;
905 	}
906 
907 	/*
908 	 * Configure hardware to reject magic frames otherwise
909 	 * system will hang on recipt of magic frames.
910 	 */
911 	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
912 		FXP_LOCK(sc);
913 		/* Clear wakeup events. */
914 		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
915 		fxp_init_body(sc, 0);
916 		fxp_stop(sc);
917 		FXP_UNLOCK(sc);
918 	}
919 
920 fail:
921 	if (error)
922 		fxp_release(sc);
923 	return (error);
924 }
925 
926 /*
927  * Release all resources.  The softc lock should not be held and the
928  * interrupt should already be torn down.
929  */
930 static void
931 fxp_release(struct fxp_softc *sc)
932 {
933 	struct fxp_rx *rxp;
934 	struct fxp_tx *txp;
935 	int i;
936 
937 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
938 	KASSERT(sc->ih == NULL,
939 	    ("fxp_release() called with intr handle still active"));
940 	if (sc->miibus)
941 		device_delete_child(sc->dev, sc->miibus);
942 	bus_generic_detach(sc->dev);
943 	ifmedia_removeall(&sc->sc_media);
944 	if (sc->fxp_desc.cbl_list) {
945 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
946 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
947 		    sc->cbl_map);
948 	}
949 	if (sc->fxp_stats) {
950 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
951 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
952 	}
953 	if (sc->mcsp) {
954 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
955 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
956 	}
957 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
958 	if (sc->fxp_rxmtag) {
959 		for (i = 0; i < FXP_NRFABUFS; i++) {
960 			rxp = &sc->fxp_desc.rx_list[i];
961 			if (rxp->rx_mbuf != NULL) {
962 				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
963 				    BUS_DMASYNC_POSTREAD);
964 				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
965 				m_freem(rxp->rx_mbuf);
966 			}
967 			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
968 		}
969 		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
970 		bus_dma_tag_destroy(sc->fxp_rxmtag);
971 	}
972 	if (sc->fxp_txmtag) {
973 		for (i = 0; i < FXP_NTXCB; i++) {
974 			txp = &sc->fxp_desc.tx_list[i];
975 			if (txp->tx_mbuf != NULL) {
976 				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
977 				    BUS_DMASYNC_POSTWRITE);
978 				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
979 				m_freem(txp->tx_mbuf);
980 			}
981 			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
982 		}
983 		bus_dma_tag_destroy(sc->fxp_txmtag);
984 	}
985 	if (sc->fxp_stag)
986 		bus_dma_tag_destroy(sc->fxp_stag);
987 	if (sc->cbl_tag)
988 		bus_dma_tag_destroy(sc->cbl_tag);
989 	if (sc->mcs_tag)
990 		bus_dma_tag_destroy(sc->mcs_tag);
991 	if (sc->ifp)
992 		if_free(sc->ifp);
993 
994 	mtx_destroy(&sc->sc_mtx);
995 }
996 
997 /*
998  * Detach interface.
999  */
1000 static int
1001 fxp_detach(device_t dev)
1002 {
1003 	struct fxp_softc *sc = device_get_softc(dev);
1004 
1005 #ifdef DEVICE_POLLING
1006 	if (sc->ifp->if_capenable & IFCAP_POLLING)
1007 		ether_poll_deregister(sc->ifp);
1008 #endif
1009 
1010 	FXP_LOCK(sc);
1011 	/*
1012 	 * Stop DMA and drop transmit queue, but disable interrupts first.
1013 	 */
1014 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1015 	fxp_stop(sc);
1016 	FXP_UNLOCK(sc);
1017 	callout_drain(&sc->stat_ch);
1018 
1019 	/*
1020 	 * Close down routes etc.
1021 	 */
1022 	ether_ifdetach(sc->ifp);
1023 
1024 	/*
1025 	 * Unhook interrupt before dropping lock. This is to prevent
1026 	 * races with fxp_intr().
1027 	 */
1028 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1029 	sc->ih = NULL;
1030 
1031 	/* Release our allocated resources. */
1032 	fxp_release(sc);
1033 	return (0);
1034 }
1035 
1036 /*
1037  * Device shutdown routine. Called at system shutdown after sync. The
1038  * main purpose of this routine is to shut off receiver DMA so that
1039  * kernel memory doesn't get clobbered during warmboot.
1040  */
1041 static int
1042 fxp_shutdown(device_t dev)
1043 {
1044 
1045 	/*
1046 	 * Make sure that DMA is disabled prior to reboot. Not doing
1047 	 * do could allow DMA to corrupt kernel memory during the
1048 	 * reboot before the driver initializes.
1049 	 */
1050 	return (fxp_suspend(dev));
1051 }
1052 
1053 /*
1054  * Device suspend routine.  Stop the interface and save some PCI
1055  * settings in case the BIOS doesn't restore them properly on
1056  * resume.
1057  */
1058 static int
1059 fxp_suspend(device_t dev)
1060 {
1061 	struct fxp_softc *sc = device_get_softc(dev);
1062 	struct ifnet *ifp;
1063 	int pmc;
1064 	uint16_t pmstat;
1065 
1066 	FXP_LOCK(sc);
1067 
1068 	ifp = sc->ifp;
1069 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1070 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1071 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1072 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1073 			/* Request PME. */
1074 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1075 			sc->flags |= FXP_FLAG_WOL;
1076 			/* Reconfigure hardware to accept magic frames. */
1077 			fxp_init_body(sc, 1);
1078 		}
1079 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1080 	}
1081 	fxp_stop(sc);
1082 
1083 	sc->suspended = 1;
1084 
1085 	FXP_UNLOCK(sc);
1086 	return (0);
1087 }
1088 
1089 /*
1090  * Device resume routine. re-enable busmastering, and restart the interface if
1091  * appropriate.
1092  */
1093 static int
1094 fxp_resume(device_t dev)
1095 {
1096 	struct fxp_softc *sc = device_get_softc(dev);
1097 	struct ifnet *ifp = sc->ifp;
1098 	int pmc;
1099 	uint16_t pmstat;
1100 
1101 	FXP_LOCK(sc);
1102 
1103 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1104 		sc->flags &= ~FXP_FLAG_WOL;
1105 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1106 		/* Disable PME and clear PME status. */
1107 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1108 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1109 		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1110 			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1111 			    CSR_READ_1(sc, FXP_CSR_PMDR));
1112 	}
1113 
1114 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1115 	DELAY(10);
1116 
1117 	/* reinitialize interface if necessary */
1118 	if (ifp->if_flags & IFF_UP)
1119 		fxp_init_body(sc, 1);
1120 
1121 	sc->suspended = 0;
1122 
1123 	FXP_UNLOCK(sc);
1124 	return (0);
1125 }
1126 
1127 static void
1128 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1129 {
1130 	uint16_t reg;
1131 	int x;
1132 
1133 	/*
1134 	 * Shift in data.
1135 	 */
1136 	for (x = 1 << (length - 1); x; x >>= 1) {
1137 		if (data & x)
1138 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1139 		else
1140 			reg = FXP_EEPROM_EECS;
1141 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1142 		DELAY(1);
1143 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1144 		DELAY(1);
1145 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1146 		DELAY(1);
1147 	}
1148 }
1149 
1150 /*
1151  * Read from the serial EEPROM. Basically, you manually shift in
1152  * the read opcode (one bit at a time) and then shift in the address,
1153  * and then you shift out the data (all of this one bit at a time).
1154  * The word size is 16 bits, so you have to provide the address for
1155  * every 16 bits of data.
1156  */
1157 static uint16_t
1158 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1159 {
1160 	uint16_t reg, data;
1161 	int x;
1162 
1163 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1164 	/*
1165 	 * Shift in read opcode.
1166 	 */
1167 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1168 	/*
1169 	 * Shift in address.
1170 	 */
1171 	data = 0;
1172 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1173 		if (offset & x)
1174 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1175 		else
1176 			reg = FXP_EEPROM_EECS;
1177 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1178 		DELAY(1);
1179 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1180 		DELAY(1);
1181 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1182 		DELAY(1);
1183 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1184 		data++;
1185 		if (autosize && reg == 0) {
1186 			sc->eeprom_size = data;
1187 			break;
1188 		}
1189 	}
1190 	/*
1191 	 * Shift out data.
1192 	 */
1193 	data = 0;
1194 	reg = FXP_EEPROM_EECS;
1195 	for (x = 1 << 15; x; x >>= 1) {
1196 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1197 		DELAY(1);
1198 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1199 			data |= x;
1200 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1201 		DELAY(1);
1202 	}
1203 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1204 	DELAY(1);
1205 
1206 	return (data);
1207 }
1208 
1209 static void
1210 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1211 {
1212 	int i;
1213 
1214 	/*
1215 	 * Erase/write enable.
1216 	 */
1217 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1218 	fxp_eeprom_shiftin(sc, 0x4, 3);
1219 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1220 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1221 	DELAY(1);
1222 	/*
1223 	 * Shift in write opcode, address, data.
1224 	 */
1225 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1226 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1227 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1228 	fxp_eeprom_shiftin(sc, data, 16);
1229 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1230 	DELAY(1);
1231 	/*
1232 	 * Wait for EEPROM to finish up.
1233 	 */
1234 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1235 	DELAY(1);
1236 	for (i = 0; i < 1000; i++) {
1237 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1238 			break;
1239 		DELAY(50);
1240 	}
1241 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1242 	DELAY(1);
1243 	/*
1244 	 * Erase/write disable.
1245 	 */
1246 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1247 	fxp_eeprom_shiftin(sc, 0x4, 3);
1248 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1249 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1250 	DELAY(1);
1251 }
1252 
1253 /*
1254  * From NetBSD:
1255  *
1256  * Figure out EEPROM size.
1257  *
1258  * 559's can have either 64-word or 256-word EEPROMs, the 558
1259  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1260  * talks about the existance of 16 to 256 word EEPROMs.
1261  *
1262  * The only known sizes are 64 and 256, where the 256 version is used
1263  * by CardBus cards to store CIS information.
1264  *
1265  * The address is shifted in msb-to-lsb, and after the last
1266  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1267  * after which follows the actual data. We try to detect this zero, by
1268  * probing the data-out bit in the EEPROM control register just after
1269  * having shifted in a bit. If the bit is zero, we assume we've
1270  * shifted enough address bits. The data-out should be tri-state,
1271  * before this, which should translate to a logical one.
1272  */
1273 static void
1274 fxp_autosize_eeprom(struct fxp_softc *sc)
1275 {
1276 
1277 	/* guess maximum size of 256 words */
1278 	sc->eeprom_size = 8;
1279 
1280 	/* autosize */
1281 	(void) fxp_eeprom_getword(sc, 0, 1);
1282 }
1283 
1284 static void
1285 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1286 {
1287 	int i;
1288 
1289 	for (i = 0; i < words; i++)
1290 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1291 }
1292 
1293 static void
1294 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1295 {
1296 	int i;
1297 
1298 	for (i = 0; i < words; i++)
1299 		fxp_eeprom_putword(sc, offset + i, data[i]);
1300 }
1301 
1302 static void
1303 fxp_load_eeprom(struct fxp_softc *sc)
1304 {
1305 	int i;
1306 	uint16_t cksum;
1307 
1308 	fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1309 	cksum = 0;
1310 	for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1311 		cksum += sc->eeprom[i];
1312 	cksum = 0xBABA - cksum;
1313 	if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1314 		device_printf(sc->dev,
1315 		    "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1316 		    cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1317 }
1318 
1319 /*
1320  * Grab the softc lock and call the real fxp_start_body() routine
1321  */
1322 static void
1323 fxp_start(struct ifnet *ifp)
1324 {
1325 	struct fxp_softc *sc = ifp->if_softc;
1326 
1327 	FXP_LOCK(sc);
1328 	fxp_start_body(ifp);
1329 	FXP_UNLOCK(sc);
1330 }
1331 
1332 /*
1333  * Start packet transmission on the interface.
1334  * This routine must be called with the softc lock held, and is an
1335  * internal entry point only.
1336  */
1337 static void
1338 fxp_start_body(struct ifnet *ifp)
1339 {
1340 	struct fxp_softc *sc = ifp->if_softc;
1341 	struct mbuf *mb_head;
1342 	int txqueued;
1343 
1344 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1345 
1346 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1347 	    IFF_DRV_RUNNING)
1348 		return;
1349 
1350 	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1351 		fxp_txeof(sc);
1352 	/*
1353 	 * We're finished if there is nothing more to add to the list or if
1354 	 * we're all filled up with buffers to transmit.
1355 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1356 	 *       a NOP command when needed.
1357 	 */
1358 	txqueued = 0;
1359 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1360 	    sc->tx_queued < FXP_NTXCB - 1) {
1361 
1362 		/*
1363 		 * Grab a packet to transmit.
1364 		 */
1365 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1366 		if (mb_head == NULL)
1367 			break;
1368 
1369 		if (fxp_encap(sc, &mb_head)) {
1370 			if (mb_head == NULL)
1371 				break;
1372 			IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
1373 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1374 		}
1375 		txqueued++;
1376 		/*
1377 		 * Pass packet to bpf if there is a listener.
1378 		 */
1379 		BPF_MTAP(ifp, mb_head);
1380 	}
1381 
1382 	/*
1383 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1384 	 * going again if suspended.
1385 	 */
1386 	if (txqueued > 0) {
1387 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1388 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1389 		fxp_scb_wait(sc);
1390 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1391 		/*
1392 		 * Set a 5 second timer just in case we don't hear
1393 		 * from the card again.
1394 		 */
1395 		sc->watchdog_timer = 5;
1396 	}
1397 }
1398 
1399 static int
1400 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1401 {
1402 	struct ifnet *ifp;
1403 	struct mbuf *m;
1404 	struct fxp_tx *txp;
1405 	struct fxp_cb_tx *cbp;
1406 	struct tcphdr *tcp;
1407 	bus_dma_segment_t segs[FXP_NTXSEG];
1408 	int error, i, nseg, tcp_payload;
1409 
1410 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1411 	ifp = sc->ifp;
1412 
1413 	tcp_payload = 0;
1414 	tcp = NULL;
1415 	/*
1416 	 * Get pointer to next available tx desc.
1417 	 */
1418 	txp = sc->fxp_desc.tx_last->tx_next;
1419 
1420 	/*
1421 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1422 	 * Ethernet Controller Family Open Source Software
1423 	 * Developer Manual says:
1424 	 *   Using software parsing is only allowed with legal
1425 	 *   TCP/IP or UDP/IP packets.
1426 	 *   ...
1427 	 *   For all other datagrams, hardware parsing must
1428 	 *   be used.
1429 	 * Software parsing appears to truncate ICMP and
1430 	 * fragmented UDP packets that contain one to three
1431 	 * bytes in the second (and final) mbuf of the packet.
1432 	 */
1433 	if (sc->flags & FXP_FLAG_EXT_RFA)
1434 		txp->tx_cb->ipcb_ip_activation_high =
1435 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1436 
1437 	m = *m_head;
1438 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1439 		/*
1440 		 * 82550/82551 requires ethernet/IP/TCP headers must be
1441 		 * contained in the first active transmit buffer.
1442 		 */
1443 		struct ether_header *eh;
1444 		struct ip *ip;
1445 		uint32_t ip_off, poff;
1446 
1447 		if (M_WRITABLE(*m_head) == 0) {
1448 			/* Get a writable copy. */
1449 			m = m_dup(*m_head, M_DONTWAIT);
1450 			m_freem(*m_head);
1451 			if (m == NULL) {
1452 				*m_head = NULL;
1453 				return (ENOBUFS);
1454 			}
1455 			*m_head = m;
1456 		}
1457 		ip_off = sizeof(struct ether_header);
1458 		m = m_pullup(*m_head, ip_off);
1459 		if (m == NULL) {
1460 			*m_head = NULL;
1461 			return (ENOBUFS);
1462 		}
1463 		eh = mtod(m, struct ether_header *);
1464 		/* Check the existence of VLAN tag. */
1465 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1466 			ip_off = sizeof(struct ether_vlan_header);
1467 			m = m_pullup(m, ip_off);
1468 			if (m == NULL) {
1469 				*m_head = NULL;
1470 				return (ENOBUFS);
1471 			}
1472 		}
1473 		m = m_pullup(m, ip_off + sizeof(struct ip));
1474 		if (m == NULL) {
1475 			*m_head = NULL;
1476 			return (ENOBUFS);
1477 		}
1478 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1479 		poff = ip_off + (ip->ip_hl << 2);
1480 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1481 		if (m == NULL) {
1482 			*m_head = NULL;
1483 			return (ENOBUFS);
1484 		}
1485 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1486 		m = m_pullup(m, poff + (tcp->th_off << 2));
1487 		if (m == NULL) {
1488 			*m_head = NULL;
1489 			return (ENOBUFS);
1490 		}
1491 
1492 		/*
1493 		 * Since 82550/82551 doesn't modify IP length and pseudo
1494 		 * checksum in the first frame driver should compute it.
1495 		 */
1496 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1497 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1498 		ip->ip_sum = 0;
1499 		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1500 		    (tcp->th_off << 2));
1501 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1502 		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1503 		    m->m_pkthdr.tso_segsz));
1504 		/* Compute total TCP payload. */
1505 		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1506 		tcp_payload -= tcp->th_off << 2;
1507 		*m_head = m;
1508 	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1509 		/*
1510 		 * Deal with TCP/IP checksum offload. Note that
1511 		 * in order for TCP checksum offload to work,
1512 		 * the pseudo header checksum must have already
1513 		 * been computed and stored in the checksum field
1514 		 * in the TCP header. The stack should have
1515 		 * already done this for us.
1516 		 */
1517 		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1518 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1519 			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1520 
1521 #ifdef FXP_IP_CSUM_WAR
1522 		/*
1523 		 * XXX The 82550 chip appears to have trouble
1524 		 * dealing with IP header checksums in very small
1525 		 * datagrams, namely fragments from 1 to 3 bytes
1526 		 * in size. For example, say you want to transmit
1527 		 * a UDP packet of 1473 bytes. The packet will be
1528 		 * fragmented over two IP datagrams, the latter
1529 		 * containing only one byte of data. The 82550 will
1530 		 * botch the header checksum on the 1-byte fragment.
1531 		 * As long as the datagram contains 4 or more bytes
1532 		 * of data, you're ok.
1533 		 *
1534                  * The following code attempts to work around this
1535 		 * problem: if the datagram is less than 38 bytes
1536 		 * in size (14 bytes ether header, 20 bytes IP header,
1537 		 * plus 4 bytes of data), we punt and compute the IP
1538 		 * header checksum by hand. This workaround doesn't
1539 		 * work very well, however, since it can be fooled
1540 		 * by things like VLAN tags and IP options that make
1541 		 * the header sizes/offsets vary.
1542 		 */
1543 
1544 		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1545 			if (m->m_pkthdr.len < 38) {
1546 				struct ip *ip;
1547 				m->m_data += ETHER_HDR_LEN;
1548 				ip = mtod(m, struct ip *);
1549 				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1550 				m->m_data -= ETHER_HDR_LEN;
1551 				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1552 			} else {
1553 				txp->tx_cb->ipcb_ip_activation_high =
1554 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1555 				txp->tx_cb->ipcb_ip_schedule |=
1556 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1557 			}
1558 		}
1559 #endif
1560 	}
1561 
1562 	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1563 	    segs, &nseg, 0);
1564 	if (error == EFBIG) {
1565 		m = m_collapse(*m_head, M_DONTWAIT, sc->maxtxseg);
1566 		if (m == NULL) {
1567 			m_freem(*m_head);
1568 			*m_head = NULL;
1569 			return (ENOMEM);
1570 		}
1571 		*m_head = m;
1572 		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1573 		    *m_head, segs, &nseg, 0);
1574 		if (error != 0) {
1575 			m_freem(*m_head);
1576 			*m_head = NULL;
1577 			return (ENOMEM);
1578 		}
1579 	} else if (error != 0)
1580 		return (error);
1581 	if (nseg == 0) {
1582 		m_freem(*m_head);
1583 		*m_head = NULL;
1584 		return (EIO);
1585 	}
1586 
1587 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1588 	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1589 
1590 	cbp = txp->tx_cb;
1591 	for (i = 0; i < nseg; i++) {
1592 		/*
1593 		 * If this is an 82550/82551, then we're using extended
1594 		 * TxCBs _and_ we're using checksum offload. This means
1595 		 * that the TxCB is really an IPCB. One major difference
1596 		 * between the two is that with plain extended TxCBs,
1597 		 * the bottom half of the TxCB contains two entries from
1598 		 * the TBD array, whereas IPCBs contain just one entry:
1599 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1600 		 * checksum offload control bits. So to make things work
1601 		 * right, we have to start filling in the TBD array
1602 		 * starting from a different place depending on whether
1603 		 * the chip is an 82550/82551 or not.
1604 		 */
1605 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1606 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1607 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1608 		} else {
1609 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1610 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1611 		}
1612 	}
1613 	if (sc->flags & FXP_FLAG_EXT_RFA) {
1614 		/* Configure dynamic TBD for 82550/82551. */
1615 		cbp->tbd_number = 0xFF;
1616 		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1617 	} else
1618 		cbp->tbd_number = nseg;
1619 	/* Configure TSO. */
1620 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1621 		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1622 		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1623 		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1624 		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1625 		    FXP_IPCB_TCP_PACKET |
1626 		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1627 	}
1628 	/* Configure VLAN hardware tag insertion. */
1629 	if ((m->m_flags & M_VLANTAG) != 0) {
1630 		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1631 		txp->tx_cb->ipcb_ip_activation_high |=
1632 		    FXP_IPCB_INSERTVLAN_ENABLE;
1633 	}
1634 
1635 	txp->tx_mbuf = m;
1636 	txp->tx_cb->cb_status = 0;
1637 	txp->tx_cb->byte_count = 0;
1638 	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1639 		txp->tx_cb->cb_command =
1640 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1641 		    FXP_CB_COMMAND_S);
1642 	else
1643 		txp->tx_cb->cb_command =
1644 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1645 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1646 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1647 		txp->tx_cb->tx_threshold = tx_threshold;
1648 
1649 	/*
1650 	 * Advance the end of list forward.
1651 	 */
1652 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1653 	sc->fxp_desc.tx_last = txp;
1654 
1655 	/*
1656 	 * Advance the beginning of the list forward if there are
1657 	 * no other packets queued (when nothing is queued, tx_first
1658 	 * sits on the last TxCB that was sent out).
1659 	 */
1660 	if (sc->tx_queued == 0)
1661 		sc->fxp_desc.tx_first = txp;
1662 
1663 	sc->tx_queued++;
1664 
1665 	return (0);
1666 }
1667 
1668 #ifdef DEVICE_POLLING
1669 static poll_handler_t fxp_poll;
1670 
1671 static int
1672 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1673 {
1674 	struct fxp_softc *sc = ifp->if_softc;
1675 	uint8_t statack;
1676 	int rx_npkts = 0;
1677 
1678 	FXP_LOCK(sc);
1679 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1680 		FXP_UNLOCK(sc);
1681 		return (rx_npkts);
1682 	}
1683 
1684 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1685 	    FXP_SCB_STATACK_FR;
1686 	if (cmd == POLL_AND_CHECK_STATUS) {
1687 		uint8_t tmp;
1688 
1689 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1690 		if (tmp == 0xff || tmp == 0) {
1691 			FXP_UNLOCK(sc);
1692 			return (rx_npkts); /* nothing to do */
1693 		}
1694 		tmp &= ~statack;
1695 		/* ack what we can */
1696 		if (tmp != 0)
1697 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1698 		statack |= tmp;
1699 	}
1700 	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1701 	FXP_UNLOCK(sc);
1702 	return (rx_npkts);
1703 }
1704 #endif /* DEVICE_POLLING */
1705 
1706 /*
1707  * Process interface interrupts.
1708  */
1709 static void
1710 fxp_intr(void *xsc)
1711 {
1712 	struct fxp_softc *sc = xsc;
1713 	struct ifnet *ifp = sc->ifp;
1714 	uint8_t statack;
1715 
1716 	FXP_LOCK(sc);
1717 	if (sc->suspended) {
1718 		FXP_UNLOCK(sc);
1719 		return;
1720 	}
1721 
1722 #ifdef DEVICE_POLLING
1723 	if (ifp->if_capenable & IFCAP_POLLING) {
1724 		FXP_UNLOCK(sc);
1725 		return;
1726 	}
1727 #endif
1728 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1729 		/*
1730 		 * It should not be possible to have all bits set; the
1731 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1732 		 * all bits are set, this may indicate that the card has
1733 		 * been physically ejected, so ignore it.
1734 		 */
1735 		if (statack == 0xff) {
1736 			FXP_UNLOCK(sc);
1737 			return;
1738 		}
1739 
1740 		/*
1741 		 * First ACK all the interrupts in this pass.
1742 		 */
1743 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1744 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1745 			fxp_intr_body(sc, ifp, statack, -1);
1746 	}
1747 	FXP_UNLOCK(sc);
1748 }
1749 
1750 static void
1751 fxp_txeof(struct fxp_softc *sc)
1752 {
1753 	struct ifnet *ifp;
1754 	struct fxp_tx *txp;
1755 
1756 	ifp = sc->ifp;
1757 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1758 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1759 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1760 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1761 	    txp = txp->tx_next) {
1762 		if (txp->tx_mbuf != NULL) {
1763 			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1764 			    BUS_DMASYNC_POSTWRITE);
1765 			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1766 			m_freem(txp->tx_mbuf);
1767 			txp->tx_mbuf = NULL;
1768 			/* clear this to reset csum offload bits */
1769 			txp->tx_cb->tbd[0].tb_addr = 0;
1770 		}
1771 		sc->tx_queued--;
1772 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1773 	}
1774 	sc->fxp_desc.tx_first = txp;
1775 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1776 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1777 	if (sc->tx_queued == 0)
1778 		sc->watchdog_timer = 0;
1779 }
1780 
1781 static void
1782 fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m,
1783     uint16_t status, int pos)
1784 {
1785 	struct ether_header *eh;
1786 	struct ip *ip;
1787 	struct udphdr *uh;
1788 	int32_t hlen, len, pktlen, temp32;
1789 	uint16_t csum, *opts;
1790 
1791 	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1792 		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1793 			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1794 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1795 			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1796 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1797 			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1798 			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1799 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1800 				    CSUM_PSEUDO_HDR;
1801 				m->m_pkthdr.csum_data = 0xffff;
1802 			}
1803 		}
1804 		return;
1805 	}
1806 
1807 	pktlen = m->m_pkthdr.len;
1808 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1809 		return;
1810 	eh = mtod(m, struct ether_header *);
1811 	if (eh->ether_type != htons(ETHERTYPE_IP))
1812 		return;
1813 	ip = (struct ip *)(eh + 1);
1814 	if (ip->ip_v != IPVERSION)
1815 		return;
1816 
1817 	hlen = ip->ip_hl << 2;
1818 	pktlen -= sizeof(struct ether_header);
1819 	if (hlen < sizeof(struct ip))
1820 		return;
1821 	if (ntohs(ip->ip_len) < hlen)
1822 		return;
1823 	if (ntohs(ip->ip_len) != pktlen)
1824 		return;
1825 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1826 		return;	/* can't handle fragmented packet */
1827 
1828 	switch (ip->ip_p) {
1829 	case IPPROTO_TCP:
1830 		if (pktlen < (hlen + sizeof(struct tcphdr)))
1831 			return;
1832 		break;
1833 	case IPPROTO_UDP:
1834 		if (pktlen < (hlen + sizeof(struct udphdr)))
1835 			return;
1836 		uh = (struct udphdr *)((caddr_t)ip + hlen);
1837 		if (uh->uh_sum == 0)
1838 			return; /* no checksum */
1839 		break;
1840 	default:
1841 		return;
1842 	}
1843 	/* Extract computed checksum. */
1844 	csum = be16dec(mtod(m, char *) + pos);
1845 	/* checksum fixup for IP options */
1846 	len = hlen - sizeof(struct ip);
1847 	if (len > 0) {
1848 		opts = (uint16_t *)(ip + 1);
1849 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1850 			temp32 = csum - *opts;
1851 			temp32 = (temp32 >> 16) + (temp32 & 65535);
1852 			csum = temp32 & 65535;
1853 		}
1854 	}
1855 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1856 	m->m_pkthdr.csum_data = csum;
1857 }
1858 
1859 static int
1860 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1861     int count)
1862 {
1863 	struct mbuf *m;
1864 	struct fxp_rx *rxp;
1865 	struct fxp_rfa *rfa;
1866 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1867 	int rx_npkts;
1868 	uint16_t status;
1869 
1870 	rx_npkts = 0;
1871 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1872 
1873 	if (rnr)
1874 		sc->rnr++;
1875 #ifdef DEVICE_POLLING
1876 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1877 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1878 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1879 		rnr = 1;
1880 	}
1881 #endif
1882 
1883 	/*
1884 	 * Free any finished transmit mbuf chains.
1885 	 *
1886 	 * Handle the CNA event likt a CXTNO event. It used to
1887 	 * be that this event (control unit not ready) was not
1888 	 * encountered, but it is now with the SMPng modifications.
1889 	 * The exact sequence of events that occur when the interface
1890 	 * is brought up are different now, and if this event
1891 	 * goes unhandled, the configuration/rxfilter setup sequence
1892 	 * can stall for several seconds. The result is that no
1893 	 * packets go out onto the wire for about 5 to 10 seconds
1894 	 * after the interface is ifconfig'ed for the first time.
1895 	 */
1896 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1897 		fxp_txeof(sc);
1898 
1899 	/*
1900 	 * Try to start more packets transmitting.
1901 	 */
1902 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1903 		fxp_start_body(ifp);
1904 
1905 	/*
1906 	 * Just return if nothing happened on the receive side.
1907 	 */
1908 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1909 		return (rx_npkts);
1910 
1911 	/*
1912 	 * Process receiver interrupts. If a no-resource (RNR)
1913 	 * condition exists, get whatever packets we can and
1914 	 * re-start the receiver.
1915 	 *
1916 	 * When using polling, we do not process the list to completion,
1917 	 * so when we get an RNR interrupt we must defer the restart
1918 	 * until we hit the last buffer with the C bit set.
1919 	 * If we run out of cycles and rfa_headm has the C bit set,
1920 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1921 	 * that the info will be used in the subsequent polling cycle.
1922 	 */
1923 	for (;;) {
1924 		rxp = sc->fxp_desc.rx_head;
1925 		m = rxp->rx_mbuf;
1926 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1927 		    RFA_ALIGNMENT_FUDGE);
1928 		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1929 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1930 
1931 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1932 		if (count >= 0 && count-- == 0) {
1933 			if (rnr) {
1934 				/* Defer RNR processing until the next time. */
1935 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1936 				rnr = 0;
1937 			}
1938 			break;
1939 		}
1940 #endif /* DEVICE_POLLING */
1941 
1942 		status = le16toh(rfa->rfa_status);
1943 		if ((status & FXP_RFA_STATUS_C) == 0)
1944 			break;
1945 
1946 		if ((status & FXP_RFA_STATUS_RNR) != 0)
1947 			rnr++;
1948 		/*
1949 		 * Advance head forward.
1950 		 */
1951 		sc->fxp_desc.rx_head = rxp->rx_next;
1952 
1953 		/*
1954 		 * Add a new buffer to the receive chain.
1955 		 * If this fails, the old buffer is recycled
1956 		 * instead.
1957 		 */
1958 		if (fxp_new_rfabuf(sc, rxp) == 0) {
1959 			int total_len;
1960 
1961 			/*
1962 			 * Fetch packet length (the top 2 bits of
1963 			 * actual_size are flags set by the controller
1964 			 * upon completion), and drop the packet in case
1965 			 * of bogus length or CRC errors.
1966 			 */
1967 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1968 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1969 			    (ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1970 				/* Adjust for appended checksum bytes. */
1971 				total_len -= 2;
1972 			}
1973 			if (total_len < (int)sizeof(struct ether_header) ||
1974 			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1975 			    sc->rfa_size) ||
1976 			    status & (FXP_RFA_STATUS_CRC |
1977 			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1978 				m_freem(m);
1979 				fxp_add_rfabuf(sc, rxp);
1980 				continue;
1981 			}
1982 
1983 			m->m_pkthdr.len = m->m_len = total_len;
1984 			m->m_pkthdr.rcvif = ifp;
1985 
1986                         /* Do IP checksum checking. */
1987 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1988 				fxp_rxcsum(sc, ifp, m, status, total_len);
1989 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1990 			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1991 				m->m_pkthdr.ether_vtag =
1992 				    ntohs(rfa->rfax_vlan_id);
1993 				m->m_flags |= M_VLANTAG;
1994 			}
1995 			/*
1996 			 * Drop locks before calling if_input() since it
1997 			 * may re-enter fxp_start() in the netisr case.
1998 			 * This would result in a lock reversal.  Better
1999 			 * performance might be obtained by chaining all
2000 			 * packets received, dropping the lock, and then
2001 			 * calling if_input() on each one.
2002 			 */
2003 			FXP_UNLOCK(sc);
2004 			(*ifp->if_input)(ifp, m);
2005 			FXP_LOCK(sc);
2006 			rx_npkts++;
2007 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2008 				return (rx_npkts);
2009 		} else {
2010 			/* Reuse RFA and loaded DMA map. */
2011 			ifp->if_iqdrops++;
2012 			fxp_discard_rfabuf(sc, rxp);
2013 		}
2014 		fxp_add_rfabuf(sc, rxp);
2015 	}
2016 	if (rnr) {
2017 		fxp_scb_wait(sc);
2018 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2019 		    sc->fxp_desc.rx_head->rx_addr);
2020 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2021 	}
2022 	return (rx_npkts);
2023 }
2024 
2025 static void
2026 fxp_update_stats(struct fxp_softc *sc)
2027 {
2028 	struct ifnet *ifp = sc->ifp;
2029 	struct fxp_stats *sp = sc->fxp_stats;
2030 	struct fxp_hwstats *hsp;
2031 	uint32_t *status;
2032 
2033 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2034 
2035 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2036 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2037 	/* Update statistical counters. */
2038 	if (sc->revision >= FXP_REV_82559_A0)
2039 		status = &sp->completion_status;
2040 	else if (sc->revision >= FXP_REV_82558_A4)
2041 		status = (uint32_t *)&sp->tx_tco;
2042 	else
2043 		status = &sp->tx_pause;
2044 	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2045 		hsp = &sc->fxp_hwstats;
2046 		hsp->tx_good += le32toh(sp->tx_good);
2047 		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2048 		hsp->tx_latecols += le32toh(sp->tx_latecols);
2049 		hsp->tx_underruns += le32toh(sp->tx_underruns);
2050 		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2051 		hsp->tx_deffered += le32toh(sp->tx_deffered);
2052 		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2053 		hsp->tx_multiple_collisions +=
2054 		    le32toh(sp->tx_multiple_collisions);
2055 		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2056 		hsp->rx_good += le32toh(sp->rx_good);
2057 		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2058 		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2059 		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2060 		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2061 		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2062 		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2063 		hsp->tx_pause += le32toh(sp->tx_pause);
2064 		hsp->rx_pause += le32toh(sp->rx_pause);
2065 		hsp->rx_controls += le32toh(sp->rx_controls);
2066 		hsp->tx_tco += le16toh(sp->tx_tco);
2067 		hsp->rx_tco += le16toh(sp->rx_tco);
2068 
2069 		ifp->if_opackets += le32toh(sp->tx_good);
2070 		ifp->if_collisions += le32toh(sp->tx_total_collisions);
2071 		if (sp->rx_good) {
2072 			ifp->if_ipackets += le32toh(sp->rx_good);
2073 			sc->rx_idle_secs = 0;
2074 		} else if (sc->flags & FXP_FLAG_RXBUG) {
2075 			/*
2076 			 * Receiver's been idle for another second.
2077 			 */
2078 			sc->rx_idle_secs++;
2079 		}
2080 		ifp->if_ierrors +=
2081 		    le32toh(sp->rx_crc_errors) +
2082 		    le32toh(sp->rx_alignment_errors) +
2083 		    le32toh(sp->rx_rnr_errors) +
2084 		    le32toh(sp->rx_overrun_errors);
2085 		/*
2086 		 * If any transmit underruns occured, bump up the transmit
2087 		 * threshold by another 512 bytes (64 * 8).
2088 		 */
2089 		if (sp->tx_underruns) {
2090 			ifp->if_oerrors += le32toh(sp->tx_underruns);
2091 			if (tx_threshold < 192)
2092 				tx_threshold += 64;
2093 		}
2094 		*status = 0;
2095 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2096 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2097 	}
2098 }
2099 
2100 /*
2101  * Update packet in/out/collision statistics. The i82557 doesn't
2102  * allow you to access these counters without doing a fairly
2103  * expensive DMA to get _all_ of the statistics it maintains, so
2104  * we do this operation here only once per second. The statistics
2105  * counters in the kernel are updated from the previous dump-stats
2106  * DMA and then a new dump-stats DMA is started. The on-chip
2107  * counters are zeroed when the DMA completes. If we can't start
2108  * the DMA immediately, we don't wait - we just prepare to read
2109  * them again next time.
2110  */
2111 static void
2112 fxp_tick(void *xsc)
2113 {
2114 	struct fxp_softc *sc = xsc;
2115 	struct ifnet *ifp = sc->ifp;
2116 
2117 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2118 
2119 	/* Update statistical counters. */
2120 	fxp_update_stats(sc);
2121 
2122 	/*
2123 	 * Release any xmit buffers that have completed DMA. This isn't
2124 	 * strictly necessary to do here, but it's advantagous for mbufs
2125 	 * with external storage to be released in a timely manner rather
2126 	 * than being defered for a potentially long time. This limits
2127 	 * the delay to a maximum of one second.
2128 	 */
2129 	fxp_txeof(sc);
2130 
2131 	/*
2132 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2133 	 * then assume the receiver has locked up and attempt to clear
2134 	 * the condition by reprogramming the multicast filter. This is
2135 	 * a work-around for a bug in the 82557 where the receiver locks
2136 	 * up if it gets certain types of garbage in the syncronization
2137 	 * bits prior to the packet header. This bug is supposed to only
2138 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2139 	 * mode as well (perhaps due to a 10/100 speed transition).
2140 	 */
2141 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2142 		sc->rx_idle_secs = 0;
2143 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2144 			fxp_init_body(sc, 1);
2145 		return;
2146 	}
2147 	/*
2148 	 * If there is no pending command, start another stats
2149 	 * dump. Otherwise punt for now.
2150 	 */
2151 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2152 		/*
2153 		 * Start another stats dump.
2154 		 */
2155 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2156 	}
2157 	if (sc->miibus != NULL)
2158 		mii_tick(device_get_softc(sc->miibus));
2159 
2160 	/*
2161 	 * Check that chip hasn't hung.
2162 	 */
2163 	fxp_watchdog(sc);
2164 
2165 	/*
2166 	 * Schedule another timeout one second from now.
2167 	 */
2168 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2169 }
2170 
2171 /*
2172  * Stop the interface. Cancels the statistics updater and resets
2173  * the interface.
2174  */
2175 static void
2176 fxp_stop(struct fxp_softc *sc)
2177 {
2178 	struct ifnet *ifp = sc->ifp;
2179 	struct fxp_tx *txp;
2180 	int i;
2181 
2182 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2183 	sc->watchdog_timer = 0;
2184 
2185 	/*
2186 	 * Cancel stats updater.
2187 	 */
2188 	callout_stop(&sc->stat_ch);
2189 
2190 	/*
2191 	 * Preserve PCI configuration, configure, IA/multicast
2192 	 * setup and put RU and CU into idle state.
2193 	 */
2194 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2195 	DELAY(50);
2196 	/* Disable interrupts. */
2197 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2198 
2199 	fxp_update_stats(sc);
2200 
2201 	/*
2202 	 * Release any xmit buffers.
2203 	 */
2204 	txp = sc->fxp_desc.tx_list;
2205 	if (txp != NULL) {
2206 		for (i = 0; i < FXP_NTXCB; i++) {
2207 			if (txp[i].tx_mbuf != NULL) {
2208 				bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2209 				    BUS_DMASYNC_POSTWRITE);
2210 				bus_dmamap_unload(sc->fxp_txmtag,
2211 				    txp[i].tx_map);
2212 				m_freem(txp[i].tx_mbuf);
2213 				txp[i].tx_mbuf = NULL;
2214 				/* clear this to reset csum offload bits */
2215 				txp[i].tx_cb->tbd[0].tb_addr = 0;
2216 			}
2217 		}
2218 	}
2219 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2220 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2221 	sc->tx_queued = 0;
2222 }
2223 
2224 /*
2225  * Watchdog/transmission transmit timeout handler. Called when a
2226  * transmission is started on the interface, but no interrupt is
2227  * received before the timeout. This usually indicates that the
2228  * card has wedged for some reason.
2229  */
2230 static void
2231 fxp_watchdog(struct fxp_softc *sc)
2232 {
2233 
2234 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2235 
2236 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2237 		return;
2238 
2239 	device_printf(sc->dev, "device timeout\n");
2240 	sc->ifp->if_oerrors++;
2241 
2242 	fxp_init_body(sc, 1);
2243 }
2244 
2245 /*
2246  * Acquire locks and then call the real initialization function.  This
2247  * is necessary because ether_ioctl() calls if_init() and this would
2248  * result in mutex recursion if the mutex was held.
2249  */
2250 static void
2251 fxp_init(void *xsc)
2252 {
2253 	struct fxp_softc *sc = xsc;
2254 
2255 	FXP_LOCK(sc);
2256 	fxp_init_body(sc, 1);
2257 	FXP_UNLOCK(sc);
2258 }
2259 
2260 /*
2261  * Perform device initialization. This routine must be called with the
2262  * softc lock held.
2263  */
2264 static void
2265 fxp_init_body(struct fxp_softc *sc, int setmedia)
2266 {
2267 	struct ifnet *ifp = sc->ifp;
2268 	struct mii_data *mii;
2269 	struct fxp_cb_config *cbp;
2270 	struct fxp_cb_ias *cb_ias;
2271 	struct fxp_cb_tx *tcbp;
2272 	struct fxp_tx *txp;
2273 	int i, prm;
2274 
2275 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2276 	/*
2277 	 * Cancel any pending I/O
2278 	 */
2279 	fxp_stop(sc);
2280 
2281 	/*
2282 	 * Issue software reset, which also unloads the microcode.
2283 	 */
2284 	sc->flags &= ~FXP_FLAG_UCODE;
2285 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2286 	DELAY(50);
2287 
2288 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2289 
2290 	/*
2291 	 * Initialize base of CBL and RFA memory. Loading with zero
2292 	 * sets it up for regular linear addressing.
2293 	 */
2294 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2295 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2296 
2297 	fxp_scb_wait(sc);
2298 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2299 
2300 	/*
2301 	 * Initialize base of dump-stats buffer.
2302 	 */
2303 	fxp_scb_wait(sc);
2304 	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2305 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2306 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2307 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2308 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2309 
2310 	/*
2311 	 * Attempt to load microcode if requested.
2312 	 * For ICH based controllers do not load microcode.
2313 	 */
2314 	if (sc->ident->ich == 0) {
2315 		if (ifp->if_flags & IFF_LINK0 &&
2316 		    (sc->flags & FXP_FLAG_UCODE) == 0)
2317 			fxp_load_ucode(sc);
2318 	}
2319 
2320 	/*
2321 	 * Set IFF_ALLMULTI status. It's needed in configure action
2322 	 * command.
2323 	 */
2324 	fxp_mc_addrs(sc);
2325 
2326 	/*
2327 	 * We temporarily use memory that contains the TxCB list to
2328 	 * construct the config CB. The TxCB list memory is rebuilt
2329 	 * later.
2330 	 */
2331 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2332 
2333 	/*
2334 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2335 	 * zero and must be one bits in this structure and this is the easiest
2336 	 * way to initialize them all to proper values.
2337 	 */
2338 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2339 
2340 	cbp->cb_status =	0;
2341 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2342 	    FXP_CB_COMMAND_EL);
2343 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2344 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2345 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2346 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2347 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2348 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2349 	cbp->type_enable =	0;	/* actually reserved */
2350 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2351 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2352 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2353 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2354 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2355 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2356 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2357 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2358 	cbp->ci_int =		1;	/* interrupt on CU idle */
2359 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2360 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2361 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2362 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2363 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2364 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2365 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2366 	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2367 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2368 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2369 	cbp->csma_dis =		0;	/* (don't) disable link */
2370 	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2371 	    (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0;
2372 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2373 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2374 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2375 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2376 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2377 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2378 	cbp->loopback =		0;	/* (don't) loopback */
2379 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2380 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2381 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2382 	cbp->promiscuous =	prm;	/* promiscuous mode */
2383 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2384 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2385 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2386 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2387 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2388 
2389 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2390 	cbp->padding =		1;	/* (do) pad short tx packets */
2391 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2392 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2393 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2394 	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2395 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2396 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2397 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2398 	cbp->mc_all =		ifp->if_flags & IFF_ALLMULTI ? 1 : prm;
2399 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2400 	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2401 	    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2402 
2403 	if (sc->revision == FXP_REV_82557) {
2404 		/*
2405 		 * The 82557 has no hardware flow control, the values
2406 		 * below are the defaults for the chip.
2407 		 */
2408 		cbp->fc_delay_lsb =	0;
2409 		cbp->fc_delay_msb =	0x40;
2410 		cbp->pri_fc_thresh =	3;
2411 		cbp->tx_fc_dis =	0;
2412 		cbp->rx_fc_restop =	0;
2413 		cbp->rx_fc_restart =	0;
2414 		cbp->fc_filter =	0;
2415 		cbp->pri_fc_loc =	1;
2416 	} else {
2417 		/* Set pause RX FIFO threshold to 1KB. */
2418 		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2419 		/* Set pause time. */
2420 		cbp->fc_delay_lsb =	0xff;
2421 		cbp->fc_delay_msb =	0xff;
2422 		cbp->pri_fc_thresh =	3;
2423 		mii = device_get_softc(sc->miibus);
2424 		if ((IFM_OPTIONS(mii->mii_media_active) &
2425 		    IFM_ETH_TXPAUSE) != 0)
2426 			/* enable transmit FC */
2427 			cbp->tx_fc_dis = 0;
2428 		else
2429 			/* disable transmit FC */
2430 			cbp->tx_fc_dis = 1;
2431 		if ((IFM_OPTIONS(mii->mii_media_active) &
2432 		    IFM_ETH_RXPAUSE) != 0) {
2433 			/* enable FC restart/restop frames */
2434 			cbp->rx_fc_restart = 1;
2435 			cbp->rx_fc_restop = 1;
2436 		} else {
2437 			/* disable FC restart/restop frames */
2438 			cbp->rx_fc_restart = 0;
2439 			cbp->rx_fc_restop = 0;
2440 		}
2441 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2442 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2443 	}
2444 
2445 	/* Enable 82558 and 82559 extended statistics functionality. */
2446 	if (sc->revision >= FXP_REV_82558_A4) {
2447 		if (sc->revision >= FXP_REV_82559_A0) {
2448 			/*
2449 			 * Extend configuration table size to 32
2450 			 * to include TCO configuration.
2451 			 */
2452 			cbp->byte_count = 32;
2453 			cbp->ext_stats_dis = 1;
2454 			/* Enable TCO stats. */
2455 			cbp->tno_int_or_tco_en = 1;
2456 			cbp->gamla_rx = 1;
2457 		} else
2458 			cbp->ext_stats_dis = 0;
2459 	}
2460 
2461 	/*
2462 	 * Start the config command/DMA.
2463 	 */
2464 	fxp_scb_wait(sc);
2465 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2466 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2467 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2468 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2469 	/* ...and wait for it to complete. */
2470 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2471 
2472 	/*
2473 	 * Now initialize the station address. Temporarily use the TxCB
2474 	 * memory area like we did above for the config CB.
2475 	 */
2476 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2477 	cb_ias->cb_status = 0;
2478 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2479 	cb_ias->link_addr = 0xffffffff;
2480 	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2481 
2482 	/*
2483 	 * Start the IAS (Individual Address Setup) command/DMA.
2484 	 */
2485 	fxp_scb_wait(sc);
2486 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2487 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2488 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2489 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2490 	/* ...and wait for it to complete. */
2491 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2492 
2493 	/*
2494 	 * Initialize the multicast address list.
2495 	 */
2496 	fxp_mc_setup(sc);
2497 
2498 	/*
2499 	 * Initialize transmit control block (TxCB) list.
2500 	 */
2501 	txp = sc->fxp_desc.tx_list;
2502 	tcbp = sc->fxp_desc.cbl_list;
2503 	bzero(tcbp, FXP_TXCB_SZ);
2504 	for (i = 0; i < FXP_NTXCB; i++) {
2505 		txp[i].tx_mbuf = NULL;
2506 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2507 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2508 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2509 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2510 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2511 			tcbp[i].tbd_array_addr =
2512 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2513 		else
2514 			tcbp[i].tbd_array_addr =
2515 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2516 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2517 	}
2518 	/*
2519 	 * Set the suspend flag on the first TxCB and start the control
2520 	 * unit. It will execute the NOP and then suspend.
2521 	 */
2522 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2523 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2524 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2525 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2526 	sc->tx_queued = 1;
2527 
2528 	fxp_scb_wait(sc);
2529 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2530 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2531 
2532 	/*
2533 	 * Initialize receiver buffer area - RFA.
2534 	 */
2535 	fxp_scb_wait(sc);
2536 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2537 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2538 
2539 	if (sc->miibus != NULL && setmedia != 0)
2540 		mii_mediachg(device_get_softc(sc->miibus));
2541 
2542 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2543 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2544 
2545 	/*
2546 	 * Enable interrupts.
2547 	 */
2548 #ifdef DEVICE_POLLING
2549 	/*
2550 	 * ... but only do that if we are not polling. And because (presumably)
2551 	 * the default is interrupts on, we need to disable them explicitly!
2552 	 */
2553 	if (ifp->if_capenable & IFCAP_POLLING )
2554 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2555 	else
2556 #endif /* DEVICE_POLLING */
2557 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2558 
2559 	/*
2560 	 * Start stats updater.
2561 	 */
2562 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2563 }
2564 
2565 static int
2566 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2567 {
2568 
2569 	return (0);
2570 }
2571 
2572 static void
2573 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2574 {
2575 
2576 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2577 }
2578 
2579 /*
2580  * Change media according to request.
2581  */
2582 static int
2583 fxp_ifmedia_upd(struct ifnet *ifp)
2584 {
2585 	struct fxp_softc *sc = ifp->if_softc;
2586 	struct mii_data *mii;
2587 	struct mii_softc	*miisc;
2588 
2589 	mii = device_get_softc(sc->miibus);
2590 	FXP_LOCK(sc);
2591 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2592 		PHY_RESET(miisc);
2593 	mii_mediachg(mii);
2594 	FXP_UNLOCK(sc);
2595 	return (0);
2596 }
2597 
2598 /*
2599  * Notify the world which media we're using.
2600  */
2601 static void
2602 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2603 {
2604 	struct fxp_softc *sc = ifp->if_softc;
2605 	struct mii_data *mii;
2606 
2607 	mii = device_get_softc(sc->miibus);
2608 	FXP_LOCK(sc);
2609 	mii_pollstat(mii);
2610 	ifmr->ifm_active = mii->mii_media_active;
2611 	ifmr->ifm_status = mii->mii_media_status;
2612 	FXP_UNLOCK(sc);
2613 }
2614 
2615 /*
2616  * Add a buffer to the end of the RFA buffer list.
2617  * Return 0 if successful, 1 for failure. A failure results in
2618  * reusing the RFA buffer.
2619  * The RFA struct is stuck at the beginning of mbuf cluster and the
2620  * data pointer is fixed up to point just past it.
2621  */
2622 static int
2623 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2624 {
2625 	struct mbuf *m;
2626 	struct fxp_rfa *rfa;
2627 	bus_dmamap_t tmp_map;
2628 	int error;
2629 
2630 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2631 	if (m == NULL)
2632 		return (ENOBUFS);
2633 
2634 	/*
2635 	 * Move the data pointer up so that the incoming data packet
2636 	 * will be 32-bit aligned.
2637 	 */
2638 	m->m_data += RFA_ALIGNMENT_FUDGE;
2639 
2640 	/*
2641 	 * Get a pointer to the base of the mbuf cluster and move
2642 	 * data start past it.
2643 	 */
2644 	rfa = mtod(m, struct fxp_rfa *);
2645 	m->m_data += sc->rfa_size;
2646 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2647 
2648 	rfa->rfa_status = 0;
2649 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2650 	rfa->actual_size = 0;
2651 	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2652 	    sc->rfa_size;
2653 
2654 	/*
2655 	 * Initialize the rest of the RFA.  Note that since the RFA
2656 	 * is misaligned, we cannot store values directly.  We're thus
2657 	 * using the le32enc() function which handles endianness and
2658 	 * is also alignment-safe.
2659 	 */
2660 	le32enc(&rfa->link_addr, 0xffffffff);
2661 	le32enc(&rfa->rbd_addr, 0xffffffff);
2662 
2663 	/* Map the RFA into DMA memory. */
2664 	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2665 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2666 	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2667 	if (error) {
2668 		m_freem(m);
2669 		return (error);
2670 	}
2671 
2672 	if (rxp->rx_mbuf != NULL)
2673 		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2674 	tmp_map = sc->spare_map;
2675 	sc->spare_map = rxp->rx_map;
2676 	rxp->rx_map = tmp_map;
2677 	rxp->rx_mbuf = m;
2678 
2679 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2680 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2681 	return (0);
2682 }
2683 
2684 static void
2685 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2686 {
2687 	struct fxp_rfa *p_rfa;
2688 	struct fxp_rx *p_rx;
2689 
2690 	/*
2691 	 * If there are other buffers already on the list, attach this
2692 	 * one to the end by fixing up the tail to point to this one.
2693 	 */
2694 	if (sc->fxp_desc.rx_head != NULL) {
2695 		p_rx = sc->fxp_desc.rx_tail;
2696 		p_rfa = (struct fxp_rfa *)
2697 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2698 		p_rx->rx_next = rxp;
2699 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2700 		p_rfa->rfa_control = 0;
2701 		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2702 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2703 	} else {
2704 		rxp->rx_next = NULL;
2705 		sc->fxp_desc.rx_head = rxp;
2706 	}
2707 	sc->fxp_desc.rx_tail = rxp;
2708 }
2709 
2710 static void
2711 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2712 {
2713 	struct mbuf *m;
2714 	struct fxp_rfa *rfa;
2715 
2716 	m = rxp->rx_mbuf;
2717 	m->m_data = m->m_ext.ext_buf;
2718 	/*
2719 	 * Move the data pointer up so that the incoming data packet
2720 	 * will be 32-bit aligned.
2721 	 */
2722 	m->m_data += RFA_ALIGNMENT_FUDGE;
2723 
2724 	/*
2725 	 * Get a pointer to the base of the mbuf cluster and move
2726 	 * data start past it.
2727 	 */
2728 	rfa = mtod(m, struct fxp_rfa *);
2729 	m->m_data += sc->rfa_size;
2730 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2731 
2732 	rfa->rfa_status = 0;
2733 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2734 	rfa->actual_size = 0;
2735 
2736 	/*
2737 	 * Initialize the rest of the RFA.  Note that since the RFA
2738 	 * is misaligned, we cannot store values directly.  We're thus
2739 	 * using the le32enc() function which handles endianness and
2740 	 * is also alignment-safe.
2741 	 */
2742 	le32enc(&rfa->link_addr, 0xffffffff);
2743 	le32enc(&rfa->rbd_addr, 0xffffffff);
2744 
2745 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2746 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2747 }
2748 
2749 static int
2750 fxp_miibus_readreg(device_t dev, int phy, int reg)
2751 {
2752 	struct fxp_softc *sc = device_get_softc(dev);
2753 	int count = 10000;
2754 	int value;
2755 
2756 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2757 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2758 
2759 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2760 	    && count--)
2761 		DELAY(10);
2762 
2763 	if (count <= 0)
2764 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2765 
2766 	return (value & 0xffff);
2767 }
2768 
2769 static int
2770 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2771 {
2772 	struct fxp_softc *sc = device_get_softc(dev);
2773 	int count = 10000;
2774 
2775 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2776 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2777 	    (value & 0xffff));
2778 
2779 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2780 	    count--)
2781 		DELAY(10);
2782 
2783 	if (count <= 0)
2784 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2785 	return (0);
2786 }
2787 
2788 static void
2789 fxp_miibus_statchg(device_t dev)
2790 {
2791 	struct fxp_softc *sc;
2792 	struct mii_data *mii;
2793 	struct ifnet *ifp;
2794 
2795 	sc = device_get_softc(dev);
2796 	mii = device_get_softc(sc->miibus);
2797 	ifp = sc->ifp;
2798 	if (mii == NULL || ifp == NULL ||
2799 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2800 	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2801 	    (IFM_AVALID | IFM_ACTIVE))
2802 		return;
2803 
2804 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2805 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2806 		sc->cu_resume_bug = 1;
2807 	else
2808 		sc->cu_resume_bug = 0;
2809 	/*
2810 	 * Call fxp_init_body in order to adjust the flow control settings.
2811 	 * Note that the 82557 doesn't support hardware flow control.
2812 	 */
2813 	if (sc->revision == FXP_REV_82557)
2814 		return;
2815 	fxp_init_body(sc, 0);
2816 }
2817 
2818 static int
2819 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2820 {
2821 	struct fxp_softc *sc = ifp->if_softc;
2822 	struct ifreq *ifr = (struct ifreq *)data;
2823 	struct mii_data *mii;
2824 	int flag, mask, error = 0, reinit;
2825 
2826 	switch (command) {
2827 	case SIOCSIFFLAGS:
2828 		FXP_LOCK(sc);
2829 		/*
2830 		 * If interface is marked up and not running, then start it.
2831 		 * If it is marked down and running, stop it.
2832 		 * XXX If it's up then re-initialize it. This is so flags
2833 		 * such as IFF_PROMISC are handled.
2834 		 */
2835 		if (ifp->if_flags & IFF_UP) {
2836 			if (((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) &&
2837 			    ((ifp->if_flags ^ sc->if_flags) &
2838 			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0)
2839 				fxp_init_body(sc, 0);
2840 			else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2841 				fxp_init_body(sc, 1);
2842 		} else {
2843 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2844 				fxp_stop(sc);
2845 		}
2846 		sc->if_flags = ifp->if_flags;
2847 		FXP_UNLOCK(sc);
2848 		break;
2849 
2850 	case SIOCADDMULTI:
2851 	case SIOCDELMULTI:
2852 		FXP_LOCK(sc);
2853 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2854 			fxp_init_body(sc, 0);
2855 		FXP_UNLOCK(sc);
2856 		break;
2857 
2858 	case SIOCSIFMEDIA:
2859 	case SIOCGIFMEDIA:
2860 		if (sc->miibus != NULL) {
2861 			mii = device_get_softc(sc->miibus);
2862                         error = ifmedia_ioctl(ifp, ifr,
2863                             &mii->mii_media, command);
2864 		} else {
2865                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2866 		}
2867 		break;
2868 
2869 	case SIOCSIFCAP:
2870 		reinit = 0;
2871 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2872 #ifdef DEVICE_POLLING
2873 		if (mask & IFCAP_POLLING) {
2874 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2875 				error = ether_poll_register(fxp_poll, ifp);
2876 				if (error)
2877 					return(error);
2878 				FXP_LOCK(sc);
2879 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2880 				    FXP_SCB_INTR_DISABLE);
2881 				ifp->if_capenable |= IFCAP_POLLING;
2882 				FXP_UNLOCK(sc);
2883 			} else {
2884 				error = ether_poll_deregister(ifp);
2885 				/* Enable interrupts in any case */
2886 				FXP_LOCK(sc);
2887 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2888 				ifp->if_capenable &= ~IFCAP_POLLING;
2889 				FXP_UNLOCK(sc);
2890 			}
2891 		}
2892 #endif
2893 		FXP_LOCK(sc);
2894 		if ((mask & IFCAP_TXCSUM) != 0 &&
2895 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2896 			ifp->if_capenable ^= IFCAP_TXCSUM;
2897 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2898 				ifp->if_hwassist |= FXP_CSUM_FEATURES;
2899 			else
2900 				ifp->if_hwassist &= ~FXP_CSUM_FEATURES;
2901 		}
2902 		if ((mask & IFCAP_RXCSUM) != 0 &&
2903 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
2904 			ifp->if_capenable ^= IFCAP_RXCSUM;
2905 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2906 				reinit++;
2907 		}
2908 		if ((mask & IFCAP_TSO4) != 0 &&
2909 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2910 			ifp->if_capenable ^= IFCAP_TSO4;
2911 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2912 				ifp->if_hwassist |= CSUM_TSO;
2913 			else
2914 				ifp->if_hwassist &= ~CSUM_TSO;
2915 		}
2916 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2917 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2918 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2919 		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2920 		    (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) {
2921 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2922 			if (sc->revision != FXP_REV_82557)
2923 				flag = FXP_FLAG_LONG_PKT_EN;
2924 			else /* a hack to get long frames on the old chip */
2925 				flag = FXP_FLAG_SAVE_BAD;
2926 			sc->flags ^= flag;
2927 			if (ifp->if_flags & IFF_UP)
2928 				reinit++;
2929 		}
2930 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2931 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2932 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2933 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2934 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2935 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2936 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2937 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2938 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2939 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2940 				ifp->if_capenable &=
2941 				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2942 			reinit++;
2943 		}
2944 		if (reinit > 0 && ifp->if_flags & IFF_UP)
2945 			fxp_init_body(sc, 0);
2946 		FXP_UNLOCK(sc);
2947 		VLAN_CAPABILITIES(ifp);
2948 		break;
2949 
2950 	default:
2951 		error = ether_ioctl(ifp, command, data);
2952 	}
2953 	return (error);
2954 }
2955 
2956 /*
2957  * Fill in the multicast address list and return number of entries.
2958  */
2959 static int
2960 fxp_mc_addrs(struct fxp_softc *sc)
2961 {
2962 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2963 	struct ifnet *ifp = sc->ifp;
2964 	struct ifmultiaddr *ifma;
2965 	int nmcasts;
2966 
2967 	nmcasts = 0;
2968 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2969 		if_maddr_rlock(ifp);
2970 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2971 			if (ifma->ifma_addr->sa_family != AF_LINK)
2972 				continue;
2973 			if (nmcasts >= MAXMCADDR) {
2974 				ifp->if_flags |= IFF_ALLMULTI;
2975 				nmcasts = 0;
2976 				break;
2977 			}
2978 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2979 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2980 			nmcasts++;
2981 		}
2982 		if_maddr_runlock(ifp);
2983 	}
2984 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2985 	return (nmcasts);
2986 }
2987 
2988 /*
2989  * Program the multicast filter.
2990  *
2991  * We have an artificial restriction that the multicast setup command
2992  * must be the first command in the chain, so we take steps to ensure
2993  * this. By requiring this, it allows us to keep up the performance of
2994  * the pre-initialized command ring (esp. link pointers) by not actually
2995  * inserting the mcsetup command in the ring - i.e. its link pointer
2996  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2997  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2998  * lead into the regular TxCB ring when it completes.
2999  */
3000 static void
3001 fxp_mc_setup(struct fxp_softc *sc)
3002 {
3003 	struct fxp_cb_mcs *mcsp;
3004 	int count;
3005 
3006 	FXP_LOCK_ASSERT(sc, MA_OWNED);
3007 
3008 	mcsp = sc->mcsp;
3009 	mcsp->cb_status = 0;
3010 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3011 	mcsp->link_addr = 0xffffffff;
3012 	fxp_mc_addrs(sc);
3013 
3014 	/*
3015 	 * Wait until command unit is idle. This should never be the
3016 	 * case when nothing is queued, but make sure anyway.
3017 	 */
3018 	count = 100;
3019 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3020 	    FXP_SCB_CUS_IDLE && --count)
3021 		DELAY(10);
3022 	if (count == 0) {
3023 		device_printf(sc->dev, "command queue timeout\n");
3024 		return;
3025 	}
3026 
3027 	/*
3028 	 * Start the multicast setup command.
3029 	 */
3030 	fxp_scb_wait(sc);
3031 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3032 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3033 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3034 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3035 	/* ...and wait for it to complete. */
3036 	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3037 }
3038 
3039 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3040 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3041 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3042 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3043 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3044 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3045 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3046 
3047 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3048 
3049 static const struct ucode {
3050 	uint32_t	revision;
3051 	uint32_t	*ucode;
3052 	int		length;
3053 	u_short		int_delay_offset;
3054 	u_short		bundle_max_offset;
3055 } const ucode_table[] = {
3056 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3057 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3058 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3059 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3060 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3061 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3062 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3063 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3064 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3065 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3066 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3067 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3068 	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3069 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3070 	{ 0, NULL, 0, 0, 0 }
3071 };
3072 
3073 static void
3074 fxp_load_ucode(struct fxp_softc *sc)
3075 {
3076 	const struct ucode *uc;
3077 	struct fxp_cb_ucode *cbp;
3078 	int i;
3079 
3080 	if (sc->flags & FXP_FLAG_NO_UCODE)
3081 		return;
3082 
3083 	for (uc = ucode_table; uc->ucode != NULL; uc++)
3084 		if (sc->revision == uc->revision)
3085 			break;
3086 	if (uc->ucode == NULL)
3087 		return;
3088 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3089 	cbp->cb_status = 0;
3090 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3091 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3092 	for (i = 0; i < uc->length; i++)
3093 		cbp->ucode[i] = htole32(uc->ucode[i]);
3094 	if (uc->int_delay_offset)
3095 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3096 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3097 	if (uc->bundle_max_offset)
3098 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3099 		    htole16(sc->tunable_bundle_max);
3100 	/*
3101 	 * Download the ucode to the chip.
3102 	 */
3103 	fxp_scb_wait(sc);
3104 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3105 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3106 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3107 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3108 	/* ...and wait for it to complete. */
3109 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3110 	device_printf(sc->dev,
3111 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3112 	    sc->tunable_int_delay,
3113 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3114 	sc->flags |= FXP_FLAG_UCODE;
3115 	bzero(cbp, FXP_TXCB_SZ);
3116 }
3117 
3118 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3119 	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3120 
3121 static void
3122 fxp_sysctl_node(struct fxp_softc *sc)
3123 {
3124 	struct sysctl_ctx_list *ctx;
3125 	struct sysctl_oid_list *child, *parent;
3126 	struct sysctl_oid *tree;
3127 	struct fxp_hwstats *hsp;
3128 
3129 	ctx = device_get_sysctl_ctx(sc->dev);
3130 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3131 
3132 	SYSCTL_ADD_PROC(ctx, child,
3133 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
3134 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3135 	    "FXP driver receive interrupt microcode bundling delay");
3136 	SYSCTL_ADD_PROC(ctx, child,
3137 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
3138 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3139 	    "FXP driver receive interrupt microcode bundle size limit");
3140 	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3141 	    "FXP RNR events");
3142 
3143 	/*
3144 	 * Pull in device tunables.
3145 	 */
3146 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3147 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3148 	(void) resource_int_value(device_get_name(sc->dev),
3149 	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3150 	(void) resource_int_value(device_get_name(sc->dev),
3151 	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3152 	sc->rnr = 0;
3153 
3154 	hsp = &sc->fxp_hwstats;
3155 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3156 	    NULL, "FXP statistics");
3157 	parent = SYSCTL_CHILDREN(tree);
3158 
3159 	/* Rx MAC statistics. */
3160 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3161 	    NULL, "Rx MAC statistics");
3162 	child = SYSCTL_CHILDREN(tree);
3163 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3164 	    &hsp->rx_good, "Good frames");
3165 	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3166 	    &hsp->rx_crc_errors, "CRC errors");
3167 	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3168 	    &hsp->rx_alignment_errors, "Alignment errors");
3169 	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3170 	    &hsp->rx_rnr_errors, "RNR errors");
3171 	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3172 	    &hsp->rx_overrun_errors, "Overrun errors");
3173 	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3174 	    &hsp->rx_cdt_errors, "Collision detect errors");
3175 	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3176 	    &hsp->rx_shortframes, "Short frame errors");
3177 	if (sc->revision >= FXP_REV_82558_A4) {
3178 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3179 		    &hsp->rx_pause, "Pause frames");
3180 		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3181 		    &hsp->rx_controls, "Unsupported control frames");
3182 	}
3183 	if (sc->revision >= FXP_REV_82559_A0)
3184 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3185 		    &hsp->rx_tco, "TCO frames");
3186 
3187 	/* Tx MAC statistics. */
3188 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3189 	    NULL, "Tx MAC statistics");
3190 	child = SYSCTL_CHILDREN(tree);
3191 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3192 	    &hsp->tx_good, "Good frames");
3193 	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3194 	    &hsp->tx_maxcols, "Maximum collisions errors");
3195 	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3196 	    &hsp->tx_latecols, "Late collisions errors");
3197 	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3198 	    &hsp->tx_underruns, "Underrun errors");
3199 	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3200 	    &hsp->tx_lostcrs, "Lost carrier sense");
3201 	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3202 	    &hsp->tx_deffered, "Deferred");
3203 	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3204 	    &hsp->tx_single_collisions, "Single collisions");
3205 	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3206 	    &hsp->tx_multiple_collisions, "Multiple collisions");
3207 	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3208 	    &hsp->tx_total_collisions, "Total collisions");
3209 	if (sc->revision >= FXP_REV_82558_A4)
3210 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3211 		    &hsp->tx_pause, "Pause frames");
3212 	if (sc->revision >= FXP_REV_82559_A0)
3213 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3214 		    &hsp->tx_tco, "TCO frames");
3215 }
3216 
3217 #undef FXP_SYSCTL_STAT_ADD
3218 
3219 static int
3220 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3221 {
3222 	int error, value;
3223 
3224 	value = *(int *)arg1;
3225 	error = sysctl_handle_int(oidp, &value, 0, req);
3226 	if (error || !req->newptr)
3227 		return (error);
3228 	if (value < low || value > high)
3229 		return (EINVAL);
3230 	*(int *)arg1 = value;
3231 	return (0);
3232 }
3233 
3234 /*
3235  * Interrupt delay is expressed in microseconds, a multiplier is used
3236  * to convert this to the appropriate clock ticks before using.
3237  */
3238 static int
3239 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3240 {
3241 
3242 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3243 }
3244 
3245 static int
3246 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3247 {
3248 
3249 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3250 }
3251