xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 5c52a79884070364bfc920fb8e492cfac61ec72f)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #ifdef HAVE_KERNEL_OPTION_HEADERS
38 #include "opt_device_polling.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/module.h>
48 #include <sys/rman.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/sysctl.h>
52 
53 #include <net/bpf.h>
54 #include <net/ethernet.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 #include <net/if_vlan_var.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/ip.h>
65 #include <netinet/tcp.h>
66 #include <netinet/udp.h>
67 
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70 #include <machine/resource.h>
71 
72 #include <dev/pci/pcivar.h>
73 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 
78 #include <dev/fxp/if_fxpreg.h>
79 #include <dev/fxp/if_fxpvar.h>
80 #include <dev/fxp/rcvbundl.h>
81 
82 MODULE_DEPEND(fxp, pci, 1, 1, 1);
83 MODULE_DEPEND(fxp, ether, 1, 1, 1);
84 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
85 #include "miibus_if.h"
86 
87 /*
88  * NOTE!  On the Alpha, we have an alignment constraint.  The
89  * card DMAs the packet immediately following the RFA.  However,
90  * the first thing in the packet is a 14-byte Ethernet header.
91  * This means that the packet is misaligned.  To compensate,
92  * we actually offset the RFA 2 bytes into the cluster.  This
93  * alignes the packet after the Ethernet header at a 32-bit
94  * boundary.  HOWEVER!  This means that the RFA is misaligned!
95  */
96 #define	RFA_ALIGNMENT_FUDGE	2
97 
98 /*
99  * Set initial transmit threshold at 64 (512 bytes). This is
100  * increased by 64 (512 bytes) at a time, to maximum of 192
101  * (1536 bytes), if an underrun occurs.
102  */
103 static int tx_threshold = 64;
104 
105 /*
106  * The configuration byte map has several undefined fields which
107  * must be one or must be zero.  Set up a template for these bits
108  * only, (assuming a 82557 chip) leaving the actual configuration
109  * to fxp_init.
110  *
111  * See struct fxp_cb_config for the bit definitions.
112  */
113 static u_char fxp_cb_config_template[] = {
114 	0x0, 0x0,		/* cb_status */
115 	0x0, 0x0,		/* cb_command */
116 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
117 	0x0,	/*  0 */
118 	0x0,	/*  1 */
119 	0x0,	/*  2 */
120 	0x0,	/*  3 */
121 	0x0,	/*  4 */
122 	0x0,	/*  5 */
123 	0x32,	/*  6 */
124 	0x0,	/*  7 */
125 	0x0,	/*  8 */
126 	0x0,	/*  9 */
127 	0x6,	/* 10 */
128 	0x0,	/* 11 */
129 	0x0,	/* 12 */
130 	0x0,	/* 13 */
131 	0xf2,	/* 14 */
132 	0x48,	/* 15 */
133 	0x0,	/* 16 */
134 	0x40,	/* 17 */
135 	0xf0,	/* 18 */
136 	0x0,	/* 19 */
137 	0x3f,	/* 20 */
138 	0x5	/* 21 */
139 };
140 
141 struct fxp_ident {
142 	uint16_t	devid;
143 	int16_t		revid;		/* -1 matches anything */
144 	char 		*name;
145 };
146 
147 /*
148  * Claim various Intel PCI device identifiers for this driver.  The
149  * sub-vendor and sub-device field are extensively used to identify
150  * particular variants, but we don't currently differentiate between
151  * them.
152  */
153 static struct fxp_ident fxp_ident_table[] = {
154     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
155     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
156     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
157     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
159     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
161     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
165     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
166     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
167     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
168     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
169     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
170     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
171     { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
172     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
173     { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
174     { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
175     { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
176     { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
177     { 0x1091,	-1,	"Intel 82562GX Pro/100 Ethernet" },
178     { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
179     { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
180     { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
181     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
182     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
183     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
184     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
185     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
186     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
187     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
188     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
189     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
190     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
191     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
192     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
193     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
194     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
195     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
196     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
197     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
198     { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
199     { 0,	-1,	NULL },
200 };
201 
202 #ifdef FXP_IP_CSUM_WAR
203 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
204 #else
205 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
206 #endif
207 
208 static int		fxp_probe(device_t dev);
209 static int		fxp_attach(device_t dev);
210 static int		fxp_detach(device_t dev);
211 static int		fxp_shutdown(device_t dev);
212 static int		fxp_suspend(device_t dev);
213 static int		fxp_resume(device_t dev);
214 
215 static void		fxp_intr(void *xsc);
216 static void		fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp,
217 			    struct mbuf *m, uint16_t status, int pos);
218 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
219 			    uint8_t statack, int count);
220 static void 		fxp_init(void *xsc);
221 static void 		fxp_init_body(struct fxp_softc *sc);
222 static void 		fxp_tick(void *xsc);
223 static void 		fxp_start(struct ifnet *ifp);
224 static void 		fxp_start_body(struct ifnet *ifp);
225 static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
226 static void		fxp_txeof(struct fxp_softc *sc);
227 static void		fxp_stop(struct fxp_softc *sc);
228 static void 		fxp_release(struct fxp_softc *sc);
229 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
230 			    caddr_t data);
231 static void 		fxp_watchdog(struct fxp_softc *sc);
232 static void		fxp_add_rfabuf(struct fxp_softc *sc,
233     			    struct fxp_rx *rxp);
234 static void		fxp_discard_rfabuf(struct fxp_softc *sc,
235     			    struct fxp_rx *rxp);
236 static int		fxp_new_rfabuf(struct fxp_softc *sc,
237     			    struct fxp_rx *rxp);
238 static int		fxp_mc_addrs(struct fxp_softc *sc);
239 static void		fxp_mc_setup(struct fxp_softc *sc);
240 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
241 			    int autosize);
242 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
243 			    uint16_t data);
244 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
245 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
246 			    int offset, int words);
247 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
248 			    int offset, int words);
249 static int		fxp_ifmedia_upd(struct ifnet *ifp);
250 static void		fxp_ifmedia_sts(struct ifnet *ifp,
251 			    struct ifmediareq *ifmr);
252 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
253 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
254 			    struct ifmediareq *ifmr);
255 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
256 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
257 			    int value);
258 static void		fxp_load_ucode(struct fxp_softc *sc);
259 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
260 			    int low, int high);
261 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
262 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
263 static void 		fxp_scb_wait(struct fxp_softc *sc);
264 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
265 static void		fxp_dma_wait(struct fxp_softc *sc,
266     			    volatile uint16_t *status, bus_dma_tag_t dmat,
267 			    bus_dmamap_t map);
268 
269 static device_method_t fxp_methods[] = {
270 	/* Device interface */
271 	DEVMETHOD(device_probe,		fxp_probe),
272 	DEVMETHOD(device_attach,	fxp_attach),
273 	DEVMETHOD(device_detach,	fxp_detach),
274 	DEVMETHOD(device_shutdown,	fxp_shutdown),
275 	DEVMETHOD(device_suspend,	fxp_suspend),
276 	DEVMETHOD(device_resume,	fxp_resume),
277 
278 	/* MII interface */
279 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
280 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
281 
282 	{ 0, 0 }
283 };
284 
285 static driver_t fxp_driver = {
286 	"fxp",
287 	fxp_methods,
288 	sizeof(struct fxp_softc),
289 };
290 
291 static devclass_t fxp_devclass;
292 
293 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
294 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
295 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
296 
297 static struct resource_spec fxp_res_spec_mem[] = {
298 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
299 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
300 	{ -1, 0 }
301 };
302 
303 static struct resource_spec fxp_res_spec_io[] = {
304 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
305 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
306 	{ -1, 0 }
307 };
308 
309 /*
310  * Wait for the previous command to be accepted (but not necessarily
311  * completed).
312  */
313 static void
314 fxp_scb_wait(struct fxp_softc *sc)
315 {
316 	union {
317 		uint16_t w;
318 		uint8_t b[2];
319 	} flowctl;
320 	int i = 10000;
321 
322 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
323 		DELAY(2);
324 	if (i == 0) {
325 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
326 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
327 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
328 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
329 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
330 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
331 	}
332 }
333 
334 static void
335 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
336 {
337 
338 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
339 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
340 		fxp_scb_wait(sc);
341 	}
342 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
343 }
344 
345 static void
346 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
347     bus_dma_tag_t dmat, bus_dmamap_t map)
348 {
349 	int i = 10000;
350 
351 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
352 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
353 		DELAY(2);
354 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
355 	}
356 	if (i == 0)
357 		device_printf(sc->dev, "DMA timeout\n");
358 }
359 
360 /*
361  * Return identification string if this device is ours.
362  */
363 static int
364 fxp_probe(device_t dev)
365 {
366 	uint16_t devid;
367 	uint8_t revid;
368 	struct fxp_ident *ident;
369 
370 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
371 		devid = pci_get_device(dev);
372 		revid = pci_get_revid(dev);
373 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
374 			if (ident->devid == devid &&
375 			    (ident->revid == revid || ident->revid == -1)) {
376 				device_set_desc(dev, ident->name);
377 				return (BUS_PROBE_DEFAULT);
378 			}
379 		}
380 	}
381 	return (ENXIO);
382 }
383 
384 static void
385 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
386 {
387 	uint32_t *addr;
388 
389 	if (error)
390 		return;
391 
392 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
393 	addr = arg;
394 	*addr = segs->ds_addr;
395 }
396 
397 static int
398 fxp_attach(device_t dev)
399 {
400 	struct fxp_softc *sc;
401 	struct fxp_cb_tx *tcbp;
402 	struct fxp_tx *txp;
403 	struct fxp_rx *rxp;
404 	struct ifnet *ifp;
405 	uint32_t val;
406 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
407 	u_char eaddr[ETHER_ADDR_LEN];
408 	int i, pmc, prefer_iomap;
409 	int error;
410 
411 	error = 0;
412 	sc = device_get_softc(dev);
413 	sc->dev = dev;
414 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
415 	    MTX_DEF);
416 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
417 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
418 	    fxp_serial_ifmedia_sts);
419 
420 	ifp = sc->ifp = if_alloc(IFT_ETHER);
421 	if (ifp == NULL) {
422 		device_printf(dev, "can not if_alloc()\n");
423 		error = ENOSPC;
424 		goto fail;
425 	}
426 
427 	/*
428 	 * Enable bus mastering.
429 	 */
430 	pci_enable_busmaster(dev);
431 	val = pci_read_config(dev, PCIR_COMMAND, 2);
432 
433 	/*
434 	 * Figure out which we should try first - memory mapping or i/o mapping?
435 	 * We default to memory mapping. Then we accept an override from the
436 	 * command line. Then we check to see which one is enabled.
437 	 */
438 	prefer_iomap = 0;
439 	resource_int_value(device_get_name(dev), device_get_unit(dev),
440 	    "prefer_iomap", &prefer_iomap);
441 	if (prefer_iomap)
442 		sc->fxp_spec = fxp_res_spec_io;
443 	else
444 		sc->fxp_spec = fxp_res_spec_mem;
445 
446 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
447 	if (error) {
448 		if (sc->fxp_spec == fxp_res_spec_mem)
449 			sc->fxp_spec = fxp_res_spec_io;
450 		else
451 			sc->fxp_spec = fxp_res_spec_mem;
452 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
453 	}
454 	if (error) {
455 		device_printf(dev, "could not allocate resources\n");
456 		error = ENXIO;
457 		goto fail;
458 	}
459 
460 	if (bootverbose) {
461 		device_printf(dev, "using %s space register mapping\n",
462 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
463 	}
464 
465 	/*
466 	 * Reset to a stable state.
467 	 */
468 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
469 	DELAY(10);
470 
471 	/*
472 	 * Find out how large of an SEEPROM we have.
473 	 */
474 	fxp_autosize_eeprom(sc);
475 
476 	/*
477 	 * Find out the chip revision; lump all 82557 revs together.
478 	 */
479 	fxp_read_eeprom(sc, &data, 5, 1);
480 	if ((data >> 8) == 1)
481 		sc->revision = FXP_REV_82557;
482 	else
483 		sc->revision = pci_get_revid(dev);
484 
485 	/*
486 	 * Check availability of WOL. 82559ER does not support WOL.
487 	 */
488 	if (sc->revision >= FXP_REV_82558_A4 &&
489 	    sc->revision != FXP_REV_82559S_A) {
490 		fxp_read_eeprom(sc, &data, 10, 1);
491 		if ((data & 0x20) != 0 &&
492 		    pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0)
493 			sc->flags |= FXP_FLAG_WOLCAP;
494 	}
495 
496 	/*
497 	 * Determine whether we must use the 503 serial interface.
498 	 */
499 	fxp_read_eeprom(sc, &data, 6, 1);
500 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
501 	    && (data & FXP_PHY_SERIAL_ONLY))
502 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
503 
504 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
505 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
506 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
507 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
508 	    "FXP driver receive interrupt microcode bundling delay");
509 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
510 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
511 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
512 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
513 	    "FXP driver receive interrupt microcode bundle size limit");
514 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
515 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
516 	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
517 	    "FXP RNR events");
518 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
519 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
520 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
521 	    "FXP flow control disabled");
522 
523 	/*
524 	 * Pull in device tunables.
525 	 */
526 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
527 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
528 	sc->tunable_noflow = 1;
529 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
530 	    "int_delay", &sc->tunable_int_delay);
531 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
532 	    "bundle_max", &sc->tunable_bundle_max);
533 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
534 	    "noflow", &sc->tunable_noflow);
535 	sc->rnr = 0;
536 
537 	/*
538 	 * Enable workarounds for certain chip revision deficiencies.
539 	 *
540 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
541 	 * some systems based a normal 82559 design, have a defect where
542 	 * the chip can cause a PCI protocol violation if it receives
543 	 * a CU_RESUME command when it is entering the IDLE state.  The
544 	 * workaround is to disable Dynamic Standby Mode, so the chip never
545 	 * deasserts CLKRUN#, and always remains in an active state.
546 	 *
547 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
548 	 */
549 	i = pci_get_device(dev);
550 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
551 	    sc->revision >= FXP_REV_82559_A0) {
552 		fxp_read_eeprom(sc, &data, 10, 1);
553 		if (data & 0x02) {			/* STB enable */
554 			uint16_t cksum;
555 			int i;
556 
557 			device_printf(dev,
558 			    "Disabling dynamic standby mode in EEPROM\n");
559 			data &= ~0x02;
560 			fxp_write_eeprom(sc, &data, 10, 1);
561 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
562 			cksum = 0;
563 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
564 				fxp_read_eeprom(sc, &data, i, 1);
565 				cksum += data;
566 			}
567 			i = (1 << sc->eeprom_size) - 1;
568 			cksum = 0xBABA - cksum;
569 			fxp_read_eeprom(sc, &data, i, 1);
570 			fxp_write_eeprom(sc, &cksum, i, 1);
571 			device_printf(dev,
572 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
573 			    i, data, cksum);
574 #if 1
575 			/*
576 			 * If the user elects to continue, try the software
577 			 * workaround, as it is better than nothing.
578 			 */
579 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
580 #endif
581 		}
582 	}
583 
584 	/*
585 	 * If we are not a 82557 chip, we can enable extended features.
586 	 */
587 	if (sc->revision != FXP_REV_82557) {
588 		/*
589 		 * If MWI is enabled in the PCI configuration, and there
590 		 * is a valid cacheline size (8 or 16 dwords), then tell
591 		 * the board to turn on MWI.
592 		 */
593 		if (val & PCIM_CMD_MWRICEN &&
594 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
595 			sc->flags |= FXP_FLAG_MWI_ENABLE;
596 
597 		/* turn on the extended TxCB feature */
598 		sc->flags |= FXP_FLAG_EXT_TXCB;
599 
600 		/* enable reception of long frames for VLAN */
601 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
602 	} else {
603 		/* a hack to get long VLAN frames on a 82557 */
604 		sc->flags |= FXP_FLAG_SAVE_BAD;
605 	}
606 
607 	/* For 82559 or later chips, Rx checksum offload is supported. */
608 	if (sc->revision >= FXP_REV_82559_A0)
609 		sc->flags |= FXP_FLAG_82559_RXCSUM;
610 	/*
611 	 * Enable use of extended RFDs and TCBs for 82550
612 	 * and later chips. Note: we need extended TXCB support
613 	 * too, but that's already enabled by the code above.
614 	 * Be careful to do this only on the right devices.
615 	 */
616 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
617 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
618 	    || sc->revision == FXP_REV_82551_10) {
619 		sc->rfa_size = sizeof (struct fxp_rfa);
620 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
621 		sc->flags |= FXP_FLAG_EXT_RFA;
622 		/* Use extended RFA instead of 82559 checksum mode. */
623 		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
624 	} else {
625 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
626 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
627 	}
628 
629 	/*
630 	 * Allocate DMA tags and DMA safe memory.
631 	 */
632 	sc->maxtxseg = FXP_NTXSEG;
633 	sc->maxsegsize = MCLBYTES;
634 	if (sc->flags & FXP_FLAG_EXT_RFA) {
635 		sc->maxtxseg--;
636 		sc->maxsegsize = FXP_TSO_SEGSIZE;
637 	}
638 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
639 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
640 	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
641 	    sc->maxtxseg, sc->maxsegsize, 0,
642 	    busdma_lock_mutex, &Giant, &sc->fxp_mtag);
643 	if (error) {
644 		device_printf(dev, "could not allocate dma tag\n");
645 		goto fail;
646 	}
647 
648 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
649 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
650 	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
651 	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
652 	if (error) {
653 		device_printf(dev, "could not allocate dma tag\n");
654 		goto fail;
655 	}
656 
657 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
658 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
659 	if (error)
660 		goto fail;
661 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
662 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
663 	if (error) {
664 		device_printf(dev, "could not map the stats buffer\n");
665 		goto fail;
666 	}
667 
668 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
669 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
670 	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
671 	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
672 	if (error) {
673 		device_printf(dev, "could not allocate dma tag\n");
674 		goto fail;
675 	}
676 
677 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
678 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
679 	if (error)
680 		goto fail;
681 
682 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
683 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
684 	    &sc->fxp_desc.cbl_addr, 0);
685 	if (error) {
686 		device_printf(dev, "could not map DMA memory\n");
687 		goto fail;
688 	}
689 
690 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
691 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
692 	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
693 	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
694 	if (error) {
695 		device_printf(dev, "could not allocate dma tag\n");
696 		goto fail;
697 	}
698 
699 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
700 	    BUS_DMA_NOWAIT, &sc->mcs_map);
701 	if (error)
702 		goto fail;
703 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
704 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
705 	if (error) {
706 		device_printf(dev, "can't map the multicast setup command\n");
707 		goto fail;
708 	}
709 
710 	/*
711 	 * Pre-allocate the TX DMA maps and setup the pointers to
712 	 * the TX command blocks.
713 	 */
714 	txp = sc->fxp_desc.tx_list;
715 	tcbp = sc->fxp_desc.cbl_list;
716 	for (i = 0; i < FXP_NTXCB; i++) {
717 		txp[i].tx_cb = tcbp + i;
718 		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
719 		if (error) {
720 			device_printf(dev, "can't create DMA map for TX\n");
721 			goto fail;
722 		}
723 	}
724 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
725 	if (error) {
726 		device_printf(dev, "can't create spare DMA map\n");
727 		goto fail;
728 	}
729 
730 	/*
731 	 * Pre-allocate our receive buffers.
732 	 */
733 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
734 	for (i = 0; i < FXP_NRFABUFS; i++) {
735 		rxp = &sc->fxp_desc.rx_list[i];
736 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
737 		if (error) {
738 			device_printf(dev, "can't create DMA map for RX\n");
739 			goto fail;
740 		}
741 		if (fxp_new_rfabuf(sc, rxp) != 0) {
742 			error = ENOMEM;
743 			goto fail;
744 		}
745 		fxp_add_rfabuf(sc, rxp);
746 	}
747 
748 	/*
749 	 * Read MAC address.
750 	 */
751 	fxp_read_eeprom(sc, myea, 0, 3);
752 	eaddr[0] = myea[0] & 0xff;
753 	eaddr[1] = myea[0] >> 8;
754 	eaddr[2] = myea[1] & 0xff;
755 	eaddr[3] = myea[1] >> 8;
756 	eaddr[4] = myea[2] & 0xff;
757 	eaddr[5] = myea[2] >> 8;
758 	if (bootverbose) {
759 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
760 		    pci_get_vendor(dev), pci_get_device(dev),
761 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
762 		    pci_get_revid(dev));
763 		fxp_read_eeprom(sc, &data, 10, 1);
764 		device_printf(dev, "Dynamic Standby mode is %s\n",
765 		    data & 0x02 ? "enabled" : "disabled");
766 	}
767 
768 	/*
769 	 * If this is only a 10Mbps device, then there is no MII, and
770 	 * the PHY will use a serial interface instead.
771 	 *
772 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
773 	 * doesn't have a programming interface of any sort.  The
774 	 * media is sensed automatically based on how the link partner
775 	 * is configured.  This is, in essence, manual configuration.
776 	 */
777 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
778 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
779 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
780 	} else {
781 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
782 		    fxp_ifmedia_sts)) {
783 	                device_printf(dev, "MII without any PHY!\n");
784 			error = ENXIO;
785 			goto fail;
786 		}
787 	}
788 
789 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
790 	ifp->if_init = fxp_init;
791 	ifp->if_softc = sc;
792 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
793 	ifp->if_ioctl = fxp_ioctl;
794 	ifp->if_start = fxp_start;
795 
796 	ifp->if_capabilities = ifp->if_capenable = 0;
797 
798 	/* Enable checksum offload/TSO for 82550 or better chips */
799 	if (sc->flags & FXP_FLAG_EXT_RFA) {
800 		ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO;
801 		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
802 		ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4;
803 	}
804 
805 	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
806 		ifp->if_capabilities |= IFCAP_RXCSUM;
807 		ifp->if_capenable |= IFCAP_RXCSUM;
808 	}
809 
810 	if (sc->flags & FXP_FLAG_WOLCAP) {
811 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
812 		ifp->if_capenable |= IFCAP_WOL_MAGIC;
813 	}
814 
815 #ifdef DEVICE_POLLING
816 	/* Inform the world we support polling. */
817 	ifp->if_capabilities |= IFCAP_POLLING;
818 #endif
819 
820 	/*
821 	 * Attach the interface.
822 	 */
823 	ether_ifattach(ifp, eaddr);
824 
825 	/*
826 	 * Tell the upper layer(s) we support long frames.
827 	 * Must appear after the call to ether_ifattach() because
828 	 * ether_ifattach() sets ifi_hdrlen to the default value.
829 	 */
830 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
831 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
832 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
833 	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
834 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING |
835 		    IFCAP_VLAN_HWCSUM;
836 		ifp->if_capenable |= IFCAP_VLAN_HWTAGGING |
837 		    IFCAP_VLAN_HWCSUM;
838 	}
839 
840 	/*
841 	 * Let the system queue as many packets as we have available
842 	 * TX descriptors.
843 	 */
844 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
845 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
846 	IFQ_SET_READY(&ifp->if_snd);
847 
848 	/*
849 	 * Hook our interrupt after all initialization is complete.
850 	 */
851 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
852 			       NULL, fxp_intr, sc, &sc->ih);
853 	if (error) {
854 		device_printf(dev, "could not setup irq\n");
855 		ether_ifdetach(sc->ifp);
856 		goto fail;
857 	}
858 
859 	/*
860 	 * Configure hardware to reject magic frames otherwise
861 	 * system will hang on recipt of magic frames.
862 	 */
863 	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
864 		FXP_LOCK(sc);
865 		/* Clear wakeup events. */
866 		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
867 		fxp_init_body(sc);
868 		fxp_stop(sc);
869 		FXP_UNLOCK(sc);
870 	}
871 
872 fail:
873 	if (error)
874 		fxp_release(sc);
875 	return (error);
876 }
877 
878 /*
879  * Release all resources.  The softc lock should not be held and the
880  * interrupt should already be torn down.
881  */
882 static void
883 fxp_release(struct fxp_softc *sc)
884 {
885 	struct fxp_rx *rxp;
886 	struct fxp_tx *txp;
887 	int i;
888 
889 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
890 	KASSERT(sc->ih == NULL,
891 	    ("fxp_release() called with intr handle still active"));
892 	if (sc->miibus)
893 		device_delete_child(sc->dev, sc->miibus);
894 	bus_generic_detach(sc->dev);
895 	ifmedia_removeall(&sc->sc_media);
896 	if (sc->fxp_desc.cbl_list) {
897 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
898 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
899 		    sc->cbl_map);
900 	}
901 	if (sc->fxp_stats) {
902 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
903 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
904 	}
905 	if (sc->mcsp) {
906 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
907 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
908 	}
909 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
910 	if (sc->fxp_mtag) {
911 		for (i = 0; i < FXP_NRFABUFS; i++) {
912 			rxp = &sc->fxp_desc.rx_list[i];
913 			if (rxp->rx_mbuf != NULL) {
914 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
915 				    BUS_DMASYNC_POSTREAD);
916 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
917 				m_freem(rxp->rx_mbuf);
918 			}
919 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
920 		}
921 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
922 		for (i = 0; i < FXP_NTXCB; i++) {
923 			txp = &sc->fxp_desc.tx_list[i];
924 			if (txp->tx_mbuf != NULL) {
925 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
926 				    BUS_DMASYNC_POSTWRITE);
927 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
928 				m_freem(txp->tx_mbuf);
929 			}
930 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
931 		}
932 		bus_dma_tag_destroy(sc->fxp_mtag);
933 	}
934 	if (sc->fxp_stag)
935 		bus_dma_tag_destroy(sc->fxp_stag);
936 	if (sc->cbl_tag)
937 		bus_dma_tag_destroy(sc->cbl_tag);
938 	if (sc->mcs_tag)
939 		bus_dma_tag_destroy(sc->mcs_tag);
940 	if (sc->ifp)
941 		if_free(sc->ifp);
942 
943 	mtx_destroy(&sc->sc_mtx);
944 }
945 
946 /*
947  * Detach interface.
948  */
949 static int
950 fxp_detach(device_t dev)
951 {
952 	struct fxp_softc *sc = device_get_softc(dev);
953 
954 #ifdef DEVICE_POLLING
955 	if (sc->ifp->if_capenable & IFCAP_POLLING)
956 		ether_poll_deregister(sc->ifp);
957 #endif
958 
959 	FXP_LOCK(sc);
960 	sc->suspended = 1;	/* Do same thing as we do for suspend */
961 	/*
962 	 * Stop DMA and drop transmit queue, but disable interrupts first.
963 	 */
964 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
965 	fxp_stop(sc);
966 	FXP_UNLOCK(sc);
967 	callout_drain(&sc->stat_ch);
968 
969 	/*
970 	 * Close down routes etc.
971 	 */
972 	ether_ifdetach(sc->ifp);
973 
974 	/*
975 	 * Unhook interrupt before dropping lock. This is to prevent
976 	 * races with fxp_intr().
977 	 */
978 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
979 	sc->ih = NULL;
980 
981 	/* Release our allocated resources. */
982 	fxp_release(sc);
983 	return (0);
984 }
985 
986 /*
987  * Device shutdown routine. Called at system shutdown after sync. The
988  * main purpose of this routine is to shut off receiver DMA so that
989  * kernel memory doesn't get clobbered during warmboot.
990  */
991 static int
992 fxp_shutdown(device_t dev)
993 {
994 
995 	/*
996 	 * Make sure that DMA is disabled prior to reboot. Not doing
997 	 * do could allow DMA to corrupt kernel memory during the
998 	 * reboot before the driver initializes.
999 	 */
1000 	return (fxp_suspend(dev));
1001 }
1002 
1003 /*
1004  * Device suspend routine.  Stop the interface and save some PCI
1005  * settings in case the BIOS doesn't restore them properly on
1006  * resume.
1007  */
1008 static int
1009 fxp_suspend(device_t dev)
1010 {
1011 	struct fxp_softc *sc = device_get_softc(dev);
1012 	struct ifnet *ifp;
1013 	int pmc;
1014 	uint16_t pmstat;
1015 
1016 	FXP_LOCK(sc);
1017 
1018 	ifp = sc->ifp;
1019 	if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) {
1020 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1021 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1022 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1023 			/* Request PME. */
1024 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1025 			sc->flags |= FXP_FLAG_WOL;
1026 			/* Reconfigure hardware to accept magic frames. */
1027 			fxp_init_body(sc);
1028 		}
1029 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1030 	}
1031 	fxp_stop(sc);
1032 
1033 	sc->suspended = 1;
1034 
1035 	FXP_UNLOCK(sc);
1036 	return (0);
1037 }
1038 
1039 /*
1040  * Device resume routine. re-enable busmastering, and restart the interface if
1041  * appropriate.
1042  */
1043 static int
1044 fxp_resume(device_t dev)
1045 {
1046 	struct fxp_softc *sc = device_get_softc(dev);
1047 	struct ifnet *ifp = sc->ifp;
1048 	int pmc;
1049 	uint16_t pmstat;
1050 
1051 	FXP_LOCK(sc);
1052 
1053 	if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) {
1054 		sc->flags &= ~FXP_FLAG_WOL;
1055 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1056 		/* Disable PME and clear PME status. */
1057 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1058 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1059 		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1060 			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1061 			    CSR_READ_1(sc, FXP_CSR_PMDR));
1062 	}
1063 
1064 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1065 	DELAY(10);
1066 
1067 	/* reinitialize interface if necessary */
1068 	if (ifp->if_flags & IFF_UP)
1069 		fxp_init_body(sc);
1070 
1071 	sc->suspended = 0;
1072 
1073 	FXP_UNLOCK(sc);
1074 	return (0);
1075 }
1076 
1077 static void
1078 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1079 {
1080 	uint16_t reg;
1081 	int x;
1082 
1083 	/*
1084 	 * Shift in data.
1085 	 */
1086 	for (x = 1 << (length - 1); x; x >>= 1) {
1087 		if (data & x)
1088 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1089 		else
1090 			reg = FXP_EEPROM_EECS;
1091 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1092 		DELAY(1);
1093 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1094 		DELAY(1);
1095 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1096 		DELAY(1);
1097 	}
1098 }
1099 
1100 /*
1101  * Read from the serial EEPROM. Basically, you manually shift in
1102  * the read opcode (one bit at a time) and then shift in the address,
1103  * and then you shift out the data (all of this one bit at a time).
1104  * The word size is 16 bits, so you have to provide the address for
1105  * every 16 bits of data.
1106  */
1107 static uint16_t
1108 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1109 {
1110 	uint16_t reg, data;
1111 	int x;
1112 
1113 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1114 	/*
1115 	 * Shift in read opcode.
1116 	 */
1117 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1118 	/*
1119 	 * Shift in address.
1120 	 */
1121 	data = 0;
1122 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1123 		if (offset & x)
1124 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1125 		else
1126 			reg = FXP_EEPROM_EECS;
1127 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1128 		DELAY(1);
1129 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1130 		DELAY(1);
1131 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1132 		DELAY(1);
1133 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1134 		data++;
1135 		if (autosize && reg == 0) {
1136 			sc->eeprom_size = data;
1137 			break;
1138 		}
1139 	}
1140 	/*
1141 	 * Shift out data.
1142 	 */
1143 	data = 0;
1144 	reg = FXP_EEPROM_EECS;
1145 	for (x = 1 << 15; x; x >>= 1) {
1146 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1147 		DELAY(1);
1148 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1149 			data |= x;
1150 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1151 		DELAY(1);
1152 	}
1153 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1154 	DELAY(1);
1155 
1156 	return (data);
1157 }
1158 
1159 static void
1160 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1161 {
1162 	int i;
1163 
1164 	/*
1165 	 * Erase/write enable.
1166 	 */
1167 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1168 	fxp_eeprom_shiftin(sc, 0x4, 3);
1169 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1170 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1171 	DELAY(1);
1172 	/*
1173 	 * Shift in write opcode, address, data.
1174 	 */
1175 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1176 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1177 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1178 	fxp_eeprom_shiftin(sc, data, 16);
1179 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1180 	DELAY(1);
1181 	/*
1182 	 * Wait for EEPROM to finish up.
1183 	 */
1184 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1185 	DELAY(1);
1186 	for (i = 0; i < 1000; i++) {
1187 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1188 			break;
1189 		DELAY(50);
1190 	}
1191 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1192 	DELAY(1);
1193 	/*
1194 	 * Erase/write disable.
1195 	 */
1196 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1197 	fxp_eeprom_shiftin(sc, 0x4, 3);
1198 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1199 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1200 	DELAY(1);
1201 }
1202 
1203 /*
1204  * From NetBSD:
1205  *
1206  * Figure out EEPROM size.
1207  *
1208  * 559's can have either 64-word or 256-word EEPROMs, the 558
1209  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1210  * talks about the existance of 16 to 256 word EEPROMs.
1211  *
1212  * The only known sizes are 64 and 256, where the 256 version is used
1213  * by CardBus cards to store CIS information.
1214  *
1215  * The address is shifted in msb-to-lsb, and after the last
1216  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1217  * after which follows the actual data. We try to detect this zero, by
1218  * probing the data-out bit in the EEPROM control register just after
1219  * having shifted in a bit. If the bit is zero, we assume we've
1220  * shifted enough address bits. The data-out should be tri-state,
1221  * before this, which should translate to a logical one.
1222  */
1223 static void
1224 fxp_autosize_eeprom(struct fxp_softc *sc)
1225 {
1226 
1227 	/* guess maximum size of 256 words */
1228 	sc->eeprom_size = 8;
1229 
1230 	/* autosize */
1231 	(void) fxp_eeprom_getword(sc, 0, 1);
1232 }
1233 
1234 static void
1235 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1236 {
1237 	int i;
1238 
1239 	for (i = 0; i < words; i++)
1240 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1241 }
1242 
1243 static void
1244 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1245 {
1246 	int i;
1247 
1248 	for (i = 0; i < words; i++)
1249 		fxp_eeprom_putword(sc, offset + i, data[i]);
1250 }
1251 
1252 /*
1253  * Grab the softc lock and call the real fxp_start_body() routine
1254  */
1255 static void
1256 fxp_start(struct ifnet *ifp)
1257 {
1258 	struct fxp_softc *sc = ifp->if_softc;
1259 
1260 	FXP_LOCK(sc);
1261 	fxp_start_body(ifp);
1262 	FXP_UNLOCK(sc);
1263 }
1264 
1265 /*
1266  * Start packet transmission on the interface.
1267  * This routine must be called with the softc lock held, and is an
1268  * internal entry point only.
1269  */
1270 static void
1271 fxp_start_body(struct ifnet *ifp)
1272 {
1273 	struct fxp_softc *sc = ifp->if_softc;
1274 	struct mbuf *mb_head;
1275 	int txqueued;
1276 
1277 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1278 
1279 	/*
1280 	 * See if we need to suspend xmit until the multicast filter
1281 	 * has been reprogrammed (which can only be done at the head
1282 	 * of the command chain).
1283 	 */
1284 	if (sc->need_mcsetup)
1285 		return;
1286 
1287 	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1288 		fxp_txeof(sc);
1289 	/*
1290 	 * We're finished if there is nothing more to add to the list or if
1291 	 * we're all filled up with buffers to transmit.
1292 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1293 	 *       a NOP command when needed.
1294 	 */
1295 	txqueued = 0;
1296 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1297 	    sc->tx_queued < FXP_NTXCB - 1) {
1298 
1299 		/*
1300 		 * Grab a packet to transmit.
1301 		 */
1302 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1303 		if (mb_head == NULL)
1304 			break;
1305 
1306 		if (fxp_encap(sc, &mb_head)) {
1307 			if (mb_head == NULL)
1308 				break;
1309 			IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
1310 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1311 		}
1312 		txqueued++;
1313 		/*
1314 		 * Pass packet to bpf if there is a listener.
1315 		 */
1316 		BPF_MTAP(ifp, mb_head);
1317 	}
1318 
1319 	/*
1320 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1321 	 * going again if suspended.
1322 	 */
1323 	if (txqueued > 0) {
1324 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1325 		fxp_scb_wait(sc);
1326 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1327 		/*
1328 		 * Set a 5 second timer just in case we don't hear
1329 		 * from the card again.
1330 		 */
1331 		sc->watchdog_timer = 5;
1332 	}
1333 }
1334 
1335 static int
1336 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1337 {
1338 	struct ifnet *ifp;
1339 	struct mbuf *m;
1340 	struct fxp_tx *txp;
1341 	struct fxp_cb_tx *cbp;
1342 	struct tcphdr *tcp;
1343 	bus_dma_segment_t segs[FXP_NTXSEG];
1344 	int error, i, nseg, tcp_payload;
1345 
1346 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1347 	ifp = sc->ifp;
1348 
1349 	tcp_payload = 0;
1350 	tcp = NULL;
1351 	/*
1352 	 * Get pointer to next available tx desc.
1353 	 */
1354 	txp = sc->fxp_desc.tx_last->tx_next;
1355 
1356 	/*
1357 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1358 	 * Ethernet Controller Family Open Source Software
1359 	 * Developer Manual says:
1360 	 *   Using software parsing is only allowed with legal
1361 	 *   TCP/IP or UDP/IP packets.
1362 	 *   ...
1363 	 *   For all other datagrams, hardware parsing must
1364 	 *   be used.
1365 	 * Software parsing appears to truncate ICMP and
1366 	 * fragmented UDP packets that contain one to three
1367 	 * bytes in the second (and final) mbuf of the packet.
1368 	 */
1369 	if (sc->flags & FXP_FLAG_EXT_RFA)
1370 		txp->tx_cb->ipcb_ip_activation_high =
1371 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1372 
1373 	m = *m_head;
1374 	/*
1375 	 * Deal with TCP/IP checksum offload. Note that
1376 	 * in order for TCP checksum offload to work,
1377 	 * the pseudo header checksum must have already
1378 	 * been computed and stored in the checksum field
1379 	 * in the TCP header. The stack should have
1380 	 * already done this for us.
1381 	 */
1382 	if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1383 		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1384 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1385 			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1386 
1387 #ifdef FXP_IP_CSUM_WAR
1388 		/*
1389 		 * XXX The 82550 chip appears to have trouble
1390 		 * dealing with IP header checksums in very small
1391 		 * datagrams, namely fragments from 1 to 3 bytes
1392 		 * in size. For example, say you want to transmit
1393 		 * a UDP packet of 1473 bytes. The packet will be
1394 		 * fragmented over two IP datagrams, the latter
1395 		 * containing only one byte of data. The 82550 will
1396 		 * botch the header checksum on the 1-byte fragment.
1397 		 * As long as the datagram contains 4 or more bytes
1398 		 * of data, you're ok.
1399 		 *
1400                  * The following code attempts to work around this
1401 		 * problem: if the datagram is less than 38 bytes
1402 		 * in size (14 bytes ether header, 20 bytes IP header,
1403 		 * plus 4 bytes of data), we punt and compute the IP
1404 		 * header checksum by hand. This workaround doesn't
1405 		 * work very well, however, since it can be fooled
1406 		 * by things like VLAN tags and IP options that make
1407 		 * the header sizes/offsets vary.
1408 		 */
1409 
1410 		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1411 			if (m->m_pkthdr.len < 38) {
1412 				struct ip *ip;
1413 				m->m_data += ETHER_HDR_LEN;
1414 				ip = mtod(m, struct ip *);
1415 				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1416 				m->m_data -= ETHER_HDR_LEN;
1417 				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1418 			} else {
1419 				txp->tx_cb->ipcb_ip_activation_high =
1420 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1421 				txp->tx_cb->ipcb_ip_schedule |=
1422 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1423 			}
1424 		}
1425 #endif
1426 	}
1427 
1428 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1429 		/*
1430 		 * 82550/82551 requires ethernet/IP/TCP headers must be
1431 		 * contained in the first active transmit buffer.
1432 		 */
1433 		struct ether_header *eh;
1434 		struct ip *ip;
1435 		uint32_t ip_off, poff;
1436 
1437 		if (M_WRITABLE(*m_head) == 0) {
1438 			/* Get a writable copy. */
1439 			m = m_dup(*m_head, M_DONTWAIT);
1440 			m_freem(*m_head);
1441 			if (m == NULL) {
1442 				*m_head = NULL;
1443 				return (ENOBUFS);
1444 			}
1445 			*m_head = m;
1446 		}
1447 		ip_off = sizeof(struct ether_header);
1448 		m = m_pullup(*m_head, ip_off);
1449 		if (m == NULL) {
1450 			*m_head = NULL;
1451 			return (ENOBUFS);
1452 		}
1453 		eh = mtod(m, struct ether_header *);
1454 		/* Check the existence of VLAN tag. */
1455 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1456 			ip_off = sizeof(struct ether_vlan_header);
1457 			m = m_pullup(m, ip_off);
1458 			if (m == NULL) {
1459 				*m_head = NULL;
1460 				return (ENOBUFS);
1461 			}
1462 		}
1463 		m = m_pullup(m, ip_off + sizeof(struct ip));
1464 		if (m == NULL) {
1465 			*m_head = NULL;
1466 			return (ENOBUFS);
1467 		}
1468 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1469 		poff = ip_off + (ip->ip_hl << 2);
1470 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1471 		if (m == NULL) {
1472 			*m_head = NULL;
1473 			return (ENOBUFS);
1474 		}
1475 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1476 		m = m_pullup(m, poff + sizeof(struct tcphdr) + tcp->th_off);
1477 		if (m == NULL) {
1478 			*m_head = NULL;
1479 			return (ENOBUFS);
1480 		}
1481 
1482 		/*
1483 		 * Since 82550/82551 doesn't modify IP length and pseudo
1484 		 * checksum in the first frame driver should compute it.
1485 		 */
1486 		ip->ip_sum = 0;
1487 		ip->ip_len = htons(ifp->if_mtu);
1488 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1489 		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1490 		    m->m_pkthdr.tso_segsz));
1491 		/* Compute total TCP payload. */
1492 		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1493 		tcp_payload -= tcp->th_off << 2;
1494 		*m_head = m;
1495 	}
1496 
1497 	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map, *m_head,
1498 	    segs, &nseg, 0);
1499 	if (error == EFBIG) {
1500 		m = m_collapse(*m_head, M_DONTWAIT, sc->maxtxseg);
1501 		if (m == NULL) {
1502 			m_freem(*m_head);
1503 			*m_head = NULL;
1504 			return (ENOMEM);
1505 		}
1506 		*m_head = m;
1507 		error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1508 	    	    *m_head, segs, &nseg, 0);
1509 		if (error != 0) {
1510 			m_freem(*m_head);
1511 			*m_head = NULL;
1512 			return (ENOMEM);
1513 		}
1514 	} else if (error != 0)
1515 		return (error);
1516 	if (nseg == 0) {
1517 		m_freem(*m_head);
1518 		*m_head = NULL;
1519 		return (EIO);
1520 	}
1521 
1522 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1523 	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1524 
1525 	cbp = txp->tx_cb;
1526 	for (i = 0; i < nseg; i++) {
1527 		/*
1528 		 * If this is an 82550/82551, then we're using extended
1529 		 * TxCBs _and_ we're using checksum offload. This means
1530 		 * that the TxCB is really an IPCB. One major difference
1531 		 * between the two is that with plain extended TxCBs,
1532 		 * the bottom half of the TxCB contains two entries from
1533 		 * the TBD array, whereas IPCBs contain just one entry:
1534 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1535 		 * checksum offload control bits. So to make things work
1536 		 * right, we have to start filling in the TBD array
1537 		 * starting from a different place depending on whether
1538 		 * the chip is an 82550/82551 or not.
1539 		 */
1540 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1541 			cbp->tbd[i + 2].tb_addr = htole32(segs[i].ds_addr);
1542 			cbp->tbd[i + 2].tb_size = htole32(segs[i].ds_len);
1543 		} else {
1544 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1545 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1546 		}
1547 	}
1548 	if (sc->flags & FXP_FLAG_EXT_RFA) {
1549 		/* Configure dynamic TBD for 82550/82551. */
1550 		cbp->tbd_number = 0xFF;
1551 		cbp->tbd[nseg + 1].tb_size |= htole32(0x8000);
1552 	} else
1553 		cbp->tbd_number = nseg;
1554 	/* Configure TSO. */
1555 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1556 		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1557 		cbp->tbd[1].tb_size = htole32(tcp_payload << 16);
1558 		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1559 		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1560 		    FXP_IPCB_TCP_PACKET |
1561 		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1562 	}
1563 	/* Configure VLAN hardware tag insertion. */
1564 	if ((m->m_flags & M_VLANTAG) != 0) {
1565 		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1566 		txp->tx_cb->ipcb_ip_activation_high |=
1567 		    FXP_IPCB_INSERTVLAN_ENABLE;
1568 	}
1569 
1570 	txp->tx_mbuf = m;
1571 	txp->tx_cb->cb_status = 0;
1572 	txp->tx_cb->byte_count = 0;
1573 	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1574 		txp->tx_cb->cb_command =
1575 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1576 		    FXP_CB_COMMAND_S);
1577 	else
1578 		txp->tx_cb->cb_command =
1579 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1580 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1581 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1582 		txp->tx_cb->tx_threshold = tx_threshold;
1583 
1584 	/*
1585 	 * Advance the end of list forward.
1586 	 */
1587 
1588 #ifdef __alpha__
1589 	/*
1590 	 * On platforms which can't access memory in 16-bit
1591 	 * granularities, we must prevent the card from DMA'ing
1592 	 * up the status while we update the command field.
1593 	 * This could cause us to overwrite the completion status.
1594 	 * XXX This is probably bogus and we're _not_ looking
1595 	 * for atomicity here.
1596 	 */
1597 	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1598 	    htole16(FXP_CB_COMMAND_S));
1599 #else
1600 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1601 #endif /*__alpha__*/
1602 	sc->fxp_desc.tx_last = txp;
1603 
1604 	/*
1605 	 * Advance the beginning of the list forward if there are
1606 	 * no other packets queued (when nothing is queued, tx_first
1607 	 * sits on the last TxCB that was sent out).
1608 	 */
1609 	if (sc->tx_queued == 0)
1610 		sc->fxp_desc.tx_first = txp;
1611 
1612 	sc->tx_queued++;
1613 
1614 	return (0);
1615 }
1616 
1617 #ifdef DEVICE_POLLING
1618 static poll_handler_t fxp_poll;
1619 
1620 static void
1621 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1622 {
1623 	struct fxp_softc *sc = ifp->if_softc;
1624 	uint8_t statack;
1625 
1626 	FXP_LOCK(sc);
1627 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1628 		FXP_UNLOCK(sc);
1629 		return;
1630 	}
1631 
1632 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1633 	    FXP_SCB_STATACK_FR;
1634 	if (cmd == POLL_AND_CHECK_STATUS) {
1635 		uint8_t tmp;
1636 
1637 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1638 		if (tmp == 0xff || tmp == 0) {
1639 			FXP_UNLOCK(sc);
1640 			return; /* nothing to do */
1641 		}
1642 		tmp &= ~statack;
1643 		/* ack what we can */
1644 		if (tmp != 0)
1645 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1646 		statack |= tmp;
1647 	}
1648 	fxp_intr_body(sc, ifp, statack, count);
1649 	FXP_UNLOCK(sc);
1650 }
1651 #endif /* DEVICE_POLLING */
1652 
1653 /*
1654  * Process interface interrupts.
1655  */
1656 static void
1657 fxp_intr(void *xsc)
1658 {
1659 	struct fxp_softc *sc = xsc;
1660 	struct ifnet *ifp = sc->ifp;
1661 	uint8_t statack;
1662 
1663 	FXP_LOCK(sc);
1664 	if (sc->suspended) {
1665 		FXP_UNLOCK(sc);
1666 		return;
1667 	}
1668 
1669 #ifdef DEVICE_POLLING
1670 	if (ifp->if_capenable & IFCAP_POLLING) {
1671 		FXP_UNLOCK(sc);
1672 		return;
1673 	}
1674 #endif
1675 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1676 		/*
1677 		 * It should not be possible to have all bits set; the
1678 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1679 		 * all bits are set, this may indicate that the card has
1680 		 * been physically ejected, so ignore it.
1681 		 */
1682 		if (statack == 0xff) {
1683 			FXP_UNLOCK(sc);
1684 			return;
1685 		}
1686 
1687 		/*
1688 		 * First ACK all the interrupts in this pass.
1689 		 */
1690 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1691 		fxp_intr_body(sc, ifp, statack, -1);
1692 	}
1693 	FXP_UNLOCK(sc);
1694 }
1695 
1696 static void
1697 fxp_txeof(struct fxp_softc *sc)
1698 {
1699 	struct ifnet *ifp;
1700 	struct fxp_tx *txp;
1701 
1702 	ifp = sc->ifp;
1703 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1704 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1705 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1706 	    txp = txp->tx_next) {
1707 		if (txp->tx_mbuf != NULL) {
1708 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1709 			    BUS_DMASYNC_POSTWRITE);
1710 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1711 			m_freem(txp->tx_mbuf);
1712 			txp->tx_mbuf = NULL;
1713 			/* clear this to reset csum offload bits */
1714 			txp->tx_cb->tbd[0].tb_addr = 0;
1715 		}
1716 		sc->tx_queued--;
1717 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1718 	}
1719 	sc->fxp_desc.tx_first = txp;
1720 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1721 	if (sc->tx_queued == 0) {
1722 		sc->watchdog_timer = 0;
1723 		if (sc->need_mcsetup)
1724 			fxp_mc_setup(sc);
1725 	}
1726 }
1727 
1728 static void
1729 fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m,
1730     uint16_t status, int pos)
1731 {
1732 	struct ether_header *eh;
1733 	struct ip *ip;
1734 	struct udphdr *uh;
1735 	int32_t hlen, len, pktlen, temp32;
1736 	uint16_t csum, *opts;
1737 
1738 	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1739 		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1740 			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1741 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1742 			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1743 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1744 			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1745 			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1746 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1747 				    CSUM_PSEUDO_HDR;
1748 				m->m_pkthdr.csum_data = 0xffff;
1749 			}
1750 		}
1751 		return;
1752 	}
1753 
1754 	pktlen = m->m_pkthdr.len;
1755 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1756 		return;
1757 	eh = mtod(m, struct ether_header *);
1758 	if (eh->ether_type != htons(ETHERTYPE_IP))
1759 		return;
1760 	ip = (struct ip *)(eh + 1);
1761 	if (ip->ip_v != IPVERSION)
1762 		return;
1763 
1764 	hlen = ip->ip_hl << 2;
1765 	pktlen -= sizeof(struct ether_header);
1766 	if (hlen < sizeof(struct ip))
1767 		return;
1768 	if (ntohs(ip->ip_len) < hlen)
1769 		return;
1770 	if (ntohs(ip->ip_len) != pktlen)
1771 		return;
1772 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1773 		return;	/* can't handle fragmented packet */
1774 
1775 	switch (ip->ip_p) {
1776 	case IPPROTO_TCP:
1777 		if (pktlen < (hlen + sizeof(struct tcphdr)))
1778 			return;
1779 		break;
1780 	case IPPROTO_UDP:
1781 		if (pktlen < (hlen + sizeof(struct udphdr)))
1782 			return;
1783 		uh = (struct udphdr *)((caddr_t)ip + hlen);
1784 		if (uh->uh_sum == 0)
1785 			return; /* no checksum */
1786 		break;
1787 	default:
1788 		return;
1789 	}
1790 	/* Extract computed checksum. */
1791 	csum = be16dec(mtod(m, char *) + pos);
1792 	/* checksum fixup for IP options */
1793 	len = hlen - sizeof(struct ip);
1794 	if (len > 0) {
1795 		opts = (uint16_t *)(ip + 1);
1796 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1797 			temp32 = csum - *opts;
1798 			temp32 = (temp32 >> 16) + (temp32 & 65535);
1799 			csum = temp32 & 65535;
1800 		}
1801 	}
1802 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1803 	m->m_pkthdr.csum_data = csum;
1804 }
1805 
1806 static void
1807 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1808     int count)
1809 {
1810 	struct mbuf *m;
1811 	struct fxp_rx *rxp;
1812 	struct fxp_rfa *rfa;
1813 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1814 	uint16_t status;
1815 
1816 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1817 	if (rnr)
1818 		sc->rnr++;
1819 #ifdef DEVICE_POLLING
1820 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1821 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1822 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1823 		rnr = 1;
1824 	}
1825 #endif
1826 
1827 	/*
1828 	 * Free any finished transmit mbuf chains.
1829 	 *
1830 	 * Handle the CNA event likt a CXTNO event. It used to
1831 	 * be that this event (control unit not ready) was not
1832 	 * encountered, but it is now with the SMPng modifications.
1833 	 * The exact sequence of events that occur when the interface
1834 	 * is brought up are different now, and if this event
1835 	 * goes unhandled, the configuration/rxfilter setup sequence
1836 	 * can stall for several seconds. The result is that no
1837 	 * packets go out onto the wire for about 5 to 10 seconds
1838 	 * after the interface is ifconfig'ed for the first time.
1839 	 */
1840 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1841 		fxp_txeof(sc);
1842 
1843 	/*
1844 	 * Try to start more packets transmitting.
1845 	 */
1846 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1847 		fxp_start_body(ifp);
1848 
1849 	/*
1850 	 * Just return if nothing happened on the receive side.
1851 	 */
1852 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1853 		return;
1854 
1855 	/*
1856 	 * Process receiver interrupts. If a no-resource (RNR)
1857 	 * condition exists, get whatever packets we can and
1858 	 * re-start the receiver.
1859 	 *
1860 	 * When using polling, we do not process the list to completion,
1861 	 * so when we get an RNR interrupt we must defer the restart
1862 	 * until we hit the last buffer with the C bit set.
1863 	 * If we run out of cycles and rfa_headm has the C bit set,
1864 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1865 	 * that the info will be used in the subsequent polling cycle.
1866 	 */
1867 	for (;;) {
1868 		rxp = sc->fxp_desc.rx_head;
1869 		m = rxp->rx_mbuf;
1870 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1871 		    RFA_ALIGNMENT_FUDGE);
1872 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1873 		    BUS_DMASYNC_POSTREAD);
1874 
1875 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1876 		if (count >= 0 && count-- == 0) {
1877 			if (rnr) {
1878 				/* Defer RNR processing until the next time. */
1879 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1880 				rnr = 0;
1881 			}
1882 			break;
1883 		}
1884 #endif /* DEVICE_POLLING */
1885 
1886 		status = le16toh(rfa->rfa_status);
1887 		if ((status & FXP_RFA_STATUS_C) == 0)
1888 			break;
1889 
1890 		/*
1891 		 * Advance head forward.
1892 		 */
1893 		sc->fxp_desc.rx_head = rxp->rx_next;
1894 
1895 		/*
1896 		 * Add a new buffer to the receive chain.
1897 		 * If this fails, the old buffer is recycled
1898 		 * instead.
1899 		 */
1900 		if (fxp_new_rfabuf(sc, rxp) == 0) {
1901 			int total_len;
1902 
1903 			/*
1904 			 * Fetch packet length (the top 2 bits of
1905 			 * actual_size are flags set by the controller
1906 			 * upon completion), and drop the packet in case
1907 			 * of bogus length or CRC errors.
1908 			 */
1909 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1910 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1911 			    (ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1912 				/* Adjust for appended checksum bytes. */
1913 				total_len -= 2;
1914 			}
1915 			if (total_len < sizeof(struct ether_header) ||
1916 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1917 				sc->rfa_size || status & FXP_RFA_STATUS_CRC) {
1918 				m_freem(m);
1919 				continue;
1920 			}
1921 
1922 			m->m_pkthdr.len = m->m_len = total_len;
1923 			m->m_pkthdr.rcvif = ifp;
1924 
1925                         /* Do IP checksum checking. */
1926 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1927 				fxp_rxcsum(sc, ifp, m, status, total_len);
1928 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1929 			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1930 				m->m_pkthdr.ether_vtag =
1931 				    ntohs(rfa->rfax_vlan_id);
1932 				m->m_flags |= M_VLANTAG;
1933 			}
1934 			/*
1935 			 * Drop locks before calling if_input() since it
1936 			 * may re-enter fxp_start() in the netisr case.
1937 			 * This would result in a lock reversal.  Better
1938 			 * performance might be obtained by chaining all
1939 			 * packets received, dropping the lock, and then
1940 			 * calling if_input() on each one.
1941 			 */
1942 			FXP_UNLOCK(sc);
1943 			(*ifp->if_input)(ifp, m);
1944 			FXP_LOCK(sc);
1945 		} else {
1946 			/* Reuse RFA and loaded DMA map. */
1947 			ifp->if_iqdrops++;
1948 			fxp_discard_rfabuf(sc, rxp);
1949 		}
1950 		fxp_add_rfabuf(sc, rxp);
1951 	}
1952 	if (rnr) {
1953 		fxp_scb_wait(sc);
1954 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1955 		    sc->fxp_desc.rx_head->rx_addr);
1956 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1957 	}
1958 }
1959 
1960 /*
1961  * Update packet in/out/collision statistics. The i82557 doesn't
1962  * allow you to access these counters without doing a fairly
1963  * expensive DMA to get _all_ of the statistics it maintains, so
1964  * we do this operation here only once per second. The statistics
1965  * counters in the kernel are updated from the previous dump-stats
1966  * DMA and then a new dump-stats DMA is started. The on-chip
1967  * counters are zeroed when the DMA completes. If we can't start
1968  * the DMA immediately, we don't wait - we just prepare to read
1969  * them again next time.
1970  */
1971 static void
1972 fxp_tick(void *xsc)
1973 {
1974 	struct fxp_softc *sc = xsc;
1975 	struct ifnet *ifp = sc->ifp;
1976 	struct fxp_stats *sp = sc->fxp_stats;
1977 
1978 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1979 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1980 	ifp->if_opackets += le32toh(sp->tx_good);
1981 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1982 	if (sp->rx_good) {
1983 		ifp->if_ipackets += le32toh(sp->rx_good);
1984 		sc->rx_idle_secs = 0;
1985 	} else {
1986 		/*
1987 		 * Receiver's been idle for another second.
1988 		 */
1989 		sc->rx_idle_secs++;
1990 	}
1991 	ifp->if_ierrors +=
1992 	    le32toh(sp->rx_crc_errors) +
1993 	    le32toh(sp->rx_alignment_errors) +
1994 	    le32toh(sp->rx_rnr_errors) +
1995 	    le32toh(sp->rx_overrun_errors);
1996 	/*
1997 	 * If any transmit underruns occured, bump up the transmit
1998 	 * threshold by another 512 bytes (64 * 8).
1999 	 */
2000 	if (sp->tx_underruns) {
2001 		ifp->if_oerrors += le32toh(sp->tx_underruns);
2002 		if (tx_threshold < 192)
2003 			tx_threshold += 64;
2004 	}
2005 
2006 	/*
2007 	 * Release any xmit buffers that have completed DMA. This isn't
2008 	 * strictly necessary to do here, but it's advantagous for mbufs
2009 	 * with external storage to be released in a timely manner rather
2010 	 * than being defered for a potentially long time. This limits
2011 	 * the delay to a maximum of one second.
2012 	 */
2013 	fxp_txeof(sc);
2014 
2015 	/*
2016 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2017 	 * then assume the receiver has locked up and attempt to clear
2018 	 * the condition by reprogramming the multicast filter. This is
2019 	 * a work-around for a bug in the 82557 where the receiver locks
2020 	 * up if it gets certain types of garbage in the syncronization
2021 	 * bits prior to the packet header. This bug is supposed to only
2022 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2023 	 * mode as well (perhaps due to a 10/100 speed transition).
2024 	 */
2025 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2026 		sc->rx_idle_secs = 0;
2027 		fxp_mc_setup(sc);
2028 	}
2029 	/*
2030 	 * If there is no pending command, start another stats
2031 	 * dump. Otherwise punt for now.
2032 	 */
2033 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2034 		/*
2035 		 * Start another stats dump.
2036 		 */
2037 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2038 		    BUS_DMASYNC_PREREAD);
2039 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2040 	} else {
2041 		/*
2042 		 * A previous command is still waiting to be accepted.
2043 		 * Just zero our copy of the stats and wait for the
2044 		 * next timer event to update them.
2045 		 */
2046 		sp->tx_good = 0;
2047 		sp->tx_underruns = 0;
2048 		sp->tx_total_collisions = 0;
2049 
2050 		sp->rx_good = 0;
2051 		sp->rx_crc_errors = 0;
2052 		sp->rx_alignment_errors = 0;
2053 		sp->rx_rnr_errors = 0;
2054 		sp->rx_overrun_errors = 0;
2055 	}
2056 	if (sc->miibus != NULL)
2057 		mii_tick(device_get_softc(sc->miibus));
2058 
2059 	/*
2060 	 * Check that chip hasn't hung.
2061 	 */
2062 	fxp_watchdog(sc);
2063 
2064 	/*
2065 	 * Schedule another timeout one second from now.
2066 	 */
2067 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2068 }
2069 
2070 /*
2071  * Stop the interface. Cancels the statistics updater and resets
2072  * the interface.
2073  */
2074 static void
2075 fxp_stop(struct fxp_softc *sc)
2076 {
2077 	struct ifnet *ifp = sc->ifp;
2078 	struct fxp_tx *txp;
2079 	int i;
2080 
2081 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2082 	sc->watchdog_timer = 0;
2083 
2084 	/*
2085 	 * Cancel stats updater.
2086 	 */
2087 	callout_stop(&sc->stat_ch);
2088 
2089 	/*
2090 	 * Preserve PCI configuration, configure, IA/multicast
2091 	 * setup and put RU and CU into idle state.
2092 	 */
2093 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2094 	DELAY(50);
2095 	/* Disable interrupts. */
2096 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2097 
2098 	/*
2099 	 * Release any xmit buffers.
2100 	 */
2101 	txp = sc->fxp_desc.tx_list;
2102 	if (txp != NULL) {
2103 		for (i = 0; i < FXP_NTXCB; i++) {
2104  			if (txp[i].tx_mbuf != NULL) {
2105 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
2106 				    BUS_DMASYNC_POSTWRITE);
2107 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
2108 				m_freem(txp[i].tx_mbuf);
2109 				txp[i].tx_mbuf = NULL;
2110 				/* clear this to reset csum offload bits */
2111 				txp[i].tx_cb->tbd[0].tb_addr = 0;
2112 			}
2113 		}
2114 	}
2115 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2116 	sc->tx_queued = 0;
2117 }
2118 
2119 /*
2120  * Watchdog/transmission transmit timeout handler. Called when a
2121  * transmission is started on the interface, but no interrupt is
2122  * received before the timeout. This usually indicates that the
2123  * card has wedged for some reason.
2124  */
2125 static void
2126 fxp_watchdog(struct fxp_softc *sc)
2127 {
2128 
2129 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2130 
2131 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2132 		return;
2133 
2134 	device_printf(sc->dev, "device timeout\n");
2135 	sc->ifp->if_oerrors++;
2136 
2137 	fxp_init_body(sc);
2138 }
2139 
2140 /*
2141  * Acquire locks and then call the real initialization function.  This
2142  * is necessary because ether_ioctl() calls if_init() and this would
2143  * result in mutex recursion if the mutex was held.
2144  */
2145 static void
2146 fxp_init(void *xsc)
2147 {
2148 	struct fxp_softc *sc = xsc;
2149 
2150 	FXP_LOCK(sc);
2151 	fxp_init_body(sc);
2152 	FXP_UNLOCK(sc);
2153 }
2154 
2155 /*
2156  * Perform device initialization. This routine must be called with the
2157  * softc lock held.
2158  */
2159 static void
2160 fxp_init_body(struct fxp_softc *sc)
2161 {
2162 	struct ifnet *ifp = sc->ifp;
2163 	struct fxp_cb_config *cbp;
2164 	struct fxp_cb_ias *cb_ias;
2165 	struct fxp_cb_tx *tcbp;
2166 	struct fxp_tx *txp;
2167 	struct fxp_cb_mcs *mcsp;
2168 	int i, prm;
2169 
2170 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2171 	/*
2172 	 * Cancel any pending I/O
2173 	 */
2174 	fxp_stop(sc);
2175 
2176 	/*
2177 	 * Issue software reset, which also unloads the microcode.
2178 	 */
2179 	sc->flags &= ~FXP_FLAG_UCODE;
2180 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2181 	DELAY(50);
2182 
2183 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2184 
2185 	/*
2186 	 * Initialize base of CBL and RFA memory. Loading with zero
2187 	 * sets it up for regular linear addressing.
2188 	 */
2189 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2190 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2191 
2192 	fxp_scb_wait(sc);
2193 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2194 
2195 	/*
2196 	 * Initialize base of dump-stats buffer.
2197 	 */
2198 	fxp_scb_wait(sc);
2199 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
2200 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2201 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2202 
2203 	/*
2204 	 * Attempt to load microcode if requested.
2205 	 */
2206 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
2207 		fxp_load_ucode(sc);
2208 
2209 	/*
2210 	 * Initialize the multicast address list.
2211 	 */
2212 	if (fxp_mc_addrs(sc)) {
2213 		mcsp = sc->mcsp;
2214 		mcsp->cb_status = 0;
2215 		mcsp->cb_command =
2216 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2217 		mcsp->link_addr = 0xffffffff;
2218 		/*
2219 	 	 * Start the multicast setup command.
2220 		 */
2221 		fxp_scb_wait(sc);
2222 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2223 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2224 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2225 		/* ...and wait for it to complete. */
2226 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2227 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2228 		    BUS_DMASYNC_POSTWRITE);
2229 	}
2230 
2231 	/*
2232 	 * We temporarily use memory that contains the TxCB list to
2233 	 * construct the config CB. The TxCB list memory is rebuilt
2234 	 * later.
2235 	 */
2236 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2237 
2238 	/*
2239 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2240 	 * zero and must be one bits in this structure and this is the easiest
2241 	 * way to initialize them all to proper values.
2242 	 */
2243 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2244 
2245 	cbp->cb_status =	0;
2246 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2247 	    FXP_CB_COMMAND_EL);
2248 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2249 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2250 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2251 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2252 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2253 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2254 	cbp->type_enable =	0;	/* actually reserved */
2255 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2256 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2257 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2258 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2259 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2260 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2261 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2262 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2263 	cbp->ci_int =		1;	/* interrupt on CU idle */
2264 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2265 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2266 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2267 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2268 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2269 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2270 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2271 	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2272 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2273 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2274 	cbp->csma_dis =		0;	/* (don't) disable link */
2275 	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2276 	    (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0;
2277 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2278 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2279 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2280 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2281 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2282 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2283 	cbp->loopback =		0;	/* (don't) loopback */
2284 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2285 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2286 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2287 	cbp->promiscuous =	prm;	/* promiscuous mode */
2288 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2289 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2290 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2291 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2292 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2293 
2294 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2295 	cbp->padding =		1;	/* (do) pad short tx packets */
2296 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2297 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2298 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2299 	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2300 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2301 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2302 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2303 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2304 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2305 	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2306 	    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2307 
2308 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2309 		/*
2310 		 * The 82557 has no hardware flow control, the values
2311 		 * below are the defaults for the chip.
2312 		 */
2313 		cbp->fc_delay_lsb =	0;
2314 		cbp->fc_delay_msb =	0x40;
2315 		cbp->pri_fc_thresh =	3;
2316 		cbp->tx_fc_dis =	0;
2317 		cbp->rx_fc_restop =	0;
2318 		cbp->rx_fc_restart =	0;
2319 		cbp->fc_filter =	0;
2320 		cbp->pri_fc_loc =	1;
2321 	} else {
2322 		cbp->fc_delay_lsb =	0x1f;
2323 		cbp->fc_delay_msb =	0x01;
2324 		cbp->pri_fc_thresh =	3;
2325 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2326 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2327 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2328 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2329 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2330 	}
2331 
2332 	/*
2333 	 * Start the config command/DMA.
2334 	 */
2335 	fxp_scb_wait(sc);
2336 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2337 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2338 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2339 	/* ...and wait for it to complete. */
2340 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2341 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2342 
2343 	/*
2344 	 * Now initialize the station address. Temporarily use the TxCB
2345 	 * memory area like we did above for the config CB.
2346 	 */
2347 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2348 	cb_ias->cb_status = 0;
2349 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2350 	cb_ias->link_addr = 0xffffffff;
2351 	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2352 
2353 	/*
2354 	 * Start the IAS (Individual Address Setup) command/DMA.
2355 	 */
2356 	fxp_scb_wait(sc);
2357 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2358 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2359 	/* ...and wait for it to complete. */
2360 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2361 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2362 
2363 	/*
2364 	 * Initialize transmit control block (TxCB) list.
2365 	 */
2366 	txp = sc->fxp_desc.tx_list;
2367 	tcbp = sc->fxp_desc.cbl_list;
2368 	bzero(tcbp, FXP_TXCB_SZ);
2369 	for (i = 0; i < FXP_NTXCB; i++) {
2370 		txp[i].tx_mbuf = NULL;
2371 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2372 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2373 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2374 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2375 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2376 			tcbp[i].tbd_array_addr =
2377 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2378 		else
2379 			tcbp[i].tbd_array_addr =
2380 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2381 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2382 	}
2383 	/*
2384 	 * Set the suspend flag on the first TxCB and start the control
2385 	 * unit. It will execute the NOP and then suspend.
2386 	 */
2387 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2388 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2389 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2390 	sc->tx_queued = 1;
2391 
2392 	fxp_scb_wait(sc);
2393 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2394 
2395 	/*
2396 	 * Initialize receiver buffer area - RFA.
2397 	 */
2398 	fxp_scb_wait(sc);
2399 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2400 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2401 
2402 	/*
2403 	 * Set current media.
2404 	 */
2405 	if (sc->miibus != NULL)
2406 		mii_mediachg(device_get_softc(sc->miibus));
2407 
2408 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2409 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2410 
2411 	/*
2412 	 * Enable interrupts.
2413 	 */
2414 #ifdef DEVICE_POLLING
2415 	/*
2416 	 * ... but only do that if we are not polling. And because (presumably)
2417 	 * the default is interrupts on, we need to disable them explicitly!
2418 	 */
2419 	if (ifp->if_capenable & IFCAP_POLLING )
2420 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2421 	else
2422 #endif /* DEVICE_POLLING */
2423 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2424 
2425 	/*
2426 	 * Start stats updater.
2427 	 */
2428 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2429 }
2430 
2431 static int
2432 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2433 {
2434 
2435 	return (0);
2436 }
2437 
2438 static void
2439 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2440 {
2441 
2442 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2443 }
2444 
2445 /*
2446  * Change media according to request.
2447  */
2448 static int
2449 fxp_ifmedia_upd(struct ifnet *ifp)
2450 {
2451 	struct fxp_softc *sc = ifp->if_softc;
2452 	struct mii_data *mii;
2453 
2454 	mii = device_get_softc(sc->miibus);
2455 	FXP_LOCK(sc);
2456 	if (mii->mii_instance) {
2457 		struct mii_softc	*miisc;
2458 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2459 			mii_phy_reset(miisc);
2460 	}
2461 	mii_mediachg(mii);
2462 	FXP_UNLOCK(sc);
2463 	return (0);
2464 }
2465 
2466 /*
2467  * Notify the world which media we're using.
2468  */
2469 static void
2470 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2471 {
2472 	struct fxp_softc *sc = ifp->if_softc;
2473 	struct mii_data *mii;
2474 
2475 	mii = device_get_softc(sc->miibus);
2476 	FXP_LOCK(sc);
2477 	mii_pollstat(mii);
2478 	ifmr->ifm_active = mii->mii_media_active;
2479 	ifmr->ifm_status = mii->mii_media_status;
2480 
2481 	if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T &&
2482 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2483 		sc->cu_resume_bug = 1;
2484 	else
2485 		sc->cu_resume_bug = 0;
2486 	FXP_UNLOCK(sc);
2487 }
2488 
2489 /*
2490  * Add a buffer to the end of the RFA buffer list.
2491  * Return 0 if successful, 1 for failure. A failure results in
2492  * reusing the RFA buffer.
2493  * The RFA struct is stuck at the beginning of mbuf cluster and the
2494  * data pointer is fixed up to point just past it.
2495  */
2496 static int
2497 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2498 {
2499 	struct mbuf *m;
2500 	struct fxp_rfa *rfa;
2501 	bus_dmamap_t tmp_map;
2502 	int error;
2503 
2504 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2505 	if (m == NULL)
2506 		return (ENOBUFS);
2507 
2508 	/*
2509 	 * Move the data pointer up so that the incoming data packet
2510 	 * will be 32-bit aligned.
2511 	 */
2512 	m->m_data += RFA_ALIGNMENT_FUDGE;
2513 
2514 	/*
2515 	 * Get a pointer to the base of the mbuf cluster and move
2516 	 * data start past it.
2517 	 */
2518 	rfa = mtod(m, struct fxp_rfa *);
2519 	m->m_data += sc->rfa_size;
2520 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2521 
2522 	rfa->rfa_status = 0;
2523 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2524 	rfa->actual_size = 0;
2525 	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2526 	    sc->rfa_size;
2527 
2528 	/*
2529 	 * Initialize the rest of the RFA.  Note that since the RFA
2530 	 * is misaligned, we cannot store values directly.  We're thus
2531 	 * using the le32enc() function which handles endianness and
2532 	 * is also alignment-safe.
2533 	 */
2534 	le32enc(&rfa->link_addr, 0xffffffff);
2535 	le32enc(&rfa->rbd_addr, 0xffffffff);
2536 
2537 	/* Map the RFA into DMA memory. */
2538 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2539 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2540 	    &rxp->rx_addr, 0);
2541 	if (error) {
2542 		m_freem(m);
2543 		return (error);
2544 	}
2545 
2546 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2547 	tmp_map = sc->spare_map;
2548 	sc->spare_map = rxp->rx_map;
2549 	rxp->rx_map = tmp_map;
2550 	rxp->rx_mbuf = m;
2551 
2552 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2553 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2554 	return (0);
2555 }
2556 
2557 static void
2558 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2559 {
2560 	struct fxp_rfa *p_rfa;
2561 	struct fxp_rx *p_rx;
2562 
2563 	/*
2564 	 * If there are other buffers already on the list, attach this
2565 	 * one to the end by fixing up the tail to point to this one.
2566 	 */
2567 	if (sc->fxp_desc.rx_head != NULL) {
2568 		p_rx = sc->fxp_desc.rx_tail;
2569 		p_rfa = (struct fxp_rfa *)
2570 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2571 		p_rx->rx_next = rxp;
2572 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2573 		p_rfa->rfa_control = 0;
2574 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2575 		    BUS_DMASYNC_PREWRITE);
2576 	} else {
2577 		rxp->rx_next = NULL;
2578 		sc->fxp_desc.rx_head = rxp;
2579 	}
2580 	sc->fxp_desc.rx_tail = rxp;
2581 }
2582 
2583 static void
2584 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2585 {
2586 	struct mbuf *m;
2587 	struct fxp_rfa *rfa;
2588 
2589 	m = rxp->rx_mbuf;
2590 	m->m_data = m->m_ext.ext_buf;
2591 	/*
2592 	 * Move the data pointer up so that the incoming data packet
2593 	 * will be 32-bit aligned.
2594 	 */
2595 	m->m_data += RFA_ALIGNMENT_FUDGE;
2596 
2597 	/*
2598 	 * Get a pointer to the base of the mbuf cluster and move
2599 	 * data start past it.
2600 	 */
2601 	rfa = mtod(m, struct fxp_rfa *);
2602 	m->m_data += sc->rfa_size;
2603 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2604 
2605 	rfa->rfa_status = 0;
2606 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2607 	rfa->actual_size = 0;
2608 
2609 	/*
2610 	 * Initialize the rest of the RFA.  Note that since the RFA
2611 	 * is misaligned, we cannot store values directly.  We're thus
2612 	 * using the le32enc() function which handles endianness and
2613 	 * is also alignment-safe.
2614 	 */
2615 	le32enc(&rfa->link_addr, 0xffffffff);
2616 	le32enc(&rfa->rbd_addr, 0xffffffff);
2617 
2618 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2619 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2620 }
2621 
2622 static int
2623 fxp_miibus_readreg(device_t dev, int phy, int reg)
2624 {
2625 	struct fxp_softc *sc = device_get_softc(dev);
2626 	int count = 10000;
2627 	int value;
2628 
2629 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2630 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2631 
2632 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2633 	    && count--)
2634 		DELAY(10);
2635 
2636 	if (count <= 0)
2637 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2638 
2639 	return (value & 0xffff);
2640 }
2641 
2642 static void
2643 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2644 {
2645 	struct fxp_softc *sc = device_get_softc(dev);
2646 	int count = 10000;
2647 
2648 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2649 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2650 	    (value & 0xffff));
2651 
2652 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2653 	    count--)
2654 		DELAY(10);
2655 
2656 	if (count <= 0)
2657 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2658 }
2659 
2660 static int
2661 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2662 {
2663 	struct fxp_softc *sc = ifp->if_softc;
2664 	struct ifreq *ifr = (struct ifreq *)data;
2665 	struct mii_data *mii;
2666 	int flag, mask, error = 0, reinit;
2667 
2668 	switch (command) {
2669 	case SIOCSIFFLAGS:
2670 		FXP_LOCK(sc);
2671 		if (ifp->if_flags & IFF_ALLMULTI)
2672 			sc->flags |= FXP_FLAG_ALL_MCAST;
2673 		else
2674 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2675 
2676 		/*
2677 		 * If interface is marked up and not running, then start it.
2678 		 * If it is marked down and running, stop it.
2679 		 * XXX If it's up then re-initialize it. This is so flags
2680 		 * such as IFF_PROMISC are handled.
2681 		 */
2682 		if (ifp->if_flags & IFF_UP) {
2683 			fxp_init_body(sc);
2684 		} else {
2685 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2686 				fxp_stop(sc);
2687 		}
2688 		FXP_UNLOCK(sc);
2689 		break;
2690 
2691 	case SIOCADDMULTI:
2692 	case SIOCDELMULTI:
2693 		FXP_LOCK(sc);
2694 		if (ifp->if_flags & IFF_ALLMULTI)
2695 			sc->flags |= FXP_FLAG_ALL_MCAST;
2696 		else
2697 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2698 		/*
2699 		 * Multicast list has changed; set the hardware filter
2700 		 * accordingly.
2701 		 */
2702 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2703 			fxp_mc_setup(sc);
2704 		/*
2705 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2706 		 * again rather than else {}.
2707 		 */
2708 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2709 			fxp_init_body(sc);
2710 		FXP_UNLOCK(sc);
2711 		error = 0;
2712 		break;
2713 
2714 	case SIOCSIFMEDIA:
2715 	case SIOCGIFMEDIA:
2716 		if (sc->miibus != NULL) {
2717 			mii = device_get_softc(sc->miibus);
2718                         error = ifmedia_ioctl(ifp, ifr,
2719                             &mii->mii_media, command);
2720 		} else {
2721                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2722 		}
2723 		break;
2724 
2725 	case SIOCSIFCAP:
2726 		reinit = 0;
2727 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2728 #ifdef DEVICE_POLLING
2729 		if (mask & IFCAP_POLLING) {
2730 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2731 				error = ether_poll_register(fxp_poll, ifp);
2732 				if (error)
2733 					return(error);
2734 				FXP_LOCK(sc);
2735 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2736 				    FXP_SCB_INTR_DISABLE);
2737 				ifp->if_capenable |= IFCAP_POLLING;
2738 				FXP_UNLOCK(sc);
2739 			} else {
2740 				error = ether_poll_deregister(ifp);
2741 				/* Enable interrupts in any case */
2742 				FXP_LOCK(sc);
2743 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2744 				ifp->if_capenable &= ~IFCAP_POLLING;
2745 				FXP_UNLOCK(sc);
2746 			}
2747 		}
2748 #endif
2749 		FXP_LOCK(sc);
2750 		if ((mask & IFCAP_TXCSUM) != 0 &&
2751 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2752 			ifp->if_capenable ^= IFCAP_TXCSUM;
2753 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2754 				ifp->if_hwassist |= FXP_CSUM_FEATURES;
2755 			else
2756 				ifp->if_hwassist &= ~FXP_CSUM_FEATURES;
2757 		}
2758 		if ((mask & IFCAP_RXCSUM) != 0 &&
2759 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
2760 			ifp->if_capenable ^= IFCAP_RXCSUM;
2761 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2762 				reinit++;
2763 		}
2764 		if ((mask & IFCAP_TSO4) != 0 &&
2765 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2766 			ifp->if_capenable ^= IFCAP_TSO4;
2767 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2768 				ifp->if_hwassist |= CSUM_TSO;
2769 			else
2770 				ifp->if_hwassist &= ~CSUM_TSO;
2771 		}
2772 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2773 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2774 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2775 		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2776 		    (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) {
2777 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2778 			if (sc->revision != FXP_REV_82557)
2779 				flag = FXP_FLAG_LONG_PKT_EN;
2780 			else /* a hack to get long frames on the old chip */
2781 				flag = FXP_FLAG_SAVE_BAD;
2782 			sc->flags ^= flag;
2783 			if (ifp->if_flags & IFF_UP)
2784 				reinit++;
2785 		}
2786 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2787 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2788 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2789 				reinit++;
2790 		}
2791 		if (reinit > 0 && ifp->if_flags & IFF_UP)
2792 			fxp_init_body(sc);
2793 		FXP_UNLOCK(sc);
2794 		VLAN_CAPABILITIES(ifp);
2795 		break;
2796 
2797 	default:
2798 		error = ether_ioctl(ifp, command, data);
2799 	}
2800 	return (error);
2801 }
2802 
2803 /*
2804  * Fill in the multicast address list and return number of entries.
2805  */
2806 static int
2807 fxp_mc_addrs(struct fxp_softc *sc)
2808 {
2809 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2810 	struct ifnet *ifp = sc->ifp;
2811 	struct ifmultiaddr *ifma;
2812 	int nmcasts;
2813 
2814 	nmcasts = 0;
2815 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2816 		IF_ADDR_LOCK(ifp);
2817 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2818 			if (ifma->ifma_addr->sa_family != AF_LINK)
2819 				continue;
2820 			if (nmcasts >= MAXMCADDR) {
2821 				sc->flags |= FXP_FLAG_ALL_MCAST;
2822 				nmcasts = 0;
2823 				break;
2824 			}
2825 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2826 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2827 			nmcasts++;
2828 		}
2829 		IF_ADDR_UNLOCK(ifp);
2830 	}
2831 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2832 	return (nmcasts);
2833 }
2834 
2835 /*
2836  * Program the multicast filter.
2837  *
2838  * We have an artificial restriction that the multicast setup command
2839  * must be the first command in the chain, so we take steps to ensure
2840  * this. By requiring this, it allows us to keep up the performance of
2841  * the pre-initialized command ring (esp. link pointers) by not actually
2842  * inserting the mcsetup command in the ring - i.e. its link pointer
2843  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2844  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2845  * lead into the regular TxCB ring when it completes.
2846  *
2847  * This function must be called at splimp.
2848  */
2849 static void
2850 fxp_mc_setup(struct fxp_softc *sc)
2851 {
2852 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2853 	struct fxp_tx *txp;
2854 	int count;
2855 
2856 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2857 	/*
2858 	 * If there are queued commands, we must wait until they are all
2859 	 * completed. If we are already waiting, then add a NOP command
2860 	 * with interrupt option so that we're notified when all commands
2861 	 * have been completed - fxp_start() ensures that no additional
2862 	 * TX commands will be added when need_mcsetup is true.
2863 	 */
2864 	if (sc->tx_queued) {
2865 		/*
2866 		 * need_mcsetup will be true if we are already waiting for the
2867 		 * NOP command to be completed (see below). In this case, bail.
2868 		 */
2869 		if (sc->need_mcsetup)
2870 			return;
2871 		sc->need_mcsetup = 1;
2872 
2873 		/*
2874 		 * Add a NOP command with interrupt so that we are notified
2875 		 * when all TX commands have been processed.
2876 		 */
2877 		txp = sc->fxp_desc.tx_last->tx_next;
2878 		txp->tx_mbuf = NULL;
2879 		txp->tx_cb->cb_status = 0;
2880 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2881 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2882 		/*
2883 		 * Advance the end of list forward.
2884 		 */
2885 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2886 		    htole16(~FXP_CB_COMMAND_S);
2887 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2888 		sc->fxp_desc.tx_last = txp;
2889 		sc->tx_queued++;
2890 		/*
2891 		 * Issue a resume in case the CU has just suspended.
2892 		 */
2893 		fxp_scb_wait(sc);
2894 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2895 		/*
2896 		 * Set a 5 second timer just in case we don't hear from the
2897 		 * card again.
2898 		 */
2899 		sc->watchdog_timer = 5;
2900 
2901 		return;
2902 	}
2903 	sc->need_mcsetup = 0;
2904 
2905 	/*
2906 	 * Initialize multicast setup descriptor.
2907 	 */
2908 	mcsp->cb_status = 0;
2909 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2910 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2911 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2912 	txp = &sc->fxp_desc.mcs_tx;
2913 	txp->tx_mbuf = NULL;
2914 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2915 	txp->tx_next = sc->fxp_desc.tx_list;
2916 	(void) fxp_mc_addrs(sc);
2917 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2918 	sc->tx_queued = 1;
2919 
2920 	/*
2921 	 * Wait until command unit is not active. This should never
2922 	 * be the case when nothing is queued, but make sure anyway.
2923 	 */
2924 	count = 100;
2925 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2926 	    FXP_SCB_CUS_ACTIVE && --count)
2927 		DELAY(10);
2928 	if (count == 0) {
2929 		device_printf(sc->dev, "command queue timeout\n");
2930 		return;
2931 	}
2932 
2933 	/*
2934 	 * Start the multicast setup command.
2935 	 */
2936 	fxp_scb_wait(sc);
2937 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2938 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2939 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2940 
2941 	sc->watchdog_timer = 2;
2942 	return;
2943 }
2944 
2945 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2946 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2947 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2948 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2949 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2950 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2951 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2952 
2953 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2954 
2955 struct ucode {
2956 	uint32_t	revision;
2957 	uint32_t	*ucode;
2958 	int		length;
2959 	u_short		int_delay_offset;
2960 	u_short		bundle_max_offset;
2961 } ucode_table[] = {
2962 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2963 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2964 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2965 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2966 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2967 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2968 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2969 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2970 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2971 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2972 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2973 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2974 	{ 0, NULL, 0, 0, 0 }
2975 };
2976 
2977 static void
2978 fxp_load_ucode(struct fxp_softc *sc)
2979 {
2980 	struct ucode *uc;
2981 	struct fxp_cb_ucode *cbp;
2982 	int i;
2983 
2984 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2985 		if (sc->revision == uc->revision)
2986 			break;
2987 	if (uc->ucode == NULL)
2988 		return;
2989 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2990 	cbp->cb_status = 0;
2991 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2992 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2993 	for (i = 0; i < uc->length; i++)
2994 		cbp->ucode[i] = htole32(uc->ucode[i]);
2995 	if (uc->int_delay_offset)
2996 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2997 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2998 	if (uc->bundle_max_offset)
2999 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3000 		    htole16(sc->tunable_bundle_max);
3001 	/*
3002 	 * Download the ucode to the chip.
3003 	 */
3004 	fxp_scb_wait(sc);
3005 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
3006 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3007 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3008 	/* ...and wait for it to complete. */
3009 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3010 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
3011 	device_printf(sc->dev,
3012 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3013 	    sc->tunable_int_delay,
3014 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3015 	sc->flags |= FXP_FLAG_UCODE;
3016 }
3017 
3018 static int
3019 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3020 {
3021 	int error, value;
3022 
3023 	value = *(int *)arg1;
3024 	error = sysctl_handle_int(oidp, &value, 0, req);
3025 	if (error || !req->newptr)
3026 		return (error);
3027 	if (value < low || value > high)
3028 		return (EINVAL);
3029 	*(int *)arg1 = value;
3030 	return (0);
3031 }
3032 
3033 /*
3034  * Interrupt delay is expressed in microseconds, a multiplier is used
3035  * to convert this to the appropriate clock ticks before using.
3036  */
3037 static int
3038 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3039 {
3040 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3041 }
3042 
3043 static int
3044 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3045 {
3046 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3047 }
3048