1 /*- 2 * Copyright (c) 1995, David Greenman 3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice unmodified, this list of conditions, and the following 11 * disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver 35 */ 36 37 #ifdef HAVE_KERNEL_OPTION_HEADERS 38 #include "opt_device_polling.h" 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/bus.h> 44 #include <sys/endian.h> 45 #include <sys/kernel.h> 46 #include <sys/mbuf.h> 47 #include <sys/lock.h> 48 #include <sys/module.h> 49 #include <sys/mutex.h> 50 #include <sys/rman.h> 51 #include <sys/socket.h> 52 #include <sys/sockio.h> 53 #include <sys/sysctl.h> 54 55 #include <net/bpf.h> 56 #include <net/ethernet.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/if_dl.h> 60 #include <net/if_media.h> 61 #include <net/if_types.h> 62 #include <net/if_vlan_var.h> 63 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/ip.h> 67 #include <netinet/tcp.h> 68 #include <netinet/udp.h> 69 70 #include <machine/bus.h> 71 #include <machine/in_cksum.h> 72 #include <machine/resource.h> 73 74 #include <dev/pci/pcivar.h> 75 #include <dev/pci/pcireg.h> /* for PCIM_CMD_xxx */ 76 77 #include <dev/mii/mii.h> 78 #include <dev/mii/miivar.h> 79 80 #include <dev/fxp/if_fxpreg.h> 81 #include <dev/fxp/if_fxpvar.h> 82 #include <dev/fxp/rcvbundl.h> 83 84 MODULE_DEPEND(fxp, pci, 1, 1, 1); 85 MODULE_DEPEND(fxp, ether, 1, 1, 1); 86 MODULE_DEPEND(fxp, miibus, 1, 1, 1); 87 #include "miibus_if.h" 88 89 /* 90 * NOTE! On !x86 we typically have an alignment constraint. The 91 * card DMAs the packet immediately following the RFA. However, 92 * the first thing in the packet is a 14-byte Ethernet header. 93 * This means that the packet is misaligned. To compensate, 94 * we actually offset the RFA 2 bytes into the cluster. This 95 * alignes the packet after the Ethernet header at a 32-bit 96 * boundary. HOWEVER! This means that the RFA is misaligned! 97 */ 98 #define RFA_ALIGNMENT_FUDGE 2 99 100 /* 101 * Set initial transmit threshold at 64 (512 bytes). This is 102 * increased by 64 (512 bytes) at a time, to maximum of 192 103 * (1536 bytes), if an underrun occurs. 104 */ 105 static int tx_threshold = 64; 106 107 /* 108 * The configuration byte map has several undefined fields which 109 * must be one or must be zero. Set up a template for these bits. 110 * The actual configuration is performed in fxp_init_body. 111 * 112 * See struct fxp_cb_config for the bit definitions. 113 */ 114 static const u_char fxp_cb_config_template[] = { 115 0x0, 0x0, /* cb_status */ 116 0x0, 0x0, /* cb_command */ 117 0x0, 0x0, 0x0, 0x0, /* link_addr */ 118 0x0, /* 0 */ 119 0x0, /* 1 */ 120 0x0, /* 2 */ 121 0x0, /* 3 */ 122 0x0, /* 4 */ 123 0x0, /* 5 */ 124 0x32, /* 6 */ 125 0x0, /* 7 */ 126 0x0, /* 8 */ 127 0x0, /* 9 */ 128 0x6, /* 10 */ 129 0x0, /* 11 */ 130 0x0, /* 12 */ 131 0x0, /* 13 */ 132 0xf2, /* 14 */ 133 0x48, /* 15 */ 134 0x0, /* 16 */ 135 0x40, /* 17 */ 136 0xf0, /* 18 */ 137 0x0, /* 19 */ 138 0x3f, /* 20 */ 139 0x5, /* 21 */ 140 0x0, /* 22 */ 141 0x0, /* 23 */ 142 0x0, /* 24 */ 143 0x0, /* 25 */ 144 0x0, /* 26 */ 145 0x0, /* 27 */ 146 0x0, /* 28 */ 147 0x0, /* 29 */ 148 0x0, /* 30 */ 149 0x0 /* 31 */ 150 }; 151 152 /* 153 * Claim various Intel PCI device identifiers for this driver. The 154 * sub-vendor and sub-device field are extensively used to identify 155 * particular variants, but we don't currently differentiate between 156 * them. 157 */ 158 static const struct fxp_ident fxp_ident_table[] = { 159 { 0x1029, -1, 0, "Intel 82559 PCI/CardBus Pro/100" }, 160 { 0x1030, -1, 0, "Intel 82559 Pro/100 Ethernet" }, 161 { 0x1031, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 162 { 0x1032, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 163 { 0x1033, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 164 { 0x1034, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 165 { 0x1035, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 166 { 0x1036, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 167 { 0x1037, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 168 { 0x1038, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 169 { 0x1039, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 170 { 0x103A, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 171 { 0x103B, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 172 { 0x103C, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 173 { 0x103D, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 174 { 0x103E, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 175 { 0x1050, -1, 5, "Intel 82801BA (D865) Pro/100 VE Ethernet" }, 176 { 0x1051, -1, 5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" }, 177 { 0x1059, -1, 0, "Intel 82551QM Pro/100 M Mobile Connection" }, 178 { 0x1064, -1, 6, "Intel 82562EZ (ICH6)" }, 179 { 0x1065, -1, 6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" }, 180 { 0x1068, -1, 6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" }, 181 { 0x1069, -1, 6, "Intel 82562EM/EX/GX Pro/100 Ethernet" }, 182 { 0x1091, -1, 7, "Intel 82562GX Pro/100 Ethernet" }, 183 { 0x1092, -1, 7, "Intel Pro/100 VE Network Connection" }, 184 { 0x1093, -1, 7, "Intel Pro/100 VM Network Connection" }, 185 { 0x1094, -1, 7, "Intel Pro/100 946GZ (ICH7) Network Connection" }, 186 { 0x1209, -1, 0, "Intel 82559ER Embedded 10/100 Ethernet" }, 187 { 0x1229, 0x01, 0, "Intel 82557 Pro/100 Ethernet" }, 188 { 0x1229, 0x02, 0, "Intel 82557 Pro/100 Ethernet" }, 189 { 0x1229, 0x03, 0, "Intel 82557 Pro/100 Ethernet" }, 190 { 0x1229, 0x04, 0, "Intel 82558 Pro/100 Ethernet" }, 191 { 0x1229, 0x05, 0, "Intel 82558 Pro/100 Ethernet" }, 192 { 0x1229, 0x06, 0, "Intel 82559 Pro/100 Ethernet" }, 193 { 0x1229, 0x07, 0, "Intel 82559 Pro/100 Ethernet" }, 194 { 0x1229, 0x08, 0, "Intel 82559 Pro/100 Ethernet" }, 195 { 0x1229, 0x09, 0, "Intel 82559ER Pro/100 Ethernet" }, 196 { 0x1229, 0x0c, 0, "Intel 82550 Pro/100 Ethernet" }, 197 { 0x1229, 0x0d, 0, "Intel 82550C Pro/100 Ethernet" }, 198 { 0x1229, 0x0e, 0, "Intel 82550 Pro/100 Ethernet" }, 199 { 0x1229, 0x0f, 0, "Intel 82551 Pro/100 Ethernet" }, 200 { 0x1229, 0x10, 0, "Intel 82551 Pro/100 Ethernet" }, 201 { 0x1229, -1, 0, "Intel 82557/8/9 Pro/100 Ethernet" }, 202 { 0x2449, -1, 2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" }, 203 { 0x27dc, -1, 7, "Intel 82801GB (ICH7) 10/100 Ethernet" }, 204 { 0, -1, 0, NULL }, 205 }; 206 207 #ifdef FXP_IP_CSUM_WAR 208 #define FXP_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 209 #else 210 #define FXP_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 211 #endif 212 213 static int fxp_probe(device_t dev); 214 static int fxp_attach(device_t dev); 215 static int fxp_detach(device_t dev); 216 static int fxp_shutdown(device_t dev); 217 static int fxp_suspend(device_t dev); 218 static int fxp_resume(device_t dev); 219 220 static const struct fxp_ident *fxp_find_ident(device_t dev); 221 static void fxp_intr(void *xsc); 222 static void fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, 223 struct mbuf *m, uint16_t status, int pos); 224 static int fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, 225 uint8_t statack, int count); 226 static void fxp_init(void *xsc); 227 static void fxp_init_body(struct fxp_softc *sc, int); 228 static void fxp_tick(void *xsc); 229 static void fxp_start(struct ifnet *ifp); 230 static void fxp_start_body(struct ifnet *ifp); 231 static int fxp_encap(struct fxp_softc *sc, struct mbuf **m_head); 232 static void fxp_txeof(struct fxp_softc *sc); 233 static void fxp_stop(struct fxp_softc *sc); 234 static void fxp_release(struct fxp_softc *sc); 235 static int fxp_ioctl(struct ifnet *ifp, u_long command, 236 caddr_t data); 237 static void fxp_watchdog(struct fxp_softc *sc); 238 static void fxp_add_rfabuf(struct fxp_softc *sc, 239 struct fxp_rx *rxp); 240 static void fxp_discard_rfabuf(struct fxp_softc *sc, 241 struct fxp_rx *rxp); 242 static int fxp_new_rfabuf(struct fxp_softc *sc, 243 struct fxp_rx *rxp); 244 static int fxp_mc_addrs(struct fxp_softc *sc); 245 static void fxp_mc_setup(struct fxp_softc *sc); 246 static uint16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, 247 int autosize); 248 static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, 249 uint16_t data); 250 static void fxp_autosize_eeprom(struct fxp_softc *sc); 251 static void fxp_load_eeprom(struct fxp_softc *sc); 252 static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, 253 int offset, int words); 254 static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, 255 int offset, int words); 256 static int fxp_ifmedia_upd(struct ifnet *ifp); 257 static void fxp_ifmedia_sts(struct ifnet *ifp, 258 struct ifmediareq *ifmr); 259 static int fxp_serial_ifmedia_upd(struct ifnet *ifp); 260 static void fxp_serial_ifmedia_sts(struct ifnet *ifp, 261 struct ifmediareq *ifmr); 262 static int fxp_miibus_readreg(device_t dev, int phy, int reg); 263 static int fxp_miibus_writereg(device_t dev, int phy, int reg, 264 int value); 265 static void fxp_miibus_statchg(device_t dev); 266 static void fxp_load_ucode(struct fxp_softc *sc); 267 static void fxp_update_stats(struct fxp_softc *sc); 268 static void fxp_sysctl_node(struct fxp_softc *sc); 269 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, 270 int low, int high); 271 static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS); 272 static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS); 273 static void fxp_scb_wait(struct fxp_softc *sc); 274 static void fxp_scb_cmd(struct fxp_softc *sc, int cmd); 275 static void fxp_dma_wait(struct fxp_softc *sc, 276 volatile uint16_t *status, bus_dma_tag_t dmat, 277 bus_dmamap_t map); 278 279 static device_method_t fxp_methods[] = { 280 /* Device interface */ 281 DEVMETHOD(device_probe, fxp_probe), 282 DEVMETHOD(device_attach, fxp_attach), 283 DEVMETHOD(device_detach, fxp_detach), 284 DEVMETHOD(device_shutdown, fxp_shutdown), 285 DEVMETHOD(device_suspend, fxp_suspend), 286 DEVMETHOD(device_resume, fxp_resume), 287 288 /* MII interface */ 289 DEVMETHOD(miibus_readreg, fxp_miibus_readreg), 290 DEVMETHOD(miibus_writereg, fxp_miibus_writereg), 291 DEVMETHOD(miibus_statchg, fxp_miibus_statchg), 292 293 DEVMETHOD_END 294 }; 295 296 static driver_t fxp_driver = { 297 "fxp", 298 fxp_methods, 299 sizeof(struct fxp_softc), 300 }; 301 302 static devclass_t fxp_devclass; 303 304 DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, fxp_devclass, NULL, NULL, 305 SI_ORDER_ANY); 306 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL); 307 308 static struct resource_spec fxp_res_spec_mem[] = { 309 { SYS_RES_MEMORY, FXP_PCI_MMBA, RF_ACTIVE }, 310 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 311 { -1, 0 } 312 }; 313 314 static struct resource_spec fxp_res_spec_io[] = { 315 { SYS_RES_IOPORT, FXP_PCI_IOBA, RF_ACTIVE }, 316 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 317 { -1, 0 } 318 }; 319 320 /* 321 * Wait for the previous command to be accepted (but not necessarily 322 * completed). 323 */ 324 static void 325 fxp_scb_wait(struct fxp_softc *sc) 326 { 327 union { 328 uint16_t w; 329 uint8_t b[2]; 330 } flowctl; 331 int i = 10000; 332 333 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) 334 DELAY(2); 335 if (i == 0) { 336 flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH); 337 flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS); 338 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n", 339 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND), 340 CSR_READ_1(sc, FXP_CSR_SCB_STATACK), 341 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w); 342 } 343 } 344 345 static void 346 fxp_scb_cmd(struct fxp_softc *sc, int cmd) 347 { 348 349 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) { 350 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP); 351 fxp_scb_wait(sc); 352 } 353 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); 354 } 355 356 static void 357 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status, 358 bus_dma_tag_t dmat, bus_dmamap_t map) 359 { 360 int i; 361 362 for (i = 10000; i > 0; i--) { 363 DELAY(2); 364 bus_dmamap_sync(dmat, map, 365 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 366 if ((le16toh(*status) & FXP_CB_STATUS_C) != 0) 367 break; 368 } 369 if (i == 0) 370 device_printf(sc->dev, "DMA timeout\n"); 371 } 372 373 static const struct fxp_ident * 374 fxp_find_ident(device_t dev) 375 { 376 uint16_t devid; 377 uint8_t revid; 378 const struct fxp_ident *ident; 379 380 if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) { 381 devid = pci_get_device(dev); 382 revid = pci_get_revid(dev); 383 for (ident = fxp_ident_table; ident->name != NULL; ident++) { 384 if (ident->devid == devid && 385 (ident->revid == revid || ident->revid == -1)) { 386 return (ident); 387 } 388 } 389 } 390 return (NULL); 391 } 392 393 /* 394 * Return identification string if this device is ours. 395 */ 396 static int 397 fxp_probe(device_t dev) 398 { 399 const struct fxp_ident *ident; 400 401 ident = fxp_find_ident(dev); 402 if (ident != NULL) { 403 device_set_desc(dev, ident->name); 404 return (BUS_PROBE_DEFAULT); 405 } 406 return (ENXIO); 407 } 408 409 static void 410 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 411 { 412 uint32_t *addr; 413 414 if (error) 415 return; 416 417 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 418 addr = arg; 419 *addr = segs->ds_addr; 420 } 421 422 static int 423 fxp_attach(device_t dev) 424 { 425 struct fxp_softc *sc; 426 struct fxp_cb_tx *tcbp; 427 struct fxp_tx *txp; 428 struct fxp_rx *rxp; 429 struct ifnet *ifp; 430 uint32_t val; 431 uint16_t data; 432 u_char eaddr[ETHER_ADDR_LEN]; 433 int error, flags, i, pmc, prefer_iomap; 434 435 error = 0; 436 sc = device_get_softc(dev); 437 sc->dev = dev; 438 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 439 MTX_DEF); 440 callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0); 441 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd, 442 fxp_serial_ifmedia_sts); 443 444 ifp = sc->ifp = if_alloc(IFT_ETHER); 445 if (ifp == NULL) { 446 device_printf(dev, "can not if_alloc()\n"); 447 error = ENOSPC; 448 goto fail; 449 } 450 451 /* 452 * Enable bus mastering. 453 */ 454 pci_enable_busmaster(dev); 455 456 /* 457 * Figure out which we should try first - memory mapping or i/o mapping? 458 * We default to memory mapping. Then we accept an override from the 459 * command line. Then we check to see which one is enabled. 460 */ 461 prefer_iomap = 0; 462 resource_int_value(device_get_name(dev), device_get_unit(dev), 463 "prefer_iomap", &prefer_iomap); 464 if (prefer_iomap) 465 sc->fxp_spec = fxp_res_spec_io; 466 else 467 sc->fxp_spec = fxp_res_spec_mem; 468 469 error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res); 470 if (error) { 471 if (sc->fxp_spec == fxp_res_spec_mem) 472 sc->fxp_spec = fxp_res_spec_io; 473 else 474 sc->fxp_spec = fxp_res_spec_mem; 475 error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res); 476 } 477 if (error) { 478 device_printf(dev, "could not allocate resources\n"); 479 error = ENXIO; 480 goto fail; 481 } 482 483 if (bootverbose) { 484 device_printf(dev, "using %s space register mapping\n", 485 sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O"); 486 } 487 488 /* 489 * Put CU/RU idle state and prepare full reset. 490 */ 491 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 492 DELAY(10); 493 /* Full reset and disable interrupts. */ 494 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 495 DELAY(10); 496 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 497 498 /* 499 * Find out how large of an SEEPROM we have. 500 */ 501 fxp_autosize_eeprom(sc); 502 fxp_load_eeprom(sc); 503 504 /* 505 * Find out the chip revision; lump all 82557 revs together. 506 */ 507 sc->ident = fxp_find_ident(dev); 508 if (sc->ident->ich > 0) { 509 /* Assume ICH controllers are 82559. */ 510 sc->revision = FXP_REV_82559_A0; 511 } else { 512 data = sc->eeprom[FXP_EEPROM_MAP_CNTR]; 513 if ((data >> 8) == 1) 514 sc->revision = FXP_REV_82557; 515 else 516 sc->revision = pci_get_revid(dev); 517 } 518 519 /* 520 * Check availability of WOL. 82559ER does not support WOL. 521 */ 522 if (sc->revision >= FXP_REV_82558_A4 && 523 sc->revision != FXP_REV_82559S_A) { 524 data = sc->eeprom[FXP_EEPROM_MAP_ID]; 525 if ((data & 0x20) != 0 && 526 pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) 527 sc->flags |= FXP_FLAG_WOLCAP; 528 } 529 530 if (sc->revision == FXP_REV_82550_C) { 531 /* 532 * 82550C with server extension requires microcode to 533 * receive fragmented UDP datagrams. However if the 534 * microcode is used for client-only featured 82550C 535 * it locks up controller. 536 */ 537 data = sc->eeprom[FXP_EEPROM_MAP_COMPAT]; 538 if ((data & 0x0400) == 0) 539 sc->flags |= FXP_FLAG_NO_UCODE; 540 } 541 542 /* Receiver lock-up workaround detection. */ 543 if (sc->revision < FXP_REV_82558_A4) { 544 data = sc->eeprom[FXP_EEPROM_MAP_COMPAT]; 545 if ((data & 0x03) != 0x03) { 546 sc->flags |= FXP_FLAG_RXBUG; 547 device_printf(dev, "Enabling Rx lock-up workaround\n"); 548 } 549 } 550 551 /* 552 * Determine whether we must use the 503 serial interface. 553 */ 554 data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY]; 555 if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0 556 && (data & FXP_PHY_SERIAL_ONLY)) 557 sc->flags |= FXP_FLAG_SERIAL_MEDIA; 558 559 fxp_sysctl_node(sc); 560 /* 561 * Enable workarounds for certain chip revision deficiencies. 562 * 563 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly 564 * some systems based a normal 82559 design, have a defect where 565 * the chip can cause a PCI protocol violation if it receives 566 * a CU_RESUME command when it is entering the IDLE state. The 567 * workaround is to disable Dynamic Standby Mode, so the chip never 568 * deasserts CLKRUN#, and always remains in an active state. 569 * 570 * See Intel 82801BA/82801BAM Specification Update, Errata #30. 571 */ 572 if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) || 573 (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) { 574 data = sc->eeprom[FXP_EEPROM_MAP_ID]; 575 if (data & 0x02) { /* STB enable */ 576 uint16_t cksum; 577 int i; 578 579 device_printf(dev, 580 "Disabling dynamic standby mode in EEPROM\n"); 581 data &= ~0x02; 582 sc->eeprom[FXP_EEPROM_MAP_ID] = data; 583 fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1); 584 device_printf(dev, "New EEPROM ID: 0x%x\n", data); 585 cksum = 0; 586 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) 587 cksum += sc->eeprom[i]; 588 i = (1 << sc->eeprom_size) - 1; 589 cksum = 0xBABA - cksum; 590 fxp_write_eeprom(sc, &cksum, i, 1); 591 device_printf(dev, 592 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n", 593 i, sc->eeprom[i], cksum); 594 sc->eeprom[i] = cksum; 595 /* 596 * If the user elects to continue, try the software 597 * workaround, as it is better than nothing. 598 */ 599 sc->flags |= FXP_FLAG_CU_RESUME_BUG; 600 } 601 } 602 603 /* 604 * If we are not a 82557 chip, we can enable extended features. 605 */ 606 if (sc->revision != FXP_REV_82557) { 607 /* 608 * If MWI is enabled in the PCI configuration, and there 609 * is a valid cacheline size (8 or 16 dwords), then tell 610 * the board to turn on MWI. 611 */ 612 val = pci_read_config(dev, PCIR_COMMAND, 2); 613 if (val & PCIM_CMD_MWRICEN && 614 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0) 615 sc->flags |= FXP_FLAG_MWI_ENABLE; 616 617 /* turn on the extended TxCB feature */ 618 sc->flags |= FXP_FLAG_EXT_TXCB; 619 620 /* enable reception of long frames for VLAN */ 621 sc->flags |= FXP_FLAG_LONG_PKT_EN; 622 } else { 623 /* a hack to get long VLAN frames on a 82557 */ 624 sc->flags |= FXP_FLAG_SAVE_BAD; 625 } 626 627 /* For 82559 or later chips, Rx checksum offload is supported. */ 628 if (sc->revision >= FXP_REV_82559_A0) { 629 /* 82559ER does not support Rx checksum offloading. */ 630 if (sc->ident->devid != 0x1209) 631 sc->flags |= FXP_FLAG_82559_RXCSUM; 632 } 633 /* 634 * Enable use of extended RFDs and TCBs for 82550 635 * and later chips. Note: we need extended TXCB support 636 * too, but that's already enabled by the code above. 637 * Be careful to do this only on the right devices. 638 */ 639 if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C || 640 sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F 641 || sc->revision == FXP_REV_82551_10) { 642 sc->rfa_size = sizeof (struct fxp_rfa); 643 sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT; 644 sc->flags |= FXP_FLAG_EXT_RFA; 645 /* Use extended RFA instead of 82559 checksum mode. */ 646 sc->flags &= ~FXP_FLAG_82559_RXCSUM; 647 } else { 648 sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN; 649 sc->tx_cmd = FXP_CB_COMMAND_XMIT; 650 } 651 652 /* 653 * Allocate DMA tags and DMA safe memory. 654 */ 655 sc->maxtxseg = FXP_NTXSEG; 656 sc->maxsegsize = MCLBYTES; 657 if (sc->flags & FXP_FLAG_EXT_RFA) { 658 sc->maxtxseg--; 659 sc->maxsegsize = FXP_TSO_SEGSIZE; 660 } 661 error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0, 662 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 663 sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header), 664 sc->maxtxseg, sc->maxsegsize, 0, 665 busdma_lock_mutex, &Giant, &sc->fxp_txmtag); 666 if (error) { 667 device_printf(dev, "could not create TX DMA tag\n"); 668 goto fail; 669 } 670 671 error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0, 672 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 673 MCLBYTES, 1, MCLBYTES, 0, 674 busdma_lock_mutex, &Giant, &sc->fxp_rxmtag); 675 if (error) { 676 device_printf(dev, "could not create RX DMA tag\n"); 677 goto fail; 678 } 679 680 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 681 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 682 sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0, 683 busdma_lock_mutex, &Giant, &sc->fxp_stag); 684 if (error) { 685 device_printf(dev, "could not create stats DMA tag\n"); 686 goto fail; 687 } 688 689 error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats, 690 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap); 691 if (error) { 692 device_printf(dev, "could not allocate stats DMA memory\n"); 693 goto fail; 694 } 695 error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats, 696 sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 697 BUS_DMA_NOWAIT); 698 if (error) { 699 device_printf(dev, "could not load the stats DMA buffer\n"); 700 goto fail; 701 } 702 703 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 704 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 705 FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0, 706 busdma_lock_mutex, &Giant, &sc->cbl_tag); 707 if (error) { 708 device_printf(dev, "could not create TxCB DMA tag\n"); 709 goto fail; 710 } 711 712 error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list, 713 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map); 714 if (error) { 715 device_printf(dev, "could not allocate TxCB DMA memory\n"); 716 goto fail; 717 } 718 719 error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map, 720 sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr, 721 &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT); 722 if (error) { 723 device_printf(dev, "could not load TxCB DMA buffer\n"); 724 goto fail; 725 } 726 727 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 728 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 729 sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0, 730 busdma_lock_mutex, &Giant, &sc->mcs_tag); 731 if (error) { 732 device_printf(dev, 733 "could not create multicast setup DMA tag\n"); 734 goto fail; 735 } 736 737 error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp, 738 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map); 739 if (error) { 740 device_printf(dev, 741 "could not allocate multicast setup DMA memory\n"); 742 goto fail; 743 } 744 error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp, 745 sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 746 BUS_DMA_NOWAIT); 747 if (error) { 748 device_printf(dev, 749 "can't load the multicast setup DMA buffer\n"); 750 goto fail; 751 } 752 753 /* 754 * Pre-allocate the TX DMA maps and setup the pointers to 755 * the TX command blocks. 756 */ 757 txp = sc->fxp_desc.tx_list; 758 tcbp = sc->fxp_desc.cbl_list; 759 for (i = 0; i < FXP_NTXCB; i++) { 760 txp[i].tx_cb = tcbp + i; 761 error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map); 762 if (error) { 763 device_printf(dev, "can't create DMA map for TX\n"); 764 goto fail; 765 } 766 } 767 error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map); 768 if (error) { 769 device_printf(dev, "can't create spare DMA map\n"); 770 goto fail; 771 } 772 773 /* 774 * Pre-allocate our receive buffers. 775 */ 776 sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL; 777 for (i = 0; i < FXP_NRFABUFS; i++) { 778 rxp = &sc->fxp_desc.rx_list[i]; 779 error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map); 780 if (error) { 781 device_printf(dev, "can't create DMA map for RX\n"); 782 goto fail; 783 } 784 if (fxp_new_rfabuf(sc, rxp) != 0) { 785 error = ENOMEM; 786 goto fail; 787 } 788 fxp_add_rfabuf(sc, rxp); 789 } 790 791 /* 792 * Read MAC address. 793 */ 794 eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff; 795 eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8; 796 eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff; 797 eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8; 798 eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff; 799 eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8; 800 if (bootverbose) { 801 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n", 802 pci_get_vendor(dev), pci_get_device(dev), 803 pci_get_subvendor(dev), pci_get_subdevice(dev), 804 pci_get_revid(dev)); 805 device_printf(dev, "Dynamic Standby mode is %s\n", 806 sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" : 807 "disabled"); 808 } 809 810 /* 811 * If this is only a 10Mbps device, then there is no MII, and 812 * the PHY will use a serial interface instead. 813 * 814 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 815 * doesn't have a programming interface of any sort. The 816 * media is sensed automatically based on how the link partner 817 * is configured. This is, in essence, manual configuration. 818 */ 819 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) { 820 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 821 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); 822 } else { 823 /* 824 * i82557 wedge when isolating all of their PHYs. 825 */ 826 flags = MIIF_NOISOLATE; 827 if (sc->revision >= FXP_REV_82558_A4) 828 flags |= MIIF_DOPAUSE; 829 error = mii_attach(dev, &sc->miibus, ifp, fxp_ifmedia_upd, 830 fxp_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, 831 MII_OFFSET_ANY, flags); 832 if (error != 0) { 833 device_printf(dev, "attaching PHYs failed\n"); 834 goto fail; 835 } 836 } 837 838 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 839 ifp->if_init = fxp_init; 840 ifp->if_softc = sc; 841 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 842 ifp->if_ioctl = fxp_ioctl; 843 ifp->if_start = fxp_start; 844 845 ifp->if_capabilities = ifp->if_capenable = 0; 846 847 /* Enable checksum offload/TSO for 82550 or better chips */ 848 if (sc->flags & FXP_FLAG_EXT_RFA) { 849 ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO; 850 ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4; 851 ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4; 852 } 853 854 if (sc->flags & FXP_FLAG_82559_RXCSUM) { 855 ifp->if_capabilities |= IFCAP_RXCSUM; 856 ifp->if_capenable |= IFCAP_RXCSUM; 857 } 858 859 if (sc->flags & FXP_FLAG_WOLCAP) { 860 ifp->if_capabilities |= IFCAP_WOL_MAGIC; 861 ifp->if_capenable |= IFCAP_WOL_MAGIC; 862 } 863 864 #ifdef DEVICE_POLLING 865 /* Inform the world we support polling. */ 866 ifp->if_capabilities |= IFCAP_POLLING; 867 #endif 868 869 /* 870 * Attach the interface. 871 */ 872 ether_ifattach(ifp, eaddr); 873 874 /* 875 * Tell the upper layer(s) we support long frames. 876 * Must appear after the call to ether_ifattach() because 877 * ether_ifattach() sets ifi_hdrlen to the default value. 878 */ 879 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 880 ifp->if_capabilities |= IFCAP_VLAN_MTU; 881 ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */ 882 if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) { 883 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | 884 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO; 885 ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | 886 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO; 887 } 888 889 /* 890 * Let the system queue as many packets as we have available 891 * TX descriptors. 892 */ 893 IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1); 894 ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1; 895 IFQ_SET_READY(&ifp->if_snd); 896 897 /* 898 * Hook our interrupt after all initialization is complete. 899 */ 900 error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE, 901 NULL, fxp_intr, sc, &sc->ih); 902 if (error) { 903 device_printf(dev, "could not setup irq\n"); 904 ether_ifdetach(sc->ifp); 905 goto fail; 906 } 907 908 /* 909 * Configure hardware to reject magic frames otherwise 910 * system will hang on recipt of magic frames. 911 */ 912 if ((sc->flags & FXP_FLAG_WOLCAP) != 0) { 913 FXP_LOCK(sc); 914 /* Clear wakeup events. */ 915 CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR)); 916 fxp_init_body(sc, 0); 917 fxp_stop(sc); 918 FXP_UNLOCK(sc); 919 } 920 921 fail: 922 if (error) 923 fxp_release(sc); 924 return (error); 925 } 926 927 /* 928 * Release all resources. The softc lock should not be held and the 929 * interrupt should already be torn down. 930 */ 931 static void 932 fxp_release(struct fxp_softc *sc) 933 { 934 struct fxp_rx *rxp; 935 struct fxp_tx *txp; 936 int i; 937 938 FXP_LOCK_ASSERT(sc, MA_NOTOWNED); 939 KASSERT(sc->ih == NULL, 940 ("fxp_release() called with intr handle still active")); 941 if (sc->miibus) 942 device_delete_child(sc->dev, sc->miibus); 943 bus_generic_detach(sc->dev); 944 ifmedia_removeall(&sc->sc_media); 945 if (sc->fxp_desc.cbl_list) { 946 bus_dmamap_unload(sc->cbl_tag, sc->cbl_map); 947 bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list, 948 sc->cbl_map); 949 } 950 if (sc->fxp_stats) { 951 bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap); 952 bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap); 953 } 954 if (sc->mcsp) { 955 bus_dmamap_unload(sc->mcs_tag, sc->mcs_map); 956 bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map); 957 } 958 bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res); 959 if (sc->fxp_rxmtag) { 960 for (i = 0; i < FXP_NRFABUFS; i++) { 961 rxp = &sc->fxp_desc.rx_list[i]; 962 if (rxp->rx_mbuf != NULL) { 963 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 964 BUS_DMASYNC_POSTREAD); 965 bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map); 966 m_freem(rxp->rx_mbuf); 967 } 968 bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map); 969 } 970 bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map); 971 bus_dma_tag_destroy(sc->fxp_rxmtag); 972 } 973 if (sc->fxp_txmtag) { 974 for (i = 0; i < FXP_NTXCB; i++) { 975 txp = &sc->fxp_desc.tx_list[i]; 976 if (txp->tx_mbuf != NULL) { 977 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, 978 BUS_DMASYNC_POSTWRITE); 979 bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map); 980 m_freem(txp->tx_mbuf); 981 } 982 bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map); 983 } 984 bus_dma_tag_destroy(sc->fxp_txmtag); 985 } 986 if (sc->fxp_stag) 987 bus_dma_tag_destroy(sc->fxp_stag); 988 if (sc->cbl_tag) 989 bus_dma_tag_destroy(sc->cbl_tag); 990 if (sc->mcs_tag) 991 bus_dma_tag_destroy(sc->mcs_tag); 992 if (sc->ifp) 993 if_free(sc->ifp); 994 995 mtx_destroy(&sc->sc_mtx); 996 } 997 998 /* 999 * Detach interface. 1000 */ 1001 static int 1002 fxp_detach(device_t dev) 1003 { 1004 struct fxp_softc *sc = device_get_softc(dev); 1005 1006 #ifdef DEVICE_POLLING 1007 if (sc->ifp->if_capenable & IFCAP_POLLING) 1008 ether_poll_deregister(sc->ifp); 1009 #endif 1010 1011 FXP_LOCK(sc); 1012 /* 1013 * Stop DMA and drop transmit queue, but disable interrupts first. 1014 */ 1015 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 1016 fxp_stop(sc); 1017 FXP_UNLOCK(sc); 1018 callout_drain(&sc->stat_ch); 1019 1020 /* 1021 * Close down routes etc. 1022 */ 1023 ether_ifdetach(sc->ifp); 1024 1025 /* 1026 * Unhook interrupt before dropping lock. This is to prevent 1027 * races with fxp_intr(). 1028 */ 1029 bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih); 1030 sc->ih = NULL; 1031 1032 /* Release our allocated resources. */ 1033 fxp_release(sc); 1034 return (0); 1035 } 1036 1037 /* 1038 * Device shutdown routine. Called at system shutdown after sync. The 1039 * main purpose of this routine is to shut off receiver DMA so that 1040 * kernel memory doesn't get clobbered during warmboot. 1041 */ 1042 static int 1043 fxp_shutdown(device_t dev) 1044 { 1045 1046 /* 1047 * Make sure that DMA is disabled prior to reboot. Not doing 1048 * do could allow DMA to corrupt kernel memory during the 1049 * reboot before the driver initializes. 1050 */ 1051 return (fxp_suspend(dev)); 1052 } 1053 1054 /* 1055 * Device suspend routine. Stop the interface and save some PCI 1056 * settings in case the BIOS doesn't restore them properly on 1057 * resume. 1058 */ 1059 static int 1060 fxp_suspend(device_t dev) 1061 { 1062 struct fxp_softc *sc = device_get_softc(dev); 1063 struct ifnet *ifp; 1064 int pmc; 1065 uint16_t pmstat; 1066 1067 FXP_LOCK(sc); 1068 1069 ifp = sc->ifp; 1070 if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) { 1071 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2); 1072 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1073 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) { 1074 /* Request PME. */ 1075 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1076 sc->flags |= FXP_FLAG_WOL; 1077 /* Reconfigure hardware to accept magic frames. */ 1078 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1079 fxp_init_body(sc, 0); 1080 } 1081 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1082 } 1083 fxp_stop(sc); 1084 1085 sc->suspended = 1; 1086 1087 FXP_UNLOCK(sc); 1088 return (0); 1089 } 1090 1091 /* 1092 * Device resume routine. re-enable busmastering, and restart the interface if 1093 * appropriate. 1094 */ 1095 static int 1096 fxp_resume(device_t dev) 1097 { 1098 struct fxp_softc *sc = device_get_softc(dev); 1099 struct ifnet *ifp = sc->ifp; 1100 int pmc; 1101 uint16_t pmstat; 1102 1103 FXP_LOCK(sc); 1104 1105 if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) { 1106 sc->flags &= ~FXP_FLAG_WOL; 1107 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2); 1108 /* Disable PME and clear PME status. */ 1109 pmstat &= ~PCIM_PSTAT_PMEENABLE; 1110 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1111 if ((sc->flags & FXP_FLAG_WOLCAP) != 0) 1112 CSR_WRITE_1(sc, FXP_CSR_PMDR, 1113 CSR_READ_1(sc, FXP_CSR_PMDR)); 1114 } 1115 1116 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 1117 DELAY(10); 1118 1119 /* reinitialize interface if necessary */ 1120 if (ifp->if_flags & IFF_UP) 1121 fxp_init_body(sc, 1); 1122 1123 sc->suspended = 0; 1124 1125 FXP_UNLOCK(sc); 1126 return (0); 1127 } 1128 1129 static void 1130 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) 1131 { 1132 uint16_t reg; 1133 int x; 1134 1135 /* 1136 * Shift in data. 1137 */ 1138 for (x = 1 << (length - 1); x; x >>= 1) { 1139 if (data & x) 1140 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1141 else 1142 reg = FXP_EEPROM_EECS; 1143 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1144 DELAY(1); 1145 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1146 DELAY(1); 1147 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1148 DELAY(1); 1149 } 1150 } 1151 1152 /* 1153 * Read from the serial EEPROM. Basically, you manually shift in 1154 * the read opcode (one bit at a time) and then shift in the address, 1155 * and then you shift out the data (all of this one bit at a time). 1156 * The word size is 16 bits, so you have to provide the address for 1157 * every 16 bits of data. 1158 */ 1159 static uint16_t 1160 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize) 1161 { 1162 uint16_t reg, data; 1163 int x; 1164 1165 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1166 /* 1167 * Shift in read opcode. 1168 */ 1169 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); 1170 /* 1171 * Shift in address. 1172 */ 1173 data = 0; 1174 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) { 1175 if (offset & x) 1176 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1177 else 1178 reg = FXP_EEPROM_EECS; 1179 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1180 DELAY(1); 1181 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1182 DELAY(1); 1183 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1184 DELAY(1); 1185 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO; 1186 data++; 1187 if (autosize && reg == 0) { 1188 sc->eeprom_size = data; 1189 break; 1190 } 1191 } 1192 /* 1193 * Shift out data. 1194 */ 1195 data = 0; 1196 reg = FXP_EEPROM_EECS; 1197 for (x = 1 << 15; x; x >>= 1) { 1198 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1199 DELAY(1); 1200 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1201 data |= x; 1202 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1203 DELAY(1); 1204 } 1205 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1206 DELAY(1); 1207 1208 return (data); 1209 } 1210 1211 static void 1212 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data) 1213 { 1214 int i; 1215 1216 /* 1217 * Erase/write enable. 1218 */ 1219 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1220 fxp_eeprom_shiftin(sc, 0x4, 3); 1221 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); 1222 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1223 DELAY(1); 1224 /* 1225 * Shift in write opcode, address, data. 1226 */ 1227 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1228 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); 1229 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); 1230 fxp_eeprom_shiftin(sc, data, 16); 1231 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1232 DELAY(1); 1233 /* 1234 * Wait for EEPROM to finish up. 1235 */ 1236 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1237 DELAY(1); 1238 for (i = 0; i < 1000; i++) { 1239 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1240 break; 1241 DELAY(50); 1242 } 1243 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1244 DELAY(1); 1245 /* 1246 * Erase/write disable. 1247 */ 1248 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1249 fxp_eeprom_shiftin(sc, 0x4, 3); 1250 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); 1251 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1252 DELAY(1); 1253 } 1254 1255 /* 1256 * From NetBSD: 1257 * 1258 * Figure out EEPROM size. 1259 * 1260 * 559's can have either 64-word or 256-word EEPROMs, the 558 1261 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet 1262 * talks about the existance of 16 to 256 word EEPROMs. 1263 * 1264 * The only known sizes are 64 and 256, where the 256 version is used 1265 * by CardBus cards to store CIS information. 1266 * 1267 * The address is shifted in msb-to-lsb, and after the last 1268 * address-bit the EEPROM is supposed to output a `dummy zero' bit, 1269 * after which follows the actual data. We try to detect this zero, by 1270 * probing the data-out bit in the EEPROM control register just after 1271 * having shifted in a bit. If the bit is zero, we assume we've 1272 * shifted enough address bits. The data-out should be tri-state, 1273 * before this, which should translate to a logical one. 1274 */ 1275 static void 1276 fxp_autosize_eeprom(struct fxp_softc *sc) 1277 { 1278 1279 /* guess maximum size of 256 words */ 1280 sc->eeprom_size = 8; 1281 1282 /* autosize */ 1283 (void) fxp_eeprom_getword(sc, 0, 1); 1284 } 1285 1286 static void 1287 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1288 { 1289 int i; 1290 1291 for (i = 0; i < words; i++) 1292 data[i] = fxp_eeprom_getword(sc, offset + i, 0); 1293 } 1294 1295 static void 1296 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1297 { 1298 int i; 1299 1300 for (i = 0; i < words; i++) 1301 fxp_eeprom_putword(sc, offset + i, data[i]); 1302 } 1303 1304 static void 1305 fxp_load_eeprom(struct fxp_softc *sc) 1306 { 1307 int i; 1308 uint16_t cksum; 1309 1310 fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size); 1311 cksum = 0; 1312 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) 1313 cksum += sc->eeprom[i]; 1314 cksum = 0xBABA - cksum; 1315 if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1]) 1316 device_printf(sc->dev, 1317 "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n", 1318 cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]); 1319 } 1320 1321 /* 1322 * Grab the softc lock and call the real fxp_start_body() routine 1323 */ 1324 static void 1325 fxp_start(struct ifnet *ifp) 1326 { 1327 struct fxp_softc *sc = ifp->if_softc; 1328 1329 FXP_LOCK(sc); 1330 fxp_start_body(ifp); 1331 FXP_UNLOCK(sc); 1332 } 1333 1334 /* 1335 * Start packet transmission on the interface. 1336 * This routine must be called with the softc lock held, and is an 1337 * internal entry point only. 1338 */ 1339 static void 1340 fxp_start_body(struct ifnet *ifp) 1341 { 1342 struct fxp_softc *sc = ifp->if_softc; 1343 struct mbuf *mb_head; 1344 int txqueued; 1345 1346 FXP_LOCK_ASSERT(sc, MA_OWNED); 1347 1348 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1349 IFF_DRV_RUNNING) 1350 return; 1351 1352 if (sc->tx_queued > FXP_NTXCB_HIWAT) 1353 fxp_txeof(sc); 1354 /* 1355 * We're finished if there is nothing more to add to the list or if 1356 * we're all filled up with buffers to transmit. 1357 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add 1358 * a NOP command when needed. 1359 */ 1360 txqueued = 0; 1361 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 1362 sc->tx_queued < FXP_NTXCB - 1) { 1363 1364 /* 1365 * Grab a packet to transmit. 1366 */ 1367 IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head); 1368 if (mb_head == NULL) 1369 break; 1370 1371 if (fxp_encap(sc, &mb_head)) { 1372 if (mb_head == NULL) 1373 break; 1374 IFQ_DRV_PREPEND(&ifp->if_snd, mb_head); 1375 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1376 } 1377 txqueued++; 1378 /* 1379 * Pass packet to bpf if there is a listener. 1380 */ 1381 BPF_MTAP(ifp, mb_head); 1382 } 1383 1384 /* 1385 * We're finished. If we added to the list, issue a RESUME to get DMA 1386 * going again if suspended. 1387 */ 1388 if (txqueued > 0) { 1389 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1390 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1391 fxp_scb_wait(sc); 1392 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 1393 /* 1394 * Set a 5 second timer just in case we don't hear 1395 * from the card again. 1396 */ 1397 sc->watchdog_timer = 5; 1398 } 1399 } 1400 1401 static int 1402 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head) 1403 { 1404 struct ifnet *ifp; 1405 struct mbuf *m; 1406 struct fxp_tx *txp; 1407 struct fxp_cb_tx *cbp; 1408 struct tcphdr *tcp; 1409 bus_dma_segment_t segs[FXP_NTXSEG]; 1410 int error, i, nseg, tcp_payload; 1411 1412 FXP_LOCK_ASSERT(sc, MA_OWNED); 1413 ifp = sc->ifp; 1414 1415 tcp_payload = 0; 1416 tcp = NULL; 1417 /* 1418 * Get pointer to next available tx desc. 1419 */ 1420 txp = sc->fxp_desc.tx_last->tx_next; 1421 1422 /* 1423 * A note in Appendix B of the Intel 8255x 10/100 Mbps 1424 * Ethernet Controller Family Open Source Software 1425 * Developer Manual says: 1426 * Using software parsing is only allowed with legal 1427 * TCP/IP or UDP/IP packets. 1428 * ... 1429 * For all other datagrams, hardware parsing must 1430 * be used. 1431 * Software parsing appears to truncate ICMP and 1432 * fragmented UDP packets that contain one to three 1433 * bytes in the second (and final) mbuf of the packet. 1434 */ 1435 if (sc->flags & FXP_FLAG_EXT_RFA) 1436 txp->tx_cb->ipcb_ip_activation_high = 1437 FXP_IPCB_HARDWAREPARSING_ENABLE; 1438 1439 m = *m_head; 1440 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1441 /* 1442 * 82550/82551 requires ethernet/IP/TCP headers must be 1443 * contained in the first active transmit buffer. 1444 */ 1445 struct ether_header *eh; 1446 struct ip *ip; 1447 uint32_t ip_off, poff; 1448 1449 if (M_WRITABLE(*m_head) == 0) { 1450 /* Get a writable copy. */ 1451 m = m_dup(*m_head, M_NOWAIT); 1452 m_freem(*m_head); 1453 if (m == NULL) { 1454 *m_head = NULL; 1455 return (ENOBUFS); 1456 } 1457 *m_head = m; 1458 } 1459 ip_off = sizeof(struct ether_header); 1460 m = m_pullup(*m_head, ip_off); 1461 if (m == NULL) { 1462 *m_head = NULL; 1463 return (ENOBUFS); 1464 } 1465 eh = mtod(m, struct ether_header *); 1466 /* Check the existence of VLAN tag. */ 1467 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1468 ip_off = sizeof(struct ether_vlan_header); 1469 m = m_pullup(m, ip_off); 1470 if (m == NULL) { 1471 *m_head = NULL; 1472 return (ENOBUFS); 1473 } 1474 } 1475 m = m_pullup(m, ip_off + sizeof(struct ip)); 1476 if (m == NULL) { 1477 *m_head = NULL; 1478 return (ENOBUFS); 1479 } 1480 ip = (struct ip *)(mtod(m, char *) + ip_off); 1481 poff = ip_off + (ip->ip_hl << 2); 1482 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1483 if (m == NULL) { 1484 *m_head = NULL; 1485 return (ENOBUFS); 1486 } 1487 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1488 m = m_pullup(m, poff + (tcp->th_off << 2)); 1489 if (m == NULL) { 1490 *m_head = NULL; 1491 return (ENOBUFS); 1492 } 1493 1494 /* 1495 * Since 82550/82551 doesn't modify IP length and pseudo 1496 * checksum in the first frame driver should compute it. 1497 */ 1498 ip = (struct ip *)(mtod(m, char *) + ip_off); 1499 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1500 ip->ip_sum = 0; 1501 ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) + 1502 (tcp->th_off << 2)); 1503 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 1504 htons(IPPROTO_TCP + (tcp->th_off << 2) + 1505 m->m_pkthdr.tso_segsz)); 1506 /* Compute total TCP payload. */ 1507 tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2); 1508 tcp_payload -= tcp->th_off << 2; 1509 *m_head = m; 1510 } else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) { 1511 /* 1512 * Deal with TCP/IP checksum offload. Note that 1513 * in order for TCP checksum offload to work, 1514 * the pseudo header checksum must have already 1515 * been computed and stored in the checksum field 1516 * in the TCP header. The stack should have 1517 * already done this for us. 1518 */ 1519 txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; 1520 if (m->m_pkthdr.csum_flags & CSUM_TCP) 1521 txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET; 1522 1523 #ifdef FXP_IP_CSUM_WAR 1524 /* 1525 * XXX The 82550 chip appears to have trouble 1526 * dealing with IP header checksums in very small 1527 * datagrams, namely fragments from 1 to 3 bytes 1528 * in size. For example, say you want to transmit 1529 * a UDP packet of 1473 bytes. The packet will be 1530 * fragmented over two IP datagrams, the latter 1531 * containing only one byte of data. The 82550 will 1532 * botch the header checksum on the 1-byte fragment. 1533 * As long as the datagram contains 4 or more bytes 1534 * of data, you're ok. 1535 * 1536 * The following code attempts to work around this 1537 * problem: if the datagram is less than 38 bytes 1538 * in size (14 bytes ether header, 20 bytes IP header, 1539 * plus 4 bytes of data), we punt and compute the IP 1540 * header checksum by hand. This workaround doesn't 1541 * work very well, however, since it can be fooled 1542 * by things like VLAN tags and IP options that make 1543 * the header sizes/offsets vary. 1544 */ 1545 1546 if (m->m_pkthdr.csum_flags & CSUM_IP) { 1547 if (m->m_pkthdr.len < 38) { 1548 struct ip *ip; 1549 m->m_data += ETHER_HDR_LEN; 1550 ip = mtod(m, struct ip *); 1551 ip->ip_sum = in_cksum(m, ip->ip_hl << 2); 1552 m->m_data -= ETHER_HDR_LEN; 1553 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1554 } else { 1555 txp->tx_cb->ipcb_ip_activation_high = 1556 FXP_IPCB_HARDWAREPARSING_ENABLE; 1557 txp->tx_cb->ipcb_ip_schedule |= 1558 FXP_IPCB_IP_CHECKSUM_ENABLE; 1559 } 1560 } 1561 #endif 1562 } 1563 1564 error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head, 1565 segs, &nseg, 0); 1566 if (error == EFBIG) { 1567 m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg); 1568 if (m == NULL) { 1569 m_freem(*m_head); 1570 *m_head = NULL; 1571 return (ENOMEM); 1572 } 1573 *m_head = m; 1574 error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, 1575 *m_head, segs, &nseg, 0); 1576 if (error != 0) { 1577 m_freem(*m_head); 1578 *m_head = NULL; 1579 return (ENOMEM); 1580 } 1581 } else if (error != 0) 1582 return (error); 1583 if (nseg == 0) { 1584 m_freem(*m_head); 1585 *m_head = NULL; 1586 return (EIO); 1587 } 1588 1589 KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments")); 1590 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE); 1591 1592 cbp = txp->tx_cb; 1593 for (i = 0; i < nseg; i++) { 1594 /* 1595 * If this is an 82550/82551, then we're using extended 1596 * TxCBs _and_ we're using checksum offload. This means 1597 * that the TxCB is really an IPCB. One major difference 1598 * between the two is that with plain extended TxCBs, 1599 * the bottom half of the TxCB contains two entries from 1600 * the TBD array, whereas IPCBs contain just one entry: 1601 * one entry (8 bytes) has been sacrificed for the TCP/IP 1602 * checksum offload control bits. So to make things work 1603 * right, we have to start filling in the TBD array 1604 * starting from a different place depending on whether 1605 * the chip is an 82550/82551 or not. 1606 */ 1607 if (sc->flags & FXP_FLAG_EXT_RFA) { 1608 cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr); 1609 cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len); 1610 } else { 1611 cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr); 1612 cbp->tbd[i].tb_size = htole32(segs[i].ds_len); 1613 } 1614 } 1615 if (sc->flags & FXP_FLAG_EXT_RFA) { 1616 /* Configure dynamic TBD for 82550/82551. */ 1617 cbp->tbd_number = 0xFF; 1618 cbp->tbd[nseg].tb_size |= htole32(0x8000); 1619 } else 1620 cbp->tbd_number = nseg; 1621 /* Configure TSO. */ 1622 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1623 cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16); 1624 cbp->tbd[1].tb_size |= htole32(tcp_payload << 16); 1625 cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE | 1626 FXP_IPCB_IP_CHECKSUM_ENABLE | 1627 FXP_IPCB_TCP_PACKET | 1628 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; 1629 } 1630 /* Configure VLAN hardware tag insertion. */ 1631 if ((m->m_flags & M_VLANTAG) != 0) { 1632 cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag); 1633 txp->tx_cb->ipcb_ip_activation_high |= 1634 FXP_IPCB_INSERTVLAN_ENABLE; 1635 } 1636 1637 txp->tx_mbuf = m; 1638 txp->tx_cb->cb_status = 0; 1639 txp->tx_cb->byte_count = 0; 1640 if (sc->tx_queued != FXP_CXINT_THRESH - 1) 1641 txp->tx_cb->cb_command = 1642 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1643 FXP_CB_COMMAND_S); 1644 else 1645 txp->tx_cb->cb_command = 1646 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1647 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); 1648 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) 1649 txp->tx_cb->tx_threshold = tx_threshold; 1650 1651 /* 1652 * Advance the end of list forward. 1653 */ 1654 sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S); 1655 sc->fxp_desc.tx_last = txp; 1656 1657 /* 1658 * Advance the beginning of the list forward if there are 1659 * no other packets queued (when nothing is queued, tx_first 1660 * sits on the last TxCB that was sent out). 1661 */ 1662 if (sc->tx_queued == 0) 1663 sc->fxp_desc.tx_first = txp; 1664 1665 sc->tx_queued++; 1666 1667 return (0); 1668 } 1669 1670 #ifdef DEVICE_POLLING 1671 static poll_handler_t fxp_poll; 1672 1673 static int 1674 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1675 { 1676 struct fxp_softc *sc = ifp->if_softc; 1677 uint8_t statack; 1678 int rx_npkts = 0; 1679 1680 FXP_LOCK(sc); 1681 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1682 FXP_UNLOCK(sc); 1683 return (rx_npkts); 1684 } 1685 1686 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA | 1687 FXP_SCB_STATACK_FR; 1688 if (cmd == POLL_AND_CHECK_STATUS) { 1689 uint8_t tmp; 1690 1691 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK); 1692 if (tmp == 0xff || tmp == 0) { 1693 FXP_UNLOCK(sc); 1694 return (rx_npkts); /* nothing to do */ 1695 } 1696 tmp &= ~statack; 1697 /* ack what we can */ 1698 if (tmp != 0) 1699 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp); 1700 statack |= tmp; 1701 } 1702 rx_npkts = fxp_intr_body(sc, ifp, statack, count); 1703 FXP_UNLOCK(sc); 1704 return (rx_npkts); 1705 } 1706 #endif /* DEVICE_POLLING */ 1707 1708 /* 1709 * Process interface interrupts. 1710 */ 1711 static void 1712 fxp_intr(void *xsc) 1713 { 1714 struct fxp_softc *sc = xsc; 1715 struct ifnet *ifp = sc->ifp; 1716 uint8_t statack; 1717 1718 FXP_LOCK(sc); 1719 if (sc->suspended) { 1720 FXP_UNLOCK(sc); 1721 return; 1722 } 1723 1724 #ifdef DEVICE_POLLING 1725 if (ifp->if_capenable & IFCAP_POLLING) { 1726 FXP_UNLOCK(sc); 1727 return; 1728 } 1729 #endif 1730 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { 1731 /* 1732 * It should not be possible to have all bits set; the 1733 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If 1734 * all bits are set, this may indicate that the card has 1735 * been physically ejected, so ignore it. 1736 */ 1737 if (statack == 0xff) { 1738 FXP_UNLOCK(sc); 1739 return; 1740 } 1741 1742 /* 1743 * First ACK all the interrupts in this pass. 1744 */ 1745 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); 1746 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1747 fxp_intr_body(sc, ifp, statack, -1); 1748 } 1749 FXP_UNLOCK(sc); 1750 } 1751 1752 static void 1753 fxp_txeof(struct fxp_softc *sc) 1754 { 1755 struct ifnet *ifp; 1756 struct fxp_tx *txp; 1757 1758 ifp = sc->ifp; 1759 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1760 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1761 for (txp = sc->fxp_desc.tx_first; sc->tx_queued && 1762 (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0; 1763 txp = txp->tx_next) { 1764 if (txp->tx_mbuf != NULL) { 1765 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, 1766 BUS_DMASYNC_POSTWRITE); 1767 bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map); 1768 m_freem(txp->tx_mbuf); 1769 txp->tx_mbuf = NULL; 1770 /* clear this to reset csum offload bits */ 1771 txp->tx_cb->tbd[0].tb_addr = 0; 1772 } 1773 sc->tx_queued--; 1774 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1775 } 1776 sc->fxp_desc.tx_first = txp; 1777 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1778 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1779 if (sc->tx_queued == 0) 1780 sc->watchdog_timer = 0; 1781 } 1782 1783 static void 1784 fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m, 1785 uint16_t status, int pos) 1786 { 1787 struct ether_header *eh; 1788 struct ip *ip; 1789 struct udphdr *uh; 1790 int32_t hlen, len, pktlen, temp32; 1791 uint16_t csum, *opts; 1792 1793 if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) { 1794 if ((status & FXP_RFA_STATUS_PARSE) != 0) { 1795 if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID) 1796 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1797 if (status & FXP_RFDX_CS_IP_CSUM_VALID) 1798 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1799 if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) && 1800 (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) { 1801 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 1802 CSUM_PSEUDO_HDR; 1803 m->m_pkthdr.csum_data = 0xffff; 1804 } 1805 } 1806 return; 1807 } 1808 1809 pktlen = m->m_pkthdr.len; 1810 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) 1811 return; 1812 eh = mtod(m, struct ether_header *); 1813 if (eh->ether_type != htons(ETHERTYPE_IP)) 1814 return; 1815 ip = (struct ip *)(eh + 1); 1816 if (ip->ip_v != IPVERSION) 1817 return; 1818 1819 hlen = ip->ip_hl << 2; 1820 pktlen -= sizeof(struct ether_header); 1821 if (hlen < sizeof(struct ip)) 1822 return; 1823 if (ntohs(ip->ip_len) < hlen) 1824 return; 1825 if (ntohs(ip->ip_len) != pktlen) 1826 return; 1827 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) 1828 return; /* can't handle fragmented packet */ 1829 1830 switch (ip->ip_p) { 1831 case IPPROTO_TCP: 1832 if (pktlen < (hlen + sizeof(struct tcphdr))) 1833 return; 1834 break; 1835 case IPPROTO_UDP: 1836 if (pktlen < (hlen + sizeof(struct udphdr))) 1837 return; 1838 uh = (struct udphdr *)((caddr_t)ip + hlen); 1839 if (uh->uh_sum == 0) 1840 return; /* no checksum */ 1841 break; 1842 default: 1843 return; 1844 } 1845 /* Extract computed checksum. */ 1846 csum = be16dec(mtod(m, char *) + pos); 1847 /* checksum fixup for IP options */ 1848 len = hlen - sizeof(struct ip); 1849 if (len > 0) { 1850 opts = (uint16_t *)(ip + 1); 1851 for (; len > 0; len -= sizeof(uint16_t), opts++) { 1852 temp32 = csum - *opts; 1853 temp32 = (temp32 >> 16) + (temp32 & 65535); 1854 csum = temp32 & 65535; 1855 } 1856 } 1857 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 1858 m->m_pkthdr.csum_data = csum; 1859 } 1860 1861 static int 1862 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack, 1863 int count) 1864 { 1865 struct mbuf *m; 1866 struct fxp_rx *rxp; 1867 struct fxp_rfa *rfa; 1868 int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0; 1869 int rx_npkts; 1870 uint16_t status; 1871 1872 rx_npkts = 0; 1873 FXP_LOCK_ASSERT(sc, MA_OWNED); 1874 1875 if (rnr) 1876 sc->rnr++; 1877 #ifdef DEVICE_POLLING 1878 /* Pick up a deferred RNR condition if `count' ran out last time. */ 1879 if (sc->flags & FXP_FLAG_DEFERRED_RNR) { 1880 sc->flags &= ~FXP_FLAG_DEFERRED_RNR; 1881 rnr = 1; 1882 } 1883 #endif 1884 1885 /* 1886 * Free any finished transmit mbuf chains. 1887 * 1888 * Handle the CNA event likt a CXTNO event. It used to 1889 * be that this event (control unit not ready) was not 1890 * encountered, but it is now with the SMPng modifications. 1891 * The exact sequence of events that occur when the interface 1892 * is brought up are different now, and if this event 1893 * goes unhandled, the configuration/rxfilter setup sequence 1894 * can stall for several seconds. The result is that no 1895 * packets go out onto the wire for about 5 to 10 seconds 1896 * after the interface is ifconfig'ed for the first time. 1897 */ 1898 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) 1899 fxp_txeof(sc); 1900 1901 /* 1902 * Try to start more packets transmitting. 1903 */ 1904 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1905 fxp_start_body(ifp); 1906 1907 /* 1908 * Just return if nothing happened on the receive side. 1909 */ 1910 if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0) 1911 return (rx_npkts); 1912 1913 /* 1914 * Process receiver interrupts. If a no-resource (RNR) 1915 * condition exists, get whatever packets we can and 1916 * re-start the receiver. 1917 * 1918 * When using polling, we do not process the list to completion, 1919 * so when we get an RNR interrupt we must defer the restart 1920 * until we hit the last buffer with the C bit set. 1921 * If we run out of cycles and rfa_headm has the C bit set, 1922 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so 1923 * that the info will be used in the subsequent polling cycle. 1924 */ 1925 for (;;) { 1926 rxp = sc->fxp_desc.rx_head; 1927 m = rxp->rx_mbuf; 1928 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + 1929 RFA_ALIGNMENT_FUDGE); 1930 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 1931 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1932 1933 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */ 1934 if (count >= 0 && count-- == 0) { 1935 if (rnr) { 1936 /* Defer RNR processing until the next time. */ 1937 sc->flags |= FXP_FLAG_DEFERRED_RNR; 1938 rnr = 0; 1939 } 1940 break; 1941 } 1942 #endif /* DEVICE_POLLING */ 1943 1944 status = le16toh(rfa->rfa_status); 1945 if ((status & FXP_RFA_STATUS_C) == 0) 1946 break; 1947 1948 if ((status & FXP_RFA_STATUS_RNR) != 0) 1949 rnr++; 1950 /* 1951 * Advance head forward. 1952 */ 1953 sc->fxp_desc.rx_head = rxp->rx_next; 1954 1955 /* 1956 * Add a new buffer to the receive chain. 1957 * If this fails, the old buffer is recycled 1958 * instead. 1959 */ 1960 if (fxp_new_rfabuf(sc, rxp) == 0) { 1961 int total_len; 1962 1963 /* 1964 * Fetch packet length (the top 2 bits of 1965 * actual_size are flags set by the controller 1966 * upon completion), and drop the packet in case 1967 * of bogus length or CRC errors. 1968 */ 1969 total_len = le16toh(rfa->actual_size) & 0x3fff; 1970 if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 && 1971 (ifp->if_capenable & IFCAP_RXCSUM) != 0) { 1972 /* Adjust for appended checksum bytes. */ 1973 total_len -= 2; 1974 } 1975 if (total_len < (int)sizeof(struct ether_header) || 1976 total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE - 1977 sc->rfa_size) || 1978 status & (FXP_RFA_STATUS_CRC | 1979 FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) { 1980 m_freem(m); 1981 fxp_add_rfabuf(sc, rxp); 1982 continue; 1983 } 1984 1985 m->m_pkthdr.len = m->m_len = total_len; 1986 m->m_pkthdr.rcvif = ifp; 1987 1988 /* Do IP checksum checking. */ 1989 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 1990 fxp_rxcsum(sc, ifp, m, status, total_len); 1991 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 1992 (status & FXP_RFA_STATUS_VLAN) != 0) { 1993 m->m_pkthdr.ether_vtag = 1994 ntohs(rfa->rfax_vlan_id); 1995 m->m_flags |= M_VLANTAG; 1996 } 1997 /* 1998 * Drop locks before calling if_input() since it 1999 * may re-enter fxp_start() in the netisr case. 2000 * This would result in a lock reversal. Better 2001 * performance might be obtained by chaining all 2002 * packets received, dropping the lock, and then 2003 * calling if_input() on each one. 2004 */ 2005 FXP_UNLOCK(sc); 2006 (*ifp->if_input)(ifp, m); 2007 FXP_LOCK(sc); 2008 rx_npkts++; 2009 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2010 return (rx_npkts); 2011 } else { 2012 /* Reuse RFA and loaded DMA map. */ 2013 ifp->if_iqdrops++; 2014 fxp_discard_rfabuf(sc, rxp); 2015 } 2016 fxp_add_rfabuf(sc, rxp); 2017 } 2018 if (rnr) { 2019 fxp_scb_wait(sc); 2020 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 2021 sc->fxp_desc.rx_head->rx_addr); 2022 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 2023 } 2024 return (rx_npkts); 2025 } 2026 2027 static void 2028 fxp_update_stats(struct fxp_softc *sc) 2029 { 2030 struct ifnet *ifp = sc->ifp; 2031 struct fxp_stats *sp = sc->fxp_stats; 2032 struct fxp_hwstats *hsp; 2033 uint32_t *status; 2034 2035 FXP_LOCK_ASSERT(sc, MA_OWNED); 2036 2037 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 2038 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2039 /* Update statistical counters. */ 2040 if (sc->revision >= FXP_REV_82559_A0) 2041 status = &sp->completion_status; 2042 else if (sc->revision >= FXP_REV_82558_A4) 2043 status = (uint32_t *)&sp->tx_tco; 2044 else 2045 status = &sp->tx_pause; 2046 if (*status == htole32(FXP_STATS_DR_COMPLETE)) { 2047 hsp = &sc->fxp_hwstats; 2048 hsp->tx_good += le32toh(sp->tx_good); 2049 hsp->tx_maxcols += le32toh(sp->tx_maxcols); 2050 hsp->tx_latecols += le32toh(sp->tx_latecols); 2051 hsp->tx_underruns += le32toh(sp->tx_underruns); 2052 hsp->tx_lostcrs += le32toh(sp->tx_lostcrs); 2053 hsp->tx_deffered += le32toh(sp->tx_deffered); 2054 hsp->tx_single_collisions += le32toh(sp->tx_single_collisions); 2055 hsp->tx_multiple_collisions += 2056 le32toh(sp->tx_multiple_collisions); 2057 hsp->tx_total_collisions += le32toh(sp->tx_total_collisions); 2058 hsp->rx_good += le32toh(sp->rx_good); 2059 hsp->rx_crc_errors += le32toh(sp->rx_crc_errors); 2060 hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors); 2061 hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors); 2062 hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors); 2063 hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors); 2064 hsp->rx_shortframes += le32toh(sp->rx_shortframes); 2065 hsp->tx_pause += le32toh(sp->tx_pause); 2066 hsp->rx_pause += le32toh(sp->rx_pause); 2067 hsp->rx_controls += le32toh(sp->rx_controls); 2068 hsp->tx_tco += le16toh(sp->tx_tco); 2069 hsp->rx_tco += le16toh(sp->rx_tco); 2070 2071 ifp->if_opackets += le32toh(sp->tx_good); 2072 ifp->if_collisions += le32toh(sp->tx_total_collisions); 2073 if (sp->rx_good) { 2074 ifp->if_ipackets += le32toh(sp->rx_good); 2075 sc->rx_idle_secs = 0; 2076 } else if (sc->flags & FXP_FLAG_RXBUG) { 2077 /* 2078 * Receiver's been idle for another second. 2079 */ 2080 sc->rx_idle_secs++; 2081 } 2082 ifp->if_ierrors += 2083 le32toh(sp->rx_crc_errors) + 2084 le32toh(sp->rx_alignment_errors) + 2085 le32toh(sp->rx_rnr_errors) + 2086 le32toh(sp->rx_overrun_errors); 2087 /* 2088 * If any transmit underruns occured, bump up the transmit 2089 * threshold by another 512 bytes (64 * 8). 2090 */ 2091 if (sp->tx_underruns) { 2092 ifp->if_oerrors += le32toh(sp->tx_underruns); 2093 if (tx_threshold < 192) 2094 tx_threshold += 64; 2095 } 2096 *status = 0; 2097 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 2098 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2099 } 2100 } 2101 2102 /* 2103 * Update packet in/out/collision statistics. The i82557 doesn't 2104 * allow you to access these counters without doing a fairly 2105 * expensive DMA to get _all_ of the statistics it maintains, so 2106 * we do this operation here only once per second. The statistics 2107 * counters in the kernel are updated from the previous dump-stats 2108 * DMA and then a new dump-stats DMA is started. The on-chip 2109 * counters are zeroed when the DMA completes. If we can't start 2110 * the DMA immediately, we don't wait - we just prepare to read 2111 * them again next time. 2112 */ 2113 static void 2114 fxp_tick(void *xsc) 2115 { 2116 struct fxp_softc *sc = xsc; 2117 struct ifnet *ifp = sc->ifp; 2118 2119 FXP_LOCK_ASSERT(sc, MA_OWNED); 2120 2121 /* Update statistical counters. */ 2122 fxp_update_stats(sc); 2123 2124 /* 2125 * Release any xmit buffers that have completed DMA. This isn't 2126 * strictly necessary to do here, but it's advantagous for mbufs 2127 * with external storage to be released in a timely manner rather 2128 * than being defered for a potentially long time. This limits 2129 * the delay to a maximum of one second. 2130 */ 2131 fxp_txeof(sc); 2132 2133 /* 2134 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, 2135 * then assume the receiver has locked up and attempt to clear 2136 * the condition by reprogramming the multicast filter. This is 2137 * a work-around for a bug in the 82557 where the receiver locks 2138 * up if it gets certain types of garbage in the syncronization 2139 * bits prior to the packet header. This bug is supposed to only 2140 * occur in 10Mbps mode, but has been seen to occur in 100Mbps 2141 * mode as well (perhaps due to a 10/100 speed transition). 2142 */ 2143 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { 2144 sc->rx_idle_secs = 0; 2145 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2146 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2147 fxp_init_body(sc, 1); 2148 } 2149 return; 2150 } 2151 /* 2152 * If there is no pending command, start another stats 2153 * dump. Otherwise punt for now. 2154 */ 2155 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { 2156 /* 2157 * Start another stats dump. 2158 */ 2159 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); 2160 } 2161 if (sc->miibus != NULL) 2162 mii_tick(device_get_softc(sc->miibus)); 2163 2164 /* 2165 * Check that chip hasn't hung. 2166 */ 2167 fxp_watchdog(sc); 2168 2169 /* 2170 * Schedule another timeout one second from now. 2171 */ 2172 callout_reset(&sc->stat_ch, hz, fxp_tick, sc); 2173 } 2174 2175 /* 2176 * Stop the interface. Cancels the statistics updater and resets 2177 * the interface. 2178 */ 2179 static void 2180 fxp_stop(struct fxp_softc *sc) 2181 { 2182 struct ifnet *ifp = sc->ifp; 2183 struct fxp_tx *txp; 2184 int i; 2185 2186 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2187 sc->watchdog_timer = 0; 2188 2189 /* 2190 * Cancel stats updater. 2191 */ 2192 callout_stop(&sc->stat_ch); 2193 2194 /* 2195 * Preserve PCI configuration, configure, IA/multicast 2196 * setup and put RU and CU into idle state. 2197 */ 2198 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 2199 DELAY(50); 2200 /* Disable interrupts. */ 2201 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 2202 2203 fxp_update_stats(sc); 2204 2205 /* 2206 * Release any xmit buffers. 2207 */ 2208 txp = sc->fxp_desc.tx_list; 2209 if (txp != NULL) { 2210 for (i = 0; i < FXP_NTXCB; i++) { 2211 if (txp[i].tx_mbuf != NULL) { 2212 bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map, 2213 BUS_DMASYNC_POSTWRITE); 2214 bus_dmamap_unload(sc->fxp_txmtag, 2215 txp[i].tx_map); 2216 m_freem(txp[i].tx_mbuf); 2217 txp[i].tx_mbuf = NULL; 2218 /* clear this to reset csum offload bits */ 2219 txp[i].tx_cb->tbd[0].tb_addr = 0; 2220 } 2221 } 2222 } 2223 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2224 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2225 sc->tx_queued = 0; 2226 } 2227 2228 /* 2229 * Watchdog/transmission transmit timeout handler. Called when a 2230 * transmission is started on the interface, but no interrupt is 2231 * received before the timeout. This usually indicates that the 2232 * card has wedged for some reason. 2233 */ 2234 static void 2235 fxp_watchdog(struct fxp_softc *sc) 2236 { 2237 2238 FXP_LOCK_ASSERT(sc, MA_OWNED); 2239 2240 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 2241 return; 2242 2243 device_printf(sc->dev, "device timeout\n"); 2244 sc->ifp->if_oerrors++; 2245 2246 sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2247 fxp_init_body(sc, 1); 2248 } 2249 2250 /* 2251 * Acquire locks and then call the real initialization function. This 2252 * is necessary because ether_ioctl() calls if_init() and this would 2253 * result in mutex recursion if the mutex was held. 2254 */ 2255 static void 2256 fxp_init(void *xsc) 2257 { 2258 struct fxp_softc *sc = xsc; 2259 2260 FXP_LOCK(sc); 2261 fxp_init_body(sc, 1); 2262 FXP_UNLOCK(sc); 2263 } 2264 2265 /* 2266 * Perform device initialization. This routine must be called with the 2267 * softc lock held. 2268 */ 2269 static void 2270 fxp_init_body(struct fxp_softc *sc, int setmedia) 2271 { 2272 struct ifnet *ifp = sc->ifp; 2273 struct mii_data *mii; 2274 struct fxp_cb_config *cbp; 2275 struct fxp_cb_ias *cb_ias; 2276 struct fxp_cb_tx *tcbp; 2277 struct fxp_tx *txp; 2278 int i, prm; 2279 2280 FXP_LOCK_ASSERT(sc, MA_OWNED); 2281 2282 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2283 return; 2284 2285 /* 2286 * Cancel any pending I/O 2287 */ 2288 fxp_stop(sc); 2289 2290 /* 2291 * Issue software reset, which also unloads the microcode. 2292 */ 2293 sc->flags &= ~FXP_FLAG_UCODE; 2294 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 2295 DELAY(50); 2296 2297 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; 2298 2299 /* 2300 * Initialize base of CBL and RFA memory. Loading with zero 2301 * sets it up for regular linear addressing. 2302 */ 2303 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); 2304 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); 2305 2306 fxp_scb_wait(sc); 2307 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); 2308 2309 /* 2310 * Initialize base of dump-stats buffer. 2311 */ 2312 fxp_scb_wait(sc); 2313 bzero(sc->fxp_stats, sizeof(struct fxp_stats)); 2314 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 2315 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2316 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr); 2317 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); 2318 2319 /* 2320 * Attempt to load microcode if requested. 2321 * For ICH based controllers do not load microcode. 2322 */ 2323 if (sc->ident->ich == 0) { 2324 if (ifp->if_flags & IFF_LINK0 && 2325 (sc->flags & FXP_FLAG_UCODE) == 0) 2326 fxp_load_ucode(sc); 2327 } 2328 2329 /* 2330 * Set IFF_ALLMULTI status. It's needed in configure action 2331 * command. 2332 */ 2333 fxp_mc_addrs(sc); 2334 2335 /* 2336 * We temporarily use memory that contains the TxCB list to 2337 * construct the config CB. The TxCB list memory is rebuilt 2338 * later. 2339 */ 2340 cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list; 2341 2342 /* 2343 * This bcopy is kind of disgusting, but there are a bunch of must be 2344 * zero and must be one bits in this structure and this is the easiest 2345 * way to initialize them all to proper values. 2346 */ 2347 bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template)); 2348 2349 cbp->cb_status = 0; 2350 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG | 2351 FXP_CB_COMMAND_EL); 2352 cbp->link_addr = 0xffffffff; /* (no) next command */ 2353 cbp->byte_count = sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22; 2354 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ 2355 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ 2356 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ 2357 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0; 2358 cbp->type_enable = 0; /* actually reserved */ 2359 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0; 2360 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0; 2361 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ 2362 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ 2363 cbp->dma_mbce = 0; /* (disable) dma max counters */ 2364 cbp->late_scb = 0; /* (don't) defer SCB update */ 2365 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */ 2366 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */ 2367 cbp->ci_int = 1; /* interrupt on CU idle */ 2368 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1; 2369 cbp->ext_stats_dis = 1; /* disable extended counters */ 2370 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */ 2371 cbp->save_bf = sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm; 2372 cbp->disc_short_rx = !prm; /* discard short packets */ 2373 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */ 2374 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */ 2375 cbp->dyn_tbd = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2376 cbp->ext_rfa = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2377 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1; 2378 cbp->csma_dis = 0; /* (don't) disable link */ 2379 cbp->tcp_udp_cksum = ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 && 2380 (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0; 2381 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */ 2382 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */ 2383 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */ 2384 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */ 2385 cbp->nsai = 1; /* (don't) disable source addr insert */ 2386 cbp->preamble_length = 2; /* (7 byte) preamble */ 2387 cbp->loopback = 0; /* (don't) loopback */ 2388 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ 2389 cbp->linear_pri_mode = 0; /* (wait after xmit only) */ 2390 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ 2391 cbp->promiscuous = prm; /* promiscuous mode */ 2392 cbp->bcast_disable = 0; /* (don't) disable broadcasts */ 2393 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/ 2394 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */ 2395 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */ 2396 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0; 2397 2398 cbp->stripping = !prm; /* truncate rx packet to byte count */ 2399 cbp->padding = 1; /* (do) pad short tx packets */ 2400 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ 2401 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0; 2402 cbp->ia_wake_en = 0; /* (don't) wake up on address match */ 2403 cbp->magic_pkt_dis = sc->flags & FXP_FLAG_WOL ? 0 : 1; 2404 cbp->force_fdx = 0; /* (don't) force full duplex */ 2405 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ 2406 cbp->multi_ia = 0; /* (don't) accept multiple IAs */ 2407 cbp->mc_all = ifp->if_flags & IFF_ALLMULTI ? 1 : prm; 2408 cbp->gamla_rx = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2409 cbp->vlan_strip_en = ((sc->flags & FXP_FLAG_EXT_RFA) != 0 && 2410 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0; 2411 2412 if (sc->revision == FXP_REV_82557) { 2413 /* 2414 * The 82557 has no hardware flow control, the values 2415 * below are the defaults for the chip. 2416 */ 2417 cbp->fc_delay_lsb = 0; 2418 cbp->fc_delay_msb = 0x40; 2419 cbp->pri_fc_thresh = 3; 2420 cbp->tx_fc_dis = 0; 2421 cbp->rx_fc_restop = 0; 2422 cbp->rx_fc_restart = 0; 2423 cbp->fc_filter = 0; 2424 cbp->pri_fc_loc = 1; 2425 } else { 2426 /* Set pause RX FIFO threshold to 1KB. */ 2427 CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1); 2428 /* Set pause time. */ 2429 cbp->fc_delay_lsb = 0xff; 2430 cbp->fc_delay_msb = 0xff; 2431 cbp->pri_fc_thresh = 3; 2432 mii = device_get_softc(sc->miibus); 2433 if ((IFM_OPTIONS(mii->mii_media_active) & 2434 IFM_ETH_TXPAUSE) != 0) 2435 /* enable transmit FC */ 2436 cbp->tx_fc_dis = 0; 2437 else 2438 /* disable transmit FC */ 2439 cbp->tx_fc_dis = 1; 2440 if ((IFM_OPTIONS(mii->mii_media_active) & 2441 IFM_ETH_RXPAUSE) != 0) { 2442 /* enable FC restart/restop frames */ 2443 cbp->rx_fc_restart = 1; 2444 cbp->rx_fc_restop = 1; 2445 } else { 2446 /* disable FC restart/restop frames */ 2447 cbp->rx_fc_restart = 0; 2448 cbp->rx_fc_restop = 0; 2449 } 2450 cbp->fc_filter = !prm; /* drop FC frames to host */ 2451 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */ 2452 } 2453 2454 /* Enable 82558 and 82559 extended statistics functionality. */ 2455 if (sc->revision >= FXP_REV_82558_A4) { 2456 if (sc->revision >= FXP_REV_82559_A0) { 2457 /* 2458 * Extend configuration table size to 32 2459 * to include TCO configuration. 2460 */ 2461 cbp->byte_count = 32; 2462 cbp->ext_stats_dis = 1; 2463 /* Enable TCO stats. */ 2464 cbp->tno_int_or_tco_en = 1; 2465 cbp->gamla_rx = 1; 2466 } else 2467 cbp->ext_stats_dis = 0; 2468 } 2469 2470 /* 2471 * Start the config command/DMA. 2472 */ 2473 fxp_scb_wait(sc); 2474 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2475 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2476 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2477 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2478 /* ...and wait for it to complete. */ 2479 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 2480 2481 /* 2482 * Now initialize the station address. Temporarily use the TxCB 2483 * memory area like we did above for the config CB. 2484 */ 2485 cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list; 2486 cb_ias->cb_status = 0; 2487 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL); 2488 cb_ias->link_addr = 0xffffffff; 2489 bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN); 2490 2491 /* 2492 * Start the IAS (Individual Address Setup) command/DMA. 2493 */ 2494 fxp_scb_wait(sc); 2495 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2496 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2497 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2498 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2499 /* ...and wait for it to complete. */ 2500 fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map); 2501 2502 /* 2503 * Initialize the multicast address list. 2504 */ 2505 fxp_mc_setup(sc); 2506 2507 /* 2508 * Initialize transmit control block (TxCB) list. 2509 */ 2510 txp = sc->fxp_desc.tx_list; 2511 tcbp = sc->fxp_desc.cbl_list; 2512 bzero(tcbp, FXP_TXCB_SZ); 2513 for (i = 0; i < FXP_NTXCB; i++) { 2514 txp[i].tx_mbuf = NULL; 2515 tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK); 2516 tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP); 2517 tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr + 2518 (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx))); 2519 if (sc->flags & FXP_FLAG_EXT_TXCB) 2520 tcbp[i].tbd_array_addr = 2521 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2])); 2522 else 2523 tcbp[i].tbd_array_addr = 2524 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0])); 2525 txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK]; 2526 } 2527 /* 2528 * Set the suspend flag on the first TxCB and start the control 2529 * unit. It will execute the NOP and then suspend. 2530 */ 2531 tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S); 2532 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2533 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2534 sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp; 2535 sc->tx_queued = 1; 2536 2537 fxp_scb_wait(sc); 2538 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2539 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2540 2541 /* 2542 * Initialize receiver buffer area - RFA. 2543 */ 2544 fxp_scb_wait(sc); 2545 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr); 2546 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 2547 2548 if (sc->miibus != NULL && setmedia != 0) 2549 mii_mediachg(device_get_softc(sc->miibus)); 2550 2551 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2552 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2553 2554 /* 2555 * Enable interrupts. 2556 */ 2557 #ifdef DEVICE_POLLING 2558 /* 2559 * ... but only do that if we are not polling. And because (presumably) 2560 * the default is interrupts on, we need to disable them explicitly! 2561 */ 2562 if (ifp->if_capenable & IFCAP_POLLING ) 2563 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 2564 else 2565 #endif /* DEVICE_POLLING */ 2566 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 2567 2568 /* 2569 * Start stats updater. 2570 */ 2571 callout_reset(&sc->stat_ch, hz, fxp_tick, sc); 2572 } 2573 2574 static int 2575 fxp_serial_ifmedia_upd(struct ifnet *ifp) 2576 { 2577 2578 return (0); 2579 } 2580 2581 static void 2582 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2583 { 2584 2585 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2586 } 2587 2588 /* 2589 * Change media according to request. 2590 */ 2591 static int 2592 fxp_ifmedia_upd(struct ifnet *ifp) 2593 { 2594 struct fxp_softc *sc = ifp->if_softc; 2595 struct mii_data *mii; 2596 struct mii_softc *miisc; 2597 2598 mii = device_get_softc(sc->miibus); 2599 FXP_LOCK(sc); 2600 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 2601 PHY_RESET(miisc); 2602 mii_mediachg(mii); 2603 FXP_UNLOCK(sc); 2604 return (0); 2605 } 2606 2607 /* 2608 * Notify the world which media we're using. 2609 */ 2610 static void 2611 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2612 { 2613 struct fxp_softc *sc = ifp->if_softc; 2614 struct mii_data *mii; 2615 2616 mii = device_get_softc(sc->miibus); 2617 FXP_LOCK(sc); 2618 mii_pollstat(mii); 2619 ifmr->ifm_active = mii->mii_media_active; 2620 ifmr->ifm_status = mii->mii_media_status; 2621 FXP_UNLOCK(sc); 2622 } 2623 2624 /* 2625 * Add a buffer to the end of the RFA buffer list. 2626 * Return 0 if successful, 1 for failure. A failure results in 2627 * reusing the RFA buffer. 2628 * The RFA struct is stuck at the beginning of mbuf cluster and the 2629 * data pointer is fixed up to point just past it. 2630 */ 2631 static int 2632 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2633 { 2634 struct mbuf *m; 2635 struct fxp_rfa *rfa; 2636 bus_dmamap_t tmp_map; 2637 int error; 2638 2639 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2640 if (m == NULL) 2641 return (ENOBUFS); 2642 2643 /* 2644 * Move the data pointer up so that the incoming data packet 2645 * will be 32-bit aligned. 2646 */ 2647 m->m_data += RFA_ALIGNMENT_FUDGE; 2648 2649 /* 2650 * Get a pointer to the base of the mbuf cluster and move 2651 * data start past it. 2652 */ 2653 rfa = mtod(m, struct fxp_rfa *); 2654 m->m_data += sc->rfa_size; 2655 rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE); 2656 2657 rfa->rfa_status = 0; 2658 rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL); 2659 rfa->actual_size = 0; 2660 m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE - 2661 sc->rfa_size; 2662 2663 /* 2664 * Initialize the rest of the RFA. Note that since the RFA 2665 * is misaligned, we cannot store values directly. We're thus 2666 * using the le32enc() function which handles endianness and 2667 * is also alignment-safe. 2668 */ 2669 le32enc(&rfa->link_addr, 0xffffffff); 2670 le32enc(&rfa->rbd_addr, 0xffffffff); 2671 2672 /* Map the RFA into DMA memory. */ 2673 error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa, 2674 MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr, 2675 &rxp->rx_addr, BUS_DMA_NOWAIT); 2676 if (error) { 2677 m_freem(m); 2678 return (error); 2679 } 2680 2681 if (rxp->rx_mbuf != NULL) 2682 bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map); 2683 tmp_map = sc->spare_map; 2684 sc->spare_map = rxp->rx_map; 2685 rxp->rx_map = tmp_map; 2686 rxp->rx_mbuf = m; 2687 2688 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 2689 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2690 return (0); 2691 } 2692 2693 static void 2694 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2695 { 2696 struct fxp_rfa *p_rfa; 2697 struct fxp_rx *p_rx; 2698 2699 /* 2700 * If there are other buffers already on the list, attach this 2701 * one to the end by fixing up the tail to point to this one. 2702 */ 2703 if (sc->fxp_desc.rx_head != NULL) { 2704 p_rx = sc->fxp_desc.rx_tail; 2705 p_rfa = (struct fxp_rfa *) 2706 (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE); 2707 p_rx->rx_next = rxp; 2708 le32enc(&p_rfa->link_addr, rxp->rx_addr); 2709 p_rfa->rfa_control = 0; 2710 bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map, 2711 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2712 } else { 2713 rxp->rx_next = NULL; 2714 sc->fxp_desc.rx_head = rxp; 2715 } 2716 sc->fxp_desc.rx_tail = rxp; 2717 } 2718 2719 static void 2720 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2721 { 2722 struct mbuf *m; 2723 struct fxp_rfa *rfa; 2724 2725 m = rxp->rx_mbuf; 2726 m->m_data = m->m_ext.ext_buf; 2727 /* 2728 * Move the data pointer up so that the incoming data packet 2729 * will be 32-bit aligned. 2730 */ 2731 m->m_data += RFA_ALIGNMENT_FUDGE; 2732 2733 /* 2734 * Get a pointer to the base of the mbuf cluster and move 2735 * data start past it. 2736 */ 2737 rfa = mtod(m, struct fxp_rfa *); 2738 m->m_data += sc->rfa_size; 2739 rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE); 2740 2741 rfa->rfa_status = 0; 2742 rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL); 2743 rfa->actual_size = 0; 2744 2745 /* 2746 * Initialize the rest of the RFA. Note that since the RFA 2747 * is misaligned, we cannot store values directly. We're thus 2748 * using the le32enc() function which handles endianness and 2749 * is also alignment-safe. 2750 */ 2751 le32enc(&rfa->link_addr, 0xffffffff); 2752 le32enc(&rfa->rbd_addr, 0xffffffff); 2753 2754 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 2755 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2756 } 2757 2758 static int 2759 fxp_miibus_readreg(device_t dev, int phy, int reg) 2760 { 2761 struct fxp_softc *sc = device_get_softc(dev); 2762 int count = 10000; 2763 int value; 2764 2765 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2766 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); 2767 2768 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 2769 && count--) 2770 DELAY(10); 2771 2772 if (count <= 0) 2773 device_printf(dev, "fxp_miibus_readreg: timed out\n"); 2774 2775 return (value & 0xffff); 2776 } 2777 2778 static int 2779 fxp_miibus_writereg(device_t dev, int phy, int reg, int value) 2780 { 2781 struct fxp_softc *sc = device_get_softc(dev); 2782 int count = 10000; 2783 2784 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2785 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | 2786 (value & 0xffff)); 2787 2788 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && 2789 count--) 2790 DELAY(10); 2791 2792 if (count <= 0) 2793 device_printf(dev, "fxp_miibus_writereg: timed out\n"); 2794 return (0); 2795 } 2796 2797 static void 2798 fxp_miibus_statchg(device_t dev) 2799 { 2800 struct fxp_softc *sc; 2801 struct mii_data *mii; 2802 struct ifnet *ifp; 2803 2804 sc = device_get_softc(dev); 2805 mii = device_get_softc(sc->miibus); 2806 ifp = sc->ifp; 2807 if (mii == NULL || ifp == NULL || 2808 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 2809 (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) != 2810 (IFM_AVALID | IFM_ACTIVE)) 2811 return; 2812 2813 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T && 2814 sc->flags & FXP_FLAG_CU_RESUME_BUG) 2815 sc->cu_resume_bug = 1; 2816 else 2817 sc->cu_resume_bug = 0; 2818 /* 2819 * Call fxp_init_body in order to adjust the flow control settings. 2820 * Note that the 82557 doesn't support hardware flow control. 2821 */ 2822 if (sc->revision == FXP_REV_82557) 2823 return; 2824 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2825 fxp_init_body(sc, 0); 2826 } 2827 2828 static int 2829 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 2830 { 2831 struct fxp_softc *sc = ifp->if_softc; 2832 struct ifreq *ifr = (struct ifreq *)data; 2833 struct mii_data *mii; 2834 int flag, mask, error = 0, reinit; 2835 2836 switch (command) { 2837 case SIOCSIFFLAGS: 2838 FXP_LOCK(sc); 2839 /* 2840 * If interface is marked up and not running, then start it. 2841 * If it is marked down and running, stop it. 2842 * XXX If it's up then re-initialize it. This is so flags 2843 * such as IFF_PROMISC are handled. 2844 */ 2845 if (ifp->if_flags & IFF_UP) { 2846 if (((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) && 2847 ((ifp->if_flags ^ sc->if_flags) & 2848 (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) { 2849 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2850 fxp_init_body(sc, 0); 2851 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2852 fxp_init_body(sc, 1); 2853 } else { 2854 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2855 fxp_stop(sc); 2856 } 2857 sc->if_flags = ifp->if_flags; 2858 FXP_UNLOCK(sc); 2859 break; 2860 2861 case SIOCADDMULTI: 2862 case SIOCDELMULTI: 2863 FXP_LOCK(sc); 2864 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2865 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2866 fxp_init_body(sc, 0); 2867 } 2868 FXP_UNLOCK(sc); 2869 break; 2870 2871 case SIOCSIFMEDIA: 2872 case SIOCGIFMEDIA: 2873 if (sc->miibus != NULL) { 2874 mii = device_get_softc(sc->miibus); 2875 error = ifmedia_ioctl(ifp, ifr, 2876 &mii->mii_media, command); 2877 } else { 2878 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); 2879 } 2880 break; 2881 2882 case SIOCSIFCAP: 2883 reinit = 0; 2884 mask = ifp->if_capenable ^ ifr->ifr_reqcap; 2885 #ifdef DEVICE_POLLING 2886 if (mask & IFCAP_POLLING) { 2887 if (ifr->ifr_reqcap & IFCAP_POLLING) { 2888 error = ether_poll_register(fxp_poll, ifp); 2889 if (error) 2890 return(error); 2891 FXP_LOCK(sc); 2892 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 2893 FXP_SCB_INTR_DISABLE); 2894 ifp->if_capenable |= IFCAP_POLLING; 2895 FXP_UNLOCK(sc); 2896 } else { 2897 error = ether_poll_deregister(ifp); 2898 /* Enable interrupts in any case */ 2899 FXP_LOCK(sc); 2900 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 2901 ifp->if_capenable &= ~IFCAP_POLLING; 2902 FXP_UNLOCK(sc); 2903 } 2904 } 2905 #endif 2906 FXP_LOCK(sc); 2907 if ((mask & IFCAP_TXCSUM) != 0 && 2908 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 2909 ifp->if_capenable ^= IFCAP_TXCSUM; 2910 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 2911 ifp->if_hwassist |= FXP_CSUM_FEATURES; 2912 else 2913 ifp->if_hwassist &= ~FXP_CSUM_FEATURES; 2914 } 2915 if ((mask & IFCAP_RXCSUM) != 0 && 2916 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) { 2917 ifp->if_capenable ^= IFCAP_RXCSUM; 2918 if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0) 2919 reinit++; 2920 } 2921 if ((mask & IFCAP_TSO4) != 0 && 2922 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 2923 ifp->if_capenable ^= IFCAP_TSO4; 2924 if ((ifp->if_capenable & IFCAP_TSO4) != 0) 2925 ifp->if_hwassist |= CSUM_TSO; 2926 else 2927 ifp->if_hwassist &= ~CSUM_TSO; 2928 } 2929 if ((mask & IFCAP_WOL_MAGIC) != 0 && 2930 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) 2931 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2932 if ((mask & IFCAP_VLAN_MTU) != 0 && 2933 (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) { 2934 ifp->if_capenable ^= IFCAP_VLAN_MTU; 2935 if (sc->revision != FXP_REV_82557) 2936 flag = FXP_FLAG_LONG_PKT_EN; 2937 else /* a hack to get long frames on the old chip */ 2938 flag = FXP_FLAG_SAVE_BAD; 2939 sc->flags ^= flag; 2940 if (ifp->if_flags & IFF_UP) 2941 reinit++; 2942 } 2943 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 2944 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 2945 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2946 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 2947 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 2948 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2949 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2950 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 2951 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2952 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 2953 ifp->if_capenable &= 2954 ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM); 2955 reinit++; 2956 } 2957 if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2958 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2959 fxp_init_body(sc, 0); 2960 } 2961 FXP_UNLOCK(sc); 2962 VLAN_CAPABILITIES(ifp); 2963 break; 2964 2965 default: 2966 error = ether_ioctl(ifp, command, data); 2967 } 2968 return (error); 2969 } 2970 2971 /* 2972 * Fill in the multicast address list and return number of entries. 2973 */ 2974 static int 2975 fxp_mc_addrs(struct fxp_softc *sc) 2976 { 2977 struct fxp_cb_mcs *mcsp = sc->mcsp; 2978 struct ifnet *ifp = sc->ifp; 2979 struct ifmultiaddr *ifma; 2980 int nmcasts; 2981 2982 nmcasts = 0; 2983 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2984 if_maddr_rlock(ifp); 2985 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2986 if (ifma->ifma_addr->sa_family != AF_LINK) 2987 continue; 2988 if (nmcasts >= MAXMCADDR) { 2989 ifp->if_flags |= IFF_ALLMULTI; 2990 nmcasts = 0; 2991 break; 2992 } 2993 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 2994 &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN); 2995 nmcasts++; 2996 } 2997 if_maddr_runlock(ifp); 2998 } 2999 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN); 3000 return (nmcasts); 3001 } 3002 3003 /* 3004 * Program the multicast filter. 3005 * 3006 * We have an artificial restriction that the multicast setup command 3007 * must be the first command in the chain, so we take steps to ensure 3008 * this. By requiring this, it allows us to keep up the performance of 3009 * the pre-initialized command ring (esp. link pointers) by not actually 3010 * inserting the mcsetup command in the ring - i.e. its link pointer 3011 * points to the TxCB ring, but the mcsetup descriptor itself is not part 3012 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it 3013 * lead into the regular TxCB ring when it completes. 3014 */ 3015 static void 3016 fxp_mc_setup(struct fxp_softc *sc) 3017 { 3018 struct fxp_cb_mcs *mcsp; 3019 int count; 3020 3021 FXP_LOCK_ASSERT(sc, MA_OWNED); 3022 3023 mcsp = sc->mcsp; 3024 mcsp->cb_status = 0; 3025 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL); 3026 mcsp->link_addr = 0xffffffff; 3027 fxp_mc_addrs(sc); 3028 3029 /* 3030 * Wait until command unit is idle. This should never be the 3031 * case when nothing is queued, but make sure anyway. 3032 */ 3033 count = 100; 3034 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) != 3035 FXP_SCB_CUS_IDLE && --count) 3036 DELAY(10); 3037 if (count == 0) { 3038 device_printf(sc->dev, "command queue timeout\n"); 3039 return; 3040 } 3041 3042 /* 3043 * Start the multicast setup command. 3044 */ 3045 fxp_scb_wait(sc); 3046 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, 3047 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3048 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr); 3049 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 3050 /* ...and wait for it to complete. */ 3051 fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map); 3052 } 3053 3054 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE; 3055 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE; 3056 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE; 3057 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE; 3058 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE; 3059 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE; 3060 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE; 3061 3062 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t) 3063 3064 static const struct ucode { 3065 uint32_t revision; 3066 uint32_t *ucode; 3067 int length; 3068 u_short int_delay_offset; 3069 u_short bundle_max_offset; 3070 } ucode_table[] = { 3071 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 }, 3072 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 }, 3073 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma), 3074 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD }, 3075 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s), 3076 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD }, 3077 { FXP_REV_82550, UCODE(fxp_ucode_d102), 3078 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD }, 3079 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c), 3080 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD }, 3081 { FXP_REV_82551_F, UCODE(fxp_ucode_d102e), 3082 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD }, 3083 { FXP_REV_82551_10, UCODE(fxp_ucode_d102e), 3084 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD }, 3085 { 0, NULL, 0, 0, 0 } 3086 }; 3087 3088 static void 3089 fxp_load_ucode(struct fxp_softc *sc) 3090 { 3091 const struct ucode *uc; 3092 struct fxp_cb_ucode *cbp; 3093 int i; 3094 3095 if (sc->flags & FXP_FLAG_NO_UCODE) 3096 return; 3097 3098 for (uc = ucode_table; uc->ucode != NULL; uc++) 3099 if (sc->revision == uc->revision) 3100 break; 3101 if (uc->ucode == NULL) 3102 return; 3103 cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list; 3104 cbp->cb_status = 0; 3105 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL); 3106 cbp->link_addr = 0xffffffff; /* (no) next command */ 3107 for (i = 0; i < uc->length; i++) 3108 cbp->ucode[i] = htole32(uc->ucode[i]); 3109 if (uc->int_delay_offset) 3110 *(uint16_t *)&cbp->ucode[uc->int_delay_offset] = 3111 htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2); 3112 if (uc->bundle_max_offset) 3113 *(uint16_t *)&cbp->ucode[uc->bundle_max_offset] = 3114 htole16(sc->tunable_bundle_max); 3115 /* 3116 * Download the ucode to the chip. 3117 */ 3118 fxp_scb_wait(sc); 3119 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 3120 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3121 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 3122 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 3123 /* ...and wait for it to complete. */ 3124 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 3125 device_printf(sc->dev, 3126 "Microcode loaded, int_delay: %d usec bundle_max: %d\n", 3127 sc->tunable_int_delay, 3128 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max); 3129 sc->flags |= FXP_FLAG_UCODE; 3130 bzero(cbp, FXP_TXCB_SZ); 3131 } 3132 3133 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d) \ 3134 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 3135 3136 static void 3137 fxp_sysctl_node(struct fxp_softc *sc) 3138 { 3139 struct sysctl_ctx_list *ctx; 3140 struct sysctl_oid_list *child, *parent; 3141 struct sysctl_oid *tree; 3142 struct fxp_hwstats *hsp; 3143 3144 ctx = device_get_sysctl_ctx(sc->dev); 3145 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 3146 3147 SYSCTL_ADD_PROC(ctx, child, 3148 OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW, 3149 &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I", 3150 "FXP driver receive interrupt microcode bundling delay"); 3151 SYSCTL_ADD_PROC(ctx, child, 3152 OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW, 3153 &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I", 3154 "FXP driver receive interrupt microcode bundle size limit"); 3155 SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0, 3156 "FXP RNR events"); 3157 3158 /* 3159 * Pull in device tunables. 3160 */ 3161 sc->tunable_int_delay = TUNABLE_INT_DELAY; 3162 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX; 3163 (void) resource_int_value(device_get_name(sc->dev), 3164 device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay); 3165 (void) resource_int_value(device_get_name(sc->dev), 3166 device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max); 3167 sc->rnr = 0; 3168 3169 hsp = &sc->fxp_hwstats; 3170 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 3171 NULL, "FXP statistics"); 3172 parent = SYSCTL_CHILDREN(tree); 3173 3174 /* Rx MAC statistics. */ 3175 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, 3176 NULL, "Rx MAC statistics"); 3177 child = SYSCTL_CHILDREN(tree); 3178 FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames", 3179 &hsp->rx_good, "Good frames"); 3180 FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors", 3181 &hsp->rx_crc_errors, "CRC errors"); 3182 FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors", 3183 &hsp->rx_alignment_errors, "Alignment errors"); 3184 FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors", 3185 &hsp->rx_rnr_errors, "RNR errors"); 3186 FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors", 3187 &hsp->rx_overrun_errors, "Overrun errors"); 3188 FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors", 3189 &hsp->rx_cdt_errors, "Collision detect errors"); 3190 FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes", 3191 &hsp->rx_shortframes, "Short frame errors"); 3192 if (sc->revision >= FXP_REV_82558_A4) { 3193 FXP_SYSCTL_STAT_ADD(ctx, child, "pause", 3194 &hsp->rx_pause, "Pause frames"); 3195 FXP_SYSCTL_STAT_ADD(ctx, child, "controls", 3196 &hsp->rx_controls, "Unsupported control frames"); 3197 } 3198 if (sc->revision >= FXP_REV_82559_A0) 3199 FXP_SYSCTL_STAT_ADD(ctx, child, "tco", 3200 &hsp->rx_tco, "TCO frames"); 3201 3202 /* Tx MAC statistics. */ 3203 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, 3204 NULL, "Tx MAC statistics"); 3205 child = SYSCTL_CHILDREN(tree); 3206 FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames", 3207 &hsp->tx_good, "Good frames"); 3208 FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols", 3209 &hsp->tx_maxcols, "Maximum collisions errors"); 3210 FXP_SYSCTL_STAT_ADD(ctx, child, "latecols", 3211 &hsp->tx_latecols, "Late collisions errors"); 3212 FXP_SYSCTL_STAT_ADD(ctx, child, "underruns", 3213 &hsp->tx_underruns, "Underrun errors"); 3214 FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs", 3215 &hsp->tx_lostcrs, "Lost carrier sense"); 3216 FXP_SYSCTL_STAT_ADD(ctx, child, "deffered", 3217 &hsp->tx_deffered, "Deferred"); 3218 FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions", 3219 &hsp->tx_single_collisions, "Single collisions"); 3220 FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions", 3221 &hsp->tx_multiple_collisions, "Multiple collisions"); 3222 FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions", 3223 &hsp->tx_total_collisions, "Total collisions"); 3224 if (sc->revision >= FXP_REV_82558_A4) 3225 FXP_SYSCTL_STAT_ADD(ctx, child, "pause", 3226 &hsp->tx_pause, "Pause frames"); 3227 if (sc->revision >= FXP_REV_82559_A0) 3228 FXP_SYSCTL_STAT_ADD(ctx, child, "tco", 3229 &hsp->tx_tco, "TCO frames"); 3230 } 3231 3232 #undef FXP_SYSCTL_STAT_ADD 3233 3234 static int 3235 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3236 { 3237 int error, value; 3238 3239 value = *(int *)arg1; 3240 error = sysctl_handle_int(oidp, &value, 0, req); 3241 if (error || !req->newptr) 3242 return (error); 3243 if (value < low || value > high) 3244 return (EINVAL); 3245 *(int *)arg1 = value; 3246 return (0); 3247 } 3248 3249 /* 3250 * Interrupt delay is expressed in microseconds, a multiplier is used 3251 * to convert this to the appropriate clock ticks before using. 3252 */ 3253 static int 3254 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS) 3255 { 3256 3257 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000)); 3258 } 3259 3260 static int 3261 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS) 3262 { 3263 3264 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff)); 3265 } 3266