xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 5773cccf19ef7b97e56c1101aa481c43149224da)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/mbuf.h>
38 #include <sys/malloc.h>
39 		/* #include <sys/mutex.h> */
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/sysctl.h>
43 
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 
48 #ifdef NS
49 #include <netns/ns.h>
50 #include <netns/ns_if.h>
51 #endif
52 
53 #include <net/bpf.h>
54 #include <sys/sockio.h>
55 #include <sys/bus.h>
56 #include <machine/bus.h>
57 #include <sys/rman.h>
58 #include <machine/resource.h>
59 
60 #include <net/ethernet.h>
61 #include <net/if_arp.h>
62 
63 #include <vm/vm.h>		/* for vtophys */
64 #include <vm/pmap.h>		/* for vtophys */
65 #include <machine/clock.h>	/* for DELAY */
66 
67 #include <net/if_types.h>
68 #include <net/if_vlan_var.h>
69 
70 #include <pci/pcivar.h>
71 #include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
72 
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/fxp/if_fxpreg.h>
77 #include <dev/fxp/if_fxpvar.h>
78 #include <dev/fxp/rcvbundl.h>
79 
80 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
81 #include "miibus_if.h"
82 
83 /*
84  * NOTE!  On the Alpha, we have an alignment constraint.  The
85  * card DMAs the packet immediately following the RFA.  However,
86  * the first thing in the packet is a 14-byte Ethernet header.
87  * This means that the packet is misaligned.  To compensate,
88  * we actually offset the RFA 2 bytes into the cluster.  This
89  * alignes the packet after the Ethernet header at a 32-bit
90  * boundary.  HOWEVER!  This means that the RFA is misaligned!
91  */
92 #define	RFA_ALIGNMENT_FUDGE	2
93 
94 /*
95  * Set initial transmit threshold at 64 (512 bytes). This is
96  * increased by 64 (512 bytes) at a time, to maximum of 192
97  * (1536 bytes), if an underrun occurs.
98  */
99 static int tx_threshold = 64;
100 
101 /*
102  * The configuration byte map has several undefined fields which
103  * must be one or must be zero.  Set up a template for these bits
104  * only, (assuming a 82557 chip) leaving the actual configuration
105  * to fxp_init.
106  *
107  * See struct fxp_cb_config for the bit definitions.
108  */
109 static u_char fxp_cb_config_template[] = {
110 	0x0, 0x0,		/* cb_status */
111 	0x0, 0x0,		/* cb_command */
112 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113 	0x0,	/*  0 */
114 	0x0,	/*  1 */
115 	0x0,	/*  2 */
116 	0x0,	/*  3 */
117 	0x0,	/*  4 */
118 	0x0,	/*  5 */
119 	0x32,	/*  6 */
120 	0x0,	/*  7 */
121 	0x0,	/*  8 */
122 	0x0,	/*  9 */
123 	0x6,	/* 10 */
124 	0x0,	/* 11 */
125 	0x0,	/* 12 */
126 	0x0,	/* 13 */
127 	0xf2,	/* 14 */
128 	0x48,	/* 15 */
129 	0x0,	/* 16 */
130 	0x40,	/* 17 */
131 	0xf0,	/* 18 */
132 	0x0,	/* 19 */
133 	0x3f,	/* 20 */
134 	0x5	/* 21 */
135 };
136 
137 struct fxp_ident {
138 	u_int16_t	devid;
139 	char 		*name;
140 };
141 
142 /*
143  * Claim various Intel PCI device identifiers for this driver.  The
144  * sub-vendor and sub-device field are extensively used to identify
145  * particular variants, but we don't currently differentiate between
146  * them.
147  */
148 static struct fxp_ident fxp_ident_table[] = {
149     { 0x1229,		"Intel Pro 10/100B/100+ Ethernet" },
150     { 0x2449,		"Intel Pro/100 Ethernet" },
151     { 0x1209,		"Intel Embedded 10/100 Ethernet" },
152     { 0x1029,		"Intel Pro/100 Ethernet" },
153     { 0x1030,		"Intel Pro/100 Ethernet" },
154     { 0x1031,		"Intel Pro/100 Ethernet" },
155     { 0x1032,		"Intel Pro/100 Ethernet" },
156     { 0x1033,		"Intel Pro/100 Ethernet" },
157     { 0x1034,		"Intel Pro/100 Ethernet" },
158     { 0x1035,		"Intel Pro/100 Ethernet" },
159     { 0x1036,		"Intel Pro/100 Ethernet" },
160     { 0x1037,		"Intel Pro/100 Ethernet" },
161     { 0x1038,		"Intel Pro/100 Ethernet" },
162     { 0x1039,		"Intel Pro/100 Ethernet" },
163     { 0x103A,		"Intel Pro/100 Ethernet" },
164     { 0x103B,		"Intel Pro/100 Ethernet" },
165     { 0x103C,		"Intel Pro/100 Ethernet" },
166     { 0x103D,		"Intel Pro/100 Ethernet" },
167     { 0x103E,		"Intel Pro/100 Ethernet" },
168     { 0,		NULL },
169 };
170 
171 static int		fxp_probe(device_t dev);
172 static int		fxp_attach(device_t dev);
173 static int		fxp_detach(device_t dev);
174 static int		fxp_shutdown(device_t dev);
175 static int		fxp_suspend(device_t dev);
176 static int		fxp_resume(device_t dev);
177 
178 static void		fxp_intr(void *xsc);
179 static void 		fxp_init(void *xsc);
180 static void 		fxp_tick(void *xsc);
181 static void		fxp_powerstate_d0(device_t dev);
182 static void 		fxp_start(struct ifnet *ifp);
183 static void		fxp_stop(struct fxp_softc *sc);
184 static void 		fxp_release(struct fxp_softc *sc);
185 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
186 			    caddr_t data);
187 static void 		fxp_watchdog(struct ifnet *ifp);
188 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
189 static int		fxp_mc_addrs(struct fxp_softc *sc);
190 static void		fxp_mc_setup(struct fxp_softc *sc);
191 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
192 			    int autosize);
193 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
194 			    u_int16_t data);
195 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
196 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
197 			    int offset, int words);
198 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
199 			    int offset, int words);
200 static int		fxp_ifmedia_upd(struct ifnet *ifp);
201 static void		fxp_ifmedia_sts(struct ifnet *ifp,
202 			    struct ifmediareq *ifmr);
203 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
204 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
205 			    struct ifmediareq *ifmr);
206 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
207 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
208 			    int value);
209 static void		fxp_load_ucode(struct fxp_softc *sc);
210 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
211 			    int low, int high);
212 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
213 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
214 static __inline void	fxp_lwcopy(volatile u_int32_t *src,
215 			    volatile u_int32_t *dst);
216 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
217 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
218 static __inline void	fxp_dma_wait(volatile u_int16_t *status,
219 			    struct fxp_softc *sc);
220 
221 static device_method_t fxp_methods[] = {
222 	/* Device interface */
223 	DEVMETHOD(device_probe,		fxp_probe),
224 	DEVMETHOD(device_attach,	fxp_attach),
225 	DEVMETHOD(device_detach,	fxp_detach),
226 	DEVMETHOD(device_shutdown,	fxp_shutdown),
227 	DEVMETHOD(device_suspend,	fxp_suspend),
228 	DEVMETHOD(device_resume,	fxp_resume),
229 
230 	/* MII interface */
231 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
232 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
233 
234 	{ 0, 0 }
235 };
236 
237 static driver_t fxp_driver = {
238 	"fxp",
239 	fxp_methods,
240 	sizeof(struct fxp_softc),
241 };
242 
243 static devclass_t fxp_devclass;
244 
245 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
246 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
247 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
248 
249 static int fxp_rnr;
250 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
251 
252 /*
253  * Inline function to copy a 16-bit aligned 32-bit quantity.
254  */
255 static __inline void
256 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
257 {
258 #ifdef __i386__
259 	*dst = *src;
260 #else
261 	volatile u_int16_t *a = (volatile u_int16_t *)src;
262 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
263 
264 	b[0] = a[0];
265 	b[1] = a[1];
266 #endif
267 }
268 
269 /*
270  * Wait for the previous command to be accepted (but not necessarily
271  * completed).
272  */
273 static __inline void
274 fxp_scb_wait(struct fxp_softc *sc)
275 {
276 	int i = 10000;
277 
278 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
279 		DELAY(2);
280 	if (i == 0)
281 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
282 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
283 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
284 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
285 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
286 }
287 
288 static __inline void
289 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
290 {
291 
292 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
293 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
294 		fxp_scb_wait(sc);
295 	}
296 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
297 }
298 
299 static __inline void
300 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
301 {
302 	int i = 10000;
303 
304 	while (!(*status & FXP_CB_STATUS_C) && --i)
305 		DELAY(2);
306 	if (i == 0)
307 		device_printf(sc->dev, "DMA timeout\n");
308 }
309 
310 /*
311  * Return identification string if this is device is ours.
312  */
313 static int
314 fxp_probe(device_t dev)
315 {
316 	u_int16_t devid;
317 	struct fxp_ident *ident;
318 
319 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
320 		devid = pci_get_device(dev);
321 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
322 			if (ident->devid == devid) {
323 				device_set_desc(dev, ident->name);
324 				return (0);
325 			}
326 		}
327 	}
328 	return (ENXIO);
329 }
330 
331 static void
332 fxp_powerstate_d0(device_t dev)
333 {
334 #if __FreeBSD_version >= 430002
335 	u_int32_t iobase, membase, irq;
336 
337 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
338 		/* Save important PCI config data. */
339 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
340 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
341 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
342 
343 		/* Reset the power state. */
344 		device_printf(dev, "chip is in D%d power mode "
345 		    "-- setting to D0\n", pci_get_powerstate(dev));
346 
347 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
348 
349 		/* Restore PCI config data. */
350 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
351 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
352 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
353 	}
354 #endif
355 }
356 
357 static int
358 fxp_attach(device_t dev)
359 {
360 	int error = 0;
361 	struct fxp_softc *sc = device_get_softc(dev);
362 	struct ifnet *ifp;
363 	u_int32_t val;
364 	u_int16_t data;
365 	int i, rid, m1, m2, prefer_iomap;
366 	int s;
367 
368 	bzero(sc, sizeof(*sc));
369 	sc->dev = dev;
370 	callout_handle_init(&sc->stat_ch);
371 	sysctl_ctx_init(&sc->sysctl_ctx);
372 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
373 	    MTX_DEF | MTX_RECURSE);
374 
375 	s = splimp();
376 
377 	/*
378 	 * Enable bus mastering. Enable memory space too, in case
379 	 * BIOS/Prom forgot about it.
380 	 */
381 	val = pci_read_config(dev, PCIR_COMMAND, 2);
382 	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
383 	pci_write_config(dev, PCIR_COMMAND, val, 2);
384 	val = pci_read_config(dev, PCIR_COMMAND, 2);
385 
386 	fxp_powerstate_d0(dev);
387 
388 	/*
389 	 * Figure out which we should try first - memory mapping or i/o mapping?
390 	 * We default to memory mapping. Then we accept an override from the
391 	 * command line. Then we check to see which one is enabled.
392 	 */
393 	m1 = PCIM_CMD_MEMEN;
394 	m2 = PCIM_CMD_PORTEN;
395 	prefer_iomap = 0;
396 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
397 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
398 		m1 = PCIM_CMD_PORTEN;
399 		m2 = PCIM_CMD_MEMEN;
400 	}
401 
402 	if (val & m1) {
403 		sc->rtp =
404 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
405 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
406 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
407 	                                     0, ~0, 1, RF_ACTIVE);
408 	}
409 	if (sc->mem == NULL && (val & m2)) {
410 		sc->rtp =
411 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
412 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
413 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
414                                             0, ~0, 1, RF_ACTIVE);
415 	}
416 
417 	if (!sc->mem) {
418 		device_printf(dev, "could not map device registers\n");
419 		error = ENXIO;
420 		goto fail;
421         }
422 	if (bootverbose) {
423 		device_printf(dev, "using %s space register mapping\n",
424 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
425 	}
426 
427 	sc->sc_st = rman_get_bustag(sc->mem);
428 	sc->sc_sh = rman_get_bushandle(sc->mem);
429 
430 	/*
431 	 * Allocate our interrupt.
432 	 */
433 	rid = 0;
434 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
435 				 RF_SHAREABLE | RF_ACTIVE);
436 	if (sc->irq == NULL) {
437 		device_printf(dev, "could not map interrupt\n");
438 		error = ENXIO;
439 		goto fail;
440 	}
441 
442 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
443 			       fxp_intr, sc, &sc->ih);
444 	if (error) {
445 		device_printf(dev, "could not setup irq\n");
446 		goto fail;
447 	}
448 
449 	/*
450 	 * Reset to a stable state.
451 	 */
452 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
453 	DELAY(10);
454 
455 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
456 	    M_DEVBUF, M_NOWAIT | M_ZERO);
457 	if (sc->cbl_base == NULL)
458 		goto failmem;
459 
460 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
461 	    M_NOWAIT | M_ZERO);
462 	if (sc->fxp_stats == NULL)
463 		goto failmem;
464 
465 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
466 	if (sc->mcsp == NULL)
467 		goto failmem;
468 
469 	/*
470 	 * Pre-allocate our receive buffers.
471 	 */
472 	for (i = 0; i < FXP_NRFABUFS; i++) {
473 		if (fxp_add_rfabuf(sc, NULL) != 0) {
474 			goto failmem;
475 		}
476 	}
477 
478 	/*
479 	 * Find out how large of an SEEPROM we have.
480 	 */
481 	fxp_autosize_eeprom(sc);
482 
483 	/*
484 	 * Determine whether we must use the 503 serial interface.
485 	 */
486 	fxp_read_eeprom(sc, &data, 6, 1);
487 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
488 	    (data & FXP_PHY_SERIAL_ONLY))
489 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
490 
491 	/*
492 	 * Create the sysctl tree
493 	 */
494 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
495 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
496 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
497 	if (sc->sysctl_tree == NULL)
498 		goto fail;
499 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
500 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
501 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
502 	    "FXP driver receive interrupt microcode bundling delay");
503 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
504 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
505 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
506 	    "FXP driver receive interrupt microcode bundle size limit");
507 
508 	/*
509 	 * Pull in device tunables.
510 	 */
511 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
512 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
513 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
514 	    "int_delay", &sc->tunable_int_delay);
515 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
516 	    "bundle_max", &sc->tunable_bundle_max);
517 
518 	/*
519 	 * Find out the chip revision; lump all 82557 revs together.
520 	 */
521 	fxp_read_eeprom(sc, &data, 5, 1);
522 	if ((data >> 8) == 1)
523 		sc->revision = FXP_REV_82557;
524 	else
525 		sc->revision = pci_get_revid(dev);
526 
527 	/*
528 	 * Enable workarounds for certain chip revision deficiencies.
529 	 *
530 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
531 	 * some systems based a normal 82559 design, have a defect where
532 	 * the chip can cause a PCI protocol violation if it receives
533 	 * a CU_RESUME command when it is entering the IDLE state.  The
534 	 * workaround is to disable Dynamic Standby Mode, so the chip never
535 	 * deasserts CLKRUN#, and always remains in an active state.
536 	 *
537 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
538 	 */
539 	i = pci_get_device(dev);
540 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
541 	    sc->revision >= FXP_REV_82559_A0) {
542 		fxp_read_eeprom(sc, &data, 10, 1);
543 		if (data & 0x02) {			/* STB enable */
544 			u_int16_t cksum;
545 			int i;
546 
547 			device_printf(dev,
548 			    "Disabling dynamic standby mode in EEPROM\n");
549 			data &= ~0x02;
550 			fxp_write_eeprom(sc, &data, 10, 1);
551 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
552 			cksum = 0;
553 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
554 				fxp_read_eeprom(sc, &data, i, 1);
555 				cksum += data;
556 			}
557 			i = (1 << sc->eeprom_size) - 1;
558 			cksum = 0xBABA - cksum;
559 			fxp_read_eeprom(sc, &data, i, 1);
560 			fxp_write_eeprom(sc, &cksum, i, 1);
561 			device_printf(dev,
562 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
563 			    i, data, cksum);
564 #if 1
565 			/*
566 			 * If the user elects to continue, try the software
567 			 * workaround, as it is better than nothing.
568 			 */
569 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
570 #endif
571 		}
572 	}
573 
574 	/*
575 	 * If we are not a 82557 chip, we can enable extended features.
576 	 */
577 	if (sc->revision != FXP_REV_82557) {
578 		/*
579 		 * If MWI is enabled in the PCI configuration, and there
580 		 * is a valid cacheline size (8 or 16 dwords), then tell
581 		 * the board to turn on MWI.
582 		 */
583 		if (val & PCIM_CMD_MWRICEN &&
584 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
585 			sc->flags |= FXP_FLAG_MWI_ENABLE;
586 
587 		/* turn on the extended TxCB feature */
588 		sc->flags |= FXP_FLAG_EXT_TXCB;
589 
590 		/* enable reception of long frames for VLAN */
591 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
592 	}
593 
594 	/*
595 	 * Read MAC address.
596 	 */
597 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
598 	device_printf(dev, "Ethernet address %6D%s\n",
599 	    sc->arpcom.ac_enaddr, ":",
600 	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
601 	if (bootverbose) {
602 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
603 		    pci_get_vendor(dev), pci_get_device(dev),
604 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
605 		    pci_get_revid(dev));
606 		fxp_read_eeprom(sc, &data, 10, 1);
607 		device_printf(dev, "Dynamic Standby mode is %s\n",
608 		    data & 0x02 ? "enabled" : "disabled");
609 	}
610 
611 	/*
612 	 * If this is only a 10Mbps device, then there is no MII, and
613 	 * the PHY will use a serial interface instead.
614 	 *
615 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
616 	 * doesn't have a programming interface of any sort.  The
617 	 * media is sensed automatically based on how the link partner
618 	 * is configured.  This is, in essence, manual configuration.
619 	 */
620 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
621 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
622 		    fxp_serial_ifmedia_sts);
623 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
624 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
625 	} else {
626 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
627 		    fxp_ifmedia_sts)) {
628 	                device_printf(dev, "MII without any PHY!\n");
629 			error = ENXIO;
630 			goto fail;
631 		}
632 	}
633 
634 	ifp = &sc->arpcom.ac_if;
635 	ifp->if_unit = device_get_unit(dev);
636 	ifp->if_name = "fxp";
637 	ifp->if_output = ether_output;
638 	ifp->if_baudrate = 100000000;
639 	ifp->if_init = fxp_init;
640 	ifp->if_softc = sc;
641 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
642 	ifp->if_ioctl = fxp_ioctl;
643 	ifp->if_start = fxp_start;
644 	ifp->if_watchdog = fxp_watchdog;
645 
646 	/*
647 	 * Attach the interface.
648 	 */
649 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
650 
651 	/*
652 	 * Tell the upper layer(s) we support long frames.
653 	 */
654 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
655 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
656 
657 	/*
658 	 * Let the system queue as many packets as we have available
659 	 * TX descriptors.
660 	 */
661 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
662 
663 	splx(s);
664 	return (0);
665 
666 failmem:
667 	device_printf(dev, "Failed to malloc memory\n");
668 	error = ENOMEM;
669 fail:
670 	splx(s);
671 	fxp_release(sc);
672 	return (error);
673 }
674 
675 /*
676  * release all resources
677  */
678 static void
679 fxp_release(struct fxp_softc *sc)
680 {
681 
682 	bus_generic_detach(sc->dev);
683 	if (sc->miibus)
684 		device_delete_child(sc->dev, sc->miibus);
685 
686 	if (sc->cbl_base)
687 		free(sc->cbl_base, M_DEVBUF);
688 	if (sc->fxp_stats)
689 		free(sc->fxp_stats, M_DEVBUF);
690 	if (sc->mcsp)
691 		free(sc->mcsp, M_DEVBUF);
692 	if (sc->rfa_headm)
693 		m_freem(sc->rfa_headm);
694 
695 	if (sc->ih)
696 		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
697 	if (sc->irq)
698 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
699 	if (sc->mem)
700 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
701 
702         sysctl_ctx_free(&sc->sysctl_ctx);
703 
704 	mtx_destroy(&sc->sc_mtx);
705 }
706 
707 /*
708  * Detach interface.
709  */
710 static int
711 fxp_detach(device_t dev)
712 {
713 	struct fxp_softc *sc = device_get_softc(dev);
714 	int s;
715 
716 	/* disable interrupts */
717 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
718 
719 	s = splimp();
720 
721 	/*
722 	 * Stop DMA and drop transmit queue.
723 	 */
724 	fxp_stop(sc);
725 
726 	/*
727 	 * Close down routes etc.
728 	 */
729 	ether_ifdetach(&sc->arpcom.ac_if);
730 
731 	/*
732 	 * Free all media structures.
733 	 */
734 	ifmedia_removeall(&sc->sc_media);
735 
736 	splx(s);
737 
738 	/* Release our allocated resources. */
739 	fxp_release(sc);
740 
741 	return (0);
742 }
743 
744 /*
745  * Device shutdown routine. Called at system shutdown after sync. The
746  * main purpose of this routine is to shut off receiver DMA so that
747  * kernel memory doesn't get clobbered during warmboot.
748  */
749 static int
750 fxp_shutdown(device_t dev)
751 {
752 	/*
753 	 * Make sure that DMA is disabled prior to reboot. Not doing
754 	 * do could allow DMA to corrupt kernel memory during the
755 	 * reboot before the driver initializes.
756 	 */
757 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
758 	return (0);
759 }
760 
761 /*
762  * Device suspend routine.  Stop the interface and save some PCI
763  * settings in case the BIOS doesn't restore them properly on
764  * resume.
765  */
766 static int
767 fxp_suspend(device_t dev)
768 {
769 	struct fxp_softc *sc = device_get_softc(dev);
770 	int i, s;
771 
772 	s = splimp();
773 
774 	fxp_stop(sc);
775 
776 	for (i = 0; i < 5; i++)
777 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
778 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
779 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
780 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
781 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
782 
783 	sc->suspended = 1;
784 
785 	splx(s);
786 	return (0);
787 }
788 
789 /*
790  * Device resume routine.  Restore some PCI settings in case the BIOS
791  * doesn't, re-enable busmastering, and restart the interface if
792  * appropriate.
793  */
794 static int
795 fxp_resume(device_t dev)
796 {
797 	struct fxp_softc *sc = device_get_softc(dev);
798 	struct ifnet *ifp = &sc->sc_if;
799 	u_int16_t pci_command;
800 	int i, s;
801 
802 	s = splimp();
803 
804 	fxp_powerstate_d0(dev);
805 
806 	/* better way to do this? */
807 	for (i = 0; i < 5; i++)
808 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
809 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
810 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
811 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
812 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
813 
814 	/* reenable busmastering */
815 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
816 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
817 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
818 
819 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
820 	DELAY(10);
821 
822 	/* reinitialize interface if necessary */
823 	if (ifp->if_flags & IFF_UP)
824 		fxp_init(sc);
825 
826 	sc->suspended = 0;
827 
828 	splx(s);
829 	return (0);
830 }
831 
832 static void
833 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
834 {
835 	u_int16_t reg;
836 	int x;
837 
838 	/*
839 	 * Shift in data.
840 	 */
841 	for (x = 1 << (length - 1); x; x >>= 1) {
842 		if (data & x)
843 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
844 		else
845 			reg = FXP_EEPROM_EECS;
846 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
847 		DELAY(1);
848 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
849 		DELAY(1);
850 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
851 		DELAY(1);
852 	}
853 }
854 
855 /*
856  * Read from the serial EEPROM. Basically, you manually shift in
857  * the read opcode (one bit at a time) and then shift in the address,
858  * and then you shift out the data (all of this one bit at a time).
859  * The word size is 16 bits, so you have to provide the address for
860  * every 16 bits of data.
861  */
862 static u_int16_t
863 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
864 {
865 	u_int16_t reg, data;
866 	int x;
867 
868 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
869 	/*
870 	 * Shift in read opcode.
871 	 */
872 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
873 	/*
874 	 * Shift in address.
875 	 */
876 	data = 0;
877 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
878 		if (offset & x)
879 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
880 		else
881 			reg = FXP_EEPROM_EECS;
882 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
883 		DELAY(1);
884 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
885 		DELAY(1);
886 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
887 		DELAY(1);
888 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
889 		data++;
890 		if (autosize && reg == 0) {
891 			sc->eeprom_size = data;
892 			break;
893 		}
894 	}
895 	/*
896 	 * Shift out data.
897 	 */
898 	data = 0;
899 	reg = FXP_EEPROM_EECS;
900 	for (x = 1 << 15; x; x >>= 1) {
901 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
902 		DELAY(1);
903 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
904 			data |= x;
905 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
906 		DELAY(1);
907 	}
908 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
909 	DELAY(1);
910 
911 	return (data);
912 }
913 
914 static void
915 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
916 {
917 	int i;
918 
919 	/*
920 	 * Erase/write enable.
921 	 */
922 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
923 	fxp_eeprom_shiftin(sc, 0x4, 3);
924 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
925 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
926 	DELAY(1);
927 	/*
928 	 * Shift in write opcode, address, data.
929 	 */
930 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
931 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
932 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
933 	fxp_eeprom_shiftin(sc, data, 16);
934 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
935 	DELAY(1);
936 	/*
937 	 * Wait for EEPROM to finish up.
938 	 */
939 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
940 	DELAY(1);
941 	for (i = 0; i < 1000; i++) {
942 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
943 			break;
944 		DELAY(50);
945 	}
946 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
947 	DELAY(1);
948 	/*
949 	 * Erase/write disable.
950 	 */
951 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
952 	fxp_eeprom_shiftin(sc, 0x4, 3);
953 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
954 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
955 	DELAY(1);
956 }
957 
958 /*
959  * From NetBSD:
960  *
961  * Figure out EEPROM size.
962  *
963  * 559's can have either 64-word or 256-word EEPROMs, the 558
964  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
965  * talks about the existance of 16 to 256 word EEPROMs.
966  *
967  * The only known sizes are 64 and 256, where the 256 version is used
968  * by CardBus cards to store CIS information.
969  *
970  * The address is shifted in msb-to-lsb, and after the last
971  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
972  * after which follows the actual data. We try to detect this zero, by
973  * probing the data-out bit in the EEPROM control register just after
974  * having shifted in a bit. If the bit is zero, we assume we've
975  * shifted enough address bits. The data-out should be tri-state,
976  * before this, which should translate to a logical one.
977  */
978 static void
979 fxp_autosize_eeprom(struct fxp_softc *sc)
980 {
981 
982 	/* guess maximum size of 256 words */
983 	sc->eeprom_size = 8;
984 
985 	/* autosize */
986 	(void) fxp_eeprom_getword(sc, 0, 1);
987 }
988 
989 static void
990 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
991 {
992 	int i;
993 
994 	for (i = 0; i < words; i++)
995 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
996 }
997 
998 static void
999 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1000 {
1001 	int i;
1002 
1003 	for (i = 0; i < words; i++)
1004 		fxp_eeprom_putword(sc, offset + i, data[i]);
1005 }
1006 
1007 /*
1008  * Start packet transmission on the interface.
1009  */
1010 static void
1011 fxp_start(struct ifnet *ifp)
1012 {
1013 	struct fxp_softc *sc = ifp->if_softc;
1014 	struct fxp_cb_tx *txp;
1015 
1016 	/*
1017 	 * See if we need to suspend xmit until the multicast filter
1018 	 * has been reprogrammed (which can only be done at the head
1019 	 * of the command chain).
1020 	 */
1021 	if (sc->need_mcsetup) {
1022 		return;
1023 	}
1024 
1025 	txp = NULL;
1026 
1027 	/*
1028 	 * We're finished if there is nothing more to add to the list or if
1029 	 * we're all filled up with buffers to transmit.
1030 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1031 	 *       a NOP command when needed.
1032 	 */
1033 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1034 		struct mbuf *m, *mb_head;
1035 		int segment;
1036 
1037 		/*
1038 		 * Grab a packet to transmit.
1039 		 */
1040 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1041 
1042 		/*
1043 		 * Get pointer to next available tx desc.
1044 		 */
1045 		txp = sc->cbl_last->next;
1046 
1047 		/*
1048 		 * Go through each of the mbufs in the chain and initialize
1049 		 * the transmit buffer descriptors with the physical address
1050 		 * and size of the mbuf.
1051 		 */
1052 tbdinit:
1053 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1054 			if (m->m_len != 0) {
1055 				if (segment == FXP_NTXSEG)
1056 					break;
1057 				txp->tbd[segment].tb_addr =
1058 				    vtophys(mtod(m, vm_offset_t));
1059 				txp->tbd[segment].tb_size = m->m_len;
1060 				segment++;
1061 			}
1062 		}
1063 		if (m != NULL) {
1064 			struct mbuf *mn;
1065 
1066 			/*
1067 			 * We ran out of segments. We have to recopy this
1068 			 * mbuf chain first. Bail out if we can't get the
1069 			 * new buffers.
1070 			 */
1071 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1072 			if (mn == NULL) {
1073 				m_freem(mb_head);
1074 				break;
1075 			}
1076 			if (mb_head->m_pkthdr.len > MHLEN) {
1077 				MCLGET(mn, M_DONTWAIT);
1078 				if ((mn->m_flags & M_EXT) == 0) {
1079 					m_freem(mn);
1080 					m_freem(mb_head);
1081 					break;
1082 				}
1083 			}
1084 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1085 			    mtod(mn, caddr_t));
1086 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1087 			m_freem(mb_head);
1088 			mb_head = mn;
1089 			goto tbdinit;
1090 		}
1091 
1092 		txp->tbd_number = segment;
1093 		txp->mb_head = mb_head;
1094 		txp->cb_status = 0;
1095 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1096 			txp->cb_command =
1097 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1098 			    FXP_CB_COMMAND_S;
1099 		} else {
1100 			txp->cb_command =
1101 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1102 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1103 			/*
1104 			 * Set a 5 second timer just in case we don't hear
1105 			 * from the card again.
1106 			 */
1107 			ifp->if_timer = 5;
1108 		}
1109 		txp->tx_threshold = tx_threshold;
1110 
1111 		/*
1112 		 * Advance the end of list forward.
1113 		 */
1114 
1115 #ifdef __alpha__
1116 		/*
1117 		 * On platforms which can't access memory in 16-bit
1118 		 * granularities, we must prevent the card from DMA'ing
1119 		 * up the status while we update the command field.
1120 		 * This could cause us to overwrite the completion status.
1121 		 */
1122 		atomic_clear_short(&sc->cbl_last->cb_command,
1123 		    FXP_CB_COMMAND_S);
1124 #else
1125 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1126 #endif /*__alpha__*/
1127 		sc->cbl_last = txp;
1128 
1129 		/*
1130 		 * Advance the beginning of the list forward if there are
1131 		 * no other packets queued (when nothing is queued, cbl_first
1132 		 * sits on the last TxCB that was sent out).
1133 		 */
1134 		if (sc->tx_queued == 0)
1135 			sc->cbl_first = txp;
1136 
1137 		sc->tx_queued++;
1138 
1139 		/*
1140 		 * Pass packet to bpf if there is a listener.
1141 		 */
1142 		BPF_MTAP(ifp, mb_head);
1143 	}
1144 
1145 	/*
1146 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1147 	 * going again if suspended.
1148 	 */
1149 	if (txp != NULL) {
1150 		fxp_scb_wait(sc);
1151 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1152 	}
1153 }
1154 
1155 static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count);
1156 
1157 #ifdef DEVICE_POLLING
1158 static poll_handler_t fxp_poll;
1159 
1160 static void
1161 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1162 {
1163 	struct fxp_softc *sc = ifp->if_softc;
1164 	u_int8_t statack;
1165 
1166 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1167 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1168 		return;
1169 	}
1170 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1171 	    FXP_SCB_STATACK_FR;
1172 	if (cmd == POLL_AND_CHECK_STATUS) {
1173 		u_int8_t tmp;
1174 
1175 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1176 		if (tmp == 0xff || tmp == 0)
1177 			return; /* nothing to do */
1178 		tmp &= ~statack;
1179 		/* ack what we can */
1180 		if (tmp != 0)
1181 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1182 		statack |= tmp;
1183 	}
1184 	fxp_intr_body(sc, statack, count);
1185 }
1186 #endif /* DEVICE_POLLING */
1187 
1188 /*
1189  * Process interface interrupts.
1190  */
1191 static void
1192 fxp_intr(void *xsc)
1193 {
1194 	struct fxp_softc *sc = xsc;
1195 	u_int8_t statack;
1196 
1197 #ifdef DEVICE_POLLING
1198 	struct ifnet *ifp = &sc->sc_if;
1199 
1200 	if (ifp->if_flags & IFF_POLLING)
1201 		return;
1202 	if (ether_poll_register(fxp_poll, ifp)) {
1203 		/* disable interrupts */
1204 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1205 		fxp_poll(ifp, 0, 1);
1206 		return;
1207 	}
1208 #endif
1209 
1210 	if (sc->suspended) {
1211 		return;
1212 	}
1213 
1214 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1215 		/*
1216 		 * It should not be possible to have all bits set; the
1217 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1218 		 * all bits are set, this may indicate that the card has
1219 		 * been physically ejected, so ignore it.
1220 		 */
1221 		if (statack == 0xff)
1222 			return;
1223 
1224 		/*
1225 		 * First ACK all the interrupts in this pass.
1226 		 */
1227 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1228 		fxp_intr_body(sc, statack, -1);
1229 	}
1230 }
1231 
1232 static void
1233 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1234 {
1235 	struct ifnet *ifp = &sc->sc_if;
1236 	struct mbuf *m;
1237 	struct fxp_rfa *rfa;
1238 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1239 
1240 	if (rnr)
1241 		fxp_rnr++;
1242 #ifdef DEVICE_POLLING
1243 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1244 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1245 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1246 		rnr = 1;
1247 	}
1248 #endif
1249 
1250 	/*
1251 	 * Free any finished transmit mbuf chains.
1252 	 *
1253 	 * Handle the CNA event likt a CXTNO event. It used to
1254 	 * be that this event (control unit not ready) was not
1255 	 * encountered, but it is now with the SMPng modifications.
1256 	 * The exact sequence of events that occur when the interface
1257 	 * is brought up are different now, and if this event
1258 	 * goes unhandled, the configuration/rxfilter setup sequence
1259 	 * can stall for several seconds. The result is that no
1260 	 * packets go out onto the wire for about 5 to 10 seconds
1261 	 * after the interface is ifconfig'ed for the first time.
1262 	 */
1263 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1264 		struct fxp_cb_tx *txp;
1265 
1266 		for (txp = sc->cbl_first; sc->tx_queued &&
1267 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1268 		    txp = txp->next) {
1269 			if (txp->mb_head != NULL) {
1270 				m_freem(txp->mb_head);
1271 				txp->mb_head = NULL;
1272 			}
1273 			sc->tx_queued--;
1274 		}
1275 		sc->cbl_first = txp;
1276 		ifp->if_timer = 0;
1277 		if (sc->tx_queued == 0) {
1278 			if (sc->need_mcsetup)
1279 				fxp_mc_setup(sc);
1280 		}
1281 		/*
1282 		 * Try to start more packets transmitting.
1283 		 */
1284 		if (ifp->if_snd.ifq_head != NULL)
1285 			fxp_start(ifp);
1286 	}
1287 
1288 	/*
1289 	 * Just return if nothing happened on the receive side.
1290 	 */
1291 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1292 		return;
1293 
1294 	/*
1295 	 * Process receiver interrupts. If a no-resource (RNR)
1296 	 * condition exists, get whatever packets we can and
1297 	 * re-start the receiver.
1298 	 *
1299 	 * When using polling, we do not process the list to completion,
1300 	 * so when we get an RNR interrupt we must defer the restart
1301 	 * until we hit the last buffer with the C bit set.
1302 	 * If we run out of cycles and rfa_headm has the C bit set,
1303 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1304 	 * that the info will be used in the subsequent polling cycle.
1305 	 */
1306 	for (;;) {
1307 		m = sc->rfa_headm;
1308 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1309 		    RFA_ALIGNMENT_FUDGE);
1310 
1311 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1312 		if (count >= 0 && count-- == 0) {
1313 			if (rnr) {
1314 				/* Defer RNR processing until the next time. */
1315 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1316 				rnr = 0;
1317 			}
1318 			break;
1319 		}
1320 #endif /* DEVICE_POLLING */
1321 
1322 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1323 			break;
1324 
1325 		/*
1326 		 * Remove first packet from the chain.
1327 		 */
1328 		sc->rfa_headm = m->m_next;
1329 		m->m_next = NULL;
1330 
1331 		/*
1332 		 * Add a new buffer to the receive chain.
1333 		 * If this fails, the old buffer is recycled
1334 		 * instead.
1335 		 */
1336 		if (fxp_add_rfabuf(sc, m) == 0) {
1337 			int total_len;
1338 
1339 			/*
1340 			 * Fetch packet length (the top 2 bits of
1341 			 * actual_size are flags set by the controller
1342 			 * upon completion), and drop the packet in case
1343 			 * of bogus length or CRC errors.
1344 			 */
1345 			total_len = rfa->actual_size & 0x3fff;
1346 			if (total_len < sizeof(struct ether_header) ||
1347 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1348 				sizeof(struct fxp_rfa) ||
1349 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1350 				m_freem(m);
1351 				continue;
1352 			}
1353 
1354 			m->m_pkthdr.len = m->m_len = total_len;
1355 			m->m_pkthdr.rcvif = ifp;
1356 
1357 			(*ifp->if_input)(ifp, m);
1358 		}
1359 	}
1360 	if (rnr) {
1361 		fxp_scb_wait(sc);
1362 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1363 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1364 		    RFA_ALIGNMENT_FUDGE);
1365 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1366 	}
1367 }
1368 
1369 /*
1370  * Update packet in/out/collision statistics. The i82557 doesn't
1371  * allow you to access these counters without doing a fairly
1372  * expensive DMA to get _all_ of the statistics it maintains, so
1373  * we do this operation here only once per second. The statistics
1374  * counters in the kernel are updated from the previous dump-stats
1375  * DMA and then a new dump-stats DMA is started. The on-chip
1376  * counters are zeroed when the DMA completes. If we can't start
1377  * the DMA immediately, we don't wait - we just prepare to read
1378  * them again next time.
1379  */
1380 static void
1381 fxp_tick(void *xsc)
1382 {
1383 	struct fxp_softc *sc = xsc;
1384 	struct ifnet *ifp = &sc->sc_if;
1385 	struct fxp_stats *sp = sc->fxp_stats;
1386 	struct fxp_cb_tx *txp;
1387 	int s;
1388 
1389 	ifp->if_opackets += sp->tx_good;
1390 	ifp->if_collisions += sp->tx_total_collisions;
1391 	if (sp->rx_good) {
1392 		ifp->if_ipackets += sp->rx_good;
1393 		sc->rx_idle_secs = 0;
1394 	} else {
1395 		/*
1396 		 * Receiver's been idle for another second.
1397 		 */
1398 		sc->rx_idle_secs++;
1399 	}
1400 	ifp->if_ierrors +=
1401 	    sp->rx_crc_errors +
1402 	    sp->rx_alignment_errors +
1403 	    sp->rx_rnr_errors +
1404 	    sp->rx_overrun_errors;
1405 	/*
1406 	 * If any transmit underruns occured, bump up the transmit
1407 	 * threshold by another 512 bytes (64 * 8).
1408 	 */
1409 	if (sp->tx_underruns) {
1410 		ifp->if_oerrors += sp->tx_underruns;
1411 		if (tx_threshold < 192)
1412 			tx_threshold += 64;
1413 	}
1414 	s = splimp();
1415 	/*
1416 	 * Release any xmit buffers that have completed DMA. This isn't
1417 	 * strictly necessary to do here, but it's advantagous for mbufs
1418 	 * with external storage to be released in a timely manner rather
1419 	 * than being defered for a potentially long time. This limits
1420 	 * the delay to a maximum of one second.
1421 	 */
1422 	for (txp = sc->cbl_first; sc->tx_queued &&
1423 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1424 	    txp = txp->next) {
1425 		if (txp->mb_head != NULL) {
1426 			m_freem(txp->mb_head);
1427 			txp->mb_head = NULL;
1428 		}
1429 		sc->tx_queued--;
1430 	}
1431 	sc->cbl_first = txp;
1432 	/*
1433 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1434 	 * then assume the receiver has locked up and attempt to clear
1435 	 * the condition by reprogramming the multicast filter. This is
1436 	 * a work-around for a bug in the 82557 where the receiver locks
1437 	 * up if it gets certain types of garbage in the syncronization
1438 	 * bits prior to the packet header. This bug is supposed to only
1439 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1440 	 * mode as well (perhaps due to a 10/100 speed transition).
1441 	 */
1442 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1443 		sc->rx_idle_secs = 0;
1444 		fxp_mc_setup(sc);
1445 	}
1446 	/*
1447 	 * If there is no pending command, start another stats
1448 	 * dump. Otherwise punt for now.
1449 	 */
1450 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1451 		/*
1452 		 * Start another stats dump.
1453 		 */
1454 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1455 	} else {
1456 		/*
1457 		 * A previous command is still waiting to be accepted.
1458 		 * Just zero our copy of the stats and wait for the
1459 		 * next timer event to update them.
1460 		 */
1461 		sp->tx_good = 0;
1462 		sp->tx_underruns = 0;
1463 		sp->tx_total_collisions = 0;
1464 
1465 		sp->rx_good = 0;
1466 		sp->rx_crc_errors = 0;
1467 		sp->rx_alignment_errors = 0;
1468 		sp->rx_rnr_errors = 0;
1469 		sp->rx_overrun_errors = 0;
1470 	}
1471 	if (sc->miibus != NULL)
1472 		mii_tick(device_get_softc(sc->miibus));
1473 	splx(s);
1474 	/*
1475 	 * Schedule another timeout one second from now.
1476 	 */
1477 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1478 }
1479 
1480 /*
1481  * Stop the interface. Cancels the statistics updater and resets
1482  * the interface.
1483  */
1484 static void
1485 fxp_stop(struct fxp_softc *sc)
1486 {
1487 	struct ifnet *ifp = &sc->sc_if;
1488 	struct fxp_cb_tx *txp;
1489 	int i;
1490 
1491 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1492 	ifp->if_timer = 0;
1493 
1494 #ifdef DEVICE_POLLING
1495 	ether_poll_deregister(ifp);
1496 #endif
1497 	/*
1498 	 * Cancel stats updater.
1499 	 */
1500 	untimeout(fxp_tick, sc, sc->stat_ch);
1501 
1502 	/*
1503 	 * Issue software reset, which also unloads the microcode.
1504 	 */
1505 	sc->flags &= ~FXP_FLAG_UCODE;
1506 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1507 	DELAY(50);
1508 
1509 	/*
1510 	 * Release any xmit buffers.
1511 	 */
1512 	txp = sc->cbl_base;
1513 	if (txp != NULL) {
1514 		for (i = 0; i < FXP_NTXCB; i++) {
1515 			if (txp[i].mb_head != NULL) {
1516 				m_freem(txp[i].mb_head);
1517 				txp[i].mb_head = NULL;
1518 			}
1519 		}
1520 	}
1521 	sc->tx_queued = 0;
1522 
1523 	/*
1524 	 * Free all the receive buffers then reallocate/reinitialize
1525 	 */
1526 	if (sc->rfa_headm != NULL)
1527 		m_freem(sc->rfa_headm);
1528 	sc->rfa_headm = NULL;
1529 	sc->rfa_tailm = NULL;
1530 	for (i = 0; i < FXP_NRFABUFS; i++) {
1531 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1532 			/*
1533 			 * This "can't happen" - we're at splimp()
1534 			 * and we just freed all the buffers we need
1535 			 * above.
1536 			 */
1537 			panic("fxp_stop: no buffers!");
1538 		}
1539 	}
1540 }
1541 
1542 /*
1543  * Watchdog/transmission transmit timeout handler. Called when a
1544  * transmission is started on the interface, but no interrupt is
1545  * received before the timeout. This usually indicates that the
1546  * card has wedged for some reason.
1547  */
1548 static void
1549 fxp_watchdog(struct ifnet *ifp)
1550 {
1551 	struct fxp_softc *sc = ifp->if_softc;
1552 
1553 	device_printf(sc->dev, "device timeout\n");
1554 	ifp->if_oerrors++;
1555 
1556 	fxp_init(sc);
1557 }
1558 
1559 static void
1560 fxp_init(void *xsc)
1561 {
1562 	struct fxp_softc *sc = xsc;
1563 	struct ifnet *ifp = &sc->sc_if;
1564 	struct fxp_cb_config *cbp;
1565 	struct fxp_cb_ias *cb_ias;
1566 	struct fxp_cb_tx *txp;
1567 	struct fxp_cb_mcs *mcsp;
1568 	int i, prm, s;
1569 
1570 	s = splimp();
1571 	/*
1572 	 * Cancel any pending I/O
1573 	 */
1574 	fxp_stop(sc);
1575 
1576 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1577 
1578 	/*
1579 	 * Initialize base of CBL and RFA memory. Loading with zero
1580 	 * sets it up for regular linear addressing.
1581 	 */
1582 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1583 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1584 
1585 	fxp_scb_wait(sc);
1586 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1587 
1588 	/*
1589 	 * Initialize base of dump-stats buffer.
1590 	 */
1591 	fxp_scb_wait(sc);
1592 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1593 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1594 
1595 	/*
1596 	 * Attempt to load microcode if requested.
1597 	 */
1598 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1599 		fxp_load_ucode(sc);
1600 
1601 	/*
1602 	 * Initialize the multicast address list.
1603 	 */
1604 	if (fxp_mc_addrs(sc)) {
1605 		mcsp = sc->mcsp;
1606 		mcsp->cb_status = 0;
1607 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1608 		mcsp->link_addr = -1;
1609 		/*
1610 	 	 * Start the multicast setup command.
1611 		 */
1612 		fxp_scb_wait(sc);
1613 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1614 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1615 		/* ...and wait for it to complete. */
1616 		fxp_dma_wait(&mcsp->cb_status, sc);
1617 	}
1618 
1619 	/*
1620 	 * We temporarily use memory that contains the TxCB list to
1621 	 * construct the config CB. The TxCB list memory is rebuilt
1622 	 * later.
1623 	 */
1624 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1625 
1626 	/*
1627 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1628 	 * zero and must be one bits in this structure and this is the easiest
1629 	 * way to initialize them all to proper values.
1630 	 */
1631 	bcopy(fxp_cb_config_template,
1632 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1633 		sizeof(fxp_cb_config_template));
1634 
1635 	cbp->cb_status =	0;
1636 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1637 	cbp->link_addr =	-1;	/* (no) next command */
1638 	cbp->byte_count =	22;	/* (22) bytes to config */
1639 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1640 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1641 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1642 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1643 	cbp->type_enable =	0;	/* actually reserved */
1644 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1645 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1646 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1647 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1648 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1649 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1650 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1651 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1652 	cbp->ci_int =		1;	/* interrupt on CU idle */
1653 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1654 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1655 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1656 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1657 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1658 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1659 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1660 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1661 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1662 	cbp->csma_dis =		0;	/* (don't) disable link */
1663 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1664 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1665 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1666 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1667 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1668 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1669 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1670 	cbp->loopback =		0;	/* (don't) loopback */
1671 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1672 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1673 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1674 	cbp->promiscuous =	prm;	/* promiscuous mode */
1675 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1676 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1677 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1678 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1679 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1680 
1681 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1682 	cbp->padding =		1;	/* (do) pad short tx packets */
1683 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1684 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1685 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1686 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1687 					/* must set wake_en in PMCSR also */
1688 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1689 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1690 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1691 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1692 
1693 	if (sc->revision == FXP_REV_82557) {
1694 		/*
1695 		 * The 82557 has no hardware flow control, the values
1696 		 * below are the defaults for the chip.
1697 		 */
1698 		cbp->fc_delay_lsb =	0;
1699 		cbp->fc_delay_msb =	0x40;
1700 		cbp->pri_fc_thresh =	3;
1701 		cbp->tx_fc_dis =	0;
1702 		cbp->rx_fc_restop =	0;
1703 		cbp->rx_fc_restart =	0;
1704 		cbp->fc_filter =	0;
1705 		cbp->pri_fc_loc =	1;
1706 	} else {
1707 		cbp->fc_delay_lsb =	0x1f;
1708 		cbp->fc_delay_msb =	0x01;
1709 		cbp->pri_fc_thresh =	3;
1710 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1711 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1712 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1713 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1714 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1715 	}
1716 
1717 	/*
1718 	 * Start the config command/DMA.
1719 	 */
1720 	fxp_scb_wait(sc);
1721 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1722 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1723 	/* ...and wait for it to complete. */
1724 	fxp_dma_wait(&cbp->cb_status, sc);
1725 
1726 	/*
1727 	 * Now initialize the station address. Temporarily use the TxCB
1728 	 * memory area like we did above for the config CB.
1729 	 */
1730 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1731 	cb_ias->cb_status = 0;
1732 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1733 	cb_ias->link_addr = -1;
1734 	bcopy(sc->arpcom.ac_enaddr,
1735 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1736 	    sizeof(sc->arpcom.ac_enaddr));
1737 
1738 	/*
1739 	 * Start the IAS (Individual Address Setup) command/DMA.
1740 	 */
1741 	fxp_scb_wait(sc);
1742 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1743 	/* ...and wait for it to complete. */
1744 	fxp_dma_wait(&cb_ias->cb_status, sc);
1745 
1746 	/*
1747 	 * Initialize transmit control block (TxCB) list.
1748 	 */
1749 
1750 	txp = sc->cbl_base;
1751 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1752 	for (i = 0; i < FXP_NTXCB; i++) {
1753 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1754 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1755 		txp[i].link_addr =
1756 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1757 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1758 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1759 		else
1760 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1761 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1762 	}
1763 	/*
1764 	 * Set the suspend flag on the first TxCB and start the control
1765 	 * unit. It will execute the NOP and then suspend.
1766 	 */
1767 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1768 	sc->cbl_first = sc->cbl_last = txp;
1769 	sc->tx_queued = 1;
1770 
1771 	fxp_scb_wait(sc);
1772 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1773 
1774 	/*
1775 	 * Initialize receiver buffer area - RFA.
1776 	 */
1777 	fxp_scb_wait(sc);
1778 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1779 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1780 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1781 
1782 	/*
1783 	 * Set current media.
1784 	 */
1785 	if (sc->miibus != NULL)
1786 		mii_mediachg(device_get_softc(sc->miibus));
1787 
1788 	ifp->if_flags |= IFF_RUNNING;
1789 	ifp->if_flags &= ~IFF_OACTIVE;
1790 
1791 	/*
1792 	 * Enable interrupts.
1793 	 */
1794 #ifdef DEVICE_POLLING
1795 	/*
1796 	 * ... but only do that if we are not polling. And because (presumably)
1797 	 * the default is interrupts on, we need to disable them explicitly!
1798 	 */
1799 	if ( ifp->if_flags & IFF_POLLING )
1800 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1801 	else
1802 #endif /* DEVICE_POLLING */
1803 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1804 	splx(s);
1805 
1806 	/*
1807 	 * Start stats updater.
1808 	 */
1809 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1810 }
1811 
1812 static int
1813 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1814 {
1815 
1816 	return (0);
1817 }
1818 
1819 static void
1820 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1821 {
1822 
1823 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1824 }
1825 
1826 /*
1827  * Change media according to request.
1828  */
1829 static int
1830 fxp_ifmedia_upd(struct ifnet *ifp)
1831 {
1832 	struct fxp_softc *sc = ifp->if_softc;
1833 	struct mii_data *mii;
1834 
1835 	mii = device_get_softc(sc->miibus);
1836 	mii_mediachg(mii);
1837 	return (0);
1838 }
1839 
1840 /*
1841  * Notify the world which media we're using.
1842  */
1843 static void
1844 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1845 {
1846 	struct fxp_softc *sc = ifp->if_softc;
1847 	struct mii_data *mii;
1848 
1849 	mii = device_get_softc(sc->miibus);
1850 	mii_pollstat(mii);
1851 	ifmr->ifm_active = mii->mii_media_active;
1852 	ifmr->ifm_status = mii->mii_media_status;
1853 
1854 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1855 		sc->cu_resume_bug = 1;
1856 	else
1857 		sc->cu_resume_bug = 0;
1858 }
1859 
1860 /*
1861  * Add a buffer to the end of the RFA buffer list.
1862  * Return 0 if successful, 1 for failure. A failure results in
1863  * adding the 'oldm' (if non-NULL) on to the end of the list -
1864  * tossing out its old contents and recycling it.
1865  * The RFA struct is stuck at the beginning of mbuf cluster and the
1866  * data pointer is fixed up to point just past it.
1867  */
1868 static int
1869 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1870 {
1871 	u_int32_t v;
1872 	struct mbuf *m;
1873 	struct fxp_rfa *rfa, *p_rfa;
1874 
1875 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1876 	if (m == NULL) { /* try to recycle the old mbuf instead */
1877 		if (oldm == NULL)
1878 			return 1;
1879 		m = oldm;
1880 		m->m_data = m->m_ext.ext_buf;
1881 	}
1882 
1883 	/*
1884 	 * Move the data pointer up so that the incoming data packet
1885 	 * will be 32-bit aligned.
1886 	 */
1887 	m->m_data += RFA_ALIGNMENT_FUDGE;
1888 
1889 	/*
1890 	 * Get a pointer to the base of the mbuf cluster and move
1891 	 * data start past it.
1892 	 */
1893 	rfa = mtod(m, struct fxp_rfa *);
1894 	m->m_data += sizeof(struct fxp_rfa);
1895 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1896 
1897 	/*
1898 	 * Initialize the rest of the RFA.  Note that since the RFA
1899 	 * is misaligned, we cannot store values directly.  Instead,
1900 	 * we use an optimized, inline copy.
1901 	 */
1902 
1903 	rfa->rfa_status = 0;
1904 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1905 	rfa->actual_size = 0;
1906 
1907 	v = -1;
1908 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1909 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1910 
1911 	/*
1912 	 * If there are other buffers already on the list, attach this
1913 	 * one to the end by fixing up the tail to point to this one.
1914 	 */
1915 	if (sc->rfa_headm != NULL) {
1916 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1917 		    RFA_ALIGNMENT_FUDGE);
1918 		sc->rfa_tailm->m_next = m;
1919 		v = vtophys(rfa);
1920 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1921 		p_rfa->rfa_control = 0;
1922 	} else {
1923 		sc->rfa_headm = m;
1924 	}
1925 	sc->rfa_tailm = m;
1926 
1927 	return (m == oldm);
1928 }
1929 
1930 static volatile int
1931 fxp_miibus_readreg(device_t dev, int phy, int reg)
1932 {
1933 	struct fxp_softc *sc = device_get_softc(dev);
1934 	int count = 10000;
1935 	int value;
1936 
1937 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1938 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1939 
1940 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1941 	    && count--)
1942 		DELAY(10);
1943 
1944 	if (count <= 0)
1945 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1946 
1947 	return (value & 0xffff);
1948 }
1949 
1950 static void
1951 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1952 {
1953 	struct fxp_softc *sc = device_get_softc(dev);
1954 	int count = 10000;
1955 
1956 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1957 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1958 	    (value & 0xffff));
1959 
1960 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1961 	    count--)
1962 		DELAY(10);
1963 
1964 	if (count <= 0)
1965 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1966 }
1967 
1968 static int
1969 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1970 {
1971 	struct fxp_softc *sc = ifp->if_softc;
1972 	struct ifreq *ifr = (struct ifreq *)data;
1973 	struct mii_data *mii;
1974 	int s, error = 0;
1975 
1976 	s = splimp();
1977 
1978 	switch (command) {
1979 	case SIOCSIFFLAGS:
1980 		if (ifp->if_flags & IFF_ALLMULTI)
1981 			sc->flags |= FXP_FLAG_ALL_MCAST;
1982 		else
1983 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1984 
1985 		/*
1986 		 * If interface is marked up and not running, then start it.
1987 		 * If it is marked down and running, stop it.
1988 		 * XXX If it's up then re-initialize it. This is so flags
1989 		 * such as IFF_PROMISC are handled.
1990 		 */
1991 		if (ifp->if_flags & IFF_UP) {
1992 			fxp_init(sc);
1993 		} else {
1994 			if (ifp->if_flags & IFF_RUNNING)
1995 				fxp_stop(sc);
1996 		}
1997 		break;
1998 
1999 	case SIOCADDMULTI:
2000 	case SIOCDELMULTI:
2001 		if (ifp->if_flags & IFF_ALLMULTI)
2002 			sc->flags |= FXP_FLAG_ALL_MCAST;
2003 		else
2004 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2005 		/*
2006 		 * Multicast list has changed; set the hardware filter
2007 		 * accordingly.
2008 		 */
2009 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2010 			fxp_mc_setup(sc);
2011 		/*
2012 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2013 		 * again rather than else {}.
2014 		 */
2015 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2016 			fxp_init(sc);
2017 		error = 0;
2018 		break;
2019 
2020 	case SIOCSIFMEDIA:
2021 	case SIOCGIFMEDIA:
2022 		if (sc->miibus != NULL) {
2023 			mii = device_get_softc(sc->miibus);
2024                         error = ifmedia_ioctl(ifp, ifr,
2025                             &mii->mii_media, command);
2026 		} else {
2027                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2028 		}
2029 		break;
2030 
2031 	default:
2032 		error = ether_ioctl(ifp, command, data);
2033 	}
2034 	splx(s);
2035 	return (error);
2036 }
2037 
2038 /*
2039  * Fill in the multicast address list and return number of entries.
2040  */
2041 static int
2042 fxp_mc_addrs(struct fxp_softc *sc)
2043 {
2044 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2045 	struct ifnet *ifp = &sc->sc_if;
2046 	struct ifmultiaddr *ifma;
2047 	int nmcasts;
2048 
2049 	nmcasts = 0;
2050 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2051 #if __FreeBSD_version < 500000
2052 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2053 #else
2054 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2055 #endif
2056 			if (ifma->ifma_addr->sa_family != AF_LINK)
2057 				continue;
2058 			if (nmcasts >= MAXMCADDR) {
2059 				sc->flags |= FXP_FLAG_ALL_MCAST;
2060 				nmcasts = 0;
2061 				break;
2062 			}
2063 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2064 			    (void *)(uintptr_t)(volatile void *)
2065 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2066 			nmcasts++;
2067 		}
2068 	}
2069 	mcsp->mc_cnt = nmcasts * 6;
2070 	return (nmcasts);
2071 }
2072 
2073 /*
2074  * Program the multicast filter.
2075  *
2076  * We have an artificial restriction that the multicast setup command
2077  * must be the first command in the chain, so we take steps to ensure
2078  * this. By requiring this, it allows us to keep up the performance of
2079  * the pre-initialized command ring (esp. link pointers) by not actually
2080  * inserting the mcsetup command in the ring - i.e. its link pointer
2081  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2082  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2083  * lead into the regular TxCB ring when it completes.
2084  *
2085  * This function must be called at splimp.
2086  */
2087 static void
2088 fxp_mc_setup(struct fxp_softc *sc)
2089 {
2090 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2091 	struct ifnet *ifp = &sc->sc_if;
2092 	int count;
2093 
2094 	/*
2095 	 * If there are queued commands, we must wait until they are all
2096 	 * completed. If we are already waiting, then add a NOP command
2097 	 * with interrupt option so that we're notified when all commands
2098 	 * have been completed - fxp_start() ensures that no additional
2099 	 * TX commands will be added when need_mcsetup is true.
2100 	 */
2101 	if (sc->tx_queued) {
2102 		struct fxp_cb_tx *txp;
2103 
2104 		/*
2105 		 * need_mcsetup will be true if we are already waiting for the
2106 		 * NOP command to be completed (see below). In this case, bail.
2107 		 */
2108 		if (sc->need_mcsetup)
2109 			return;
2110 		sc->need_mcsetup = 1;
2111 
2112 		/*
2113 		 * Add a NOP command with interrupt so that we are notified
2114 		 * when all TX commands have been processed.
2115 		 */
2116 		txp = sc->cbl_last->next;
2117 		txp->mb_head = NULL;
2118 		txp->cb_status = 0;
2119 		txp->cb_command = FXP_CB_COMMAND_NOP |
2120 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2121 		/*
2122 		 * Advance the end of list forward.
2123 		 */
2124 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2125 		sc->cbl_last = txp;
2126 		sc->tx_queued++;
2127 		/*
2128 		 * Issue a resume in case the CU has just suspended.
2129 		 */
2130 		fxp_scb_wait(sc);
2131 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2132 		/*
2133 		 * Set a 5 second timer just in case we don't hear from the
2134 		 * card again.
2135 		 */
2136 		ifp->if_timer = 5;
2137 
2138 		return;
2139 	}
2140 	sc->need_mcsetup = 0;
2141 
2142 	/*
2143 	 * Initialize multicast setup descriptor.
2144 	 */
2145 	mcsp->next = sc->cbl_base;
2146 	mcsp->mb_head = NULL;
2147 	mcsp->cb_status = 0;
2148 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2149 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2150 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2151 	(void) fxp_mc_addrs(sc);
2152 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2153 	sc->tx_queued = 1;
2154 
2155 	/*
2156 	 * Wait until command unit is not active. This should never
2157 	 * be the case when nothing is queued, but make sure anyway.
2158 	 */
2159 	count = 100;
2160 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2161 	    FXP_SCB_CUS_ACTIVE && --count)
2162 		DELAY(10);
2163 	if (count == 0) {
2164 		device_printf(sc->dev, "command queue timeout\n");
2165 		return;
2166 	}
2167 
2168 	/*
2169 	 * Start the multicast setup command.
2170 	 */
2171 	fxp_scb_wait(sc);
2172 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2173 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2174 
2175 	ifp->if_timer = 2;
2176 	return;
2177 }
2178 
2179 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2180 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2181 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2182 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2183 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2184 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2185 
2186 #define UCODE(x)	x, sizeof(x)
2187 
2188 struct ucode {
2189 	u_int32_t	revision;
2190 	u_int32_t	*ucode;
2191 	int		length;
2192 	u_short		int_delay_offset;
2193 	u_short		bundle_max_offset;
2194 } ucode_table[] = {
2195 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2196 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2197 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2198 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2199 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2200 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2201 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2202 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2203 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2204 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2205 	{ 0, NULL, 0, 0, 0 }
2206 };
2207 
2208 static void
2209 fxp_load_ucode(struct fxp_softc *sc)
2210 {
2211 	struct ucode *uc;
2212 	struct fxp_cb_ucode *cbp;
2213 
2214 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2215 		if (sc->revision == uc->revision)
2216 			break;
2217 	if (uc->ucode == NULL)
2218 		return;
2219 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2220 	cbp->cb_status = 0;
2221 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2222 	cbp->link_addr = -1;    	/* (no) next command */
2223 	memcpy(cbp->ucode, uc->ucode, uc->length);
2224 	if (uc->int_delay_offset)
2225 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2226 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2227 	if (uc->bundle_max_offset)
2228 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2229 		    sc->tunable_bundle_max;
2230 	/*
2231 	 * Download the ucode to the chip.
2232 	 */
2233 	fxp_scb_wait(sc);
2234 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2235 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2236 	/* ...and wait for it to complete. */
2237 	fxp_dma_wait(&cbp->cb_status, sc);
2238 	device_printf(sc->dev,
2239 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2240 	    sc->tunable_int_delay,
2241 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2242 	sc->flags |= FXP_FLAG_UCODE;
2243 }
2244 
2245 static int
2246 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2247 {
2248 	int error, value;
2249 
2250 	value = *(int *)arg1;
2251 	error = sysctl_handle_int(oidp, &value, 0, req);
2252 	if (error || !req->newptr)
2253 		return (error);
2254 	if (value < low || value > high)
2255 		return (EINVAL);
2256 	*(int *)arg1 = value;
2257 	return (0);
2258 }
2259 
2260 /*
2261  * Interrupt delay is expressed in microseconds, a multiplier is used
2262  * to convert this to the appropriate clock ticks before using.
2263  */
2264 static int
2265 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2266 {
2267 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2268 }
2269 
2270 static int
2271 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2272 {
2273 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2274 }
2275