1 /*- 2 * Copyright (c) 1995, David Greenman 3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice unmodified, this list of conditions, and the following 11 * disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver 35 */ 36 37 #ifdef HAVE_KERNEL_OPTION_HEADERS 38 #include "opt_device_polling.h" 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/bus.h> 44 #include <sys/endian.h> 45 #include <sys/kernel.h> 46 #include <sys/mbuf.h> 47 #include <sys/lock.h> 48 #include <sys/module.h> 49 #include <sys/mutex.h> 50 #include <sys/rman.h> 51 #include <sys/socket.h> 52 #include <sys/sockio.h> 53 #include <sys/sysctl.h> 54 55 #include <net/bpf.h> 56 #include <net/ethernet.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/if_dl.h> 60 #include <net/if_media.h> 61 #include <net/if_types.h> 62 #include <net/if_vlan_var.h> 63 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/ip.h> 67 #include <netinet/tcp.h> 68 #include <netinet/udp.h> 69 70 #include <machine/bus.h> 71 #include <machine/in_cksum.h> 72 #include <machine/resource.h> 73 74 #include <dev/pci/pcivar.h> 75 #include <dev/pci/pcireg.h> /* for PCIM_CMD_xxx */ 76 77 #include <dev/mii/mii.h> 78 #include <dev/mii/miivar.h> 79 80 #include <dev/fxp/if_fxpreg.h> 81 #include <dev/fxp/if_fxpvar.h> 82 #include <dev/fxp/rcvbundl.h> 83 84 MODULE_DEPEND(fxp, pci, 1, 1, 1); 85 MODULE_DEPEND(fxp, ether, 1, 1, 1); 86 MODULE_DEPEND(fxp, miibus, 1, 1, 1); 87 #include "miibus_if.h" 88 89 /* 90 * NOTE! On !x86 we typically have an alignment constraint. The 91 * card DMAs the packet immediately following the RFA. However, 92 * the first thing in the packet is a 14-byte Ethernet header. 93 * This means that the packet is misaligned. To compensate, 94 * we actually offset the RFA 2 bytes into the cluster. This 95 * alignes the packet after the Ethernet header at a 32-bit 96 * boundary. HOWEVER! This means that the RFA is misaligned! 97 */ 98 #define RFA_ALIGNMENT_FUDGE 2 99 100 /* 101 * Set initial transmit threshold at 64 (512 bytes). This is 102 * increased by 64 (512 bytes) at a time, to maximum of 192 103 * (1536 bytes), if an underrun occurs. 104 */ 105 static int tx_threshold = 64; 106 107 /* 108 * The configuration byte map has several undefined fields which 109 * must be one or must be zero. Set up a template for these bits. 110 * The actual configuration is performed in fxp_init_body. 111 * 112 * See struct fxp_cb_config for the bit definitions. 113 */ 114 static const u_char const fxp_cb_config_template[] = { 115 0x0, 0x0, /* cb_status */ 116 0x0, 0x0, /* cb_command */ 117 0x0, 0x0, 0x0, 0x0, /* link_addr */ 118 0x0, /* 0 */ 119 0x0, /* 1 */ 120 0x0, /* 2 */ 121 0x0, /* 3 */ 122 0x0, /* 4 */ 123 0x0, /* 5 */ 124 0x32, /* 6 */ 125 0x0, /* 7 */ 126 0x0, /* 8 */ 127 0x0, /* 9 */ 128 0x6, /* 10 */ 129 0x0, /* 11 */ 130 0x0, /* 12 */ 131 0x0, /* 13 */ 132 0xf2, /* 14 */ 133 0x48, /* 15 */ 134 0x0, /* 16 */ 135 0x40, /* 17 */ 136 0xf0, /* 18 */ 137 0x0, /* 19 */ 138 0x3f, /* 20 */ 139 0x5, /* 21 */ 140 0x0, /* 22 */ 141 0x0, /* 23 */ 142 0x0, /* 24 */ 143 0x0, /* 25 */ 144 0x0, /* 26 */ 145 0x0, /* 27 */ 146 0x0, /* 28 */ 147 0x0, /* 29 */ 148 0x0, /* 30 */ 149 0x0 /* 31 */ 150 }; 151 152 /* 153 * Claim various Intel PCI device identifiers for this driver. The 154 * sub-vendor and sub-device field are extensively used to identify 155 * particular variants, but we don't currently differentiate between 156 * them. 157 */ 158 static const struct fxp_ident const fxp_ident_table[] = { 159 { 0x1029, -1, 0, "Intel 82559 PCI/CardBus Pro/100" }, 160 { 0x1030, -1, 0, "Intel 82559 Pro/100 Ethernet" }, 161 { 0x1031, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 162 { 0x1032, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 163 { 0x1033, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 164 { 0x1034, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 165 { 0x1035, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 166 { 0x1036, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 167 { 0x1037, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 168 { 0x1038, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 169 { 0x1039, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 170 { 0x103A, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 171 { 0x103B, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 172 { 0x103C, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 173 { 0x103D, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 174 { 0x103E, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 175 { 0x1050, -1, 5, "Intel 82801BA (D865) Pro/100 VE Ethernet" }, 176 { 0x1051, -1, 5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" }, 177 { 0x1059, -1, 0, "Intel 82551QM Pro/100 M Mobile Connection" }, 178 { 0x1064, -1, 6, "Intel 82562EZ (ICH6)" }, 179 { 0x1065, -1, 6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" }, 180 { 0x1068, -1, 6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" }, 181 { 0x1069, -1, 6, "Intel 82562EM/EX/GX Pro/100 Ethernet" }, 182 { 0x1091, -1, 7, "Intel 82562GX Pro/100 Ethernet" }, 183 { 0x1092, -1, 7, "Intel Pro/100 VE Network Connection" }, 184 { 0x1093, -1, 7, "Intel Pro/100 VM Network Connection" }, 185 { 0x1094, -1, 7, "Intel Pro/100 946GZ (ICH7) Network Connection" }, 186 { 0x1209, -1, 0, "Intel 82559ER Embedded 10/100 Ethernet" }, 187 { 0x1229, 0x01, 0, "Intel 82557 Pro/100 Ethernet" }, 188 { 0x1229, 0x02, 0, "Intel 82557 Pro/100 Ethernet" }, 189 { 0x1229, 0x03, 0, "Intel 82557 Pro/100 Ethernet" }, 190 { 0x1229, 0x04, 0, "Intel 82558 Pro/100 Ethernet" }, 191 { 0x1229, 0x05, 0, "Intel 82558 Pro/100 Ethernet" }, 192 { 0x1229, 0x06, 0, "Intel 82559 Pro/100 Ethernet" }, 193 { 0x1229, 0x07, 0, "Intel 82559 Pro/100 Ethernet" }, 194 { 0x1229, 0x08, 0, "Intel 82559 Pro/100 Ethernet" }, 195 { 0x1229, 0x09, 0, "Intel 82559ER Pro/100 Ethernet" }, 196 { 0x1229, 0x0c, 0, "Intel 82550 Pro/100 Ethernet" }, 197 { 0x1229, 0x0d, 0, "Intel 82550C Pro/100 Ethernet" }, 198 { 0x1229, 0x0e, 0, "Intel 82550 Pro/100 Ethernet" }, 199 { 0x1229, 0x0f, 0, "Intel 82551 Pro/100 Ethernet" }, 200 { 0x1229, 0x10, 0, "Intel 82551 Pro/100 Ethernet" }, 201 { 0x1229, -1, 0, "Intel 82557/8/9 Pro/100 Ethernet" }, 202 { 0x2449, -1, 2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" }, 203 { 0x27dc, -1, 7, "Intel 82801GB (ICH7) 10/100 Ethernet" }, 204 { 0, -1, 0, NULL }, 205 }; 206 207 #ifdef FXP_IP_CSUM_WAR 208 #define FXP_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 209 #else 210 #define FXP_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 211 #endif 212 213 static int fxp_probe(device_t dev); 214 static int fxp_attach(device_t dev); 215 static int fxp_detach(device_t dev); 216 static int fxp_shutdown(device_t dev); 217 static int fxp_suspend(device_t dev); 218 static int fxp_resume(device_t dev); 219 220 static const struct fxp_ident *fxp_find_ident(device_t dev); 221 static void fxp_intr(void *xsc); 222 static void fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, 223 struct mbuf *m, uint16_t status, int pos); 224 static int fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, 225 uint8_t statack, int count); 226 static void fxp_init(void *xsc); 227 static void fxp_init_body(struct fxp_softc *sc, int); 228 static void fxp_tick(void *xsc); 229 static void fxp_start(struct ifnet *ifp); 230 static void fxp_start_body(struct ifnet *ifp); 231 static int fxp_encap(struct fxp_softc *sc, struct mbuf **m_head); 232 static void fxp_txeof(struct fxp_softc *sc); 233 static void fxp_stop(struct fxp_softc *sc); 234 static void fxp_release(struct fxp_softc *sc); 235 static int fxp_ioctl(struct ifnet *ifp, u_long command, 236 caddr_t data); 237 static void fxp_watchdog(struct fxp_softc *sc); 238 static void fxp_add_rfabuf(struct fxp_softc *sc, 239 struct fxp_rx *rxp); 240 static void fxp_discard_rfabuf(struct fxp_softc *sc, 241 struct fxp_rx *rxp); 242 static int fxp_new_rfabuf(struct fxp_softc *sc, 243 struct fxp_rx *rxp); 244 static int fxp_mc_addrs(struct fxp_softc *sc); 245 static void fxp_mc_setup(struct fxp_softc *sc); 246 static uint16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, 247 int autosize); 248 static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, 249 uint16_t data); 250 static void fxp_autosize_eeprom(struct fxp_softc *sc); 251 static void fxp_load_eeprom(struct fxp_softc *sc); 252 static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, 253 int offset, int words); 254 static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, 255 int offset, int words); 256 static int fxp_ifmedia_upd(struct ifnet *ifp); 257 static void fxp_ifmedia_sts(struct ifnet *ifp, 258 struct ifmediareq *ifmr); 259 static int fxp_serial_ifmedia_upd(struct ifnet *ifp); 260 static void fxp_serial_ifmedia_sts(struct ifnet *ifp, 261 struct ifmediareq *ifmr); 262 static int fxp_miibus_readreg(device_t dev, int phy, int reg); 263 static int fxp_miibus_writereg(device_t dev, int phy, int reg, 264 int value); 265 static void fxp_miibus_statchg(device_t dev); 266 static void fxp_load_ucode(struct fxp_softc *sc); 267 static void fxp_update_stats(struct fxp_softc *sc); 268 static void fxp_sysctl_node(struct fxp_softc *sc); 269 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, 270 int low, int high); 271 static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS); 272 static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS); 273 static void fxp_scb_wait(struct fxp_softc *sc); 274 static void fxp_scb_cmd(struct fxp_softc *sc, int cmd); 275 static void fxp_dma_wait(struct fxp_softc *sc, 276 volatile uint16_t *status, bus_dma_tag_t dmat, 277 bus_dmamap_t map); 278 279 static device_method_t fxp_methods[] = { 280 /* Device interface */ 281 DEVMETHOD(device_probe, fxp_probe), 282 DEVMETHOD(device_attach, fxp_attach), 283 DEVMETHOD(device_detach, fxp_detach), 284 DEVMETHOD(device_shutdown, fxp_shutdown), 285 DEVMETHOD(device_suspend, fxp_suspend), 286 DEVMETHOD(device_resume, fxp_resume), 287 288 /* MII interface */ 289 DEVMETHOD(miibus_readreg, fxp_miibus_readreg), 290 DEVMETHOD(miibus_writereg, fxp_miibus_writereg), 291 DEVMETHOD(miibus_statchg, fxp_miibus_statchg), 292 293 { 0, 0 } 294 }; 295 296 static driver_t fxp_driver = { 297 "fxp", 298 fxp_methods, 299 sizeof(struct fxp_softc), 300 }; 301 302 static devclass_t fxp_devclass; 303 304 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0); 305 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0); 306 307 static struct resource_spec fxp_res_spec_mem[] = { 308 { SYS_RES_MEMORY, FXP_PCI_MMBA, RF_ACTIVE }, 309 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 310 { -1, 0 } 311 }; 312 313 static struct resource_spec fxp_res_spec_io[] = { 314 { SYS_RES_IOPORT, FXP_PCI_IOBA, RF_ACTIVE }, 315 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 316 { -1, 0 } 317 }; 318 319 /* 320 * Wait for the previous command to be accepted (but not necessarily 321 * completed). 322 */ 323 static void 324 fxp_scb_wait(struct fxp_softc *sc) 325 { 326 union { 327 uint16_t w; 328 uint8_t b[2]; 329 } flowctl; 330 int i = 10000; 331 332 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) 333 DELAY(2); 334 if (i == 0) { 335 flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH); 336 flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS); 337 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n", 338 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND), 339 CSR_READ_1(sc, FXP_CSR_SCB_STATACK), 340 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w); 341 } 342 } 343 344 static void 345 fxp_scb_cmd(struct fxp_softc *sc, int cmd) 346 { 347 348 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) { 349 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP); 350 fxp_scb_wait(sc); 351 } 352 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); 353 } 354 355 static void 356 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status, 357 bus_dma_tag_t dmat, bus_dmamap_t map) 358 { 359 int i; 360 361 for (i = 10000; i > 0; i--) { 362 DELAY(2); 363 bus_dmamap_sync(dmat, map, 364 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 365 if ((le16toh(*status) & FXP_CB_STATUS_C) != 0) 366 break; 367 } 368 if (i == 0) 369 device_printf(sc->dev, "DMA timeout\n"); 370 } 371 372 static const struct fxp_ident * 373 fxp_find_ident(device_t dev) 374 { 375 uint16_t devid; 376 uint8_t revid; 377 const struct fxp_ident *ident; 378 379 if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) { 380 devid = pci_get_device(dev); 381 revid = pci_get_revid(dev); 382 for (ident = fxp_ident_table; ident->name != NULL; ident++) { 383 if (ident->devid == devid && 384 (ident->revid == revid || ident->revid == -1)) { 385 return (ident); 386 } 387 } 388 } 389 return (NULL); 390 } 391 392 /* 393 * Return identification string if this device is ours. 394 */ 395 static int 396 fxp_probe(device_t dev) 397 { 398 const struct fxp_ident *ident; 399 400 ident = fxp_find_ident(dev); 401 if (ident != NULL) { 402 device_set_desc(dev, ident->name); 403 return (BUS_PROBE_DEFAULT); 404 } 405 return (ENXIO); 406 } 407 408 static void 409 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 410 { 411 uint32_t *addr; 412 413 if (error) 414 return; 415 416 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 417 addr = arg; 418 *addr = segs->ds_addr; 419 } 420 421 static int 422 fxp_attach(device_t dev) 423 { 424 struct fxp_softc *sc; 425 struct fxp_cb_tx *tcbp; 426 struct fxp_tx *txp; 427 struct fxp_rx *rxp; 428 struct ifnet *ifp; 429 uint32_t val; 430 uint16_t data; 431 u_char eaddr[ETHER_ADDR_LEN]; 432 int error, flags, i, pmc, prefer_iomap; 433 434 error = 0; 435 sc = device_get_softc(dev); 436 sc->dev = dev; 437 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 438 MTX_DEF); 439 callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0); 440 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd, 441 fxp_serial_ifmedia_sts); 442 443 ifp = sc->ifp = if_alloc(IFT_ETHER); 444 if (ifp == NULL) { 445 device_printf(dev, "can not if_alloc()\n"); 446 error = ENOSPC; 447 goto fail; 448 } 449 450 /* 451 * Enable bus mastering. 452 */ 453 pci_enable_busmaster(dev); 454 val = pci_read_config(dev, PCIR_COMMAND, 2); 455 456 /* 457 * Figure out which we should try first - memory mapping or i/o mapping? 458 * We default to memory mapping. Then we accept an override from the 459 * command line. Then we check to see which one is enabled. 460 */ 461 prefer_iomap = 0; 462 resource_int_value(device_get_name(dev), device_get_unit(dev), 463 "prefer_iomap", &prefer_iomap); 464 if (prefer_iomap) 465 sc->fxp_spec = fxp_res_spec_io; 466 else 467 sc->fxp_spec = fxp_res_spec_mem; 468 469 error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res); 470 if (error) { 471 if (sc->fxp_spec == fxp_res_spec_mem) 472 sc->fxp_spec = fxp_res_spec_io; 473 else 474 sc->fxp_spec = fxp_res_spec_mem; 475 error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res); 476 } 477 if (error) { 478 device_printf(dev, "could not allocate resources\n"); 479 error = ENXIO; 480 goto fail; 481 } 482 483 if (bootverbose) { 484 device_printf(dev, "using %s space register mapping\n", 485 sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O"); 486 } 487 488 /* 489 * Put CU/RU idle state and prepare full reset. 490 */ 491 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 492 DELAY(10); 493 /* Full reset and disable interrupts. */ 494 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 495 DELAY(10); 496 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 497 498 /* 499 * Find out how large of an SEEPROM we have. 500 */ 501 fxp_autosize_eeprom(sc); 502 fxp_load_eeprom(sc); 503 504 /* 505 * Find out the chip revision; lump all 82557 revs together. 506 */ 507 sc->ident = fxp_find_ident(dev); 508 if (sc->ident->ich > 0) { 509 /* Assume ICH controllers are 82559. */ 510 sc->revision = FXP_REV_82559_A0; 511 } else { 512 data = sc->eeprom[FXP_EEPROM_MAP_CNTR]; 513 if ((data >> 8) == 1) 514 sc->revision = FXP_REV_82557; 515 else 516 sc->revision = pci_get_revid(dev); 517 } 518 519 /* 520 * Check availability of WOL. 82559ER does not support WOL. 521 */ 522 if (sc->revision >= FXP_REV_82558_A4 && 523 sc->revision != FXP_REV_82559S_A) { 524 data = sc->eeprom[FXP_EEPROM_MAP_ID]; 525 if ((data & 0x20) != 0 && 526 pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) 527 sc->flags |= FXP_FLAG_WOLCAP; 528 } 529 530 if (sc->revision == FXP_REV_82550_C) { 531 /* 532 * 82550C with server extension requires microcode to 533 * receive fragmented UDP datagrams. However if the 534 * microcode is used for client-only featured 82550C 535 * it locks up controller. 536 */ 537 data = sc->eeprom[FXP_EEPROM_MAP_COMPAT]; 538 if ((data & 0x0400) == 0) 539 sc->flags |= FXP_FLAG_NO_UCODE; 540 } 541 542 /* Receiver lock-up workaround detection. */ 543 if (sc->revision < FXP_REV_82558_A4) { 544 data = sc->eeprom[FXP_EEPROM_MAP_COMPAT]; 545 if ((data & 0x03) != 0x03) { 546 sc->flags |= FXP_FLAG_RXBUG; 547 device_printf(dev, "Enabling Rx lock-up workaround\n"); 548 } 549 } 550 551 /* 552 * Determine whether we must use the 503 serial interface. 553 */ 554 data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY]; 555 if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0 556 && (data & FXP_PHY_SERIAL_ONLY)) 557 sc->flags |= FXP_FLAG_SERIAL_MEDIA; 558 559 fxp_sysctl_node(sc); 560 /* 561 * Enable workarounds for certain chip revision deficiencies. 562 * 563 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly 564 * some systems based a normal 82559 design, have a defect where 565 * the chip can cause a PCI protocol violation if it receives 566 * a CU_RESUME command when it is entering the IDLE state. The 567 * workaround is to disable Dynamic Standby Mode, so the chip never 568 * deasserts CLKRUN#, and always remains in an active state. 569 * 570 * See Intel 82801BA/82801BAM Specification Update, Errata #30. 571 */ 572 if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) || 573 (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) { 574 data = sc->eeprom[FXP_EEPROM_MAP_ID]; 575 if (data & 0x02) { /* STB enable */ 576 uint16_t cksum; 577 int i; 578 579 device_printf(dev, 580 "Disabling dynamic standby mode in EEPROM\n"); 581 data &= ~0x02; 582 sc->eeprom[FXP_EEPROM_MAP_ID] = data; 583 fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1); 584 device_printf(dev, "New EEPROM ID: 0x%x\n", data); 585 cksum = 0; 586 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) 587 cksum += sc->eeprom[i]; 588 i = (1 << sc->eeprom_size) - 1; 589 cksum = 0xBABA - cksum; 590 fxp_write_eeprom(sc, &cksum, i, 1); 591 device_printf(dev, 592 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n", 593 i, sc->eeprom[i], cksum); 594 sc->eeprom[i] = cksum; 595 /* 596 * If the user elects to continue, try the software 597 * workaround, as it is better than nothing. 598 */ 599 sc->flags |= FXP_FLAG_CU_RESUME_BUG; 600 } 601 } 602 603 /* 604 * If we are not a 82557 chip, we can enable extended features. 605 */ 606 if (sc->revision != FXP_REV_82557) { 607 /* 608 * If MWI is enabled in the PCI configuration, and there 609 * is a valid cacheline size (8 or 16 dwords), then tell 610 * the board to turn on MWI. 611 */ 612 if (val & PCIM_CMD_MWRICEN && 613 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0) 614 sc->flags |= FXP_FLAG_MWI_ENABLE; 615 616 /* turn on the extended TxCB feature */ 617 sc->flags |= FXP_FLAG_EXT_TXCB; 618 619 /* enable reception of long frames for VLAN */ 620 sc->flags |= FXP_FLAG_LONG_PKT_EN; 621 } else { 622 /* a hack to get long VLAN frames on a 82557 */ 623 sc->flags |= FXP_FLAG_SAVE_BAD; 624 } 625 626 /* For 82559 or later chips, Rx checksum offload is supported. */ 627 if (sc->revision >= FXP_REV_82559_A0) { 628 /* 82559ER does not support Rx checksum offloading. */ 629 if (sc->ident->devid != 0x1209) 630 sc->flags |= FXP_FLAG_82559_RXCSUM; 631 } 632 /* 633 * Enable use of extended RFDs and TCBs for 82550 634 * and later chips. Note: we need extended TXCB support 635 * too, but that's already enabled by the code above. 636 * Be careful to do this only on the right devices. 637 */ 638 if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C || 639 sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F 640 || sc->revision == FXP_REV_82551_10) { 641 sc->rfa_size = sizeof (struct fxp_rfa); 642 sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT; 643 sc->flags |= FXP_FLAG_EXT_RFA; 644 /* Use extended RFA instead of 82559 checksum mode. */ 645 sc->flags &= ~FXP_FLAG_82559_RXCSUM; 646 } else { 647 sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN; 648 sc->tx_cmd = FXP_CB_COMMAND_XMIT; 649 } 650 651 /* 652 * Allocate DMA tags and DMA safe memory. 653 */ 654 sc->maxtxseg = FXP_NTXSEG; 655 sc->maxsegsize = MCLBYTES; 656 if (sc->flags & FXP_FLAG_EXT_RFA) { 657 sc->maxtxseg--; 658 sc->maxsegsize = FXP_TSO_SEGSIZE; 659 } 660 error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0, 661 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 662 sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header), 663 sc->maxtxseg, sc->maxsegsize, 0, 664 busdma_lock_mutex, &Giant, &sc->fxp_txmtag); 665 if (error) { 666 device_printf(dev, "could not create TX DMA tag\n"); 667 goto fail; 668 } 669 670 error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0, 671 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 672 MCLBYTES, 1, MCLBYTES, 0, 673 busdma_lock_mutex, &Giant, &sc->fxp_rxmtag); 674 if (error) { 675 device_printf(dev, "could not create RX DMA tag\n"); 676 goto fail; 677 } 678 679 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 680 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 681 sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0, 682 busdma_lock_mutex, &Giant, &sc->fxp_stag); 683 if (error) { 684 device_printf(dev, "could not create stats DMA tag\n"); 685 goto fail; 686 } 687 688 error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats, 689 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap); 690 if (error) { 691 device_printf(dev, "could not allocate stats DMA memory\n"); 692 goto fail; 693 } 694 error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats, 695 sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 696 BUS_DMA_NOWAIT); 697 if (error) { 698 device_printf(dev, "could not load the stats DMA buffer\n"); 699 goto fail; 700 } 701 702 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 703 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 704 FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0, 705 busdma_lock_mutex, &Giant, &sc->cbl_tag); 706 if (error) { 707 device_printf(dev, "could not create TxCB DMA tag\n"); 708 goto fail; 709 } 710 711 error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list, 712 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map); 713 if (error) { 714 device_printf(dev, "could not allocate TxCB DMA memory\n"); 715 goto fail; 716 } 717 718 error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map, 719 sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr, 720 &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT); 721 if (error) { 722 device_printf(dev, "could not load TxCB DMA buffer\n"); 723 goto fail; 724 } 725 726 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 727 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 728 sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0, 729 busdma_lock_mutex, &Giant, &sc->mcs_tag); 730 if (error) { 731 device_printf(dev, 732 "could not create multicast setup DMA tag\n"); 733 goto fail; 734 } 735 736 error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp, 737 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map); 738 if (error) { 739 device_printf(dev, 740 "could not allocate multicast setup DMA memory\n"); 741 goto fail; 742 } 743 error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp, 744 sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 745 BUS_DMA_NOWAIT); 746 if (error) { 747 device_printf(dev, 748 "can't load the multicast setup DMA buffer\n"); 749 goto fail; 750 } 751 752 /* 753 * Pre-allocate the TX DMA maps and setup the pointers to 754 * the TX command blocks. 755 */ 756 txp = sc->fxp_desc.tx_list; 757 tcbp = sc->fxp_desc.cbl_list; 758 for (i = 0; i < FXP_NTXCB; i++) { 759 txp[i].tx_cb = tcbp + i; 760 error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map); 761 if (error) { 762 device_printf(dev, "can't create DMA map for TX\n"); 763 goto fail; 764 } 765 } 766 error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map); 767 if (error) { 768 device_printf(dev, "can't create spare DMA map\n"); 769 goto fail; 770 } 771 772 /* 773 * Pre-allocate our receive buffers. 774 */ 775 sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL; 776 for (i = 0; i < FXP_NRFABUFS; i++) { 777 rxp = &sc->fxp_desc.rx_list[i]; 778 error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map); 779 if (error) { 780 device_printf(dev, "can't create DMA map for RX\n"); 781 goto fail; 782 } 783 if (fxp_new_rfabuf(sc, rxp) != 0) { 784 error = ENOMEM; 785 goto fail; 786 } 787 fxp_add_rfabuf(sc, rxp); 788 } 789 790 /* 791 * Read MAC address. 792 */ 793 eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff; 794 eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8; 795 eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff; 796 eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8; 797 eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff; 798 eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8; 799 if (bootverbose) { 800 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n", 801 pci_get_vendor(dev), pci_get_device(dev), 802 pci_get_subvendor(dev), pci_get_subdevice(dev), 803 pci_get_revid(dev)); 804 device_printf(dev, "Dynamic Standby mode is %s\n", 805 sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" : 806 "disabled"); 807 } 808 809 /* 810 * If this is only a 10Mbps device, then there is no MII, and 811 * the PHY will use a serial interface instead. 812 * 813 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 814 * doesn't have a programming interface of any sort. The 815 * media is sensed automatically based on how the link partner 816 * is configured. This is, in essence, manual configuration. 817 */ 818 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) { 819 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 820 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); 821 } else { 822 /* 823 * i82557 wedge when isolating all of their PHYs. 824 */ 825 flags = MIIF_NOISOLATE; 826 if (sc->revision >= FXP_REV_82558_A4) 827 flags |= MIIF_DOPAUSE; 828 error = mii_attach(dev, &sc->miibus, ifp, fxp_ifmedia_upd, 829 fxp_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, 830 MII_OFFSET_ANY, flags); 831 if (error != 0) { 832 device_printf(dev, "attaching PHYs failed\n"); 833 goto fail; 834 } 835 } 836 837 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 838 ifp->if_init = fxp_init; 839 ifp->if_softc = sc; 840 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 841 ifp->if_ioctl = fxp_ioctl; 842 ifp->if_start = fxp_start; 843 844 ifp->if_capabilities = ifp->if_capenable = 0; 845 846 /* Enable checksum offload/TSO for 82550 or better chips */ 847 if (sc->flags & FXP_FLAG_EXT_RFA) { 848 ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO; 849 ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4; 850 ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4; 851 } 852 853 if (sc->flags & FXP_FLAG_82559_RXCSUM) { 854 ifp->if_capabilities |= IFCAP_RXCSUM; 855 ifp->if_capenable |= IFCAP_RXCSUM; 856 } 857 858 if (sc->flags & FXP_FLAG_WOLCAP) { 859 ifp->if_capabilities |= IFCAP_WOL_MAGIC; 860 ifp->if_capenable |= IFCAP_WOL_MAGIC; 861 } 862 863 #ifdef DEVICE_POLLING 864 /* Inform the world we support polling. */ 865 ifp->if_capabilities |= IFCAP_POLLING; 866 #endif 867 868 /* 869 * Attach the interface. 870 */ 871 ether_ifattach(ifp, eaddr); 872 873 /* 874 * Tell the upper layer(s) we support long frames. 875 * Must appear after the call to ether_ifattach() because 876 * ether_ifattach() sets ifi_hdrlen to the default value. 877 */ 878 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 879 ifp->if_capabilities |= IFCAP_VLAN_MTU; 880 ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */ 881 if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) { 882 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | 883 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO; 884 ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | 885 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO; 886 } 887 888 /* 889 * Let the system queue as many packets as we have available 890 * TX descriptors. 891 */ 892 IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1); 893 ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1; 894 IFQ_SET_READY(&ifp->if_snd); 895 896 /* 897 * Hook our interrupt after all initialization is complete. 898 */ 899 error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE, 900 NULL, fxp_intr, sc, &sc->ih); 901 if (error) { 902 device_printf(dev, "could not setup irq\n"); 903 ether_ifdetach(sc->ifp); 904 goto fail; 905 } 906 907 /* 908 * Configure hardware to reject magic frames otherwise 909 * system will hang on recipt of magic frames. 910 */ 911 if ((sc->flags & FXP_FLAG_WOLCAP) != 0) { 912 FXP_LOCK(sc); 913 /* Clear wakeup events. */ 914 CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR)); 915 fxp_init_body(sc, 0); 916 fxp_stop(sc); 917 FXP_UNLOCK(sc); 918 } 919 920 fail: 921 if (error) 922 fxp_release(sc); 923 return (error); 924 } 925 926 /* 927 * Release all resources. The softc lock should not be held and the 928 * interrupt should already be torn down. 929 */ 930 static void 931 fxp_release(struct fxp_softc *sc) 932 { 933 struct fxp_rx *rxp; 934 struct fxp_tx *txp; 935 int i; 936 937 FXP_LOCK_ASSERT(sc, MA_NOTOWNED); 938 KASSERT(sc->ih == NULL, 939 ("fxp_release() called with intr handle still active")); 940 if (sc->miibus) 941 device_delete_child(sc->dev, sc->miibus); 942 bus_generic_detach(sc->dev); 943 ifmedia_removeall(&sc->sc_media); 944 if (sc->fxp_desc.cbl_list) { 945 bus_dmamap_unload(sc->cbl_tag, sc->cbl_map); 946 bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list, 947 sc->cbl_map); 948 } 949 if (sc->fxp_stats) { 950 bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap); 951 bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap); 952 } 953 if (sc->mcsp) { 954 bus_dmamap_unload(sc->mcs_tag, sc->mcs_map); 955 bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map); 956 } 957 bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res); 958 if (sc->fxp_rxmtag) { 959 for (i = 0; i < FXP_NRFABUFS; i++) { 960 rxp = &sc->fxp_desc.rx_list[i]; 961 if (rxp->rx_mbuf != NULL) { 962 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 963 BUS_DMASYNC_POSTREAD); 964 bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map); 965 m_freem(rxp->rx_mbuf); 966 } 967 bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map); 968 } 969 bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map); 970 bus_dma_tag_destroy(sc->fxp_rxmtag); 971 } 972 if (sc->fxp_txmtag) { 973 for (i = 0; i < FXP_NTXCB; i++) { 974 txp = &sc->fxp_desc.tx_list[i]; 975 if (txp->tx_mbuf != NULL) { 976 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, 977 BUS_DMASYNC_POSTWRITE); 978 bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map); 979 m_freem(txp->tx_mbuf); 980 } 981 bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map); 982 } 983 bus_dma_tag_destroy(sc->fxp_txmtag); 984 } 985 if (sc->fxp_stag) 986 bus_dma_tag_destroy(sc->fxp_stag); 987 if (sc->cbl_tag) 988 bus_dma_tag_destroy(sc->cbl_tag); 989 if (sc->mcs_tag) 990 bus_dma_tag_destroy(sc->mcs_tag); 991 if (sc->ifp) 992 if_free(sc->ifp); 993 994 mtx_destroy(&sc->sc_mtx); 995 } 996 997 /* 998 * Detach interface. 999 */ 1000 static int 1001 fxp_detach(device_t dev) 1002 { 1003 struct fxp_softc *sc = device_get_softc(dev); 1004 1005 #ifdef DEVICE_POLLING 1006 if (sc->ifp->if_capenable & IFCAP_POLLING) 1007 ether_poll_deregister(sc->ifp); 1008 #endif 1009 1010 FXP_LOCK(sc); 1011 /* 1012 * Stop DMA and drop transmit queue, but disable interrupts first. 1013 */ 1014 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 1015 fxp_stop(sc); 1016 FXP_UNLOCK(sc); 1017 callout_drain(&sc->stat_ch); 1018 1019 /* 1020 * Close down routes etc. 1021 */ 1022 ether_ifdetach(sc->ifp); 1023 1024 /* 1025 * Unhook interrupt before dropping lock. This is to prevent 1026 * races with fxp_intr(). 1027 */ 1028 bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih); 1029 sc->ih = NULL; 1030 1031 /* Release our allocated resources. */ 1032 fxp_release(sc); 1033 return (0); 1034 } 1035 1036 /* 1037 * Device shutdown routine. Called at system shutdown after sync. The 1038 * main purpose of this routine is to shut off receiver DMA so that 1039 * kernel memory doesn't get clobbered during warmboot. 1040 */ 1041 static int 1042 fxp_shutdown(device_t dev) 1043 { 1044 1045 /* 1046 * Make sure that DMA is disabled prior to reboot. Not doing 1047 * do could allow DMA to corrupt kernel memory during the 1048 * reboot before the driver initializes. 1049 */ 1050 return (fxp_suspend(dev)); 1051 } 1052 1053 /* 1054 * Device suspend routine. Stop the interface and save some PCI 1055 * settings in case the BIOS doesn't restore them properly on 1056 * resume. 1057 */ 1058 static int 1059 fxp_suspend(device_t dev) 1060 { 1061 struct fxp_softc *sc = device_get_softc(dev); 1062 struct ifnet *ifp; 1063 int pmc; 1064 uint16_t pmstat; 1065 1066 FXP_LOCK(sc); 1067 1068 ifp = sc->ifp; 1069 if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) { 1070 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2); 1071 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1072 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) { 1073 /* Request PME. */ 1074 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1075 sc->flags |= FXP_FLAG_WOL; 1076 /* Reconfigure hardware to accept magic frames. */ 1077 fxp_init_body(sc, 1); 1078 } 1079 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1080 } 1081 fxp_stop(sc); 1082 1083 sc->suspended = 1; 1084 1085 FXP_UNLOCK(sc); 1086 return (0); 1087 } 1088 1089 /* 1090 * Device resume routine. re-enable busmastering, and restart the interface if 1091 * appropriate. 1092 */ 1093 static int 1094 fxp_resume(device_t dev) 1095 { 1096 struct fxp_softc *sc = device_get_softc(dev); 1097 struct ifnet *ifp = sc->ifp; 1098 int pmc; 1099 uint16_t pmstat; 1100 1101 FXP_LOCK(sc); 1102 1103 if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) { 1104 sc->flags &= ~FXP_FLAG_WOL; 1105 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2); 1106 /* Disable PME and clear PME status. */ 1107 pmstat &= ~PCIM_PSTAT_PMEENABLE; 1108 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1109 if ((sc->flags & FXP_FLAG_WOLCAP) != 0) 1110 CSR_WRITE_1(sc, FXP_CSR_PMDR, 1111 CSR_READ_1(sc, FXP_CSR_PMDR)); 1112 } 1113 1114 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 1115 DELAY(10); 1116 1117 /* reinitialize interface if necessary */ 1118 if (ifp->if_flags & IFF_UP) 1119 fxp_init_body(sc, 1); 1120 1121 sc->suspended = 0; 1122 1123 FXP_UNLOCK(sc); 1124 return (0); 1125 } 1126 1127 static void 1128 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) 1129 { 1130 uint16_t reg; 1131 int x; 1132 1133 /* 1134 * Shift in data. 1135 */ 1136 for (x = 1 << (length - 1); x; x >>= 1) { 1137 if (data & x) 1138 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1139 else 1140 reg = FXP_EEPROM_EECS; 1141 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1142 DELAY(1); 1143 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1144 DELAY(1); 1145 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1146 DELAY(1); 1147 } 1148 } 1149 1150 /* 1151 * Read from the serial EEPROM. Basically, you manually shift in 1152 * the read opcode (one bit at a time) and then shift in the address, 1153 * and then you shift out the data (all of this one bit at a time). 1154 * The word size is 16 bits, so you have to provide the address for 1155 * every 16 bits of data. 1156 */ 1157 static uint16_t 1158 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize) 1159 { 1160 uint16_t reg, data; 1161 int x; 1162 1163 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1164 /* 1165 * Shift in read opcode. 1166 */ 1167 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); 1168 /* 1169 * Shift in address. 1170 */ 1171 data = 0; 1172 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) { 1173 if (offset & x) 1174 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1175 else 1176 reg = FXP_EEPROM_EECS; 1177 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1178 DELAY(1); 1179 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1180 DELAY(1); 1181 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1182 DELAY(1); 1183 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO; 1184 data++; 1185 if (autosize && reg == 0) { 1186 sc->eeprom_size = data; 1187 break; 1188 } 1189 } 1190 /* 1191 * Shift out data. 1192 */ 1193 data = 0; 1194 reg = FXP_EEPROM_EECS; 1195 for (x = 1 << 15; x; x >>= 1) { 1196 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1197 DELAY(1); 1198 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1199 data |= x; 1200 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1201 DELAY(1); 1202 } 1203 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1204 DELAY(1); 1205 1206 return (data); 1207 } 1208 1209 static void 1210 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data) 1211 { 1212 int i; 1213 1214 /* 1215 * Erase/write enable. 1216 */ 1217 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1218 fxp_eeprom_shiftin(sc, 0x4, 3); 1219 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); 1220 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1221 DELAY(1); 1222 /* 1223 * Shift in write opcode, address, data. 1224 */ 1225 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1226 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); 1227 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); 1228 fxp_eeprom_shiftin(sc, data, 16); 1229 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1230 DELAY(1); 1231 /* 1232 * Wait for EEPROM to finish up. 1233 */ 1234 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1235 DELAY(1); 1236 for (i = 0; i < 1000; i++) { 1237 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1238 break; 1239 DELAY(50); 1240 } 1241 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1242 DELAY(1); 1243 /* 1244 * Erase/write disable. 1245 */ 1246 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1247 fxp_eeprom_shiftin(sc, 0x4, 3); 1248 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); 1249 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1250 DELAY(1); 1251 } 1252 1253 /* 1254 * From NetBSD: 1255 * 1256 * Figure out EEPROM size. 1257 * 1258 * 559's can have either 64-word or 256-word EEPROMs, the 558 1259 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet 1260 * talks about the existance of 16 to 256 word EEPROMs. 1261 * 1262 * The only known sizes are 64 and 256, where the 256 version is used 1263 * by CardBus cards to store CIS information. 1264 * 1265 * The address is shifted in msb-to-lsb, and after the last 1266 * address-bit the EEPROM is supposed to output a `dummy zero' bit, 1267 * after which follows the actual data. We try to detect this zero, by 1268 * probing the data-out bit in the EEPROM control register just after 1269 * having shifted in a bit. If the bit is zero, we assume we've 1270 * shifted enough address bits. The data-out should be tri-state, 1271 * before this, which should translate to a logical one. 1272 */ 1273 static void 1274 fxp_autosize_eeprom(struct fxp_softc *sc) 1275 { 1276 1277 /* guess maximum size of 256 words */ 1278 sc->eeprom_size = 8; 1279 1280 /* autosize */ 1281 (void) fxp_eeprom_getword(sc, 0, 1); 1282 } 1283 1284 static void 1285 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1286 { 1287 int i; 1288 1289 for (i = 0; i < words; i++) 1290 data[i] = fxp_eeprom_getword(sc, offset + i, 0); 1291 } 1292 1293 static void 1294 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1295 { 1296 int i; 1297 1298 for (i = 0; i < words; i++) 1299 fxp_eeprom_putword(sc, offset + i, data[i]); 1300 } 1301 1302 static void 1303 fxp_load_eeprom(struct fxp_softc *sc) 1304 { 1305 int i; 1306 uint16_t cksum; 1307 1308 fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size); 1309 cksum = 0; 1310 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) 1311 cksum += sc->eeprom[i]; 1312 cksum = 0xBABA - cksum; 1313 if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1]) 1314 device_printf(sc->dev, 1315 "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n", 1316 cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]); 1317 } 1318 1319 /* 1320 * Grab the softc lock and call the real fxp_start_body() routine 1321 */ 1322 static void 1323 fxp_start(struct ifnet *ifp) 1324 { 1325 struct fxp_softc *sc = ifp->if_softc; 1326 1327 FXP_LOCK(sc); 1328 fxp_start_body(ifp); 1329 FXP_UNLOCK(sc); 1330 } 1331 1332 /* 1333 * Start packet transmission on the interface. 1334 * This routine must be called with the softc lock held, and is an 1335 * internal entry point only. 1336 */ 1337 static void 1338 fxp_start_body(struct ifnet *ifp) 1339 { 1340 struct fxp_softc *sc = ifp->if_softc; 1341 struct mbuf *mb_head; 1342 int txqueued; 1343 1344 FXP_LOCK_ASSERT(sc, MA_OWNED); 1345 1346 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1347 IFF_DRV_RUNNING) 1348 return; 1349 1350 if (sc->tx_queued > FXP_NTXCB_HIWAT) 1351 fxp_txeof(sc); 1352 /* 1353 * We're finished if there is nothing more to add to the list or if 1354 * we're all filled up with buffers to transmit. 1355 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add 1356 * a NOP command when needed. 1357 */ 1358 txqueued = 0; 1359 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 1360 sc->tx_queued < FXP_NTXCB - 1) { 1361 1362 /* 1363 * Grab a packet to transmit. 1364 */ 1365 IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head); 1366 if (mb_head == NULL) 1367 break; 1368 1369 if (fxp_encap(sc, &mb_head)) { 1370 if (mb_head == NULL) 1371 break; 1372 IFQ_DRV_PREPEND(&ifp->if_snd, mb_head); 1373 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1374 } 1375 txqueued++; 1376 /* 1377 * Pass packet to bpf if there is a listener. 1378 */ 1379 BPF_MTAP(ifp, mb_head); 1380 } 1381 1382 /* 1383 * We're finished. If we added to the list, issue a RESUME to get DMA 1384 * going again if suspended. 1385 */ 1386 if (txqueued > 0) { 1387 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1388 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1389 fxp_scb_wait(sc); 1390 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 1391 /* 1392 * Set a 5 second timer just in case we don't hear 1393 * from the card again. 1394 */ 1395 sc->watchdog_timer = 5; 1396 } 1397 } 1398 1399 static int 1400 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head) 1401 { 1402 struct ifnet *ifp; 1403 struct mbuf *m; 1404 struct fxp_tx *txp; 1405 struct fxp_cb_tx *cbp; 1406 struct tcphdr *tcp; 1407 bus_dma_segment_t segs[FXP_NTXSEG]; 1408 int error, i, nseg, tcp_payload; 1409 1410 FXP_LOCK_ASSERT(sc, MA_OWNED); 1411 ifp = sc->ifp; 1412 1413 tcp_payload = 0; 1414 tcp = NULL; 1415 /* 1416 * Get pointer to next available tx desc. 1417 */ 1418 txp = sc->fxp_desc.tx_last->tx_next; 1419 1420 /* 1421 * A note in Appendix B of the Intel 8255x 10/100 Mbps 1422 * Ethernet Controller Family Open Source Software 1423 * Developer Manual says: 1424 * Using software parsing is only allowed with legal 1425 * TCP/IP or UDP/IP packets. 1426 * ... 1427 * For all other datagrams, hardware parsing must 1428 * be used. 1429 * Software parsing appears to truncate ICMP and 1430 * fragmented UDP packets that contain one to three 1431 * bytes in the second (and final) mbuf of the packet. 1432 */ 1433 if (sc->flags & FXP_FLAG_EXT_RFA) 1434 txp->tx_cb->ipcb_ip_activation_high = 1435 FXP_IPCB_HARDWAREPARSING_ENABLE; 1436 1437 m = *m_head; 1438 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1439 /* 1440 * 82550/82551 requires ethernet/IP/TCP headers must be 1441 * contained in the first active transmit buffer. 1442 */ 1443 struct ether_header *eh; 1444 struct ip *ip; 1445 uint32_t ip_off, poff; 1446 1447 if (M_WRITABLE(*m_head) == 0) { 1448 /* Get a writable copy. */ 1449 m = m_dup(*m_head, M_DONTWAIT); 1450 m_freem(*m_head); 1451 if (m == NULL) { 1452 *m_head = NULL; 1453 return (ENOBUFS); 1454 } 1455 *m_head = m; 1456 } 1457 ip_off = sizeof(struct ether_header); 1458 m = m_pullup(*m_head, ip_off); 1459 if (m == NULL) { 1460 *m_head = NULL; 1461 return (ENOBUFS); 1462 } 1463 eh = mtod(m, struct ether_header *); 1464 /* Check the existence of VLAN tag. */ 1465 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1466 ip_off = sizeof(struct ether_vlan_header); 1467 m = m_pullup(m, ip_off); 1468 if (m == NULL) { 1469 *m_head = NULL; 1470 return (ENOBUFS); 1471 } 1472 } 1473 m = m_pullup(m, ip_off + sizeof(struct ip)); 1474 if (m == NULL) { 1475 *m_head = NULL; 1476 return (ENOBUFS); 1477 } 1478 ip = (struct ip *)(mtod(m, char *) + ip_off); 1479 poff = ip_off + (ip->ip_hl << 2); 1480 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1481 if (m == NULL) { 1482 *m_head = NULL; 1483 return (ENOBUFS); 1484 } 1485 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1486 m = m_pullup(m, poff + (tcp->th_off << 2)); 1487 if (m == NULL) { 1488 *m_head = NULL; 1489 return (ENOBUFS); 1490 } 1491 1492 /* 1493 * Since 82550/82551 doesn't modify IP length and pseudo 1494 * checksum in the first frame driver should compute it. 1495 */ 1496 ip = (struct ip *)(mtod(m, char *) + ip_off); 1497 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1498 ip->ip_sum = 0; 1499 ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) + 1500 (tcp->th_off << 2)); 1501 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 1502 htons(IPPROTO_TCP + (tcp->th_off << 2) + 1503 m->m_pkthdr.tso_segsz)); 1504 /* Compute total TCP payload. */ 1505 tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2); 1506 tcp_payload -= tcp->th_off << 2; 1507 *m_head = m; 1508 } else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) { 1509 /* 1510 * Deal with TCP/IP checksum offload. Note that 1511 * in order for TCP checksum offload to work, 1512 * the pseudo header checksum must have already 1513 * been computed and stored in the checksum field 1514 * in the TCP header. The stack should have 1515 * already done this for us. 1516 */ 1517 txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; 1518 if (m->m_pkthdr.csum_flags & CSUM_TCP) 1519 txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET; 1520 1521 #ifdef FXP_IP_CSUM_WAR 1522 /* 1523 * XXX The 82550 chip appears to have trouble 1524 * dealing with IP header checksums in very small 1525 * datagrams, namely fragments from 1 to 3 bytes 1526 * in size. For example, say you want to transmit 1527 * a UDP packet of 1473 bytes. The packet will be 1528 * fragmented over two IP datagrams, the latter 1529 * containing only one byte of data. The 82550 will 1530 * botch the header checksum on the 1-byte fragment. 1531 * As long as the datagram contains 4 or more bytes 1532 * of data, you're ok. 1533 * 1534 * The following code attempts to work around this 1535 * problem: if the datagram is less than 38 bytes 1536 * in size (14 bytes ether header, 20 bytes IP header, 1537 * plus 4 bytes of data), we punt and compute the IP 1538 * header checksum by hand. This workaround doesn't 1539 * work very well, however, since it can be fooled 1540 * by things like VLAN tags and IP options that make 1541 * the header sizes/offsets vary. 1542 */ 1543 1544 if (m->m_pkthdr.csum_flags & CSUM_IP) { 1545 if (m->m_pkthdr.len < 38) { 1546 struct ip *ip; 1547 m->m_data += ETHER_HDR_LEN; 1548 ip = mtod(m, struct ip *); 1549 ip->ip_sum = in_cksum(m, ip->ip_hl << 2); 1550 m->m_data -= ETHER_HDR_LEN; 1551 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1552 } else { 1553 txp->tx_cb->ipcb_ip_activation_high = 1554 FXP_IPCB_HARDWAREPARSING_ENABLE; 1555 txp->tx_cb->ipcb_ip_schedule |= 1556 FXP_IPCB_IP_CHECKSUM_ENABLE; 1557 } 1558 } 1559 #endif 1560 } 1561 1562 error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head, 1563 segs, &nseg, 0); 1564 if (error == EFBIG) { 1565 m = m_collapse(*m_head, M_DONTWAIT, sc->maxtxseg); 1566 if (m == NULL) { 1567 m_freem(*m_head); 1568 *m_head = NULL; 1569 return (ENOMEM); 1570 } 1571 *m_head = m; 1572 error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, 1573 *m_head, segs, &nseg, 0); 1574 if (error != 0) { 1575 m_freem(*m_head); 1576 *m_head = NULL; 1577 return (ENOMEM); 1578 } 1579 } else if (error != 0) 1580 return (error); 1581 if (nseg == 0) { 1582 m_freem(*m_head); 1583 *m_head = NULL; 1584 return (EIO); 1585 } 1586 1587 KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments")); 1588 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE); 1589 1590 cbp = txp->tx_cb; 1591 for (i = 0; i < nseg; i++) { 1592 /* 1593 * If this is an 82550/82551, then we're using extended 1594 * TxCBs _and_ we're using checksum offload. This means 1595 * that the TxCB is really an IPCB. One major difference 1596 * between the two is that with plain extended TxCBs, 1597 * the bottom half of the TxCB contains two entries from 1598 * the TBD array, whereas IPCBs contain just one entry: 1599 * one entry (8 bytes) has been sacrificed for the TCP/IP 1600 * checksum offload control bits. So to make things work 1601 * right, we have to start filling in the TBD array 1602 * starting from a different place depending on whether 1603 * the chip is an 82550/82551 or not. 1604 */ 1605 if (sc->flags & FXP_FLAG_EXT_RFA) { 1606 cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr); 1607 cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len); 1608 } else { 1609 cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr); 1610 cbp->tbd[i].tb_size = htole32(segs[i].ds_len); 1611 } 1612 } 1613 if (sc->flags & FXP_FLAG_EXT_RFA) { 1614 /* Configure dynamic TBD for 82550/82551. */ 1615 cbp->tbd_number = 0xFF; 1616 cbp->tbd[nseg].tb_size |= htole32(0x8000); 1617 } else 1618 cbp->tbd_number = nseg; 1619 /* Configure TSO. */ 1620 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1621 cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16); 1622 cbp->tbd[1].tb_size |= htole32(tcp_payload << 16); 1623 cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE | 1624 FXP_IPCB_IP_CHECKSUM_ENABLE | 1625 FXP_IPCB_TCP_PACKET | 1626 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; 1627 } 1628 /* Configure VLAN hardware tag insertion. */ 1629 if ((m->m_flags & M_VLANTAG) != 0) { 1630 cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag); 1631 txp->tx_cb->ipcb_ip_activation_high |= 1632 FXP_IPCB_INSERTVLAN_ENABLE; 1633 } 1634 1635 txp->tx_mbuf = m; 1636 txp->tx_cb->cb_status = 0; 1637 txp->tx_cb->byte_count = 0; 1638 if (sc->tx_queued != FXP_CXINT_THRESH - 1) 1639 txp->tx_cb->cb_command = 1640 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1641 FXP_CB_COMMAND_S); 1642 else 1643 txp->tx_cb->cb_command = 1644 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1645 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); 1646 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) 1647 txp->tx_cb->tx_threshold = tx_threshold; 1648 1649 /* 1650 * Advance the end of list forward. 1651 */ 1652 sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S); 1653 sc->fxp_desc.tx_last = txp; 1654 1655 /* 1656 * Advance the beginning of the list forward if there are 1657 * no other packets queued (when nothing is queued, tx_first 1658 * sits on the last TxCB that was sent out). 1659 */ 1660 if (sc->tx_queued == 0) 1661 sc->fxp_desc.tx_first = txp; 1662 1663 sc->tx_queued++; 1664 1665 return (0); 1666 } 1667 1668 #ifdef DEVICE_POLLING 1669 static poll_handler_t fxp_poll; 1670 1671 static int 1672 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1673 { 1674 struct fxp_softc *sc = ifp->if_softc; 1675 uint8_t statack; 1676 int rx_npkts = 0; 1677 1678 FXP_LOCK(sc); 1679 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1680 FXP_UNLOCK(sc); 1681 return (rx_npkts); 1682 } 1683 1684 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA | 1685 FXP_SCB_STATACK_FR; 1686 if (cmd == POLL_AND_CHECK_STATUS) { 1687 uint8_t tmp; 1688 1689 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK); 1690 if (tmp == 0xff || tmp == 0) { 1691 FXP_UNLOCK(sc); 1692 return (rx_npkts); /* nothing to do */ 1693 } 1694 tmp &= ~statack; 1695 /* ack what we can */ 1696 if (tmp != 0) 1697 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp); 1698 statack |= tmp; 1699 } 1700 rx_npkts = fxp_intr_body(sc, ifp, statack, count); 1701 FXP_UNLOCK(sc); 1702 return (rx_npkts); 1703 } 1704 #endif /* DEVICE_POLLING */ 1705 1706 /* 1707 * Process interface interrupts. 1708 */ 1709 static void 1710 fxp_intr(void *xsc) 1711 { 1712 struct fxp_softc *sc = xsc; 1713 struct ifnet *ifp = sc->ifp; 1714 uint8_t statack; 1715 1716 FXP_LOCK(sc); 1717 if (sc->suspended) { 1718 FXP_UNLOCK(sc); 1719 return; 1720 } 1721 1722 #ifdef DEVICE_POLLING 1723 if (ifp->if_capenable & IFCAP_POLLING) { 1724 FXP_UNLOCK(sc); 1725 return; 1726 } 1727 #endif 1728 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { 1729 /* 1730 * It should not be possible to have all bits set; the 1731 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If 1732 * all bits are set, this may indicate that the card has 1733 * been physically ejected, so ignore it. 1734 */ 1735 if (statack == 0xff) { 1736 FXP_UNLOCK(sc); 1737 return; 1738 } 1739 1740 /* 1741 * First ACK all the interrupts in this pass. 1742 */ 1743 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); 1744 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1745 fxp_intr_body(sc, ifp, statack, -1); 1746 } 1747 FXP_UNLOCK(sc); 1748 } 1749 1750 static void 1751 fxp_txeof(struct fxp_softc *sc) 1752 { 1753 struct ifnet *ifp; 1754 struct fxp_tx *txp; 1755 1756 ifp = sc->ifp; 1757 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1758 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1759 for (txp = sc->fxp_desc.tx_first; sc->tx_queued && 1760 (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0; 1761 txp = txp->tx_next) { 1762 if (txp->tx_mbuf != NULL) { 1763 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, 1764 BUS_DMASYNC_POSTWRITE); 1765 bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map); 1766 m_freem(txp->tx_mbuf); 1767 txp->tx_mbuf = NULL; 1768 /* clear this to reset csum offload bits */ 1769 txp->tx_cb->tbd[0].tb_addr = 0; 1770 } 1771 sc->tx_queued--; 1772 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1773 } 1774 sc->fxp_desc.tx_first = txp; 1775 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1776 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1777 if (sc->tx_queued == 0) 1778 sc->watchdog_timer = 0; 1779 } 1780 1781 static void 1782 fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m, 1783 uint16_t status, int pos) 1784 { 1785 struct ether_header *eh; 1786 struct ip *ip; 1787 struct udphdr *uh; 1788 int32_t hlen, len, pktlen, temp32; 1789 uint16_t csum, *opts; 1790 1791 if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) { 1792 if ((status & FXP_RFA_STATUS_PARSE) != 0) { 1793 if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID) 1794 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1795 if (status & FXP_RFDX_CS_IP_CSUM_VALID) 1796 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1797 if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) && 1798 (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) { 1799 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 1800 CSUM_PSEUDO_HDR; 1801 m->m_pkthdr.csum_data = 0xffff; 1802 } 1803 } 1804 return; 1805 } 1806 1807 pktlen = m->m_pkthdr.len; 1808 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) 1809 return; 1810 eh = mtod(m, struct ether_header *); 1811 if (eh->ether_type != htons(ETHERTYPE_IP)) 1812 return; 1813 ip = (struct ip *)(eh + 1); 1814 if (ip->ip_v != IPVERSION) 1815 return; 1816 1817 hlen = ip->ip_hl << 2; 1818 pktlen -= sizeof(struct ether_header); 1819 if (hlen < sizeof(struct ip)) 1820 return; 1821 if (ntohs(ip->ip_len) < hlen) 1822 return; 1823 if (ntohs(ip->ip_len) != pktlen) 1824 return; 1825 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) 1826 return; /* can't handle fragmented packet */ 1827 1828 switch (ip->ip_p) { 1829 case IPPROTO_TCP: 1830 if (pktlen < (hlen + sizeof(struct tcphdr))) 1831 return; 1832 break; 1833 case IPPROTO_UDP: 1834 if (pktlen < (hlen + sizeof(struct udphdr))) 1835 return; 1836 uh = (struct udphdr *)((caddr_t)ip + hlen); 1837 if (uh->uh_sum == 0) 1838 return; /* no checksum */ 1839 break; 1840 default: 1841 return; 1842 } 1843 /* Extract computed checksum. */ 1844 csum = be16dec(mtod(m, char *) + pos); 1845 /* checksum fixup for IP options */ 1846 len = hlen - sizeof(struct ip); 1847 if (len > 0) { 1848 opts = (uint16_t *)(ip + 1); 1849 for (; len > 0; len -= sizeof(uint16_t), opts++) { 1850 temp32 = csum - *opts; 1851 temp32 = (temp32 >> 16) + (temp32 & 65535); 1852 csum = temp32 & 65535; 1853 } 1854 } 1855 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 1856 m->m_pkthdr.csum_data = csum; 1857 } 1858 1859 static int 1860 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack, 1861 int count) 1862 { 1863 struct mbuf *m; 1864 struct fxp_rx *rxp; 1865 struct fxp_rfa *rfa; 1866 int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0; 1867 int rx_npkts; 1868 uint16_t status; 1869 1870 rx_npkts = 0; 1871 FXP_LOCK_ASSERT(sc, MA_OWNED); 1872 1873 if (rnr) 1874 sc->rnr++; 1875 #ifdef DEVICE_POLLING 1876 /* Pick up a deferred RNR condition if `count' ran out last time. */ 1877 if (sc->flags & FXP_FLAG_DEFERRED_RNR) { 1878 sc->flags &= ~FXP_FLAG_DEFERRED_RNR; 1879 rnr = 1; 1880 } 1881 #endif 1882 1883 /* 1884 * Free any finished transmit mbuf chains. 1885 * 1886 * Handle the CNA event likt a CXTNO event. It used to 1887 * be that this event (control unit not ready) was not 1888 * encountered, but it is now with the SMPng modifications. 1889 * The exact sequence of events that occur when the interface 1890 * is brought up are different now, and if this event 1891 * goes unhandled, the configuration/rxfilter setup sequence 1892 * can stall for several seconds. The result is that no 1893 * packets go out onto the wire for about 5 to 10 seconds 1894 * after the interface is ifconfig'ed for the first time. 1895 */ 1896 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) 1897 fxp_txeof(sc); 1898 1899 /* 1900 * Try to start more packets transmitting. 1901 */ 1902 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1903 fxp_start_body(ifp); 1904 1905 /* 1906 * Just return if nothing happened on the receive side. 1907 */ 1908 if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0) 1909 return (rx_npkts); 1910 1911 /* 1912 * Process receiver interrupts. If a no-resource (RNR) 1913 * condition exists, get whatever packets we can and 1914 * re-start the receiver. 1915 * 1916 * When using polling, we do not process the list to completion, 1917 * so when we get an RNR interrupt we must defer the restart 1918 * until we hit the last buffer with the C bit set. 1919 * If we run out of cycles and rfa_headm has the C bit set, 1920 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so 1921 * that the info will be used in the subsequent polling cycle. 1922 */ 1923 for (;;) { 1924 rxp = sc->fxp_desc.rx_head; 1925 m = rxp->rx_mbuf; 1926 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + 1927 RFA_ALIGNMENT_FUDGE); 1928 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 1929 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1930 1931 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */ 1932 if (count >= 0 && count-- == 0) { 1933 if (rnr) { 1934 /* Defer RNR processing until the next time. */ 1935 sc->flags |= FXP_FLAG_DEFERRED_RNR; 1936 rnr = 0; 1937 } 1938 break; 1939 } 1940 #endif /* DEVICE_POLLING */ 1941 1942 status = le16toh(rfa->rfa_status); 1943 if ((status & FXP_RFA_STATUS_C) == 0) 1944 break; 1945 1946 if ((status & FXP_RFA_STATUS_RNR) != 0) 1947 rnr++; 1948 /* 1949 * Advance head forward. 1950 */ 1951 sc->fxp_desc.rx_head = rxp->rx_next; 1952 1953 /* 1954 * Add a new buffer to the receive chain. 1955 * If this fails, the old buffer is recycled 1956 * instead. 1957 */ 1958 if (fxp_new_rfabuf(sc, rxp) == 0) { 1959 int total_len; 1960 1961 /* 1962 * Fetch packet length (the top 2 bits of 1963 * actual_size are flags set by the controller 1964 * upon completion), and drop the packet in case 1965 * of bogus length or CRC errors. 1966 */ 1967 total_len = le16toh(rfa->actual_size) & 0x3fff; 1968 if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 && 1969 (ifp->if_capenable & IFCAP_RXCSUM) != 0) { 1970 /* Adjust for appended checksum bytes. */ 1971 total_len -= 2; 1972 } 1973 if (total_len < (int)sizeof(struct ether_header) || 1974 total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE - 1975 sc->rfa_size) || 1976 status & (FXP_RFA_STATUS_CRC | 1977 FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) { 1978 m_freem(m); 1979 fxp_add_rfabuf(sc, rxp); 1980 continue; 1981 } 1982 1983 m->m_pkthdr.len = m->m_len = total_len; 1984 m->m_pkthdr.rcvif = ifp; 1985 1986 /* Do IP checksum checking. */ 1987 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 1988 fxp_rxcsum(sc, ifp, m, status, total_len); 1989 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 1990 (status & FXP_RFA_STATUS_VLAN) != 0) { 1991 m->m_pkthdr.ether_vtag = 1992 ntohs(rfa->rfax_vlan_id); 1993 m->m_flags |= M_VLANTAG; 1994 } 1995 /* 1996 * Drop locks before calling if_input() since it 1997 * may re-enter fxp_start() in the netisr case. 1998 * This would result in a lock reversal. Better 1999 * performance might be obtained by chaining all 2000 * packets received, dropping the lock, and then 2001 * calling if_input() on each one. 2002 */ 2003 FXP_UNLOCK(sc); 2004 (*ifp->if_input)(ifp, m); 2005 FXP_LOCK(sc); 2006 rx_npkts++; 2007 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2008 return (rx_npkts); 2009 } else { 2010 /* Reuse RFA and loaded DMA map. */ 2011 ifp->if_iqdrops++; 2012 fxp_discard_rfabuf(sc, rxp); 2013 } 2014 fxp_add_rfabuf(sc, rxp); 2015 } 2016 if (rnr) { 2017 fxp_scb_wait(sc); 2018 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 2019 sc->fxp_desc.rx_head->rx_addr); 2020 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 2021 } 2022 return (rx_npkts); 2023 } 2024 2025 static void 2026 fxp_update_stats(struct fxp_softc *sc) 2027 { 2028 struct ifnet *ifp = sc->ifp; 2029 struct fxp_stats *sp = sc->fxp_stats; 2030 struct fxp_hwstats *hsp; 2031 uint32_t *status; 2032 2033 FXP_LOCK_ASSERT(sc, MA_OWNED); 2034 2035 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 2036 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2037 /* Update statistical counters. */ 2038 if (sc->revision >= FXP_REV_82559_A0) 2039 status = &sp->completion_status; 2040 else if (sc->revision >= FXP_REV_82558_A4) 2041 status = (uint32_t *)&sp->tx_tco; 2042 else 2043 status = &sp->tx_pause; 2044 if (*status == htole32(FXP_STATS_DR_COMPLETE)) { 2045 hsp = &sc->fxp_hwstats; 2046 hsp->tx_good += le32toh(sp->tx_good); 2047 hsp->tx_maxcols += le32toh(sp->tx_maxcols); 2048 hsp->tx_latecols += le32toh(sp->tx_latecols); 2049 hsp->tx_underruns += le32toh(sp->tx_underruns); 2050 hsp->tx_lostcrs += le32toh(sp->tx_lostcrs); 2051 hsp->tx_deffered += le32toh(sp->tx_deffered); 2052 hsp->tx_single_collisions += le32toh(sp->tx_single_collisions); 2053 hsp->tx_multiple_collisions += 2054 le32toh(sp->tx_multiple_collisions); 2055 hsp->tx_total_collisions += le32toh(sp->tx_total_collisions); 2056 hsp->rx_good += le32toh(sp->rx_good); 2057 hsp->rx_crc_errors += le32toh(sp->rx_crc_errors); 2058 hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors); 2059 hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors); 2060 hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors); 2061 hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors); 2062 hsp->rx_shortframes += le32toh(sp->rx_shortframes); 2063 hsp->tx_pause += le32toh(sp->tx_pause); 2064 hsp->rx_pause += le32toh(sp->rx_pause); 2065 hsp->rx_controls += le32toh(sp->rx_controls); 2066 hsp->tx_tco += le16toh(sp->tx_tco); 2067 hsp->rx_tco += le16toh(sp->rx_tco); 2068 2069 ifp->if_opackets += le32toh(sp->tx_good); 2070 ifp->if_collisions += le32toh(sp->tx_total_collisions); 2071 if (sp->rx_good) { 2072 ifp->if_ipackets += le32toh(sp->rx_good); 2073 sc->rx_idle_secs = 0; 2074 } else if (sc->flags & FXP_FLAG_RXBUG) { 2075 /* 2076 * Receiver's been idle for another second. 2077 */ 2078 sc->rx_idle_secs++; 2079 } 2080 ifp->if_ierrors += 2081 le32toh(sp->rx_crc_errors) + 2082 le32toh(sp->rx_alignment_errors) + 2083 le32toh(sp->rx_rnr_errors) + 2084 le32toh(sp->rx_overrun_errors); 2085 /* 2086 * If any transmit underruns occured, bump up the transmit 2087 * threshold by another 512 bytes (64 * 8). 2088 */ 2089 if (sp->tx_underruns) { 2090 ifp->if_oerrors += le32toh(sp->tx_underruns); 2091 if (tx_threshold < 192) 2092 tx_threshold += 64; 2093 } 2094 *status = 0; 2095 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 2096 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2097 } 2098 } 2099 2100 /* 2101 * Update packet in/out/collision statistics. The i82557 doesn't 2102 * allow you to access these counters without doing a fairly 2103 * expensive DMA to get _all_ of the statistics it maintains, so 2104 * we do this operation here only once per second. The statistics 2105 * counters in the kernel are updated from the previous dump-stats 2106 * DMA and then a new dump-stats DMA is started. The on-chip 2107 * counters are zeroed when the DMA completes. If we can't start 2108 * the DMA immediately, we don't wait - we just prepare to read 2109 * them again next time. 2110 */ 2111 static void 2112 fxp_tick(void *xsc) 2113 { 2114 struct fxp_softc *sc = xsc; 2115 struct ifnet *ifp = sc->ifp; 2116 2117 FXP_LOCK_ASSERT(sc, MA_OWNED); 2118 2119 /* Update statistical counters. */ 2120 fxp_update_stats(sc); 2121 2122 /* 2123 * Release any xmit buffers that have completed DMA. This isn't 2124 * strictly necessary to do here, but it's advantagous for mbufs 2125 * with external storage to be released in a timely manner rather 2126 * than being defered for a potentially long time. This limits 2127 * the delay to a maximum of one second. 2128 */ 2129 fxp_txeof(sc); 2130 2131 /* 2132 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, 2133 * then assume the receiver has locked up and attempt to clear 2134 * the condition by reprogramming the multicast filter. This is 2135 * a work-around for a bug in the 82557 where the receiver locks 2136 * up if it gets certain types of garbage in the syncronization 2137 * bits prior to the packet header. This bug is supposed to only 2138 * occur in 10Mbps mode, but has been seen to occur in 100Mbps 2139 * mode as well (perhaps due to a 10/100 speed transition). 2140 */ 2141 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { 2142 sc->rx_idle_secs = 0; 2143 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2144 fxp_init_body(sc, 1); 2145 return; 2146 } 2147 /* 2148 * If there is no pending command, start another stats 2149 * dump. Otherwise punt for now. 2150 */ 2151 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { 2152 /* 2153 * Start another stats dump. 2154 */ 2155 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); 2156 } 2157 if (sc->miibus != NULL) 2158 mii_tick(device_get_softc(sc->miibus)); 2159 2160 /* 2161 * Check that chip hasn't hung. 2162 */ 2163 fxp_watchdog(sc); 2164 2165 /* 2166 * Schedule another timeout one second from now. 2167 */ 2168 callout_reset(&sc->stat_ch, hz, fxp_tick, sc); 2169 } 2170 2171 /* 2172 * Stop the interface. Cancels the statistics updater and resets 2173 * the interface. 2174 */ 2175 static void 2176 fxp_stop(struct fxp_softc *sc) 2177 { 2178 struct ifnet *ifp = sc->ifp; 2179 struct fxp_tx *txp; 2180 int i; 2181 2182 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2183 sc->watchdog_timer = 0; 2184 2185 /* 2186 * Cancel stats updater. 2187 */ 2188 callout_stop(&sc->stat_ch); 2189 2190 /* 2191 * Preserve PCI configuration, configure, IA/multicast 2192 * setup and put RU and CU into idle state. 2193 */ 2194 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 2195 DELAY(50); 2196 /* Disable interrupts. */ 2197 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 2198 2199 fxp_update_stats(sc); 2200 2201 /* 2202 * Release any xmit buffers. 2203 */ 2204 txp = sc->fxp_desc.tx_list; 2205 if (txp != NULL) { 2206 for (i = 0; i < FXP_NTXCB; i++) { 2207 if (txp[i].tx_mbuf != NULL) { 2208 bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map, 2209 BUS_DMASYNC_POSTWRITE); 2210 bus_dmamap_unload(sc->fxp_txmtag, 2211 txp[i].tx_map); 2212 m_freem(txp[i].tx_mbuf); 2213 txp[i].tx_mbuf = NULL; 2214 /* clear this to reset csum offload bits */ 2215 txp[i].tx_cb->tbd[0].tb_addr = 0; 2216 } 2217 } 2218 } 2219 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2220 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2221 sc->tx_queued = 0; 2222 } 2223 2224 /* 2225 * Watchdog/transmission transmit timeout handler. Called when a 2226 * transmission is started on the interface, but no interrupt is 2227 * received before the timeout. This usually indicates that the 2228 * card has wedged for some reason. 2229 */ 2230 static void 2231 fxp_watchdog(struct fxp_softc *sc) 2232 { 2233 2234 FXP_LOCK_ASSERT(sc, MA_OWNED); 2235 2236 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 2237 return; 2238 2239 device_printf(sc->dev, "device timeout\n"); 2240 sc->ifp->if_oerrors++; 2241 2242 fxp_init_body(sc, 1); 2243 } 2244 2245 /* 2246 * Acquire locks and then call the real initialization function. This 2247 * is necessary because ether_ioctl() calls if_init() and this would 2248 * result in mutex recursion if the mutex was held. 2249 */ 2250 static void 2251 fxp_init(void *xsc) 2252 { 2253 struct fxp_softc *sc = xsc; 2254 2255 FXP_LOCK(sc); 2256 fxp_init_body(sc, 1); 2257 FXP_UNLOCK(sc); 2258 } 2259 2260 /* 2261 * Perform device initialization. This routine must be called with the 2262 * softc lock held. 2263 */ 2264 static void 2265 fxp_init_body(struct fxp_softc *sc, int setmedia) 2266 { 2267 struct ifnet *ifp = sc->ifp; 2268 struct mii_data *mii; 2269 struct fxp_cb_config *cbp; 2270 struct fxp_cb_ias *cb_ias; 2271 struct fxp_cb_tx *tcbp; 2272 struct fxp_tx *txp; 2273 int i, prm; 2274 2275 FXP_LOCK_ASSERT(sc, MA_OWNED); 2276 /* 2277 * Cancel any pending I/O 2278 */ 2279 fxp_stop(sc); 2280 2281 /* 2282 * Issue software reset, which also unloads the microcode. 2283 */ 2284 sc->flags &= ~FXP_FLAG_UCODE; 2285 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 2286 DELAY(50); 2287 2288 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; 2289 2290 /* 2291 * Initialize base of CBL and RFA memory. Loading with zero 2292 * sets it up for regular linear addressing. 2293 */ 2294 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); 2295 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); 2296 2297 fxp_scb_wait(sc); 2298 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); 2299 2300 /* 2301 * Initialize base of dump-stats buffer. 2302 */ 2303 fxp_scb_wait(sc); 2304 bzero(sc->fxp_stats, sizeof(struct fxp_stats)); 2305 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 2306 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2307 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr); 2308 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); 2309 2310 /* 2311 * Attempt to load microcode if requested. 2312 * For ICH based controllers do not load microcode. 2313 */ 2314 if (sc->ident->ich == 0) { 2315 if (ifp->if_flags & IFF_LINK0 && 2316 (sc->flags & FXP_FLAG_UCODE) == 0) 2317 fxp_load_ucode(sc); 2318 } 2319 2320 /* 2321 * Set IFF_ALLMULTI status. It's needed in configure action 2322 * command. 2323 */ 2324 fxp_mc_addrs(sc); 2325 2326 /* 2327 * We temporarily use memory that contains the TxCB list to 2328 * construct the config CB. The TxCB list memory is rebuilt 2329 * later. 2330 */ 2331 cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list; 2332 2333 /* 2334 * This bcopy is kind of disgusting, but there are a bunch of must be 2335 * zero and must be one bits in this structure and this is the easiest 2336 * way to initialize them all to proper values. 2337 */ 2338 bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template)); 2339 2340 cbp->cb_status = 0; 2341 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG | 2342 FXP_CB_COMMAND_EL); 2343 cbp->link_addr = 0xffffffff; /* (no) next command */ 2344 cbp->byte_count = sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22; 2345 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ 2346 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ 2347 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ 2348 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0; 2349 cbp->type_enable = 0; /* actually reserved */ 2350 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0; 2351 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0; 2352 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ 2353 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ 2354 cbp->dma_mbce = 0; /* (disable) dma max counters */ 2355 cbp->late_scb = 0; /* (don't) defer SCB update */ 2356 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */ 2357 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */ 2358 cbp->ci_int = 1; /* interrupt on CU idle */ 2359 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1; 2360 cbp->ext_stats_dis = 1; /* disable extended counters */ 2361 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */ 2362 cbp->save_bf = sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm; 2363 cbp->disc_short_rx = !prm; /* discard short packets */ 2364 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */ 2365 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */ 2366 cbp->dyn_tbd = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2367 cbp->ext_rfa = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2368 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1; 2369 cbp->csma_dis = 0; /* (don't) disable link */ 2370 cbp->tcp_udp_cksum = ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 && 2371 (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0; 2372 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */ 2373 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */ 2374 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */ 2375 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */ 2376 cbp->nsai = 1; /* (don't) disable source addr insert */ 2377 cbp->preamble_length = 2; /* (7 byte) preamble */ 2378 cbp->loopback = 0; /* (don't) loopback */ 2379 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ 2380 cbp->linear_pri_mode = 0; /* (wait after xmit only) */ 2381 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ 2382 cbp->promiscuous = prm; /* promiscuous mode */ 2383 cbp->bcast_disable = 0; /* (don't) disable broadcasts */ 2384 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/ 2385 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */ 2386 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */ 2387 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0; 2388 2389 cbp->stripping = !prm; /* truncate rx packet to byte count */ 2390 cbp->padding = 1; /* (do) pad short tx packets */ 2391 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ 2392 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0; 2393 cbp->ia_wake_en = 0; /* (don't) wake up on address match */ 2394 cbp->magic_pkt_dis = sc->flags & FXP_FLAG_WOL ? 0 : 1; 2395 cbp->force_fdx = 0; /* (don't) force full duplex */ 2396 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ 2397 cbp->multi_ia = 0; /* (don't) accept multiple IAs */ 2398 cbp->mc_all = ifp->if_flags & IFF_ALLMULTI ? 1 : prm; 2399 cbp->gamla_rx = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2400 cbp->vlan_strip_en = ((sc->flags & FXP_FLAG_EXT_RFA) != 0 && 2401 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0; 2402 2403 if (sc->revision == FXP_REV_82557) { 2404 /* 2405 * The 82557 has no hardware flow control, the values 2406 * below are the defaults for the chip. 2407 */ 2408 cbp->fc_delay_lsb = 0; 2409 cbp->fc_delay_msb = 0x40; 2410 cbp->pri_fc_thresh = 3; 2411 cbp->tx_fc_dis = 0; 2412 cbp->rx_fc_restop = 0; 2413 cbp->rx_fc_restart = 0; 2414 cbp->fc_filter = 0; 2415 cbp->pri_fc_loc = 1; 2416 } else { 2417 /* Set pause RX FIFO threshold to 1KB. */ 2418 CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1); 2419 /* Set pause time. */ 2420 cbp->fc_delay_lsb = 0xff; 2421 cbp->fc_delay_msb = 0xff; 2422 cbp->pri_fc_thresh = 3; 2423 mii = device_get_softc(sc->miibus); 2424 if ((IFM_OPTIONS(mii->mii_media_active) & 2425 IFM_ETH_TXPAUSE) != 0) 2426 /* enable transmit FC */ 2427 cbp->tx_fc_dis = 0; 2428 else 2429 /* disable transmit FC */ 2430 cbp->tx_fc_dis = 1; 2431 if ((IFM_OPTIONS(mii->mii_media_active) & 2432 IFM_ETH_RXPAUSE) != 0) { 2433 /* enable FC restart/restop frames */ 2434 cbp->rx_fc_restart = 1; 2435 cbp->rx_fc_restop = 1; 2436 } else { 2437 /* disable FC restart/restop frames */ 2438 cbp->rx_fc_restart = 0; 2439 cbp->rx_fc_restop = 0; 2440 } 2441 cbp->fc_filter = !prm; /* drop FC frames to host */ 2442 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */ 2443 } 2444 2445 /* Enable 82558 and 82559 extended statistics functionality. */ 2446 if (sc->revision >= FXP_REV_82558_A4) { 2447 if (sc->revision >= FXP_REV_82559_A0) { 2448 /* 2449 * Extend configuration table size to 32 2450 * to include TCO configuration. 2451 */ 2452 cbp->byte_count = 32; 2453 cbp->ext_stats_dis = 1; 2454 /* Enable TCO stats. */ 2455 cbp->tno_int_or_tco_en = 1; 2456 cbp->gamla_rx = 1; 2457 } else 2458 cbp->ext_stats_dis = 0; 2459 } 2460 2461 /* 2462 * Start the config command/DMA. 2463 */ 2464 fxp_scb_wait(sc); 2465 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2466 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2467 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2468 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2469 /* ...and wait for it to complete. */ 2470 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 2471 2472 /* 2473 * Now initialize the station address. Temporarily use the TxCB 2474 * memory area like we did above for the config CB. 2475 */ 2476 cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list; 2477 cb_ias->cb_status = 0; 2478 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL); 2479 cb_ias->link_addr = 0xffffffff; 2480 bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN); 2481 2482 /* 2483 * Start the IAS (Individual Address Setup) command/DMA. 2484 */ 2485 fxp_scb_wait(sc); 2486 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2487 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2488 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2489 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2490 /* ...and wait for it to complete. */ 2491 fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map); 2492 2493 /* 2494 * Initialize the multicast address list. 2495 */ 2496 fxp_mc_setup(sc); 2497 2498 /* 2499 * Initialize transmit control block (TxCB) list. 2500 */ 2501 txp = sc->fxp_desc.tx_list; 2502 tcbp = sc->fxp_desc.cbl_list; 2503 bzero(tcbp, FXP_TXCB_SZ); 2504 for (i = 0; i < FXP_NTXCB; i++) { 2505 txp[i].tx_mbuf = NULL; 2506 tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK); 2507 tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP); 2508 tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr + 2509 (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx))); 2510 if (sc->flags & FXP_FLAG_EXT_TXCB) 2511 tcbp[i].tbd_array_addr = 2512 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2])); 2513 else 2514 tcbp[i].tbd_array_addr = 2515 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0])); 2516 txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK]; 2517 } 2518 /* 2519 * Set the suspend flag on the first TxCB and start the control 2520 * unit. It will execute the NOP and then suspend. 2521 */ 2522 tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S); 2523 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2524 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2525 sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp; 2526 sc->tx_queued = 1; 2527 2528 fxp_scb_wait(sc); 2529 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2530 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2531 2532 /* 2533 * Initialize receiver buffer area - RFA. 2534 */ 2535 fxp_scb_wait(sc); 2536 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr); 2537 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 2538 2539 if (sc->miibus != NULL && setmedia != 0) 2540 mii_mediachg(device_get_softc(sc->miibus)); 2541 2542 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2543 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2544 2545 /* 2546 * Enable interrupts. 2547 */ 2548 #ifdef DEVICE_POLLING 2549 /* 2550 * ... but only do that if we are not polling. And because (presumably) 2551 * the default is interrupts on, we need to disable them explicitly! 2552 */ 2553 if (ifp->if_capenable & IFCAP_POLLING ) 2554 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 2555 else 2556 #endif /* DEVICE_POLLING */ 2557 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 2558 2559 /* 2560 * Start stats updater. 2561 */ 2562 callout_reset(&sc->stat_ch, hz, fxp_tick, sc); 2563 } 2564 2565 static int 2566 fxp_serial_ifmedia_upd(struct ifnet *ifp) 2567 { 2568 2569 return (0); 2570 } 2571 2572 static void 2573 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2574 { 2575 2576 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2577 } 2578 2579 /* 2580 * Change media according to request. 2581 */ 2582 static int 2583 fxp_ifmedia_upd(struct ifnet *ifp) 2584 { 2585 struct fxp_softc *sc = ifp->if_softc; 2586 struct mii_data *mii; 2587 struct mii_softc *miisc; 2588 2589 mii = device_get_softc(sc->miibus); 2590 FXP_LOCK(sc); 2591 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 2592 PHY_RESET(miisc); 2593 mii_mediachg(mii); 2594 FXP_UNLOCK(sc); 2595 return (0); 2596 } 2597 2598 /* 2599 * Notify the world which media we're using. 2600 */ 2601 static void 2602 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2603 { 2604 struct fxp_softc *sc = ifp->if_softc; 2605 struct mii_data *mii; 2606 2607 mii = device_get_softc(sc->miibus); 2608 FXP_LOCK(sc); 2609 mii_pollstat(mii); 2610 ifmr->ifm_active = mii->mii_media_active; 2611 ifmr->ifm_status = mii->mii_media_status; 2612 FXP_UNLOCK(sc); 2613 } 2614 2615 /* 2616 * Add a buffer to the end of the RFA buffer list. 2617 * Return 0 if successful, 1 for failure. A failure results in 2618 * reusing the RFA buffer. 2619 * The RFA struct is stuck at the beginning of mbuf cluster and the 2620 * data pointer is fixed up to point just past it. 2621 */ 2622 static int 2623 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2624 { 2625 struct mbuf *m; 2626 struct fxp_rfa *rfa; 2627 bus_dmamap_t tmp_map; 2628 int error; 2629 2630 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2631 if (m == NULL) 2632 return (ENOBUFS); 2633 2634 /* 2635 * Move the data pointer up so that the incoming data packet 2636 * will be 32-bit aligned. 2637 */ 2638 m->m_data += RFA_ALIGNMENT_FUDGE; 2639 2640 /* 2641 * Get a pointer to the base of the mbuf cluster and move 2642 * data start past it. 2643 */ 2644 rfa = mtod(m, struct fxp_rfa *); 2645 m->m_data += sc->rfa_size; 2646 rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE); 2647 2648 rfa->rfa_status = 0; 2649 rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL); 2650 rfa->actual_size = 0; 2651 m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE - 2652 sc->rfa_size; 2653 2654 /* 2655 * Initialize the rest of the RFA. Note that since the RFA 2656 * is misaligned, we cannot store values directly. We're thus 2657 * using the le32enc() function which handles endianness and 2658 * is also alignment-safe. 2659 */ 2660 le32enc(&rfa->link_addr, 0xffffffff); 2661 le32enc(&rfa->rbd_addr, 0xffffffff); 2662 2663 /* Map the RFA into DMA memory. */ 2664 error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa, 2665 MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr, 2666 &rxp->rx_addr, BUS_DMA_NOWAIT); 2667 if (error) { 2668 m_freem(m); 2669 return (error); 2670 } 2671 2672 if (rxp->rx_mbuf != NULL) 2673 bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map); 2674 tmp_map = sc->spare_map; 2675 sc->spare_map = rxp->rx_map; 2676 rxp->rx_map = tmp_map; 2677 rxp->rx_mbuf = m; 2678 2679 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 2680 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2681 return (0); 2682 } 2683 2684 static void 2685 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2686 { 2687 struct fxp_rfa *p_rfa; 2688 struct fxp_rx *p_rx; 2689 2690 /* 2691 * If there are other buffers already on the list, attach this 2692 * one to the end by fixing up the tail to point to this one. 2693 */ 2694 if (sc->fxp_desc.rx_head != NULL) { 2695 p_rx = sc->fxp_desc.rx_tail; 2696 p_rfa = (struct fxp_rfa *) 2697 (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE); 2698 p_rx->rx_next = rxp; 2699 le32enc(&p_rfa->link_addr, rxp->rx_addr); 2700 p_rfa->rfa_control = 0; 2701 bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map, 2702 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2703 } else { 2704 rxp->rx_next = NULL; 2705 sc->fxp_desc.rx_head = rxp; 2706 } 2707 sc->fxp_desc.rx_tail = rxp; 2708 } 2709 2710 static void 2711 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2712 { 2713 struct mbuf *m; 2714 struct fxp_rfa *rfa; 2715 2716 m = rxp->rx_mbuf; 2717 m->m_data = m->m_ext.ext_buf; 2718 /* 2719 * Move the data pointer up so that the incoming data packet 2720 * will be 32-bit aligned. 2721 */ 2722 m->m_data += RFA_ALIGNMENT_FUDGE; 2723 2724 /* 2725 * Get a pointer to the base of the mbuf cluster and move 2726 * data start past it. 2727 */ 2728 rfa = mtod(m, struct fxp_rfa *); 2729 m->m_data += sc->rfa_size; 2730 rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE); 2731 2732 rfa->rfa_status = 0; 2733 rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL); 2734 rfa->actual_size = 0; 2735 2736 /* 2737 * Initialize the rest of the RFA. Note that since the RFA 2738 * is misaligned, we cannot store values directly. We're thus 2739 * using the le32enc() function which handles endianness and 2740 * is also alignment-safe. 2741 */ 2742 le32enc(&rfa->link_addr, 0xffffffff); 2743 le32enc(&rfa->rbd_addr, 0xffffffff); 2744 2745 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 2746 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2747 } 2748 2749 static int 2750 fxp_miibus_readreg(device_t dev, int phy, int reg) 2751 { 2752 struct fxp_softc *sc = device_get_softc(dev); 2753 int count = 10000; 2754 int value; 2755 2756 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2757 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); 2758 2759 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 2760 && count--) 2761 DELAY(10); 2762 2763 if (count <= 0) 2764 device_printf(dev, "fxp_miibus_readreg: timed out\n"); 2765 2766 return (value & 0xffff); 2767 } 2768 2769 static int 2770 fxp_miibus_writereg(device_t dev, int phy, int reg, int value) 2771 { 2772 struct fxp_softc *sc = device_get_softc(dev); 2773 int count = 10000; 2774 2775 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2776 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | 2777 (value & 0xffff)); 2778 2779 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && 2780 count--) 2781 DELAY(10); 2782 2783 if (count <= 0) 2784 device_printf(dev, "fxp_miibus_writereg: timed out\n"); 2785 return (0); 2786 } 2787 2788 static void 2789 fxp_miibus_statchg(device_t dev) 2790 { 2791 struct fxp_softc *sc; 2792 struct mii_data *mii; 2793 struct ifnet *ifp; 2794 2795 sc = device_get_softc(dev); 2796 mii = device_get_softc(sc->miibus); 2797 ifp = sc->ifp; 2798 if (mii == NULL || ifp == NULL || 2799 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 2800 (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) != 2801 (IFM_AVALID | IFM_ACTIVE)) 2802 return; 2803 2804 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T && 2805 sc->flags & FXP_FLAG_CU_RESUME_BUG) 2806 sc->cu_resume_bug = 1; 2807 else 2808 sc->cu_resume_bug = 0; 2809 /* 2810 * Call fxp_init_body in order to adjust the flow control settings. 2811 * Note that the 82557 doesn't support hardware flow control. 2812 */ 2813 if (sc->revision == FXP_REV_82557) 2814 return; 2815 fxp_init_body(sc, 0); 2816 } 2817 2818 static int 2819 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 2820 { 2821 struct fxp_softc *sc = ifp->if_softc; 2822 struct ifreq *ifr = (struct ifreq *)data; 2823 struct mii_data *mii; 2824 int flag, mask, error = 0, reinit; 2825 2826 switch (command) { 2827 case SIOCSIFFLAGS: 2828 FXP_LOCK(sc); 2829 /* 2830 * If interface is marked up and not running, then start it. 2831 * If it is marked down and running, stop it. 2832 * XXX If it's up then re-initialize it. This is so flags 2833 * such as IFF_PROMISC are handled. 2834 */ 2835 if (ifp->if_flags & IFF_UP) { 2836 if (((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) && 2837 ((ifp->if_flags ^ sc->if_flags) & 2838 (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) 2839 fxp_init_body(sc, 0); 2840 else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2841 fxp_init_body(sc, 1); 2842 } else { 2843 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2844 fxp_stop(sc); 2845 } 2846 sc->if_flags = ifp->if_flags; 2847 FXP_UNLOCK(sc); 2848 break; 2849 2850 case SIOCADDMULTI: 2851 case SIOCDELMULTI: 2852 FXP_LOCK(sc); 2853 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2854 fxp_init_body(sc, 0); 2855 FXP_UNLOCK(sc); 2856 break; 2857 2858 case SIOCSIFMEDIA: 2859 case SIOCGIFMEDIA: 2860 if (sc->miibus != NULL) { 2861 mii = device_get_softc(sc->miibus); 2862 error = ifmedia_ioctl(ifp, ifr, 2863 &mii->mii_media, command); 2864 } else { 2865 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); 2866 } 2867 break; 2868 2869 case SIOCSIFCAP: 2870 reinit = 0; 2871 mask = ifp->if_capenable ^ ifr->ifr_reqcap; 2872 #ifdef DEVICE_POLLING 2873 if (mask & IFCAP_POLLING) { 2874 if (ifr->ifr_reqcap & IFCAP_POLLING) { 2875 error = ether_poll_register(fxp_poll, ifp); 2876 if (error) 2877 return(error); 2878 FXP_LOCK(sc); 2879 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 2880 FXP_SCB_INTR_DISABLE); 2881 ifp->if_capenable |= IFCAP_POLLING; 2882 FXP_UNLOCK(sc); 2883 } else { 2884 error = ether_poll_deregister(ifp); 2885 /* Enable interrupts in any case */ 2886 FXP_LOCK(sc); 2887 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 2888 ifp->if_capenable &= ~IFCAP_POLLING; 2889 FXP_UNLOCK(sc); 2890 } 2891 } 2892 #endif 2893 FXP_LOCK(sc); 2894 if ((mask & IFCAP_TXCSUM) != 0 && 2895 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 2896 ifp->if_capenable ^= IFCAP_TXCSUM; 2897 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 2898 ifp->if_hwassist |= FXP_CSUM_FEATURES; 2899 else 2900 ifp->if_hwassist &= ~FXP_CSUM_FEATURES; 2901 } 2902 if ((mask & IFCAP_RXCSUM) != 0 && 2903 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) { 2904 ifp->if_capenable ^= IFCAP_RXCSUM; 2905 if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0) 2906 reinit++; 2907 } 2908 if ((mask & IFCAP_TSO4) != 0 && 2909 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 2910 ifp->if_capenable ^= IFCAP_TSO4; 2911 if ((ifp->if_capenable & IFCAP_TSO4) != 0) 2912 ifp->if_hwassist |= CSUM_TSO; 2913 else 2914 ifp->if_hwassist &= ~CSUM_TSO; 2915 } 2916 if ((mask & IFCAP_WOL_MAGIC) != 0 && 2917 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) 2918 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2919 if ((mask & IFCAP_VLAN_MTU) != 0 && 2920 (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) { 2921 ifp->if_capenable ^= IFCAP_VLAN_MTU; 2922 if (sc->revision != FXP_REV_82557) 2923 flag = FXP_FLAG_LONG_PKT_EN; 2924 else /* a hack to get long frames on the old chip */ 2925 flag = FXP_FLAG_SAVE_BAD; 2926 sc->flags ^= flag; 2927 if (ifp->if_flags & IFF_UP) 2928 reinit++; 2929 } 2930 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 2931 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 2932 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2933 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 2934 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 2935 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2936 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2937 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 2938 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2939 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 2940 ifp->if_capenable &= 2941 ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM); 2942 reinit++; 2943 } 2944 if (reinit > 0 && ifp->if_flags & IFF_UP) 2945 fxp_init_body(sc, 0); 2946 FXP_UNLOCK(sc); 2947 VLAN_CAPABILITIES(ifp); 2948 break; 2949 2950 default: 2951 error = ether_ioctl(ifp, command, data); 2952 } 2953 return (error); 2954 } 2955 2956 /* 2957 * Fill in the multicast address list and return number of entries. 2958 */ 2959 static int 2960 fxp_mc_addrs(struct fxp_softc *sc) 2961 { 2962 struct fxp_cb_mcs *mcsp = sc->mcsp; 2963 struct ifnet *ifp = sc->ifp; 2964 struct ifmultiaddr *ifma; 2965 int nmcasts; 2966 2967 nmcasts = 0; 2968 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2969 if_maddr_rlock(ifp); 2970 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2971 if (ifma->ifma_addr->sa_family != AF_LINK) 2972 continue; 2973 if (nmcasts >= MAXMCADDR) { 2974 ifp->if_flags |= IFF_ALLMULTI; 2975 nmcasts = 0; 2976 break; 2977 } 2978 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 2979 &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN); 2980 nmcasts++; 2981 } 2982 if_maddr_runlock(ifp); 2983 } 2984 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN); 2985 return (nmcasts); 2986 } 2987 2988 /* 2989 * Program the multicast filter. 2990 * 2991 * We have an artificial restriction that the multicast setup command 2992 * must be the first command in the chain, so we take steps to ensure 2993 * this. By requiring this, it allows us to keep up the performance of 2994 * the pre-initialized command ring (esp. link pointers) by not actually 2995 * inserting the mcsetup command in the ring - i.e. its link pointer 2996 * points to the TxCB ring, but the mcsetup descriptor itself is not part 2997 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it 2998 * lead into the regular TxCB ring when it completes. 2999 */ 3000 static void 3001 fxp_mc_setup(struct fxp_softc *sc) 3002 { 3003 struct fxp_cb_mcs *mcsp; 3004 int count; 3005 3006 FXP_LOCK_ASSERT(sc, MA_OWNED); 3007 3008 mcsp = sc->mcsp; 3009 mcsp->cb_status = 0; 3010 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL); 3011 mcsp->link_addr = 0xffffffff; 3012 fxp_mc_addrs(sc); 3013 3014 /* 3015 * Wait until command unit is idle. This should never be the 3016 * case when nothing is queued, but make sure anyway. 3017 */ 3018 count = 100; 3019 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) != 3020 FXP_SCB_CUS_IDLE && --count) 3021 DELAY(10); 3022 if (count == 0) { 3023 device_printf(sc->dev, "command queue timeout\n"); 3024 return; 3025 } 3026 3027 /* 3028 * Start the multicast setup command. 3029 */ 3030 fxp_scb_wait(sc); 3031 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, 3032 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3033 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr); 3034 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 3035 /* ...and wait for it to complete. */ 3036 fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map); 3037 } 3038 3039 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE; 3040 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE; 3041 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE; 3042 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE; 3043 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE; 3044 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE; 3045 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE; 3046 3047 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t) 3048 3049 static const struct ucode { 3050 uint32_t revision; 3051 uint32_t *ucode; 3052 int length; 3053 u_short int_delay_offset; 3054 u_short bundle_max_offset; 3055 } const ucode_table[] = { 3056 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 }, 3057 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 }, 3058 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma), 3059 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD }, 3060 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s), 3061 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD }, 3062 { FXP_REV_82550, UCODE(fxp_ucode_d102), 3063 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD }, 3064 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c), 3065 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD }, 3066 { FXP_REV_82551_F, UCODE(fxp_ucode_d102e), 3067 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD }, 3068 { FXP_REV_82551_10, UCODE(fxp_ucode_d102e), 3069 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD }, 3070 { 0, NULL, 0, 0, 0 } 3071 }; 3072 3073 static void 3074 fxp_load_ucode(struct fxp_softc *sc) 3075 { 3076 const struct ucode *uc; 3077 struct fxp_cb_ucode *cbp; 3078 int i; 3079 3080 if (sc->flags & FXP_FLAG_NO_UCODE) 3081 return; 3082 3083 for (uc = ucode_table; uc->ucode != NULL; uc++) 3084 if (sc->revision == uc->revision) 3085 break; 3086 if (uc->ucode == NULL) 3087 return; 3088 cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list; 3089 cbp->cb_status = 0; 3090 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL); 3091 cbp->link_addr = 0xffffffff; /* (no) next command */ 3092 for (i = 0; i < uc->length; i++) 3093 cbp->ucode[i] = htole32(uc->ucode[i]); 3094 if (uc->int_delay_offset) 3095 *(uint16_t *)&cbp->ucode[uc->int_delay_offset] = 3096 htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2); 3097 if (uc->bundle_max_offset) 3098 *(uint16_t *)&cbp->ucode[uc->bundle_max_offset] = 3099 htole16(sc->tunable_bundle_max); 3100 /* 3101 * Download the ucode to the chip. 3102 */ 3103 fxp_scb_wait(sc); 3104 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 3105 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3106 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 3107 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 3108 /* ...and wait for it to complete. */ 3109 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 3110 device_printf(sc->dev, 3111 "Microcode loaded, int_delay: %d usec bundle_max: %d\n", 3112 sc->tunable_int_delay, 3113 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max); 3114 sc->flags |= FXP_FLAG_UCODE; 3115 bzero(cbp, FXP_TXCB_SZ); 3116 } 3117 3118 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d) \ 3119 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 3120 3121 static void 3122 fxp_sysctl_node(struct fxp_softc *sc) 3123 { 3124 struct sysctl_ctx_list *ctx; 3125 struct sysctl_oid_list *child, *parent; 3126 struct sysctl_oid *tree; 3127 struct fxp_hwstats *hsp; 3128 3129 ctx = device_get_sysctl_ctx(sc->dev); 3130 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 3131 3132 SYSCTL_ADD_PROC(ctx, child, 3133 OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW, 3134 &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I", 3135 "FXP driver receive interrupt microcode bundling delay"); 3136 SYSCTL_ADD_PROC(ctx, child, 3137 OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW, 3138 &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I", 3139 "FXP driver receive interrupt microcode bundle size limit"); 3140 SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0, 3141 "FXP RNR events"); 3142 3143 /* 3144 * Pull in device tunables. 3145 */ 3146 sc->tunable_int_delay = TUNABLE_INT_DELAY; 3147 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX; 3148 (void) resource_int_value(device_get_name(sc->dev), 3149 device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay); 3150 (void) resource_int_value(device_get_name(sc->dev), 3151 device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max); 3152 sc->rnr = 0; 3153 3154 hsp = &sc->fxp_hwstats; 3155 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 3156 NULL, "FXP statistics"); 3157 parent = SYSCTL_CHILDREN(tree); 3158 3159 /* Rx MAC statistics. */ 3160 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, 3161 NULL, "Rx MAC statistics"); 3162 child = SYSCTL_CHILDREN(tree); 3163 FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames", 3164 &hsp->rx_good, "Good frames"); 3165 FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors", 3166 &hsp->rx_crc_errors, "CRC errors"); 3167 FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors", 3168 &hsp->rx_alignment_errors, "Alignment errors"); 3169 FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors", 3170 &hsp->rx_rnr_errors, "RNR errors"); 3171 FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors", 3172 &hsp->rx_overrun_errors, "Overrun errors"); 3173 FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors", 3174 &hsp->rx_cdt_errors, "Collision detect errors"); 3175 FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes", 3176 &hsp->rx_shortframes, "Short frame errors"); 3177 if (sc->revision >= FXP_REV_82558_A4) { 3178 FXP_SYSCTL_STAT_ADD(ctx, child, "pause", 3179 &hsp->rx_pause, "Pause frames"); 3180 FXP_SYSCTL_STAT_ADD(ctx, child, "controls", 3181 &hsp->rx_controls, "Unsupported control frames"); 3182 } 3183 if (sc->revision >= FXP_REV_82559_A0) 3184 FXP_SYSCTL_STAT_ADD(ctx, child, "tco", 3185 &hsp->rx_tco, "TCO frames"); 3186 3187 /* Tx MAC statistics. */ 3188 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, 3189 NULL, "Tx MAC statistics"); 3190 child = SYSCTL_CHILDREN(tree); 3191 FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames", 3192 &hsp->tx_good, "Good frames"); 3193 FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols", 3194 &hsp->tx_maxcols, "Maximum collisions errors"); 3195 FXP_SYSCTL_STAT_ADD(ctx, child, "latecols", 3196 &hsp->tx_latecols, "Late collisions errors"); 3197 FXP_SYSCTL_STAT_ADD(ctx, child, "underruns", 3198 &hsp->tx_underruns, "Underrun errors"); 3199 FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs", 3200 &hsp->tx_lostcrs, "Lost carrier sense"); 3201 FXP_SYSCTL_STAT_ADD(ctx, child, "deffered", 3202 &hsp->tx_deffered, "Deferred"); 3203 FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions", 3204 &hsp->tx_single_collisions, "Single collisions"); 3205 FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions", 3206 &hsp->tx_multiple_collisions, "Multiple collisions"); 3207 FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions", 3208 &hsp->tx_total_collisions, "Total collisions"); 3209 if (sc->revision >= FXP_REV_82558_A4) 3210 FXP_SYSCTL_STAT_ADD(ctx, child, "pause", 3211 &hsp->tx_pause, "Pause frames"); 3212 if (sc->revision >= FXP_REV_82559_A0) 3213 FXP_SYSCTL_STAT_ADD(ctx, child, "tco", 3214 &hsp->tx_tco, "TCO frames"); 3215 } 3216 3217 #undef FXP_SYSCTL_STAT_ADD 3218 3219 static int 3220 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3221 { 3222 int error, value; 3223 3224 value = *(int *)arg1; 3225 error = sysctl_handle_int(oidp, &value, 0, req); 3226 if (error || !req->newptr) 3227 return (error); 3228 if (value < low || value > high) 3229 return (EINVAL); 3230 *(int *)arg1 = value; 3231 return (0); 3232 } 3233 3234 /* 3235 * Interrupt delay is expressed in microseconds, a multiplier is used 3236 * to convert this to the appropriate clock ticks before using. 3237 */ 3238 static int 3239 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS) 3240 { 3241 3242 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000)); 3243 } 3244 3245 static int 3246 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS) 3247 { 3248 3249 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff)); 3250 } 3251