xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 57c4583f70ab9d25b3aed17f20ec7843f9673539)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #ifdef HAVE_KERNEL_OPTION_HEADERS
38 #include "opt_device_polling.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/endian.h>
44 #include <sys/mbuf.h>
45 		/* #include <sys/mutex.h> */
46 #include <sys/kernel.h>
47 #include <sys/module.h>
48 #include <sys/socket.h>
49 #include <sys/sysctl.h>
50 
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 
55 #include <net/bpf.h>
56 #include <sys/sockio.h>
57 #include <sys/bus.h>
58 #include <machine/bus.h>
59 #include <sys/rman.h>
60 #include <machine/resource.h>
61 
62 #include <net/ethernet.h>
63 #include <net/if_arp.h>
64 
65 
66 #include <net/if_types.h>
67 #include <net/if_vlan_var.h>
68 
69 #ifdef FXP_IP_CSUM_WAR
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/ip.h>
73 #include <machine/in_cksum.h>
74 #endif
75 
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
78 
79 #include <dev/mii/mii.h>
80 #include <dev/mii/miivar.h>
81 
82 #include <dev/fxp/if_fxpreg.h>
83 #include <dev/fxp/if_fxpvar.h>
84 #include <dev/fxp/rcvbundl.h>
85 
86 MODULE_DEPEND(fxp, pci, 1, 1, 1);
87 MODULE_DEPEND(fxp, ether, 1, 1, 1);
88 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
89 #include "miibus_if.h"
90 
91 /*
92  * NOTE!  On the Alpha, we have an alignment constraint.  The
93  * card DMAs the packet immediately following the RFA.  However,
94  * the first thing in the packet is a 14-byte Ethernet header.
95  * This means that the packet is misaligned.  To compensate,
96  * we actually offset the RFA 2 bytes into the cluster.  This
97  * alignes the packet after the Ethernet header at a 32-bit
98  * boundary.  HOWEVER!  This means that the RFA is misaligned!
99  */
100 #define	RFA_ALIGNMENT_FUDGE	2
101 
102 /*
103  * Set initial transmit threshold at 64 (512 bytes). This is
104  * increased by 64 (512 bytes) at a time, to maximum of 192
105  * (1536 bytes), if an underrun occurs.
106  */
107 static int tx_threshold = 64;
108 
109 /*
110  * The configuration byte map has several undefined fields which
111  * must be one or must be zero.  Set up a template for these bits
112  * only, (assuming a 82557 chip) leaving the actual configuration
113  * to fxp_init.
114  *
115  * See struct fxp_cb_config for the bit definitions.
116  */
117 static u_char fxp_cb_config_template[] = {
118 	0x0, 0x0,		/* cb_status */
119 	0x0, 0x0,		/* cb_command */
120 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
121 	0x0,	/*  0 */
122 	0x0,	/*  1 */
123 	0x0,	/*  2 */
124 	0x0,	/*  3 */
125 	0x0,	/*  4 */
126 	0x0,	/*  5 */
127 	0x32,	/*  6 */
128 	0x0,	/*  7 */
129 	0x0,	/*  8 */
130 	0x0,	/*  9 */
131 	0x6,	/* 10 */
132 	0x0,	/* 11 */
133 	0x0,	/* 12 */
134 	0x0,	/* 13 */
135 	0xf2,	/* 14 */
136 	0x48,	/* 15 */
137 	0x0,	/* 16 */
138 	0x40,	/* 17 */
139 	0xf0,	/* 18 */
140 	0x0,	/* 19 */
141 	0x3f,	/* 20 */
142 	0x5	/* 21 */
143 };
144 
145 struct fxp_ident {
146 	uint16_t	devid;
147 	int16_t		revid;		/* -1 matches anything */
148 	char 		*name;
149 };
150 
151 /*
152  * Claim various Intel PCI device identifiers for this driver.  The
153  * sub-vendor and sub-device field are extensively used to identify
154  * particular variants, but we don't currently differentiate between
155  * them.
156  */
157 static struct fxp_ident fxp_ident_table[] = {
158     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
159     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
160     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
161     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
162     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
163     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
165     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
167     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
168     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
169     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
170     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
172     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
173     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
174     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
175     { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
176     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
177     { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
178     { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
179     { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
180     { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
181     { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
182     { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
183     { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
184     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
185     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
186     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
187     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
188     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
189     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
190     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
191     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
192     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
193     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
194     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
195     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
196     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
197     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
198     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
199     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
200     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
201     { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
202     { 0,	-1,	NULL },
203 };
204 
205 #ifdef FXP_IP_CSUM_WAR
206 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
207 #else
208 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
209 #endif
210 
211 static int		fxp_probe(device_t dev);
212 static int		fxp_attach(device_t dev);
213 static int		fxp_detach(device_t dev);
214 static int		fxp_shutdown(device_t dev);
215 static int		fxp_suspend(device_t dev);
216 static int		fxp_resume(device_t dev);
217 
218 static void		fxp_intr(void *xsc);
219 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
220 			    uint8_t statack, int count);
221 static void 		fxp_init(void *xsc);
222 static void 		fxp_init_body(struct fxp_softc *sc);
223 static void 		fxp_tick(void *xsc);
224 static void 		fxp_start(struct ifnet *ifp);
225 static void 		fxp_start_body(struct ifnet *ifp);
226 static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
227 static void		fxp_stop(struct fxp_softc *sc);
228 static void 		fxp_release(struct fxp_softc *sc);
229 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
230 			    caddr_t data);
231 static void 		fxp_watchdog(struct ifnet *ifp);
232 static int		fxp_add_rfabuf(struct fxp_softc *sc,
233     			    struct fxp_rx *rxp);
234 static int		fxp_mc_addrs(struct fxp_softc *sc);
235 static void		fxp_mc_setup(struct fxp_softc *sc);
236 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
237 			    int autosize);
238 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
239 			    uint16_t data);
240 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
241 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
242 			    int offset, int words);
243 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
244 			    int offset, int words);
245 static int		fxp_ifmedia_upd(struct ifnet *ifp);
246 static void		fxp_ifmedia_sts(struct ifnet *ifp,
247 			    struct ifmediareq *ifmr);
248 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
249 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
250 			    struct ifmediareq *ifmr);
251 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
252 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
253 			    int value);
254 static void		fxp_load_ucode(struct fxp_softc *sc);
255 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
256 			    int low, int high);
257 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
258 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
259 static void 		fxp_scb_wait(struct fxp_softc *sc);
260 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
261 static void		fxp_dma_wait(struct fxp_softc *sc,
262     			    volatile uint16_t *status, bus_dma_tag_t dmat,
263 			    bus_dmamap_t map);
264 
265 static device_method_t fxp_methods[] = {
266 	/* Device interface */
267 	DEVMETHOD(device_probe,		fxp_probe),
268 	DEVMETHOD(device_attach,	fxp_attach),
269 	DEVMETHOD(device_detach,	fxp_detach),
270 	DEVMETHOD(device_shutdown,	fxp_shutdown),
271 	DEVMETHOD(device_suspend,	fxp_suspend),
272 	DEVMETHOD(device_resume,	fxp_resume),
273 
274 	/* MII interface */
275 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
276 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
277 
278 	{ 0, 0 }
279 };
280 
281 static driver_t fxp_driver = {
282 	"fxp",
283 	fxp_methods,
284 	sizeof(struct fxp_softc),
285 };
286 
287 static devclass_t fxp_devclass;
288 
289 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
290 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
291 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
292 
293 static struct resource_spec fxp_res_spec_mem[] = {
294 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
295 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
296 	{ -1, 0 }
297 };
298 
299 static struct resource_spec fxp_res_spec_io[] = {
300 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
301 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
302 	{ -1, 0 }
303 };
304 
305 /*
306  * Wait for the previous command to be accepted (but not necessarily
307  * completed).
308  */
309 static void
310 fxp_scb_wait(struct fxp_softc *sc)
311 {
312 	union {
313 		uint16_t w;
314 		uint8_t b[2];
315 	} flowctl;
316 	int i = 10000;
317 
318 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
319 		DELAY(2);
320 	if (i == 0) {
321 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
322 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
323 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
324 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
325 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
326 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
327 	}
328 }
329 
330 static void
331 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
332 {
333 
334 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
335 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
336 		fxp_scb_wait(sc);
337 	}
338 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
339 }
340 
341 static void
342 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
343     bus_dma_tag_t dmat, bus_dmamap_t map)
344 {
345 	int i = 10000;
346 
347 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
348 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
349 		DELAY(2);
350 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
351 	}
352 	if (i == 0)
353 		device_printf(sc->dev, "DMA timeout\n");
354 }
355 
356 /*
357  * Return identification string if this device is ours.
358  */
359 static int
360 fxp_probe(device_t dev)
361 {
362 	uint16_t devid;
363 	uint8_t revid;
364 	struct fxp_ident *ident;
365 
366 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
367 		devid = pci_get_device(dev);
368 		revid = pci_get_revid(dev);
369 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
370 			if (ident->devid == devid &&
371 			    (ident->revid == revid || ident->revid == -1)) {
372 				device_set_desc(dev, ident->name);
373 				return (BUS_PROBE_DEFAULT);
374 			}
375 		}
376 	}
377 	return (ENXIO);
378 }
379 
380 static void
381 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
382 {
383 	uint32_t *addr;
384 
385 	if (error)
386 		return;
387 
388 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
389 	addr = arg;
390 	*addr = segs->ds_addr;
391 }
392 
393 static int
394 fxp_attach(device_t dev)
395 {
396 	struct fxp_softc *sc;
397 	struct fxp_cb_tx *tcbp;
398 	struct fxp_tx *txp;
399 	struct fxp_rx *rxp;
400 	struct ifnet *ifp;
401 	uint32_t val;
402 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
403 	u_char eaddr[ETHER_ADDR_LEN];
404 	int i, prefer_iomap;
405 	int error;
406 
407 	error = 0;
408 	sc = device_get_softc(dev);
409 	sc->dev = dev;
410 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
411 	    MTX_DEF);
412 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
413 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
414 	    fxp_serial_ifmedia_sts);
415 
416 	ifp = sc->ifp = if_alloc(IFT_ETHER);
417 	if (ifp == NULL) {
418 		device_printf(dev, "can not if_alloc()\n");
419 		error = ENOSPC;
420 		goto fail;
421 	}
422 
423 	/*
424 	 * Enable bus mastering.
425 	 */
426 	pci_enable_busmaster(dev);
427 	val = pci_read_config(dev, PCIR_COMMAND, 2);
428 
429 	/*
430 	 * Figure out which we should try first - memory mapping or i/o mapping?
431 	 * We default to memory mapping. Then we accept an override from the
432 	 * command line. Then we check to see which one is enabled.
433 	 */
434 	prefer_iomap = 0;
435 	resource_int_value(device_get_name(dev), device_get_unit(dev),
436 	    "prefer_iomap", &prefer_iomap);
437 	if (prefer_iomap)
438 		sc->fxp_spec = fxp_res_spec_io;
439 	else
440 		sc->fxp_spec = fxp_res_spec_mem;
441 
442 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
443 	if (error) {
444 		if (sc->fxp_spec == fxp_res_spec_mem)
445 			sc->fxp_spec = fxp_res_spec_io;
446 		else
447 			sc->fxp_spec = fxp_res_spec_mem;
448 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
449 	}
450 	if (error) {
451 		device_printf(dev, "could not allocate resources\n");
452 		error = ENXIO;
453 		goto fail;
454 	}
455 
456 	if (bootverbose) {
457 		device_printf(dev, "using %s space register mapping\n",
458 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
459 	}
460 
461 	/*
462 	 * Reset to a stable state.
463 	 */
464 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
465 	DELAY(10);
466 
467 	/*
468 	 * Find out how large of an SEEPROM we have.
469 	 */
470 	fxp_autosize_eeprom(sc);
471 
472 	/*
473 	 * Find out the chip revision; lump all 82557 revs together.
474 	 */
475 	fxp_read_eeprom(sc, &data, 5, 1);
476 	if ((data >> 8) == 1)
477 		sc->revision = FXP_REV_82557;
478 	else
479 		sc->revision = pci_get_revid(dev);
480 
481 	/*
482 	 * Determine whether we must use the 503 serial interface.
483 	 */
484 	fxp_read_eeprom(sc, &data, 6, 1);
485 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
486 	    && (data & FXP_PHY_SERIAL_ONLY))
487 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
488 
489 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
490 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
491 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
492 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
493 	    "FXP driver receive interrupt microcode bundling delay");
494 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
495 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
496 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
497 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
498 	    "FXP driver receive interrupt microcode bundle size limit");
499 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
500 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
501 	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
502 	    "FXP RNR events");
503 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
504 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
505 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
506 	    "FXP flow control disabled");
507 
508 	/*
509 	 * Pull in device tunables.
510 	 */
511 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
512 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
513 	sc->tunable_noflow = 1;
514 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
515 	    "int_delay", &sc->tunable_int_delay);
516 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
517 	    "bundle_max", &sc->tunable_bundle_max);
518 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
519 	    "noflow", &sc->tunable_noflow);
520 	sc->rnr = 0;
521 
522 	/*
523 	 * Enable workarounds for certain chip revision deficiencies.
524 	 *
525 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
526 	 * some systems based a normal 82559 design, have a defect where
527 	 * the chip can cause a PCI protocol violation if it receives
528 	 * a CU_RESUME command when it is entering the IDLE state.  The
529 	 * workaround is to disable Dynamic Standby Mode, so the chip never
530 	 * deasserts CLKRUN#, and always remains in an active state.
531 	 *
532 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
533 	 */
534 	i = pci_get_device(dev);
535 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
536 	    sc->revision >= FXP_REV_82559_A0) {
537 		fxp_read_eeprom(sc, &data, 10, 1);
538 		if (data & 0x02) {			/* STB enable */
539 			uint16_t cksum;
540 			int i;
541 
542 			device_printf(dev,
543 			    "Disabling dynamic standby mode in EEPROM\n");
544 			data &= ~0x02;
545 			fxp_write_eeprom(sc, &data, 10, 1);
546 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
547 			cksum = 0;
548 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
549 				fxp_read_eeprom(sc, &data, i, 1);
550 				cksum += data;
551 			}
552 			i = (1 << sc->eeprom_size) - 1;
553 			cksum = 0xBABA - cksum;
554 			fxp_read_eeprom(sc, &data, i, 1);
555 			fxp_write_eeprom(sc, &cksum, i, 1);
556 			device_printf(dev,
557 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
558 			    i, data, cksum);
559 #if 1
560 			/*
561 			 * If the user elects to continue, try the software
562 			 * workaround, as it is better than nothing.
563 			 */
564 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
565 #endif
566 		}
567 	}
568 
569 	/*
570 	 * If we are not a 82557 chip, we can enable extended features.
571 	 */
572 	if (sc->revision != FXP_REV_82557) {
573 		/*
574 		 * If MWI is enabled in the PCI configuration, and there
575 		 * is a valid cacheline size (8 or 16 dwords), then tell
576 		 * the board to turn on MWI.
577 		 */
578 		if (val & PCIM_CMD_MWRICEN &&
579 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
580 			sc->flags |= FXP_FLAG_MWI_ENABLE;
581 
582 		/* turn on the extended TxCB feature */
583 		sc->flags |= FXP_FLAG_EXT_TXCB;
584 
585 		/* enable reception of long frames for VLAN */
586 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
587 	} else {
588 		/* a hack to get long VLAN frames on a 82557 */
589 		sc->flags |= FXP_FLAG_SAVE_BAD;
590 	}
591 
592 	/*
593 	 * Enable use of extended RFDs and TCBs for 82550
594 	 * and later chips. Note: we need extended TXCB support
595 	 * too, but that's already enabled by the code above.
596 	 * Be careful to do this only on the right devices.
597 	 */
598 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
599 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
600 	    || sc->revision == FXP_REV_82551_10) {
601 		sc->rfa_size = sizeof (struct fxp_rfa);
602 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
603 		sc->flags |= FXP_FLAG_EXT_RFA;
604 	} else {
605 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
606 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
607 	}
608 
609 	/*
610 	 * Allocate DMA tags and DMA safe memory.
611 	 */
612 	sc->maxtxseg = FXP_NTXSEG;
613 	if (sc->flags & FXP_FLAG_EXT_RFA)
614 		sc->maxtxseg--;
615 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
616 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
617 	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
618 	    &sc->fxp_mtag);
619 	if (error) {
620 		device_printf(dev, "could not allocate dma tag\n");
621 		goto fail;
622 	}
623 
624 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
625 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
626 	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
627 	    &sc->fxp_stag);
628 	if (error) {
629 		device_printf(dev, "could not allocate dma tag\n");
630 		goto fail;
631 	}
632 
633 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
634 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
635 	if (error)
636 		goto fail;
637 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
638 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
639 	if (error) {
640 		device_printf(dev, "could not map the stats buffer\n");
641 		goto fail;
642 	}
643 
644 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
645 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
646 	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
647 	if (error) {
648 		device_printf(dev, "could not allocate dma tag\n");
649 		goto fail;
650 	}
651 
652 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
653 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
654 	if (error)
655 		goto fail;
656 
657 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
658 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
659 	    &sc->fxp_desc.cbl_addr, 0);
660 	if (error) {
661 		device_printf(dev, "could not map DMA memory\n");
662 		goto fail;
663 	}
664 
665 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
666 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
667 	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
668 	    &sc->mcs_tag);
669 	if (error) {
670 		device_printf(dev, "could not allocate dma tag\n");
671 		goto fail;
672 	}
673 
674 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
675 	    BUS_DMA_NOWAIT, &sc->mcs_map);
676 	if (error)
677 		goto fail;
678 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
679 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
680 	if (error) {
681 		device_printf(dev, "can't map the multicast setup command\n");
682 		goto fail;
683 	}
684 
685 	/*
686 	 * Pre-allocate the TX DMA maps and setup the pointers to
687 	 * the TX command blocks.
688 	 */
689 	txp = sc->fxp_desc.tx_list;
690 	tcbp = sc->fxp_desc.cbl_list;
691 	for (i = 0; i < FXP_NTXCB; i++) {
692 		txp[i].tx_cb = tcbp + i;
693 		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
694 		if (error) {
695 			device_printf(dev, "can't create DMA map for TX\n");
696 			goto fail;
697 		}
698 	}
699 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
700 	if (error) {
701 		device_printf(dev, "can't create spare DMA map\n");
702 		goto fail;
703 	}
704 
705 	/*
706 	 * Pre-allocate our receive buffers.
707 	 */
708 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
709 	for (i = 0; i < FXP_NRFABUFS; i++) {
710 		rxp = &sc->fxp_desc.rx_list[i];
711 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
712 		if (error) {
713 			device_printf(dev, "can't create DMA map for RX\n");
714 			goto fail;
715 		}
716 		if (fxp_add_rfabuf(sc, rxp) != 0) {
717 			error = ENOMEM;
718 			goto fail;
719 		}
720 	}
721 
722 	/*
723 	 * Read MAC address.
724 	 */
725 	fxp_read_eeprom(sc, myea, 0, 3);
726 	eaddr[0] = myea[0] & 0xff;
727 	eaddr[1] = myea[0] >> 8;
728 	eaddr[2] = myea[1] & 0xff;
729 	eaddr[3] = myea[1] >> 8;
730 	eaddr[4] = myea[2] & 0xff;
731 	eaddr[5] = myea[2] >> 8;
732 	if (bootverbose) {
733 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
734 		    pci_get_vendor(dev), pci_get_device(dev),
735 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
736 		    pci_get_revid(dev));
737 		fxp_read_eeprom(sc, &data, 10, 1);
738 		device_printf(dev, "Dynamic Standby mode is %s\n",
739 		    data & 0x02 ? "enabled" : "disabled");
740 	}
741 
742 	/*
743 	 * If this is only a 10Mbps device, then there is no MII, and
744 	 * the PHY will use a serial interface instead.
745 	 *
746 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
747 	 * doesn't have a programming interface of any sort.  The
748 	 * media is sensed automatically based on how the link partner
749 	 * is configured.  This is, in essence, manual configuration.
750 	 */
751 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
752 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
753 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
754 	} else {
755 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
756 		    fxp_ifmedia_sts)) {
757 	                device_printf(dev, "MII without any PHY!\n");
758 			error = ENXIO;
759 			goto fail;
760 		}
761 	}
762 
763 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
764 	ifp->if_init = fxp_init;
765 	ifp->if_softc = sc;
766 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
767 	ifp->if_ioctl = fxp_ioctl;
768 	ifp->if_start = fxp_start;
769 	ifp->if_watchdog = fxp_watchdog;
770 
771 	ifp->if_capabilities = ifp->if_capenable = 0;
772 
773 	/* Enable checksum offload for 82550 or better chips */
774 	if (sc->flags & FXP_FLAG_EXT_RFA) {
775 		ifp->if_hwassist = FXP_CSUM_FEATURES;
776 		ifp->if_capabilities |= IFCAP_HWCSUM;
777 		ifp->if_capenable |= IFCAP_HWCSUM;
778 	}
779 
780 #ifdef DEVICE_POLLING
781 	/* Inform the world we support polling. */
782 	ifp->if_capabilities |= IFCAP_POLLING;
783 #endif
784 
785 	/*
786 	 * Attach the interface.
787 	 */
788 	ether_ifattach(ifp, eaddr);
789 
790 	/*
791 	 * Tell the upper layer(s) we support long frames.
792 	 * Must appear after the call to ether_ifattach() because
793 	 * ether_ifattach() sets ifi_hdrlen to the default value.
794 	 */
795 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
796 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
797 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
798 
799 	/*
800 	 * Let the system queue as many packets as we have available
801 	 * TX descriptors.
802 	 */
803 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
804 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
805 	IFQ_SET_READY(&ifp->if_snd);
806 
807 	/*
808 	 * Hook our interrupt after all initialization is complete.
809 	 */
810 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
811 			       fxp_intr, sc, &sc->ih);
812 	if (error) {
813 		device_printf(dev, "could not setup irq\n");
814 		ether_ifdetach(sc->ifp);
815 		goto fail;
816 	}
817 
818 fail:
819 	if (error)
820 		fxp_release(sc);
821 	return (error);
822 }
823 
824 /*
825  * Release all resources.  The softc lock should not be held and the
826  * interrupt should already be torn down.
827  */
828 static void
829 fxp_release(struct fxp_softc *sc)
830 {
831 	struct fxp_rx *rxp;
832 	struct fxp_tx *txp;
833 	int i;
834 
835 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
836 	KASSERT(sc->ih == NULL,
837 	    ("fxp_release() called with intr handle still active"));
838 	if (sc->miibus)
839 		device_delete_child(sc->dev, sc->miibus);
840 	bus_generic_detach(sc->dev);
841 	ifmedia_removeall(&sc->sc_media);
842 	if (sc->fxp_desc.cbl_list) {
843 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
844 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
845 		    sc->cbl_map);
846 	}
847 	if (sc->fxp_stats) {
848 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
849 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
850 	}
851 	if (sc->mcsp) {
852 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
853 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
854 	}
855 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
856 	if (sc->fxp_mtag) {
857 		for (i = 0; i < FXP_NRFABUFS; i++) {
858 			rxp = &sc->fxp_desc.rx_list[i];
859 			if (rxp->rx_mbuf != NULL) {
860 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
861 				    BUS_DMASYNC_POSTREAD);
862 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
863 				m_freem(rxp->rx_mbuf);
864 			}
865 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
866 		}
867 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
868 		for (i = 0; i < FXP_NTXCB; i++) {
869 			txp = &sc->fxp_desc.tx_list[i];
870 			if (txp->tx_mbuf != NULL) {
871 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
872 				    BUS_DMASYNC_POSTWRITE);
873 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
874 				m_freem(txp->tx_mbuf);
875 			}
876 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
877 		}
878 		bus_dma_tag_destroy(sc->fxp_mtag);
879 	}
880 	if (sc->fxp_stag)
881 		bus_dma_tag_destroy(sc->fxp_stag);
882 	if (sc->cbl_tag)
883 		bus_dma_tag_destroy(sc->cbl_tag);
884 	if (sc->mcs_tag)
885 		bus_dma_tag_destroy(sc->mcs_tag);
886 	if (sc->ifp)
887 		if_free(sc->ifp);
888 
889 	mtx_destroy(&sc->sc_mtx);
890 }
891 
892 /*
893  * Detach interface.
894  */
895 static int
896 fxp_detach(device_t dev)
897 {
898 	struct fxp_softc *sc = device_get_softc(dev);
899 
900 #ifdef DEVICE_POLLING
901 	if (sc->ifp->if_capenable & IFCAP_POLLING)
902 		ether_poll_deregister(sc->ifp);
903 #endif
904 
905 	FXP_LOCK(sc);
906 	sc->suspended = 1;	/* Do same thing as we do for suspend */
907 	/*
908 	 * Stop DMA and drop transmit queue, but disable interrupts first.
909 	 */
910 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
911 	fxp_stop(sc);
912 	FXP_UNLOCK(sc);
913 	callout_drain(&sc->stat_ch);
914 
915 	/*
916 	 * Close down routes etc.
917 	 */
918 	ether_ifdetach(sc->ifp);
919 
920 	/*
921 	 * Unhook interrupt before dropping lock. This is to prevent
922 	 * races with fxp_intr().
923 	 */
924 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
925 	sc->ih = NULL;
926 
927 	/* Release our allocated resources. */
928 	fxp_release(sc);
929 	return (0);
930 }
931 
932 /*
933  * Device shutdown routine. Called at system shutdown after sync. The
934  * main purpose of this routine is to shut off receiver DMA so that
935  * kernel memory doesn't get clobbered during warmboot.
936  */
937 static int
938 fxp_shutdown(device_t dev)
939 {
940 	struct fxp_softc *sc = device_get_softc(dev);
941 
942 	/*
943 	 * Make sure that DMA is disabled prior to reboot. Not doing
944 	 * do could allow DMA to corrupt kernel memory during the
945 	 * reboot before the driver initializes.
946 	 */
947 	FXP_LOCK(sc);
948 	fxp_stop(sc);
949 	FXP_UNLOCK(sc);
950 	return (0);
951 }
952 
953 /*
954  * Device suspend routine.  Stop the interface and save some PCI
955  * settings in case the BIOS doesn't restore them properly on
956  * resume.
957  */
958 static int
959 fxp_suspend(device_t dev)
960 {
961 	struct fxp_softc *sc = device_get_softc(dev);
962 
963 	FXP_LOCK(sc);
964 
965 	fxp_stop(sc);
966 
967 	sc->suspended = 1;
968 
969 	FXP_UNLOCK(sc);
970 	return (0);
971 }
972 
973 /*
974  * Device resume routine. re-enable busmastering, and restart the interface if
975  * appropriate.
976  */
977 static int
978 fxp_resume(device_t dev)
979 {
980 	struct fxp_softc *sc = device_get_softc(dev);
981 	struct ifnet *ifp = sc->ifp;
982 
983 	FXP_LOCK(sc);
984 
985 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
986 	DELAY(10);
987 
988 	/* reinitialize interface if necessary */
989 	if (ifp->if_flags & IFF_UP)
990 		fxp_init_body(sc);
991 
992 	sc->suspended = 0;
993 
994 	FXP_UNLOCK(sc);
995 	return (0);
996 }
997 
998 static void
999 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1000 {
1001 	uint16_t reg;
1002 	int x;
1003 
1004 	/*
1005 	 * Shift in data.
1006 	 */
1007 	for (x = 1 << (length - 1); x; x >>= 1) {
1008 		if (data & x)
1009 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1010 		else
1011 			reg = FXP_EEPROM_EECS;
1012 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1013 		DELAY(1);
1014 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1015 		DELAY(1);
1016 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1017 		DELAY(1);
1018 	}
1019 }
1020 
1021 /*
1022  * Read from the serial EEPROM. Basically, you manually shift in
1023  * the read opcode (one bit at a time) and then shift in the address,
1024  * and then you shift out the data (all of this one bit at a time).
1025  * The word size is 16 bits, so you have to provide the address for
1026  * every 16 bits of data.
1027  */
1028 static uint16_t
1029 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1030 {
1031 	uint16_t reg, data;
1032 	int x;
1033 
1034 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1035 	/*
1036 	 * Shift in read opcode.
1037 	 */
1038 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1039 	/*
1040 	 * Shift in address.
1041 	 */
1042 	data = 0;
1043 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1044 		if (offset & x)
1045 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1046 		else
1047 			reg = FXP_EEPROM_EECS;
1048 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1049 		DELAY(1);
1050 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1051 		DELAY(1);
1052 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1053 		DELAY(1);
1054 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1055 		data++;
1056 		if (autosize && reg == 0) {
1057 			sc->eeprom_size = data;
1058 			break;
1059 		}
1060 	}
1061 	/*
1062 	 * Shift out data.
1063 	 */
1064 	data = 0;
1065 	reg = FXP_EEPROM_EECS;
1066 	for (x = 1 << 15; x; x >>= 1) {
1067 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1068 		DELAY(1);
1069 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1070 			data |= x;
1071 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1072 		DELAY(1);
1073 	}
1074 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1075 	DELAY(1);
1076 
1077 	return (data);
1078 }
1079 
1080 static void
1081 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1082 {
1083 	int i;
1084 
1085 	/*
1086 	 * Erase/write enable.
1087 	 */
1088 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1089 	fxp_eeprom_shiftin(sc, 0x4, 3);
1090 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1091 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1092 	DELAY(1);
1093 	/*
1094 	 * Shift in write opcode, address, data.
1095 	 */
1096 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1097 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1098 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1099 	fxp_eeprom_shiftin(sc, data, 16);
1100 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1101 	DELAY(1);
1102 	/*
1103 	 * Wait for EEPROM to finish up.
1104 	 */
1105 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1106 	DELAY(1);
1107 	for (i = 0; i < 1000; i++) {
1108 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1109 			break;
1110 		DELAY(50);
1111 	}
1112 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1113 	DELAY(1);
1114 	/*
1115 	 * Erase/write disable.
1116 	 */
1117 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1118 	fxp_eeprom_shiftin(sc, 0x4, 3);
1119 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1120 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1121 	DELAY(1);
1122 }
1123 
1124 /*
1125  * From NetBSD:
1126  *
1127  * Figure out EEPROM size.
1128  *
1129  * 559's can have either 64-word or 256-word EEPROMs, the 558
1130  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1131  * talks about the existance of 16 to 256 word EEPROMs.
1132  *
1133  * The only known sizes are 64 and 256, where the 256 version is used
1134  * by CardBus cards to store CIS information.
1135  *
1136  * The address is shifted in msb-to-lsb, and after the last
1137  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1138  * after which follows the actual data. We try to detect this zero, by
1139  * probing the data-out bit in the EEPROM control register just after
1140  * having shifted in a bit. If the bit is zero, we assume we've
1141  * shifted enough address bits. The data-out should be tri-state,
1142  * before this, which should translate to a logical one.
1143  */
1144 static void
1145 fxp_autosize_eeprom(struct fxp_softc *sc)
1146 {
1147 
1148 	/* guess maximum size of 256 words */
1149 	sc->eeprom_size = 8;
1150 
1151 	/* autosize */
1152 	(void) fxp_eeprom_getword(sc, 0, 1);
1153 }
1154 
1155 static void
1156 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1157 {
1158 	int i;
1159 
1160 	for (i = 0; i < words; i++)
1161 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1162 }
1163 
1164 static void
1165 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1166 {
1167 	int i;
1168 
1169 	for (i = 0; i < words; i++)
1170 		fxp_eeprom_putword(sc, offset + i, data[i]);
1171 }
1172 
1173 /*
1174  * Grab the softc lock and call the real fxp_start_body() routine
1175  */
1176 static void
1177 fxp_start(struct ifnet *ifp)
1178 {
1179 	struct fxp_softc *sc = ifp->if_softc;
1180 
1181 	FXP_LOCK(sc);
1182 	fxp_start_body(ifp);
1183 	FXP_UNLOCK(sc);
1184 }
1185 
1186 /*
1187  * Start packet transmission on the interface.
1188  * This routine must be called with the softc lock held, and is an
1189  * internal entry point only.
1190  */
1191 static void
1192 fxp_start_body(struct ifnet *ifp)
1193 {
1194 	struct fxp_softc *sc = ifp->if_softc;
1195 	struct mbuf *mb_head;
1196 	int error, txqueued;
1197 
1198 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1199 
1200 	/*
1201 	 * See if we need to suspend xmit until the multicast filter
1202 	 * has been reprogrammed (which can only be done at the head
1203 	 * of the command chain).
1204 	 */
1205 	if (sc->need_mcsetup)
1206 		return;
1207 
1208 	/*
1209 	 * We're finished if there is nothing more to add to the list or if
1210 	 * we're all filled up with buffers to transmit.
1211 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1212 	 *       a NOP command when needed.
1213 	 */
1214 	txqueued = 0;
1215 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1216 	    sc->tx_queued < FXP_NTXCB - 1) {
1217 
1218 		/*
1219 		 * Grab a packet to transmit.
1220 		 */
1221 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1222 		if (mb_head == NULL)
1223 			break;
1224 
1225 		error = fxp_encap(sc, mb_head);
1226 		if (error)
1227 			break;
1228 		txqueued = 1;
1229 	}
1230 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1231 
1232 	/*
1233 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1234 	 * going again if suspended.
1235 	 */
1236 	if (txqueued) {
1237 		fxp_scb_wait(sc);
1238 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1239 	}
1240 }
1241 
1242 static int
1243 fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1244 {
1245 	struct ifnet *ifp;
1246 	struct mbuf *m;
1247 	struct fxp_tx *txp;
1248 	struct fxp_cb_tx *cbp;
1249 	bus_dma_segment_t segs[FXP_NTXSEG];
1250 	int chainlen, error, i, nseg;
1251 
1252 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1253 	ifp = sc->ifp;
1254 
1255 	/*
1256 	 * Get pointer to next available tx desc.
1257 	 */
1258 	txp = sc->fxp_desc.tx_last->tx_next;
1259 
1260 	/*
1261 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1262 	 * Ethernet Controller Family Open Source Software
1263 	 * Developer Manual says:
1264 	 *   Using software parsing is only allowed with legal
1265 	 *   TCP/IP or UDP/IP packets.
1266 	 *   ...
1267 	 *   For all other datagrams, hardware parsing must
1268 	 *   be used.
1269 	 * Software parsing appears to truncate ICMP and
1270 	 * fragmented UDP packets that contain one to three
1271 	 * bytes in the second (and final) mbuf of the packet.
1272 	 */
1273 	if (sc->flags & FXP_FLAG_EXT_RFA)
1274 		txp->tx_cb->ipcb_ip_activation_high =
1275 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1276 
1277 	/*
1278 	 * Deal with TCP/IP checksum offload. Note that
1279 	 * in order for TCP checksum offload to work,
1280 	 * the pseudo header checksum must have already
1281 	 * been computed and stored in the checksum field
1282 	 * in the TCP header. The stack should have
1283 	 * already done this for us.
1284 	 */
1285 	if (m_head->m_pkthdr.csum_flags) {
1286 		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1287 			txp->tx_cb->ipcb_ip_schedule =
1288 			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1289 			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1290 				txp->tx_cb->ipcb_ip_schedule |=
1291 				    FXP_IPCB_TCP_PACKET;
1292 		}
1293 
1294 #ifdef FXP_IP_CSUM_WAR
1295 		/*
1296 		 * XXX The 82550 chip appears to have trouble
1297 		 * dealing with IP header checksums in very small
1298 		 * datagrams, namely fragments from 1 to 3 bytes
1299 		 * in size. For example, say you want to transmit
1300 		 * a UDP packet of 1473 bytes. The packet will be
1301 		 * fragmented over two IP datagrams, the latter
1302 		 * containing only one byte of data. The 82550 will
1303 		 * botch the header checksum on the 1-byte fragment.
1304 		 * As long as the datagram contains 4 or more bytes
1305 		 * of data, you're ok.
1306 		 *
1307                  * The following code attempts to work around this
1308 		 * problem: if the datagram is less than 38 bytes
1309 		 * in size (14 bytes ether header, 20 bytes IP header,
1310 		 * plus 4 bytes of data), we punt and compute the IP
1311 		 * header checksum by hand. This workaround doesn't
1312 		 * work very well, however, since it can be fooled
1313 		 * by things like VLAN tags and IP options that make
1314 		 * the header sizes/offsets vary.
1315 		 */
1316 
1317 		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1318 			if (m_head->m_pkthdr.len < 38) {
1319 				struct ip *ip;
1320 				m_head->m_data += ETHER_HDR_LEN;
1321 				ip = mtod(mb_head, struct ip *);
1322 				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1323 				m_head->m_data -= ETHER_HDR_LEN;
1324 			} else {
1325 				txp->tx_cb->ipcb_ip_activation_high =
1326 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1327 				txp->tx_cb->ipcb_ip_schedule |=
1328 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1329 			}
1330 		}
1331 #endif
1332 	}
1333 
1334 	chainlen = 0;
1335 	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1336 		chainlen++;
1337 	if (chainlen > sc->maxtxseg) {
1338 		struct mbuf *mn;
1339 
1340 		/*
1341 		 * We ran out of segments. We have to recopy this
1342 		 * mbuf chain first. Bail out if we can't get the
1343 		 * new buffers.
1344 		 */
1345 		mn = m_defrag(m_head, M_DONTWAIT);
1346 		if (mn == NULL) {
1347 			m_freem(m_head);
1348 			return (-1);
1349 		} else {
1350 			m_head = mn;
1351 		}
1352 	}
1353 
1354 	/*
1355 	 * Go through each of the mbufs in the chain and initialize
1356 	 * the transmit buffer descriptors with the physical address
1357 	 * and size of the mbuf.
1358 	 */
1359 	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1360 	    m_head, segs, &nseg, 0);
1361 	if (error) {
1362 		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1363 		m_freem(m_head);
1364 		return (-1);
1365 	}
1366 
1367 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1368 
1369 	cbp = txp->tx_cb;
1370 	for (i = 0; i < nseg; i++) {
1371 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1372 		/*
1373 		 * If this is an 82550/82551, then we're using extended
1374 		 * TxCBs _and_ we're using checksum offload. This means
1375 		 * that the TxCB is really an IPCB. One major difference
1376 		 * between the two is that with plain extended TxCBs,
1377 		 * the bottom half of the TxCB contains two entries from
1378 		 * the TBD array, whereas IPCBs contain just one entry:
1379 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1380 		 * checksum offload control bits. So to make things work
1381 		 * right, we have to start filling in the TBD array
1382 		 * starting from a different place depending on whether
1383 		 * the chip is an 82550/82551 or not.
1384 		 */
1385 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1386 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1387 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1388 		} else {
1389 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1390 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1391 		}
1392 	}
1393 	cbp->tbd_number = nseg;
1394 
1395 	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1396 	txp->tx_mbuf = m_head;
1397 	txp->tx_cb->cb_status = 0;
1398 	txp->tx_cb->byte_count = 0;
1399 	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1400 		txp->tx_cb->cb_command =
1401 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1402 		    FXP_CB_COMMAND_S);
1403 	} else {
1404 		txp->tx_cb->cb_command =
1405 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1406 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1407 		/*
1408 		 * Set a 5 second timer just in case we don't hear
1409 		 * from the card again.
1410 		 */
1411 		ifp->if_timer = 5;
1412 	}
1413 	txp->tx_cb->tx_threshold = tx_threshold;
1414 
1415 	/*
1416 	 * Advance the end of list forward.
1417 	 */
1418 
1419 #ifdef __alpha__
1420 	/*
1421 	 * On platforms which can't access memory in 16-bit
1422 	 * granularities, we must prevent the card from DMA'ing
1423 	 * up the status while we update the command field.
1424 	 * This could cause us to overwrite the completion status.
1425 	 * XXX This is probably bogus and we're _not_ looking
1426 	 * for atomicity here.
1427 	 */
1428 	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1429 	    htole16(FXP_CB_COMMAND_S));
1430 #else
1431 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1432 #endif /*__alpha__*/
1433 	sc->fxp_desc.tx_last = txp;
1434 
1435 	/*
1436 	 * Advance the beginning of the list forward if there are
1437 	 * no other packets queued (when nothing is queued, tx_first
1438 	 * sits on the last TxCB that was sent out).
1439 	 */
1440 	if (sc->tx_queued == 0)
1441 		sc->fxp_desc.tx_first = txp;
1442 
1443 	sc->tx_queued++;
1444 
1445 	/*
1446 	 * Pass packet to bpf if there is a listener.
1447 	 */
1448 	BPF_MTAP(ifp, m_head);
1449 	return (0);
1450 }
1451 
1452 #ifdef DEVICE_POLLING
1453 static poll_handler_t fxp_poll;
1454 
1455 static void
1456 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1457 {
1458 	struct fxp_softc *sc = ifp->if_softc;
1459 	uint8_t statack;
1460 
1461 	FXP_LOCK(sc);
1462 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1463 		FXP_UNLOCK(sc);
1464 		return;
1465 	}
1466 
1467 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1468 	    FXP_SCB_STATACK_FR;
1469 	if (cmd == POLL_AND_CHECK_STATUS) {
1470 		uint8_t tmp;
1471 
1472 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1473 		if (tmp == 0xff || tmp == 0) {
1474 			FXP_UNLOCK(sc);
1475 			return; /* nothing to do */
1476 		}
1477 		tmp &= ~statack;
1478 		/* ack what we can */
1479 		if (tmp != 0)
1480 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1481 		statack |= tmp;
1482 	}
1483 	fxp_intr_body(sc, ifp, statack, count);
1484 	FXP_UNLOCK(sc);
1485 }
1486 #endif /* DEVICE_POLLING */
1487 
1488 /*
1489  * Process interface interrupts.
1490  */
1491 static void
1492 fxp_intr(void *xsc)
1493 {
1494 	struct fxp_softc *sc = xsc;
1495 	struct ifnet *ifp = sc->ifp;
1496 	uint8_t statack;
1497 
1498 	FXP_LOCK(sc);
1499 	if (sc->suspended) {
1500 		FXP_UNLOCK(sc);
1501 		return;
1502 	}
1503 
1504 #ifdef DEVICE_POLLING
1505 	if (ifp->if_capenable & IFCAP_POLLING) {
1506 		FXP_UNLOCK(sc);
1507 		return;
1508 	}
1509 #endif
1510 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1511 		/*
1512 		 * It should not be possible to have all bits set; the
1513 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1514 		 * all bits are set, this may indicate that the card has
1515 		 * been physically ejected, so ignore it.
1516 		 */
1517 		if (statack == 0xff) {
1518 			FXP_UNLOCK(sc);
1519 			return;
1520 		}
1521 
1522 		/*
1523 		 * First ACK all the interrupts in this pass.
1524 		 */
1525 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1526 		fxp_intr_body(sc, ifp, statack, -1);
1527 	}
1528 	FXP_UNLOCK(sc);
1529 }
1530 
1531 static void
1532 fxp_txeof(struct fxp_softc *sc)
1533 {
1534 	struct fxp_tx *txp;
1535 
1536 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1537 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1538 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1539 	    txp = txp->tx_next) {
1540 		if (txp->tx_mbuf != NULL) {
1541 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1542 			    BUS_DMASYNC_POSTWRITE);
1543 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1544 			m_freem(txp->tx_mbuf);
1545 			txp->tx_mbuf = NULL;
1546 			/* clear this to reset csum offload bits */
1547 			txp->tx_cb->tbd[0].tb_addr = 0;
1548 		}
1549 		sc->tx_queued--;
1550 	}
1551 	sc->fxp_desc.tx_first = txp;
1552 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1553 }
1554 
1555 static void
1556 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1557     int count)
1558 {
1559 	struct mbuf *m;
1560 	struct fxp_rx *rxp;
1561 	struct fxp_rfa *rfa;
1562 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1563 	int fxp_rc = 0;
1564 
1565 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1566 	if (rnr)
1567 		sc->rnr++;
1568 #ifdef DEVICE_POLLING
1569 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1570 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1571 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1572 		rnr = 1;
1573 	}
1574 #endif
1575 
1576 	/*
1577 	 * Free any finished transmit mbuf chains.
1578 	 *
1579 	 * Handle the CNA event likt a CXTNO event. It used to
1580 	 * be that this event (control unit not ready) was not
1581 	 * encountered, but it is now with the SMPng modifications.
1582 	 * The exact sequence of events that occur when the interface
1583 	 * is brought up are different now, and if this event
1584 	 * goes unhandled, the configuration/rxfilter setup sequence
1585 	 * can stall for several seconds. The result is that no
1586 	 * packets go out onto the wire for about 5 to 10 seconds
1587 	 * after the interface is ifconfig'ed for the first time.
1588 	 */
1589 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1590 		fxp_txeof(sc);
1591 
1592 		ifp->if_timer = 0;
1593 		if (sc->tx_queued == 0) {
1594 			if (sc->need_mcsetup)
1595 				fxp_mc_setup(sc);
1596 		}
1597 		/*
1598 		 * Try to start more packets transmitting.
1599 		 */
1600 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1601 			fxp_start_body(ifp);
1602 	}
1603 
1604 	/*
1605 	 * Just return if nothing happened on the receive side.
1606 	 */
1607 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1608 		return;
1609 
1610 	/*
1611 	 * Process receiver interrupts. If a no-resource (RNR)
1612 	 * condition exists, get whatever packets we can and
1613 	 * re-start the receiver.
1614 	 *
1615 	 * When using polling, we do not process the list to completion,
1616 	 * so when we get an RNR interrupt we must defer the restart
1617 	 * until we hit the last buffer with the C bit set.
1618 	 * If we run out of cycles and rfa_headm has the C bit set,
1619 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1620 	 * that the info will be used in the subsequent polling cycle.
1621 	 */
1622 	for (;;) {
1623 		rxp = sc->fxp_desc.rx_head;
1624 		m = rxp->rx_mbuf;
1625 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1626 		    RFA_ALIGNMENT_FUDGE);
1627 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1628 		    BUS_DMASYNC_POSTREAD);
1629 
1630 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1631 		if (count >= 0 && count-- == 0) {
1632 			if (rnr) {
1633 				/* Defer RNR processing until the next time. */
1634 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1635 				rnr = 0;
1636 			}
1637 			break;
1638 		}
1639 #endif /* DEVICE_POLLING */
1640 
1641 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1642 			break;
1643 
1644 		/*
1645 		 * Advance head forward.
1646 		 */
1647 		sc->fxp_desc.rx_head = rxp->rx_next;
1648 
1649 		/*
1650 		 * Add a new buffer to the receive chain.
1651 		 * If this fails, the old buffer is recycled
1652 		 * instead.
1653 		 */
1654 		fxp_rc = fxp_add_rfabuf(sc, rxp);
1655 		if (fxp_rc == 0) {
1656 			int total_len;
1657 
1658 			/*
1659 			 * Fetch packet length (the top 2 bits of
1660 			 * actual_size are flags set by the controller
1661 			 * upon completion), and drop the packet in case
1662 			 * of bogus length or CRC errors.
1663 			 */
1664 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1665 			if (total_len < sizeof(struct ether_header) ||
1666 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1667 				sc->rfa_size ||
1668 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1669 				m_freem(m);
1670 				continue;
1671 			}
1672 
1673                         /* Do IP checksum checking. */
1674 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1675 				if (rfa->rfax_csum_sts &
1676 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1677 					m->m_pkthdr.csum_flags |=
1678 					    CSUM_IP_CHECKED;
1679 				if (rfa->rfax_csum_sts &
1680 				    FXP_RFDX_CS_IP_CSUM_VALID)
1681 					m->m_pkthdr.csum_flags |=
1682 					    CSUM_IP_VALID;
1683 				if ((rfa->rfax_csum_sts &
1684 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1685 				    (rfa->rfax_csum_sts &
1686 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1687 					m->m_pkthdr.csum_flags |=
1688 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1689 					m->m_pkthdr.csum_data = 0xffff;
1690 				}
1691 			}
1692 
1693 			m->m_pkthdr.len = m->m_len = total_len;
1694 			m->m_pkthdr.rcvif = ifp;
1695 
1696 			/*
1697 			 * Drop locks before calling if_input() since it
1698 			 * may re-enter fxp_start() in the netisr case.
1699 			 * This would result in a lock reversal.  Better
1700 			 * performance might be obtained by chaining all
1701 			 * packets received, dropping the lock, and then
1702 			 * calling if_input() on each one.
1703 			 */
1704 			FXP_UNLOCK(sc);
1705 			(*ifp->if_input)(ifp, m);
1706 			FXP_LOCK(sc);
1707 		} else if (fxp_rc == ENOBUFS) {
1708 			rnr = 0;
1709 			break;
1710 		}
1711 	}
1712 	if (rnr) {
1713 		fxp_scb_wait(sc);
1714 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1715 		    sc->fxp_desc.rx_head->rx_addr);
1716 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1717 	}
1718 }
1719 
1720 /*
1721  * Update packet in/out/collision statistics. The i82557 doesn't
1722  * allow you to access these counters without doing a fairly
1723  * expensive DMA to get _all_ of the statistics it maintains, so
1724  * we do this operation here only once per second. The statistics
1725  * counters in the kernel are updated from the previous dump-stats
1726  * DMA and then a new dump-stats DMA is started. The on-chip
1727  * counters are zeroed when the DMA completes. If we can't start
1728  * the DMA immediately, we don't wait - we just prepare to read
1729  * them again next time.
1730  */
1731 static void
1732 fxp_tick(void *xsc)
1733 {
1734 	struct fxp_softc *sc = xsc;
1735 	struct ifnet *ifp = sc->ifp;
1736 	struct fxp_stats *sp = sc->fxp_stats;
1737 
1738 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1739 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1740 	ifp->if_opackets += le32toh(sp->tx_good);
1741 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1742 	if (sp->rx_good) {
1743 		ifp->if_ipackets += le32toh(sp->rx_good);
1744 		sc->rx_idle_secs = 0;
1745 	} else {
1746 		/*
1747 		 * Receiver's been idle for another second.
1748 		 */
1749 		sc->rx_idle_secs++;
1750 	}
1751 	ifp->if_ierrors +=
1752 	    le32toh(sp->rx_crc_errors) +
1753 	    le32toh(sp->rx_alignment_errors) +
1754 	    le32toh(sp->rx_rnr_errors) +
1755 	    le32toh(sp->rx_overrun_errors);
1756 	/*
1757 	 * If any transmit underruns occured, bump up the transmit
1758 	 * threshold by another 512 bytes (64 * 8).
1759 	 */
1760 	if (sp->tx_underruns) {
1761 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1762 		if (tx_threshold < 192)
1763 			tx_threshold += 64;
1764 	}
1765 
1766 	/*
1767 	 * Release any xmit buffers that have completed DMA. This isn't
1768 	 * strictly necessary to do here, but it's advantagous for mbufs
1769 	 * with external storage to be released in a timely manner rather
1770 	 * than being defered for a potentially long time. This limits
1771 	 * the delay to a maximum of one second.
1772 	 */
1773 	fxp_txeof(sc);
1774 
1775 	/*
1776 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1777 	 * then assume the receiver has locked up and attempt to clear
1778 	 * the condition by reprogramming the multicast filter. This is
1779 	 * a work-around for a bug in the 82557 where the receiver locks
1780 	 * up if it gets certain types of garbage in the syncronization
1781 	 * bits prior to the packet header. This bug is supposed to only
1782 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1783 	 * mode as well (perhaps due to a 10/100 speed transition).
1784 	 */
1785 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1786 		sc->rx_idle_secs = 0;
1787 		fxp_mc_setup(sc);
1788 	}
1789 	/*
1790 	 * If there is no pending command, start another stats
1791 	 * dump. Otherwise punt for now.
1792 	 */
1793 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1794 		/*
1795 		 * Start another stats dump.
1796 		 */
1797 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1798 		    BUS_DMASYNC_PREREAD);
1799 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1800 	} else {
1801 		/*
1802 		 * A previous command is still waiting to be accepted.
1803 		 * Just zero our copy of the stats and wait for the
1804 		 * next timer event to update them.
1805 		 */
1806 		sp->tx_good = 0;
1807 		sp->tx_underruns = 0;
1808 		sp->tx_total_collisions = 0;
1809 
1810 		sp->rx_good = 0;
1811 		sp->rx_crc_errors = 0;
1812 		sp->rx_alignment_errors = 0;
1813 		sp->rx_rnr_errors = 0;
1814 		sp->rx_overrun_errors = 0;
1815 	}
1816 	if (sc->miibus != NULL)
1817 		mii_tick(device_get_softc(sc->miibus));
1818 
1819 	/*
1820 	 * Schedule another timeout one second from now.
1821 	 */
1822 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1823 }
1824 
1825 /*
1826  * Stop the interface. Cancels the statistics updater and resets
1827  * the interface.
1828  */
1829 static void
1830 fxp_stop(struct fxp_softc *sc)
1831 {
1832 	struct ifnet *ifp = sc->ifp;
1833 	struct fxp_tx *txp;
1834 	int i;
1835 
1836 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1837 	ifp->if_timer = 0;
1838 
1839 	/*
1840 	 * Cancel stats updater.
1841 	 */
1842 	callout_stop(&sc->stat_ch);
1843 
1844 	/*
1845 	 * Issue software reset, which also unloads the microcode.
1846 	 */
1847 	sc->flags &= ~FXP_FLAG_UCODE;
1848 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1849 	DELAY(50);
1850 
1851 	/*
1852 	 * Release any xmit buffers.
1853 	 */
1854 	txp = sc->fxp_desc.tx_list;
1855 	if (txp != NULL) {
1856 		for (i = 0; i < FXP_NTXCB; i++) {
1857  			if (txp[i].tx_mbuf != NULL) {
1858 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1859 				    BUS_DMASYNC_POSTWRITE);
1860 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1861 				m_freem(txp[i].tx_mbuf);
1862 				txp[i].tx_mbuf = NULL;
1863 				/* clear this to reset csum offload bits */
1864 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1865 			}
1866 		}
1867 	}
1868 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1869 	sc->tx_queued = 0;
1870 }
1871 
1872 /*
1873  * Watchdog/transmission transmit timeout handler. Called when a
1874  * transmission is started on the interface, but no interrupt is
1875  * received before the timeout. This usually indicates that the
1876  * card has wedged for some reason.
1877  */
1878 static void
1879 fxp_watchdog(struct ifnet *ifp)
1880 {
1881 	struct fxp_softc *sc = ifp->if_softc;
1882 
1883 	FXP_LOCK(sc);
1884 	device_printf(sc->dev, "device timeout\n");
1885 	ifp->if_oerrors++;
1886 
1887 	fxp_init_body(sc);
1888 	FXP_UNLOCK(sc);
1889 }
1890 
1891 /*
1892  * Acquire locks and then call the real initialization function.  This
1893  * is necessary because ether_ioctl() calls if_init() and this would
1894  * result in mutex recursion if the mutex was held.
1895  */
1896 static void
1897 fxp_init(void *xsc)
1898 {
1899 	struct fxp_softc *sc = xsc;
1900 
1901 	FXP_LOCK(sc);
1902 	fxp_init_body(sc);
1903 	FXP_UNLOCK(sc);
1904 }
1905 
1906 /*
1907  * Perform device initialization. This routine must be called with the
1908  * softc lock held.
1909  */
1910 static void
1911 fxp_init_body(struct fxp_softc *sc)
1912 {
1913 	struct ifnet *ifp = sc->ifp;
1914 	struct fxp_cb_config *cbp;
1915 	struct fxp_cb_ias *cb_ias;
1916 	struct fxp_cb_tx *tcbp;
1917 	struct fxp_tx *txp;
1918 	struct fxp_cb_mcs *mcsp;
1919 	int i, prm;
1920 
1921 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1922 	/*
1923 	 * Cancel any pending I/O
1924 	 */
1925 	fxp_stop(sc);
1926 
1927 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1928 
1929 	/*
1930 	 * Initialize base of CBL and RFA memory. Loading with zero
1931 	 * sets it up for regular linear addressing.
1932 	 */
1933 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1934 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1935 
1936 	fxp_scb_wait(sc);
1937 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1938 
1939 	/*
1940 	 * Initialize base of dump-stats buffer.
1941 	 */
1942 	fxp_scb_wait(sc);
1943 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1944 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1945 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1946 
1947 	/*
1948 	 * Attempt to load microcode if requested.
1949 	 */
1950 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1951 		fxp_load_ucode(sc);
1952 
1953 	/*
1954 	 * Initialize the multicast address list.
1955 	 */
1956 	if (fxp_mc_addrs(sc)) {
1957 		mcsp = sc->mcsp;
1958 		mcsp->cb_status = 0;
1959 		mcsp->cb_command =
1960 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1961 		mcsp->link_addr = 0xffffffff;
1962 		/*
1963 	 	 * Start the multicast setup command.
1964 		 */
1965 		fxp_scb_wait(sc);
1966 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1967 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1968 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1969 		/* ...and wait for it to complete. */
1970 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1971 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1972 		    BUS_DMASYNC_POSTWRITE);
1973 	}
1974 
1975 	/*
1976 	 * We temporarily use memory that contains the TxCB list to
1977 	 * construct the config CB. The TxCB list memory is rebuilt
1978 	 * later.
1979 	 */
1980 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
1981 
1982 	/*
1983 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1984 	 * zero and must be one bits in this structure and this is the easiest
1985 	 * way to initialize them all to proper values.
1986 	 */
1987 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
1988 
1989 	cbp->cb_status =	0;
1990 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1991 	    FXP_CB_COMMAND_EL);
1992 	cbp->link_addr =	0xffffffff;	/* (no) next command */
1993 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
1994 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1995 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1996 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1997 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1998 	cbp->type_enable =	0;	/* actually reserved */
1999 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2000 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2001 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2002 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2003 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2004 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2005 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2006 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2007 	cbp->ci_int =		1;	/* interrupt on CU idle */
2008 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2009 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2010 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2011 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2012 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2013 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2014 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2015 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2016 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2017 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2018 	cbp->csma_dis =		0;	/* (don't) disable link */
2019 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2020 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2021 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2022 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2023 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2024 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2025 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2026 	cbp->loopback =		0;	/* (don't) loopback */
2027 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2028 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2029 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2030 	cbp->promiscuous =	prm;	/* promiscuous mode */
2031 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2032 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2033 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2034 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2035 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2036 
2037 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2038 	cbp->padding =		1;	/* (do) pad short tx packets */
2039 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2040 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2041 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2042 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2043 					/* must set wake_en in PMCSR also */
2044 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2045 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2046 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2047 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2048 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2049 
2050 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2051 		/*
2052 		 * The 82557 has no hardware flow control, the values
2053 		 * below are the defaults for the chip.
2054 		 */
2055 		cbp->fc_delay_lsb =	0;
2056 		cbp->fc_delay_msb =	0x40;
2057 		cbp->pri_fc_thresh =	3;
2058 		cbp->tx_fc_dis =	0;
2059 		cbp->rx_fc_restop =	0;
2060 		cbp->rx_fc_restart =	0;
2061 		cbp->fc_filter =	0;
2062 		cbp->pri_fc_loc =	1;
2063 	} else {
2064 		cbp->fc_delay_lsb =	0x1f;
2065 		cbp->fc_delay_msb =	0x01;
2066 		cbp->pri_fc_thresh =	3;
2067 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2068 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2069 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2070 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2071 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2072 	}
2073 
2074 	/*
2075 	 * Start the config command/DMA.
2076 	 */
2077 	fxp_scb_wait(sc);
2078 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2079 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2080 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2081 	/* ...and wait for it to complete. */
2082 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2083 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2084 
2085 	/*
2086 	 * Now initialize the station address. Temporarily use the TxCB
2087 	 * memory area like we did above for the config CB.
2088 	 */
2089 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2090 	cb_ias->cb_status = 0;
2091 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2092 	cb_ias->link_addr = 0xffffffff;
2093 	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2094 
2095 	/*
2096 	 * Start the IAS (Individual Address Setup) command/DMA.
2097 	 */
2098 	fxp_scb_wait(sc);
2099 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2100 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2101 	/* ...and wait for it to complete. */
2102 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2103 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2104 
2105 	/*
2106 	 * Initialize transmit control block (TxCB) list.
2107 	 */
2108 	txp = sc->fxp_desc.tx_list;
2109 	tcbp = sc->fxp_desc.cbl_list;
2110 	bzero(tcbp, FXP_TXCB_SZ);
2111 	for (i = 0; i < FXP_NTXCB; i++) {
2112 		txp[i].tx_mbuf = NULL;
2113 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2114 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2115 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2116 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2117 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2118 			tcbp[i].tbd_array_addr =
2119 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2120 		else
2121 			tcbp[i].tbd_array_addr =
2122 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2123 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2124 	}
2125 	/*
2126 	 * Set the suspend flag on the first TxCB and start the control
2127 	 * unit. It will execute the NOP and then suspend.
2128 	 */
2129 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2130 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2131 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2132 	sc->tx_queued = 1;
2133 
2134 	fxp_scb_wait(sc);
2135 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2136 
2137 	/*
2138 	 * Initialize receiver buffer area - RFA.
2139 	 */
2140 	fxp_scb_wait(sc);
2141 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2142 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2143 
2144 	/*
2145 	 * Set current media.
2146 	 */
2147 	if (sc->miibus != NULL)
2148 		mii_mediachg(device_get_softc(sc->miibus));
2149 
2150 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2151 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2152 
2153 	/*
2154 	 * Enable interrupts.
2155 	 */
2156 #ifdef DEVICE_POLLING
2157 	/*
2158 	 * ... but only do that if we are not polling. And because (presumably)
2159 	 * the default is interrupts on, we need to disable them explicitly!
2160 	 */
2161 	if (ifp->if_capenable & IFCAP_POLLING )
2162 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2163 	else
2164 #endif /* DEVICE_POLLING */
2165 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2166 
2167 	/*
2168 	 * Start stats updater.
2169 	 */
2170 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2171 }
2172 
2173 static int
2174 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2175 {
2176 
2177 	return (0);
2178 }
2179 
2180 static void
2181 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2182 {
2183 
2184 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2185 }
2186 
2187 /*
2188  * Change media according to request.
2189  */
2190 static int
2191 fxp_ifmedia_upd(struct ifnet *ifp)
2192 {
2193 	struct fxp_softc *sc = ifp->if_softc;
2194 	struct mii_data *mii;
2195 
2196 	mii = device_get_softc(sc->miibus);
2197 	FXP_LOCK(sc);
2198 	if (mii->mii_instance) {
2199 		struct mii_softc	*miisc;
2200 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2201 			mii_phy_reset(miisc);
2202 	}
2203 	mii_mediachg(mii);
2204 	FXP_UNLOCK(sc);
2205 	return (0);
2206 }
2207 
2208 /*
2209  * Notify the world which media we're using.
2210  */
2211 static void
2212 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2213 {
2214 	struct fxp_softc *sc = ifp->if_softc;
2215 	struct mii_data *mii;
2216 
2217 	mii = device_get_softc(sc->miibus);
2218 	FXP_LOCK(sc);
2219 	mii_pollstat(mii);
2220 	ifmr->ifm_active = mii->mii_media_active;
2221 	ifmr->ifm_status = mii->mii_media_status;
2222 
2223 	if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T &&
2224 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2225 		sc->cu_resume_bug = 1;
2226 	else
2227 		sc->cu_resume_bug = 0;
2228 	FXP_UNLOCK(sc);
2229 }
2230 
2231 /*
2232  * Add a buffer to the end of the RFA buffer list.
2233  * Return 0 if successful, 1 for failure. A failure results in
2234  * adding the 'oldm' (if non-NULL) on to the end of the list -
2235  * tossing out its old contents and recycling it.
2236  * The RFA struct is stuck at the beginning of mbuf cluster and the
2237  * data pointer is fixed up to point just past it.
2238  */
2239 static int
2240 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2241 {
2242 	struct mbuf *m;
2243 	struct fxp_rfa *rfa, *p_rfa;
2244 	struct fxp_rx *p_rx;
2245 	bus_dmamap_t tmp_map;
2246 	int error;
2247 
2248 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2249 	if (m == NULL)
2250 		return (ENOBUFS);
2251 
2252 	/*
2253 	 * Move the data pointer up so that the incoming data packet
2254 	 * will be 32-bit aligned.
2255 	 */
2256 	m->m_data += RFA_ALIGNMENT_FUDGE;
2257 
2258 	/*
2259 	 * Get a pointer to the base of the mbuf cluster and move
2260 	 * data start past it.
2261 	 */
2262 	rfa = mtod(m, struct fxp_rfa *);
2263 	m->m_data += sc->rfa_size;
2264 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2265 
2266 	rfa->rfa_status = 0;
2267 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2268 	rfa->actual_size = 0;
2269 
2270 	/*
2271 	 * Initialize the rest of the RFA.  Note that since the RFA
2272 	 * is misaligned, we cannot store values directly.  We're thus
2273 	 * using the le32enc() function which handles endianness and
2274 	 * is also alignment-safe.
2275 	 */
2276 	le32enc(&rfa->link_addr, 0xffffffff);
2277 	le32enc(&rfa->rbd_addr, 0xffffffff);
2278 
2279 	/* Map the RFA into DMA memory. */
2280 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2281 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2282 	    &rxp->rx_addr, 0);
2283 	if (error) {
2284 		m_freem(m);
2285 		return (error);
2286 	}
2287 
2288 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2289 	tmp_map = sc->spare_map;
2290 	sc->spare_map = rxp->rx_map;
2291 	rxp->rx_map = tmp_map;
2292 	rxp->rx_mbuf = m;
2293 
2294 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2295 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2296 
2297 	/*
2298 	 * If there are other buffers already on the list, attach this
2299 	 * one to the end by fixing up the tail to point to this one.
2300 	 */
2301 	if (sc->fxp_desc.rx_head != NULL) {
2302 		p_rx = sc->fxp_desc.rx_tail;
2303 		p_rfa = (struct fxp_rfa *)
2304 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2305 		p_rx->rx_next = rxp;
2306 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2307 		p_rfa->rfa_control = 0;
2308 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2309 		    BUS_DMASYNC_PREWRITE);
2310 	} else {
2311 		rxp->rx_next = NULL;
2312 		sc->fxp_desc.rx_head = rxp;
2313 	}
2314 	sc->fxp_desc.rx_tail = rxp;
2315 	return (0);
2316 }
2317 
2318 static volatile int
2319 fxp_miibus_readreg(device_t dev, int phy, int reg)
2320 {
2321 	struct fxp_softc *sc = device_get_softc(dev);
2322 	int count = 10000;
2323 	int value;
2324 
2325 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2326 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2327 
2328 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2329 	    && count--)
2330 		DELAY(10);
2331 
2332 	if (count <= 0)
2333 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2334 
2335 	return (value & 0xffff);
2336 }
2337 
2338 static void
2339 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2340 {
2341 	struct fxp_softc *sc = device_get_softc(dev);
2342 	int count = 10000;
2343 
2344 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2345 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2346 	    (value & 0xffff));
2347 
2348 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2349 	    count--)
2350 		DELAY(10);
2351 
2352 	if (count <= 0)
2353 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2354 }
2355 
2356 static int
2357 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2358 {
2359 	struct fxp_softc *sc = ifp->if_softc;
2360 	struct ifreq *ifr = (struct ifreq *)data;
2361 	struct mii_data *mii;
2362 	int flag, mask, error = 0;
2363 
2364 	switch (command) {
2365 	case SIOCSIFFLAGS:
2366 		FXP_LOCK(sc);
2367 		if (ifp->if_flags & IFF_ALLMULTI)
2368 			sc->flags |= FXP_FLAG_ALL_MCAST;
2369 		else
2370 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2371 
2372 		/*
2373 		 * If interface is marked up and not running, then start it.
2374 		 * If it is marked down and running, stop it.
2375 		 * XXX If it's up then re-initialize it. This is so flags
2376 		 * such as IFF_PROMISC are handled.
2377 		 */
2378 		if (ifp->if_flags & IFF_UP) {
2379 			fxp_init_body(sc);
2380 		} else {
2381 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2382 				fxp_stop(sc);
2383 		}
2384 		FXP_UNLOCK(sc);
2385 		break;
2386 
2387 	case SIOCADDMULTI:
2388 	case SIOCDELMULTI:
2389 		FXP_LOCK(sc);
2390 		if (ifp->if_flags & IFF_ALLMULTI)
2391 			sc->flags |= FXP_FLAG_ALL_MCAST;
2392 		else
2393 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2394 		/*
2395 		 * Multicast list has changed; set the hardware filter
2396 		 * accordingly.
2397 		 */
2398 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2399 			fxp_mc_setup(sc);
2400 		/*
2401 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2402 		 * again rather than else {}.
2403 		 */
2404 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2405 			fxp_init_body(sc);
2406 		FXP_UNLOCK(sc);
2407 		error = 0;
2408 		break;
2409 
2410 	case SIOCSIFMEDIA:
2411 	case SIOCGIFMEDIA:
2412 		if (sc->miibus != NULL) {
2413 			mii = device_get_softc(sc->miibus);
2414                         error = ifmedia_ioctl(ifp, ifr,
2415                             &mii->mii_media, command);
2416 		} else {
2417                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2418 		}
2419 		break;
2420 
2421 	case SIOCSIFCAP:
2422 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2423 #ifdef DEVICE_POLLING
2424 		if (mask & IFCAP_POLLING) {
2425 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2426 				error = ether_poll_register(fxp_poll, ifp);
2427 				if (error)
2428 					return(error);
2429 				FXP_LOCK(sc);
2430 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2431 				    FXP_SCB_INTR_DISABLE);
2432 				ifp->if_capenable |= IFCAP_POLLING;
2433 				FXP_UNLOCK(sc);
2434 			} else {
2435 				error = ether_poll_deregister(ifp);
2436 				/* Enable interrupts in any case */
2437 				FXP_LOCK(sc);
2438 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2439 				ifp->if_capenable &= ~IFCAP_POLLING;
2440 				FXP_UNLOCK(sc);
2441 			}
2442 		}
2443 #endif
2444 		if (mask & IFCAP_VLAN_MTU) {
2445 			FXP_LOCK(sc);
2446 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2447 			if (sc->revision != FXP_REV_82557)
2448 				flag = FXP_FLAG_LONG_PKT_EN;
2449 			else /* a hack to get long frames on the old chip */
2450 				flag = FXP_FLAG_SAVE_BAD;
2451 			sc->flags ^= flag;
2452 			if (ifp->if_flags & IFF_UP)
2453 				fxp_init_body(sc);
2454 			FXP_UNLOCK(sc);
2455 		}
2456 		break;
2457 
2458 	default:
2459 		error = ether_ioctl(ifp, command, data);
2460 	}
2461 	return (error);
2462 }
2463 
2464 /*
2465  * Fill in the multicast address list and return number of entries.
2466  */
2467 static int
2468 fxp_mc_addrs(struct fxp_softc *sc)
2469 {
2470 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2471 	struct ifnet *ifp = sc->ifp;
2472 	struct ifmultiaddr *ifma;
2473 	int nmcasts;
2474 
2475 	nmcasts = 0;
2476 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2477 		IF_ADDR_LOCK(ifp);
2478 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2479 			if (ifma->ifma_addr->sa_family != AF_LINK)
2480 				continue;
2481 			if (nmcasts >= MAXMCADDR) {
2482 				sc->flags |= FXP_FLAG_ALL_MCAST;
2483 				nmcasts = 0;
2484 				break;
2485 			}
2486 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2487 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2488 			nmcasts++;
2489 		}
2490 		IF_ADDR_UNLOCK(ifp);
2491 	}
2492 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2493 	return (nmcasts);
2494 }
2495 
2496 /*
2497  * Program the multicast filter.
2498  *
2499  * We have an artificial restriction that the multicast setup command
2500  * must be the first command in the chain, so we take steps to ensure
2501  * this. By requiring this, it allows us to keep up the performance of
2502  * the pre-initialized command ring (esp. link pointers) by not actually
2503  * inserting the mcsetup command in the ring - i.e. its link pointer
2504  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2505  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2506  * lead into the regular TxCB ring when it completes.
2507  *
2508  * This function must be called at splimp.
2509  */
2510 static void
2511 fxp_mc_setup(struct fxp_softc *sc)
2512 {
2513 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2514 	struct ifnet *ifp = sc->ifp;
2515 	struct fxp_tx *txp;
2516 	int count;
2517 
2518 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2519 	/*
2520 	 * If there are queued commands, we must wait until they are all
2521 	 * completed. If we are already waiting, then add a NOP command
2522 	 * with interrupt option so that we're notified when all commands
2523 	 * have been completed - fxp_start() ensures that no additional
2524 	 * TX commands will be added when need_mcsetup is true.
2525 	 */
2526 	if (sc->tx_queued) {
2527 		/*
2528 		 * need_mcsetup will be true if we are already waiting for the
2529 		 * NOP command to be completed (see below). In this case, bail.
2530 		 */
2531 		if (sc->need_mcsetup)
2532 			return;
2533 		sc->need_mcsetup = 1;
2534 
2535 		/*
2536 		 * Add a NOP command with interrupt so that we are notified
2537 		 * when all TX commands have been processed.
2538 		 */
2539 		txp = sc->fxp_desc.tx_last->tx_next;
2540 		txp->tx_mbuf = NULL;
2541 		txp->tx_cb->cb_status = 0;
2542 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2543 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2544 		/*
2545 		 * Advance the end of list forward.
2546 		 */
2547 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2548 		    htole16(~FXP_CB_COMMAND_S);
2549 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2550 		sc->fxp_desc.tx_last = txp;
2551 		sc->tx_queued++;
2552 		/*
2553 		 * Issue a resume in case the CU has just suspended.
2554 		 */
2555 		fxp_scb_wait(sc);
2556 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2557 		/*
2558 		 * Set a 5 second timer just in case we don't hear from the
2559 		 * card again.
2560 		 */
2561 		ifp->if_timer = 5;
2562 
2563 		return;
2564 	}
2565 	sc->need_mcsetup = 0;
2566 
2567 	/*
2568 	 * Initialize multicast setup descriptor.
2569 	 */
2570 	mcsp->cb_status = 0;
2571 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2572 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2573 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2574 	txp = &sc->fxp_desc.mcs_tx;
2575 	txp->tx_mbuf = NULL;
2576 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2577 	txp->tx_next = sc->fxp_desc.tx_list;
2578 	(void) fxp_mc_addrs(sc);
2579 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2580 	sc->tx_queued = 1;
2581 
2582 	/*
2583 	 * Wait until command unit is not active. This should never
2584 	 * be the case when nothing is queued, but make sure anyway.
2585 	 */
2586 	count = 100;
2587 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2588 	    FXP_SCB_CUS_ACTIVE && --count)
2589 		DELAY(10);
2590 	if (count == 0) {
2591 		device_printf(sc->dev, "command queue timeout\n");
2592 		return;
2593 	}
2594 
2595 	/*
2596 	 * Start the multicast setup command.
2597 	 */
2598 	fxp_scb_wait(sc);
2599 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2600 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2601 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2602 
2603 	ifp->if_timer = 2;
2604 	return;
2605 }
2606 
2607 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2608 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2609 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2610 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2611 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2612 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2613 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2614 
2615 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2616 
2617 struct ucode {
2618 	uint32_t	revision;
2619 	uint32_t	*ucode;
2620 	int		length;
2621 	u_short		int_delay_offset;
2622 	u_short		bundle_max_offset;
2623 } ucode_table[] = {
2624 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2625 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2626 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2627 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2628 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2629 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2630 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2631 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2632 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2633 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2634 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2635 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2636 	{ 0, NULL, 0, 0, 0 }
2637 };
2638 
2639 static void
2640 fxp_load_ucode(struct fxp_softc *sc)
2641 {
2642 	struct ucode *uc;
2643 	struct fxp_cb_ucode *cbp;
2644 	int i;
2645 
2646 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2647 		if (sc->revision == uc->revision)
2648 			break;
2649 	if (uc->ucode == NULL)
2650 		return;
2651 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2652 	cbp->cb_status = 0;
2653 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2654 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2655 	for (i = 0; i < uc->length; i++)
2656 		cbp->ucode[i] = htole32(uc->ucode[i]);
2657 	if (uc->int_delay_offset)
2658 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2659 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2660 	if (uc->bundle_max_offset)
2661 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2662 		    htole16(sc->tunable_bundle_max);
2663 	/*
2664 	 * Download the ucode to the chip.
2665 	 */
2666 	fxp_scb_wait(sc);
2667 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2668 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2669 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2670 	/* ...and wait for it to complete. */
2671 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2672 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2673 	device_printf(sc->dev,
2674 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2675 	    sc->tunable_int_delay,
2676 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2677 	sc->flags |= FXP_FLAG_UCODE;
2678 }
2679 
2680 static int
2681 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2682 {
2683 	int error, value;
2684 
2685 	value = *(int *)arg1;
2686 	error = sysctl_handle_int(oidp, &value, 0, req);
2687 	if (error || !req->newptr)
2688 		return (error);
2689 	if (value < low || value > high)
2690 		return (EINVAL);
2691 	*(int *)arg1 = value;
2692 	return (0);
2693 }
2694 
2695 /*
2696  * Interrupt delay is expressed in microseconds, a multiplier is used
2697  * to convert this to the appropriate clock ticks before using.
2698  */
2699 static int
2700 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2701 {
2702 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2703 }
2704 
2705 static int
2706 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2707 {
2708 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2709 }
2710