1 /*- 2 * Copyright (c) 1995, David Greenman 3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice unmodified, this list of conditions, and the following 11 * disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver 35 */ 36 37 #ifdef HAVE_KERNEL_OPTION_HEADERS 38 #include "opt_device_polling.h" 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/bus.h> 44 #include <sys/endian.h> 45 #include <sys/kernel.h> 46 #include <sys/mbuf.h> 47 #include <sys/lock.h> 48 #include <sys/module.h> 49 #include <sys/mutex.h> 50 #include <sys/rman.h> 51 #include <sys/socket.h> 52 #include <sys/sockio.h> 53 #include <sys/sysctl.h> 54 55 #include <net/bpf.h> 56 #include <net/ethernet.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/if_dl.h> 60 #include <net/if_media.h> 61 #include <net/if_types.h> 62 #include <net/if_vlan_var.h> 63 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/ip.h> 67 #include <netinet/tcp.h> 68 #include <netinet/udp.h> 69 70 #include <machine/bus.h> 71 #include <machine/in_cksum.h> 72 #include <machine/resource.h> 73 74 #include <dev/pci/pcivar.h> 75 #include <dev/pci/pcireg.h> /* for PCIM_CMD_xxx */ 76 77 #include <dev/mii/mii.h> 78 #include <dev/mii/miivar.h> 79 80 #include <dev/fxp/if_fxpreg.h> 81 #include <dev/fxp/if_fxpvar.h> 82 #include <dev/fxp/rcvbundl.h> 83 84 MODULE_DEPEND(fxp, pci, 1, 1, 1); 85 MODULE_DEPEND(fxp, ether, 1, 1, 1); 86 MODULE_DEPEND(fxp, miibus, 1, 1, 1); 87 #include "miibus_if.h" 88 89 /* 90 * NOTE! On the Alpha, we have an alignment constraint. The 91 * card DMAs the packet immediately following the RFA. However, 92 * the first thing in the packet is a 14-byte Ethernet header. 93 * This means that the packet is misaligned. To compensate, 94 * we actually offset the RFA 2 bytes into the cluster. This 95 * alignes the packet after the Ethernet header at a 32-bit 96 * boundary. HOWEVER! This means that the RFA is misaligned! 97 */ 98 #define RFA_ALIGNMENT_FUDGE 2 99 100 /* 101 * Set initial transmit threshold at 64 (512 bytes). This is 102 * increased by 64 (512 bytes) at a time, to maximum of 192 103 * (1536 bytes), if an underrun occurs. 104 */ 105 static int tx_threshold = 64; 106 107 /* 108 * The configuration byte map has several undefined fields which 109 * must be one or must be zero. Set up a template for these bits 110 * only, (assuming a 82557 chip) leaving the actual configuration 111 * to fxp_init. 112 * 113 * See struct fxp_cb_config for the bit definitions. 114 */ 115 static u_char fxp_cb_config_template[] = { 116 0x0, 0x0, /* cb_status */ 117 0x0, 0x0, /* cb_command */ 118 0x0, 0x0, 0x0, 0x0, /* link_addr */ 119 0x0, /* 0 */ 120 0x0, /* 1 */ 121 0x0, /* 2 */ 122 0x0, /* 3 */ 123 0x0, /* 4 */ 124 0x0, /* 5 */ 125 0x32, /* 6 */ 126 0x0, /* 7 */ 127 0x0, /* 8 */ 128 0x0, /* 9 */ 129 0x6, /* 10 */ 130 0x0, /* 11 */ 131 0x0, /* 12 */ 132 0x0, /* 13 */ 133 0xf2, /* 14 */ 134 0x48, /* 15 */ 135 0x0, /* 16 */ 136 0x40, /* 17 */ 137 0xf0, /* 18 */ 138 0x0, /* 19 */ 139 0x3f, /* 20 */ 140 0x5 /* 21 */ 141 }; 142 143 /* 144 * Claim various Intel PCI device identifiers for this driver. The 145 * sub-vendor and sub-device field are extensively used to identify 146 * particular variants, but we don't currently differentiate between 147 * them. 148 */ 149 static struct fxp_ident fxp_ident_table[] = { 150 { 0x1029, -1, 0, "Intel 82559 PCI/CardBus Pro/100" }, 151 { 0x1030, -1, 0, "Intel 82559 Pro/100 Ethernet" }, 152 { 0x1031, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 153 { 0x1032, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 154 { 0x1033, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 155 { 0x1034, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 156 { 0x1035, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 157 { 0x1036, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 158 { 0x1037, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 159 { 0x1038, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 160 { 0x1039, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 161 { 0x103A, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 162 { 0x103B, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 163 { 0x103C, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 164 { 0x103D, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 165 { 0x103E, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 166 { 0x1050, -1, 5, "Intel 82801BA (D865) Pro/100 VE Ethernet" }, 167 { 0x1051, -1, 5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" }, 168 { 0x1059, -1, 0, "Intel 82551QM Pro/100 M Mobile Connection" }, 169 { 0x1064, -1, 6, "Intel 82562EZ (ICH6)" }, 170 { 0x1065, -1, 6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" }, 171 { 0x1068, -1, 6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" }, 172 { 0x1069, -1, 6, "Intel 82562EM/EX/GX Pro/100 Ethernet" }, 173 { 0x1091, -1, 7, "Intel 82562GX Pro/100 Ethernet" }, 174 { 0x1092, -1, 7, "Intel Pro/100 VE Network Connection" }, 175 { 0x1093, -1, 7, "Intel Pro/100 VM Network Connection" }, 176 { 0x1094, -1, 7, "Intel Pro/100 946GZ (ICH7) Network Connection" }, 177 { 0x1209, -1, 0, "Intel 82559ER Embedded 10/100 Ethernet" }, 178 { 0x1229, 0x01, 0, "Intel 82557 Pro/100 Ethernet" }, 179 { 0x1229, 0x02, 0, "Intel 82557 Pro/100 Ethernet" }, 180 { 0x1229, 0x03, 0, "Intel 82557 Pro/100 Ethernet" }, 181 { 0x1229, 0x04, 0, "Intel 82558 Pro/100 Ethernet" }, 182 { 0x1229, 0x05, 0, "Intel 82558 Pro/100 Ethernet" }, 183 { 0x1229, 0x06, 0, "Intel 82559 Pro/100 Ethernet" }, 184 { 0x1229, 0x07, 0, "Intel 82559 Pro/100 Ethernet" }, 185 { 0x1229, 0x08, 0, "Intel 82559 Pro/100 Ethernet" }, 186 { 0x1229, 0x09, 0, "Intel 82559ER Pro/100 Ethernet" }, 187 { 0x1229, 0x0c, 0, "Intel 82550 Pro/100 Ethernet" }, 188 { 0x1229, 0x0d, 0, "Intel 82550 Pro/100 Ethernet" }, 189 { 0x1229, 0x0e, 0, "Intel 82550 Pro/100 Ethernet" }, 190 { 0x1229, 0x0f, 0, "Intel 82551 Pro/100 Ethernet" }, 191 { 0x1229, 0x10, 0, "Intel 82551 Pro/100 Ethernet" }, 192 { 0x1229, -1, 0, "Intel 82557/8/9 Pro/100 Ethernet" }, 193 { 0x2449, -1, 2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" }, 194 { 0x27dc, -1, 7, "Intel 82801GB (ICH7) 10/100 Ethernet" }, 195 { 0, -1, 0, NULL }, 196 }; 197 198 #ifdef FXP_IP_CSUM_WAR 199 #define FXP_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 200 #else 201 #define FXP_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 202 #endif 203 204 static int fxp_probe(device_t dev); 205 static int fxp_attach(device_t dev); 206 static int fxp_detach(device_t dev); 207 static int fxp_shutdown(device_t dev); 208 static int fxp_suspend(device_t dev); 209 static int fxp_resume(device_t dev); 210 211 static struct fxp_ident *fxp_find_ident(device_t dev); 212 static void fxp_intr(void *xsc); 213 static void fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, 214 struct mbuf *m, uint16_t status, int pos); 215 static int fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, 216 uint8_t statack, int count); 217 static void fxp_init(void *xsc); 218 static void fxp_init_body(struct fxp_softc *sc); 219 static void fxp_tick(void *xsc); 220 static void fxp_start(struct ifnet *ifp); 221 static void fxp_start_body(struct ifnet *ifp); 222 static int fxp_encap(struct fxp_softc *sc, struct mbuf **m_head); 223 static void fxp_txeof(struct fxp_softc *sc); 224 static void fxp_stop(struct fxp_softc *sc); 225 static void fxp_release(struct fxp_softc *sc); 226 static int fxp_ioctl(struct ifnet *ifp, u_long command, 227 caddr_t data); 228 static void fxp_watchdog(struct fxp_softc *sc); 229 static void fxp_add_rfabuf(struct fxp_softc *sc, 230 struct fxp_rx *rxp); 231 static void fxp_discard_rfabuf(struct fxp_softc *sc, 232 struct fxp_rx *rxp); 233 static int fxp_new_rfabuf(struct fxp_softc *sc, 234 struct fxp_rx *rxp); 235 static int fxp_mc_addrs(struct fxp_softc *sc); 236 static void fxp_mc_setup(struct fxp_softc *sc); 237 static uint16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, 238 int autosize); 239 static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, 240 uint16_t data); 241 static void fxp_autosize_eeprom(struct fxp_softc *sc); 242 static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, 243 int offset, int words); 244 static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, 245 int offset, int words); 246 static int fxp_ifmedia_upd(struct ifnet *ifp); 247 static void fxp_ifmedia_sts(struct ifnet *ifp, 248 struct ifmediareq *ifmr); 249 static int fxp_serial_ifmedia_upd(struct ifnet *ifp); 250 static void fxp_serial_ifmedia_sts(struct ifnet *ifp, 251 struct ifmediareq *ifmr); 252 static int fxp_miibus_readreg(device_t dev, int phy, int reg); 253 static int fxp_miibus_writereg(device_t dev, int phy, int reg, 254 int value); 255 static void fxp_load_ucode(struct fxp_softc *sc); 256 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, 257 int low, int high); 258 static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS); 259 static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS); 260 static void fxp_scb_wait(struct fxp_softc *sc); 261 static void fxp_scb_cmd(struct fxp_softc *sc, int cmd); 262 static void fxp_dma_wait(struct fxp_softc *sc, 263 volatile uint16_t *status, bus_dma_tag_t dmat, 264 bus_dmamap_t map); 265 266 static device_method_t fxp_methods[] = { 267 /* Device interface */ 268 DEVMETHOD(device_probe, fxp_probe), 269 DEVMETHOD(device_attach, fxp_attach), 270 DEVMETHOD(device_detach, fxp_detach), 271 DEVMETHOD(device_shutdown, fxp_shutdown), 272 DEVMETHOD(device_suspend, fxp_suspend), 273 DEVMETHOD(device_resume, fxp_resume), 274 275 /* MII interface */ 276 DEVMETHOD(miibus_readreg, fxp_miibus_readreg), 277 DEVMETHOD(miibus_writereg, fxp_miibus_writereg), 278 279 { 0, 0 } 280 }; 281 282 static driver_t fxp_driver = { 283 "fxp", 284 fxp_methods, 285 sizeof(struct fxp_softc), 286 }; 287 288 static devclass_t fxp_devclass; 289 290 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0); 291 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0); 292 293 static struct resource_spec fxp_res_spec_mem[] = { 294 { SYS_RES_MEMORY, FXP_PCI_MMBA, RF_ACTIVE }, 295 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 296 { -1, 0 } 297 }; 298 299 static struct resource_spec fxp_res_spec_io[] = { 300 { SYS_RES_IOPORT, FXP_PCI_IOBA, RF_ACTIVE }, 301 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 302 { -1, 0 } 303 }; 304 305 /* 306 * Wait for the previous command to be accepted (but not necessarily 307 * completed). 308 */ 309 static void 310 fxp_scb_wait(struct fxp_softc *sc) 311 { 312 union { 313 uint16_t w; 314 uint8_t b[2]; 315 } flowctl; 316 int i = 10000; 317 318 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) 319 DELAY(2); 320 if (i == 0) { 321 flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL); 322 flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1); 323 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n", 324 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND), 325 CSR_READ_1(sc, FXP_CSR_SCB_STATACK), 326 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w); 327 } 328 } 329 330 static void 331 fxp_scb_cmd(struct fxp_softc *sc, int cmd) 332 { 333 334 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) { 335 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP); 336 fxp_scb_wait(sc); 337 } 338 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); 339 } 340 341 static void 342 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status, 343 bus_dma_tag_t dmat, bus_dmamap_t map) 344 { 345 int i; 346 347 for (i = 10000; i > 0; i--) { 348 DELAY(2); 349 bus_dmamap_sync(dmat, map, 350 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 351 if ((le16toh(*status) & FXP_CB_STATUS_C) != 0) 352 break; 353 } 354 if (i == 0) 355 device_printf(sc->dev, "DMA timeout\n"); 356 } 357 358 static struct fxp_ident * 359 fxp_find_ident(device_t dev) 360 { 361 uint16_t devid; 362 uint8_t revid; 363 struct fxp_ident *ident; 364 365 if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) { 366 devid = pci_get_device(dev); 367 revid = pci_get_revid(dev); 368 for (ident = fxp_ident_table; ident->name != NULL; ident++) { 369 if (ident->devid == devid && 370 (ident->revid == revid || ident->revid == -1)) { 371 return (ident); 372 } 373 } 374 } 375 return (NULL); 376 } 377 378 /* 379 * Return identification string if this device is ours. 380 */ 381 static int 382 fxp_probe(device_t dev) 383 { 384 struct fxp_ident *ident; 385 386 ident = fxp_find_ident(dev); 387 if (ident != NULL) { 388 device_set_desc(dev, ident->name); 389 return (BUS_PROBE_DEFAULT); 390 } 391 return (ENXIO); 392 } 393 394 static void 395 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 396 { 397 uint32_t *addr; 398 399 if (error) 400 return; 401 402 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 403 addr = arg; 404 *addr = segs->ds_addr; 405 } 406 407 static int 408 fxp_attach(device_t dev) 409 { 410 struct fxp_softc *sc; 411 struct fxp_cb_tx *tcbp; 412 struct fxp_tx *txp; 413 struct fxp_rx *rxp; 414 struct ifnet *ifp; 415 uint32_t val; 416 uint16_t data, myea[ETHER_ADDR_LEN / 2]; 417 u_char eaddr[ETHER_ADDR_LEN]; 418 int i, pmc, prefer_iomap; 419 int error; 420 421 error = 0; 422 sc = device_get_softc(dev); 423 sc->dev = dev; 424 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 425 MTX_DEF); 426 callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0); 427 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd, 428 fxp_serial_ifmedia_sts); 429 430 ifp = sc->ifp = if_alloc(IFT_ETHER); 431 if (ifp == NULL) { 432 device_printf(dev, "can not if_alloc()\n"); 433 error = ENOSPC; 434 goto fail; 435 } 436 437 /* 438 * Enable bus mastering. 439 */ 440 pci_enable_busmaster(dev); 441 val = pci_read_config(dev, PCIR_COMMAND, 2); 442 443 /* 444 * Figure out which we should try first - memory mapping or i/o mapping? 445 * We default to memory mapping. Then we accept an override from the 446 * command line. Then we check to see which one is enabled. 447 */ 448 prefer_iomap = 0; 449 resource_int_value(device_get_name(dev), device_get_unit(dev), 450 "prefer_iomap", &prefer_iomap); 451 if (prefer_iomap) 452 sc->fxp_spec = fxp_res_spec_io; 453 else 454 sc->fxp_spec = fxp_res_spec_mem; 455 456 error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res); 457 if (error) { 458 if (sc->fxp_spec == fxp_res_spec_mem) 459 sc->fxp_spec = fxp_res_spec_io; 460 else 461 sc->fxp_spec = fxp_res_spec_mem; 462 error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res); 463 } 464 if (error) { 465 device_printf(dev, "could not allocate resources\n"); 466 error = ENXIO; 467 goto fail; 468 } 469 470 if (bootverbose) { 471 device_printf(dev, "using %s space register mapping\n", 472 sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O"); 473 } 474 475 /* 476 * Put CU/RU idle state and prepare full reset. 477 */ 478 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 479 DELAY(10); 480 /* Full reset and disable interrupts. */ 481 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 482 DELAY(10); 483 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 484 485 /* 486 * Find out how large of an SEEPROM we have. 487 */ 488 fxp_autosize_eeprom(sc); 489 490 /* 491 * Find out the chip revision; lump all 82557 revs together. 492 */ 493 sc->ident = fxp_find_ident(dev); 494 if (sc->ident->ich > 0) { 495 /* Assume ICH controllers are 82559. */ 496 sc->revision = FXP_REV_82559_A0; 497 } else { 498 fxp_read_eeprom(sc, &data, 5, 1); 499 if ((data >> 8) == 1) 500 sc->revision = FXP_REV_82557; 501 else 502 sc->revision = pci_get_revid(dev); 503 } 504 505 /* 506 * Check availability of WOL. 82559ER does not support WOL. 507 */ 508 if (sc->revision >= FXP_REV_82558_A4 && 509 sc->revision != FXP_REV_82559S_A) { 510 fxp_read_eeprom(sc, &data, 10, 1); 511 if ((data & 0x20) != 0 && 512 pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) 513 sc->flags |= FXP_FLAG_WOLCAP; 514 } 515 516 /* Receiver lock-up workaround detection. */ 517 fxp_read_eeprom(sc, &data, 3, 1); 518 if ((data & 0x03) != 0x03) { 519 sc->flags |= FXP_FLAG_RXBUG; 520 device_printf(dev, "Enabling Rx lock-up workaround\n"); 521 } 522 523 /* 524 * Determine whether we must use the 503 serial interface. 525 */ 526 fxp_read_eeprom(sc, &data, 6, 1); 527 if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0 528 && (data & FXP_PHY_SERIAL_ONLY)) 529 sc->flags |= FXP_FLAG_SERIAL_MEDIA; 530 531 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 532 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 533 OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW, 534 &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I", 535 "FXP driver receive interrupt microcode bundling delay"); 536 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 537 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 538 OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW, 539 &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I", 540 "FXP driver receive interrupt microcode bundle size limit"); 541 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 542 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 543 OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0, 544 "FXP RNR events"); 545 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 546 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 547 OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0, 548 "FXP flow control disabled"); 549 550 /* 551 * Pull in device tunables. 552 */ 553 sc->tunable_int_delay = TUNABLE_INT_DELAY; 554 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX; 555 sc->tunable_noflow = 1; 556 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 557 "int_delay", &sc->tunable_int_delay); 558 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 559 "bundle_max", &sc->tunable_bundle_max); 560 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 561 "noflow", &sc->tunable_noflow); 562 sc->rnr = 0; 563 564 /* 565 * Enable workarounds for certain chip revision deficiencies. 566 * 567 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly 568 * some systems based a normal 82559 design, have a defect where 569 * the chip can cause a PCI protocol violation if it receives 570 * a CU_RESUME command when it is entering the IDLE state. The 571 * workaround is to disable Dynamic Standby Mode, so the chip never 572 * deasserts CLKRUN#, and always remains in an active state. 573 * 574 * See Intel 82801BA/82801BAM Specification Update, Errata #30. 575 */ 576 if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) || 577 (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) { 578 fxp_read_eeprom(sc, &data, 10, 1); 579 if (data & 0x02) { /* STB enable */ 580 uint16_t cksum; 581 int i; 582 583 device_printf(dev, 584 "Disabling dynamic standby mode in EEPROM\n"); 585 data &= ~0x02; 586 fxp_write_eeprom(sc, &data, 10, 1); 587 device_printf(dev, "New EEPROM ID: 0x%x\n", data); 588 cksum = 0; 589 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) { 590 fxp_read_eeprom(sc, &data, i, 1); 591 cksum += data; 592 } 593 i = (1 << sc->eeprom_size) - 1; 594 cksum = 0xBABA - cksum; 595 fxp_read_eeprom(sc, &data, i, 1); 596 fxp_write_eeprom(sc, &cksum, i, 1); 597 device_printf(dev, 598 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n", 599 i, data, cksum); 600 #if 1 601 /* 602 * If the user elects to continue, try the software 603 * workaround, as it is better than nothing. 604 */ 605 sc->flags |= FXP_FLAG_CU_RESUME_BUG; 606 #endif 607 } 608 } 609 610 /* 611 * If we are not a 82557 chip, we can enable extended features. 612 */ 613 if (sc->revision != FXP_REV_82557) { 614 /* 615 * If MWI is enabled in the PCI configuration, and there 616 * is a valid cacheline size (8 or 16 dwords), then tell 617 * the board to turn on MWI. 618 */ 619 if (val & PCIM_CMD_MWRICEN && 620 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0) 621 sc->flags |= FXP_FLAG_MWI_ENABLE; 622 623 /* turn on the extended TxCB feature */ 624 sc->flags |= FXP_FLAG_EXT_TXCB; 625 626 /* enable reception of long frames for VLAN */ 627 sc->flags |= FXP_FLAG_LONG_PKT_EN; 628 } else { 629 /* a hack to get long VLAN frames on a 82557 */ 630 sc->flags |= FXP_FLAG_SAVE_BAD; 631 } 632 633 /* For 82559 or later chips, Rx checksum offload is supported. */ 634 if (sc->revision >= FXP_REV_82559_A0) { 635 /* 82559ER does not support Rx checksum offloading. */ 636 if (sc->ident->devid != 0x1209) 637 sc->flags |= FXP_FLAG_82559_RXCSUM; 638 } 639 /* 640 * Enable use of extended RFDs and TCBs for 82550 641 * and later chips. Note: we need extended TXCB support 642 * too, but that's already enabled by the code above. 643 * Be careful to do this only on the right devices. 644 */ 645 if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C || 646 sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F 647 || sc->revision == FXP_REV_82551_10) { 648 sc->rfa_size = sizeof (struct fxp_rfa); 649 sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT; 650 sc->flags |= FXP_FLAG_EXT_RFA; 651 /* Use extended RFA instead of 82559 checksum mode. */ 652 sc->flags &= ~FXP_FLAG_82559_RXCSUM; 653 } else { 654 sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN; 655 sc->tx_cmd = FXP_CB_COMMAND_XMIT; 656 } 657 658 /* 659 * Allocate DMA tags and DMA safe memory. 660 */ 661 sc->maxtxseg = FXP_NTXSEG; 662 sc->maxsegsize = MCLBYTES; 663 if (sc->flags & FXP_FLAG_EXT_RFA) { 664 sc->maxtxseg--; 665 sc->maxsegsize = FXP_TSO_SEGSIZE; 666 } 667 error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0, 668 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 669 sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header), 670 sc->maxtxseg, sc->maxsegsize, 0, 671 busdma_lock_mutex, &Giant, &sc->fxp_txmtag); 672 if (error) { 673 device_printf(dev, "could not create TX DMA tag\n"); 674 goto fail; 675 } 676 677 error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0, 678 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 679 MCLBYTES, 1, MCLBYTES, 0, 680 busdma_lock_mutex, &Giant, &sc->fxp_rxmtag); 681 if (error) { 682 device_printf(dev, "could not create RX DMA tag\n"); 683 goto fail; 684 } 685 686 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 687 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 688 sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0, 689 busdma_lock_mutex, &Giant, &sc->fxp_stag); 690 if (error) { 691 device_printf(dev, "could not create stats DMA tag\n"); 692 goto fail; 693 } 694 695 error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats, 696 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap); 697 if (error) { 698 device_printf(dev, "could not allocate stats DMA memory\n"); 699 goto fail; 700 } 701 error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats, 702 sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0); 703 if (error) { 704 device_printf(dev, "could not load the stats DMA buffer\n"); 705 goto fail; 706 } 707 708 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 709 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 710 FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0, 711 busdma_lock_mutex, &Giant, &sc->cbl_tag); 712 if (error) { 713 device_printf(dev, "could not create TxCB DMA tag\n"); 714 goto fail; 715 } 716 717 error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list, 718 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map); 719 if (error) { 720 device_printf(dev, "could not allocate TxCB DMA memory\n"); 721 goto fail; 722 } 723 724 error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map, 725 sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr, 726 &sc->fxp_desc.cbl_addr, 0); 727 if (error) { 728 device_printf(dev, "could not load TxCB DMA buffer\n"); 729 goto fail; 730 } 731 732 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 733 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 734 sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0, 735 busdma_lock_mutex, &Giant, &sc->mcs_tag); 736 if (error) { 737 device_printf(dev, 738 "could not create multicast setup DMA tag\n"); 739 goto fail; 740 } 741 742 error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp, 743 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->mcs_map); 744 if (error) { 745 device_printf(dev, 746 "could not allocate multicast setup DMA memory\n"); 747 goto fail; 748 } 749 error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp, 750 sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0); 751 if (error) { 752 device_printf(dev, 753 "can't load the multicast setup DMA buffer\n"); 754 goto fail; 755 } 756 757 /* 758 * Pre-allocate the TX DMA maps and setup the pointers to 759 * the TX command blocks. 760 */ 761 txp = sc->fxp_desc.tx_list; 762 tcbp = sc->fxp_desc.cbl_list; 763 for (i = 0; i < FXP_NTXCB; i++) { 764 txp[i].tx_cb = tcbp + i; 765 error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map); 766 if (error) { 767 device_printf(dev, "can't create DMA map for TX\n"); 768 goto fail; 769 } 770 } 771 error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map); 772 if (error) { 773 device_printf(dev, "can't create spare DMA map\n"); 774 goto fail; 775 } 776 777 /* 778 * Pre-allocate our receive buffers. 779 */ 780 sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL; 781 for (i = 0; i < FXP_NRFABUFS; i++) { 782 rxp = &sc->fxp_desc.rx_list[i]; 783 error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map); 784 if (error) { 785 device_printf(dev, "can't create DMA map for RX\n"); 786 goto fail; 787 } 788 if (fxp_new_rfabuf(sc, rxp) != 0) { 789 error = ENOMEM; 790 goto fail; 791 } 792 fxp_add_rfabuf(sc, rxp); 793 } 794 795 /* 796 * Read MAC address. 797 */ 798 fxp_read_eeprom(sc, myea, 0, 3); 799 eaddr[0] = myea[0] & 0xff; 800 eaddr[1] = myea[0] >> 8; 801 eaddr[2] = myea[1] & 0xff; 802 eaddr[3] = myea[1] >> 8; 803 eaddr[4] = myea[2] & 0xff; 804 eaddr[5] = myea[2] >> 8; 805 if (bootverbose) { 806 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n", 807 pci_get_vendor(dev), pci_get_device(dev), 808 pci_get_subvendor(dev), pci_get_subdevice(dev), 809 pci_get_revid(dev)); 810 fxp_read_eeprom(sc, &data, 10, 1); 811 device_printf(dev, "Dynamic Standby mode is %s\n", 812 data & 0x02 ? "enabled" : "disabled"); 813 } 814 815 /* 816 * If this is only a 10Mbps device, then there is no MII, and 817 * the PHY will use a serial interface instead. 818 * 819 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 820 * doesn't have a programming interface of any sort. The 821 * media is sensed automatically based on how the link partner 822 * is configured. This is, in essence, manual configuration. 823 */ 824 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) { 825 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 826 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); 827 } else { 828 if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd, 829 fxp_ifmedia_sts)) { 830 device_printf(dev, "MII without any PHY!\n"); 831 error = ENXIO; 832 goto fail; 833 } 834 } 835 836 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 837 ifp->if_init = fxp_init; 838 ifp->if_softc = sc; 839 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 840 ifp->if_ioctl = fxp_ioctl; 841 ifp->if_start = fxp_start; 842 843 ifp->if_capabilities = ifp->if_capenable = 0; 844 845 /* Enable checksum offload/TSO for 82550 or better chips */ 846 if (sc->flags & FXP_FLAG_EXT_RFA) { 847 ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO; 848 ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4; 849 ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4; 850 } 851 852 if (sc->flags & FXP_FLAG_82559_RXCSUM) { 853 ifp->if_capabilities |= IFCAP_RXCSUM; 854 ifp->if_capenable |= IFCAP_RXCSUM; 855 } 856 857 if (sc->flags & FXP_FLAG_WOLCAP) { 858 ifp->if_capabilities |= IFCAP_WOL_MAGIC; 859 ifp->if_capenable |= IFCAP_WOL_MAGIC; 860 } 861 862 #ifdef DEVICE_POLLING 863 /* Inform the world we support polling. */ 864 ifp->if_capabilities |= IFCAP_POLLING; 865 #endif 866 867 /* 868 * Attach the interface. 869 */ 870 ether_ifattach(ifp, eaddr); 871 872 /* 873 * Tell the upper layer(s) we support long frames. 874 * Must appear after the call to ether_ifattach() because 875 * ether_ifattach() sets ifi_hdrlen to the default value. 876 */ 877 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 878 ifp->if_capabilities |= IFCAP_VLAN_MTU; 879 ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */ 880 if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) { 881 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | 882 IFCAP_VLAN_HWCSUM; 883 ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | 884 IFCAP_VLAN_HWCSUM; 885 } 886 887 /* 888 * Let the system queue as many packets as we have available 889 * TX descriptors. 890 */ 891 IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1); 892 ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1; 893 IFQ_SET_READY(&ifp->if_snd); 894 895 /* 896 * Hook our interrupt after all initialization is complete. 897 */ 898 error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE, 899 NULL, fxp_intr, sc, &sc->ih); 900 if (error) { 901 device_printf(dev, "could not setup irq\n"); 902 ether_ifdetach(sc->ifp); 903 goto fail; 904 } 905 906 /* 907 * Configure hardware to reject magic frames otherwise 908 * system will hang on recipt of magic frames. 909 */ 910 if ((sc->flags & FXP_FLAG_WOLCAP) != 0) { 911 FXP_LOCK(sc); 912 /* Clear wakeup events. */ 913 CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR)); 914 fxp_init_body(sc); 915 fxp_stop(sc); 916 FXP_UNLOCK(sc); 917 } 918 919 fail: 920 if (error) 921 fxp_release(sc); 922 return (error); 923 } 924 925 /* 926 * Release all resources. The softc lock should not be held and the 927 * interrupt should already be torn down. 928 */ 929 static void 930 fxp_release(struct fxp_softc *sc) 931 { 932 struct fxp_rx *rxp; 933 struct fxp_tx *txp; 934 int i; 935 936 FXP_LOCK_ASSERT(sc, MA_NOTOWNED); 937 KASSERT(sc->ih == NULL, 938 ("fxp_release() called with intr handle still active")); 939 if (sc->miibus) 940 device_delete_child(sc->dev, sc->miibus); 941 bus_generic_detach(sc->dev); 942 ifmedia_removeall(&sc->sc_media); 943 if (sc->fxp_desc.cbl_list) { 944 bus_dmamap_unload(sc->cbl_tag, sc->cbl_map); 945 bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list, 946 sc->cbl_map); 947 } 948 if (sc->fxp_stats) { 949 bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap); 950 bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap); 951 } 952 if (sc->mcsp) { 953 bus_dmamap_unload(sc->mcs_tag, sc->mcs_map); 954 bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map); 955 } 956 bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res); 957 if (sc->fxp_rxmtag) { 958 for (i = 0; i < FXP_NRFABUFS; i++) { 959 rxp = &sc->fxp_desc.rx_list[i]; 960 if (rxp->rx_mbuf != NULL) { 961 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 962 BUS_DMASYNC_POSTREAD); 963 bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map); 964 m_freem(rxp->rx_mbuf); 965 } 966 bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map); 967 } 968 bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map); 969 bus_dma_tag_destroy(sc->fxp_rxmtag); 970 } 971 if (sc->fxp_txmtag) { 972 for (i = 0; i < FXP_NTXCB; i++) { 973 txp = &sc->fxp_desc.tx_list[i]; 974 if (txp->tx_mbuf != NULL) { 975 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, 976 BUS_DMASYNC_POSTWRITE); 977 bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map); 978 m_freem(txp->tx_mbuf); 979 } 980 bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map); 981 } 982 bus_dma_tag_destroy(sc->fxp_txmtag); 983 } 984 if (sc->fxp_stag) 985 bus_dma_tag_destroy(sc->fxp_stag); 986 if (sc->cbl_tag) 987 bus_dma_tag_destroy(sc->cbl_tag); 988 if (sc->mcs_tag) 989 bus_dma_tag_destroy(sc->mcs_tag); 990 if (sc->ifp) 991 if_free(sc->ifp); 992 993 mtx_destroy(&sc->sc_mtx); 994 } 995 996 /* 997 * Detach interface. 998 */ 999 static int 1000 fxp_detach(device_t dev) 1001 { 1002 struct fxp_softc *sc = device_get_softc(dev); 1003 1004 #ifdef DEVICE_POLLING 1005 if (sc->ifp->if_capenable & IFCAP_POLLING) 1006 ether_poll_deregister(sc->ifp); 1007 #endif 1008 1009 FXP_LOCK(sc); 1010 /* 1011 * Stop DMA and drop transmit queue, but disable interrupts first. 1012 */ 1013 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 1014 fxp_stop(sc); 1015 FXP_UNLOCK(sc); 1016 callout_drain(&sc->stat_ch); 1017 1018 /* 1019 * Close down routes etc. 1020 */ 1021 ether_ifdetach(sc->ifp); 1022 1023 /* 1024 * Unhook interrupt before dropping lock. This is to prevent 1025 * races with fxp_intr(). 1026 */ 1027 bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih); 1028 sc->ih = NULL; 1029 1030 /* Release our allocated resources. */ 1031 fxp_release(sc); 1032 return (0); 1033 } 1034 1035 /* 1036 * Device shutdown routine. Called at system shutdown after sync. The 1037 * main purpose of this routine is to shut off receiver DMA so that 1038 * kernel memory doesn't get clobbered during warmboot. 1039 */ 1040 static int 1041 fxp_shutdown(device_t dev) 1042 { 1043 1044 /* 1045 * Make sure that DMA is disabled prior to reboot. Not doing 1046 * do could allow DMA to corrupt kernel memory during the 1047 * reboot before the driver initializes. 1048 */ 1049 return (fxp_suspend(dev)); 1050 } 1051 1052 /* 1053 * Device suspend routine. Stop the interface and save some PCI 1054 * settings in case the BIOS doesn't restore them properly on 1055 * resume. 1056 */ 1057 static int 1058 fxp_suspend(device_t dev) 1059 { 1060 struct fxp_softc *sc = device_get_softc(dev); 1061 struct ifnet *ifp; 1062 int pmc; 1063 uint16_t pmstat; 1064 1065 FXP_LOCK(sc); 1066 1067 ifp = sc->ifp; 1068 if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) { 1069 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2); 1070 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1071 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) { 1072 /* Request PME. */ 1073 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1074 sc->flags |= FXP_FLAG_WOL; 1075 /* Reconfigure hardware to accept magic frames. */ 1076 fxp_init_body(sc); 1077 } 1078 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1079 } 1080 fxp_stop(sc); 1081 1082 sc->suspended = 1; 1083 1084 FXP_UNLOCK(sc); 1085 return (0); 1086 } 1087 1088 /* 1089 * Device resume routine. re-enable busmastering, and restart the interface if 1090 * appropriate. 1091 */ 1092 static int 1093 fxp_resume(device_t dev) 1094 { 1095 struct fxp_softc *sc = device_get_softc(dev); 1096 struct ifnet *ifp = sc->ifp; 1097 int pmc; 1098 uint16_t pmstat; 1099 1100 FXP_LOCK(sc); 1101 1102 if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) { 1103 sc->flags &= ~FXP_FLAG_WOL; 1104 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2); 1105 /* Disable PME and clear PME status. */ 1106 pmstat &= ~PCIM_PSTAT_PMEENABLE; 1107 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1108 if ((sc->flags & FXP_FLAG_WOLCAP) != 0) 1109 CSR_WRITE_1(sc, FXP_CSR_PMDR, 1110 CSR_READ_1(sc, FXP_CSR_PMDR)); 1111 } 1112 1113 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 1114 DELAY(10); 1115 1116 /* reinitialize interface if necessary */ 1117 if (ifp->if_flags & IFF_UP) 1118 fxp_init_body(sc); 1119 1120 sc->suspended = 0; 1121 1122 FXP_UNLOCK(sc); 1123 return (0); 1124 } 1125 1126 static void 1127 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) 1128 { 1129 uint16_t reg; 1130 int x; 1131 1132 /* 1133 * Shift in data. 1134 */ 1135 for (x = 1 << (length - 1); x; x >>= 1) { 1136 if (data & x) 1137 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1138 else 1139 reg = FXP_EEPROM_EECS; 1140 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1141 DELAY(1); 1142 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1143 DELAY(1); 1144 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1145 DELAY(1); 1146 } 1147 } 1148 1149 /* 1150 * Read from the serial EEPROM. Basically, you manually shift in 1151 * the read opcode (one bit at a time) and then shift in the address, 1152 * and then you shift out the data (all of this one bit at a time). 1153 * The word size is 16 bits, so you have to provide the address for 1154 * every 16 bits of data. 1155 */ 1156 static uint16_t 1157 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize) 1158 { 1159 uint16_t reg, data; 1160 int x; 1161 1162 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1163 /* 1164 * Shift in read opcode. 1165 */ 1166 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); 1167 /* 1168 * Shift in address. 1169 */ 1170 data = 0; 1171 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) { 1172 if (offset & x) 1173 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1174 else 1175 reg = FXP_EEPROM_EECS; 1176 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1177 DELAY(1); 1178 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1179 DELAY(1); 1180 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1181 DELAY(1); 1182 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO; 1183 data++; 1184 if (autosize && reg == 0) { 1185 sc->eeprom_size = data; 1186 break; 1187 } 1188 } 1189 /* 1190 * Shift out data. 1191 */ 1192 data = 0; 1193 reg = FXP_EEPROM_EECS; 1194 for (x = 1 << 15; x; x >>= 1) { 1195 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1196 DELAY(1); 1197 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1198 data |= x; 1199 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1200 DELAY(1); 1201 } 1202 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1203 DELAY(1); 1204 1205 return (data); 1206 } 1207 1208 static void 1209 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data) 1210 { 1211 int i; 1212 1213 /* 1214 * Erase/write enable. 1215 */ 1216 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1217 fxp_eeprom_shiftin(sc, 0x4, 3); 1218 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); 1219 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1220 DELAY(1); 1221 /* 1222 * Shift in write opcode, address, data. 1223 */ 1224 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1225 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); 1226 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); 1227 fxp_eeprom_shiftin(sc, data, 16); 1228 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1229 DELAY(1); 1230 /* 1231 * Wait for EEPROM to finish up. 1232 */ 1233 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1234 DELAY(1); 1235 for (i = 0; i < 1000; i++) { 1236 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1237 break; 1238 DELAY(50); 1239 } 1240 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1241 DELAY(1); 1242 /* 1243 * Erase/write disable. 1244 */ 1245 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1246 fxp_eeprom_shiftin(sc, 0x4, 3); 1247 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); 1248 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1249 DELAY(1); 1250 } 1251 1252 /* 1253 * From NetBSD: 1254 * 1255 * Figure out EEPROM size. 1256 * 1257 * 559's can have either 64-word or 256-word EEPROMs, the 558 1258 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet 1259 * talks about the existance of 16 to 256 word EEPROMs. 1260 * 1261 * The only known sizes are 64 and 256, where the 256 version is used 1262 * by CardBus cards to store CIS information. 1263 * 1264 * The address is shifted in msb-to-lsb, and after the last 1265 * address-bit the EEPROM is supposed to output a `dummy zero' bit, 1266 * after which follows the actual data. We try to detect this zero, by 1267 * probing the data-out bit in the EEPROM control register just after 1268 * having shifted in a bit. If the bit is zero, we assume we've 1269 * shifted enough address bits. The data-out should be tri-state, 1270 * before this, which should translate to a logical one. 1271 */ 1272 static void 1273 fxp_autosize_eeprom(struct fxp_softc *sc) 1274 { 1275 1276 /* guess maximum size of 256 words */ 1277 sc->eeprom_size = 8; 1278 1279 /* autosize */ 1280 (void) fxp_eeprom_getword(sc, 0, 1); 1281 } 1282 1283 static void 1284 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1285 { 1286 int i; 1287 1288 for (i = 0; i < words; i++) 1289 data[i] = fxp_eeprom_getword(sc, offset + i, 0); 1290 } 1291 1292 static void 1293 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1294 { 1295 int i; 1296 1297 for (i = 0; i < words; i++) 1298 fxp_eeprom_putword(sc, offset + i, data[i]); 1299 } 1300 1301 /* 1302 * Grab the softc lock and call the real fxp_start_body() routine 1303 */ 1304 static void 1305 fxp_start(struct ifnet *ifp) 1306 { 1307 struct fxp_softc *sc = ifp->if_softc; 1308 1309 FXP_LOCK(sc); 1310 fxp_start_body(ifp); 1311 FXP_UNLOCK(sc); 1312 } 1313 1314 /* 1315 * Start packet transmission on the interface. 1316 * This routine must be called with the softc lock held, and is an 1317 * internal entry point only. 1318 */ 1319 static void 1320 fxp_start_body(struct ifnet *ifp) 1321 { 1322 struct fxp_softc *sc = ifp->if_softc; 1323 struct mbuf *mb_head; 1324 int txqueued; 1325 1326 FXP_LOCK_ASSERT(sc, MA_OWNED); 1327 1328 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1329 IFF_DRV_RUNNING) 1330 return; 1331 1332 if (sc->tx_queued > FXP_NTXCB_HIWAT) 1333 fxp_txeof(sc); 1334 /* 1335 * We're finished if there is nothing more to add to the list or if 1336 * we're all filled up with buffers to transmit. 1337 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add 1338 * a NOP command when needed. 1339 */ 1340 txqueued = 0; 1341 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 1342 sc->tx_queued < FXP_NTXCB - 1) { 1343 1344 /* 1345 * Grab a packet to transmit. 1346 */ 1347 IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head); 1348 if (mb_head == NULL) 1349 break; 1350 1351 if (fxp_encap(sc, &mb_head)) { 1352 if (mb_head == NULL) 1353 break; 1354 IFQ_DRV_PREPEND(&ifp->if_snd, mb_head); 1355 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1356 } 1357 txqueued++; 1358 /* 1359 * Pass packet to bpf if there is a listener. 1360 */ 1361 BPF_MTAP(ifp, mb_head); 1362 } 1363 1364 /* 1365 * We're finished. If we added to the list, issue a RESUME to get DMA 1366 * going again if suspended. 1367 */ 1368 if (txqueued > 0) { 1369 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1370 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1371 fxp_scb_wait(sc); 1372 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 1373 /* 1374 * Set a 5 second timer just in case we don't hear 1375 * from the card again. 1376 */ 1377 sc->watchdog_timer = 5; 1378 } 1379 } 1380 1381 static int 1382 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head) 1383 { 1384 struct ifnet *ifp; 1385 struct mbuf *m; 1386 struct fxp_tx *txp; 1387 struct fxp_cb_tx *cbp; 1388 struct tcphdr *tcp; 1389 bus_dma_segment_t segs[FXP_NTXSEG]; 1390 int error, i, nseg, tcp_payload; 1391 1392 FXP_LOCK_ASSERT(sc, MA_OWNED); 1393 ifp = sc->ifp; 1394 1395 tcp_payload = 0; 1396 tcp = NULL; 1397 /* 1398 * Get pointer to next available tx desc. 1399 */ 1400 txp = sc->fxp_desc.tx_last->tx_next; 1401 1402 /* 1403 * A note in Appendix B of the Intel 8255x 10/100 Mbps 1404 * Ethernet Controller Family Open Source Software 1405 * Developer Manual says: 1406 * Using software parsing is only allowed with legal 1407 * TCP/IP or UDP/IP packets. 1408 * ... 1409 * For all other datagrams, hardware parsing must 1410 * be used. 1411 * Software parsing appears to truncate ICMP and 1412 * fragmented UDP packets that contain one to three 1413 * bytes in the second (and final) mbuf of the packet. 1414 */ 1415 if (sc->flags & FXP_FLAG_EXT_RFA) 1416 txp->tx_cb->ipcb_ip_activation_high = 1417 FXP_IPCB_HARDWAREPARSING_ENABLE; 1418 1419 m = *m_head; 1420 /* 1421 * Deal with TCP/IP checksum offload. Note that 1422 * in order for TCP checksum offload to work, 1423 * the pseudo header checksum must have already 1424 * been computed and stored in the checksum field 1425 * in the TCP header. The stack should have 1426 * already done this for us. 1427 */ 1428 if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) { 1429 txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; 1430 if (m->m_pkthdr.csum_flags & CSUM_TCP) 1431 txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET; 1432 1433 #ifdef FXP_IP_CSUM_WAR 1434 /* 1435 * XXX The 82550 chip appears to have trouble 1436 * dealing with IP header checksums in very small 1437 * datagrams, namely fragments from 1 to 3 bytes 1438 * in size. For example, say you want to transmit 1439 * a UDP packet of 1473 bytes. The packet will be 1440 * fragmented over two IP datagrams, the latter 1441 * containing only one byte of data. The 82550 will 1442 * botch the header checksum on the 1-byte fragment. 1443 * As long as the datagram contains 4 or more bytes 1444 * of data, you're ok. 1445 * 1446 * The following code attempts to work around this 1447 * problem: if the datagram is less than 38 bytes 1448 * in size (14 bytes ether header, 20 bytes IP header, 1449 * plus 4 bytes of data), we punt and compute the IP 1450 * header checksum by hand. This workaround doesn't 1451 * work very well, however, since it can be fooled 1452 * by things like VLAN tags and IP options that make 1453 * the header sizes/offsets vary. 1454 */ 1455 1456 if (m->m_pkthdr.csum_flags & CSUM_IP) { 1457 if (m->m_pkthdr.len < 38) { 1458 struct ip *ip; 1459 m->m_data += ETHER_HDR_LEN; 1460 ip = mtod(m, struct ip *); 1461 ip->ip_sum = in_cksum(m, ip->ip_hl << 2); 1462 m->m_data -= ETHER_HDR_LEN; 1463 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1464 } else { 1465 txp->tx_cb->ipcb_ip_activation_high = 1466 FXP_IPCB_HARDWAREPARSING_ENABLE; 1467 txp->tx_cb->ipcb_ip_schedule |= 1468 FXP_IPCB_IP_CHECKSUM_ENABLE; 1469 } 1470 } 1471 #endif 1472 } 1473 1474 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1475 /* 1476 * 82550/82551 requires ethernet/IP/TCP headers must be 1477 * contained in the first active transmit buffer. 1478 */ 1479 struct ether_header *eh; 1480 struct ip *ip; 1481 uint32_t ip_off, poff; 1482 1483 if (M_WRITABLE(*m_head) == 0) { 1484 /* Get a writable copy. */ 1485 m = m_dup(*m_head, M_DONTWAIT); 1486 m_freem(*m_head); 1487 if (m == NULL) { 1488 *m_head = NULL; 1489 return (ENOBUFS); 1490 } 1491 *m_head = m; 1492 } 1493 ip_off = sizeof(struct ether_header); 1494 m = m_pullup(*m_head, ip_off); 1495 if (m == NULL) { 1496 *m_head = NULL; 1497 return (ENOBUFS); 1498 } 1499 eh = mtod(m, struct ether_header *); 1500 /* Check the existence of VLAN tag. */ 1501 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1502 ip_off = sizeof(struct ether_vlan_header); 1503 m = m_pullup(m, ip_off); 1504 if (m == NULL) { 1505 *m_head = NULL; 1506 return (ENOBUFS); 1507 } 1508 } 1509 m = m_pullup(m, ip_off + sizeof(struct ip)); 1510 if (m == NULL) { 1511 *m_head = NULL; 1512 return (ENOBUFS); 1513 } 1514 ip = (struct ip *)(mtod(m, char *) + ip_off); 1515 poff = ip_off + (ip->ip_hl << 2); 1516 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1517 if (m == NULL) { 1518 *m_head = NULL; 1519 return (ENOBUFS); 1520 } 1521 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1522 m = m_pullup(m, poff + sizeof(struct tcphdr) + tcp->th_off); 1523 if (m == NULL) { 1524 *m_head = NULL; 1525 return (ENOBUFS); 1526 } 1527 1528 /* 1529 * Since 82550/82551 doesn't modify IP length and pseudo 1530 * checksum in the first frame driver should compute it. 1531 */ 1532 ip->ip_sum = 0; 1533 ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) + 1534 (tcp->th_off << 2)); 1535 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 1536 htons(IPPROTO_TCP + (tcp->th_off << 2) + 1537 m->m_pkthdr.tso_segsz)); 1538 /* Compute total TCP payload. */ 1539 tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2); 1540 tcp_payload -= tcp->th_off << 2; 1541 *m_head = m; 1542 } 1543 1544 error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head, 1545 segs, &nseg, 0); 1546 if (error == EFBIG) { 1547 m = m_collapse(*m_head, M_DONTWAIT, sc->maxtxseg); 1548 if (m == NULL) { 1549 m_freem(*m_head); 1550 *m_head = NULL; 1551 return (ENOMEM); 1552 } 1553 *m_head = m; 1554 error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, 1555 *m_head, segs, &nseg, 0); 1556 if (error != 0) { 1557 m_freem(*m_head); 1558 *m_head = NULL; 1559 return (ENOMEM); 1560 } 1561 } else if (error != 0) 1562 return (error); 1563 if (nseg == 0) { 1564 m_freem(*m_head); 1565 *m_head = NULL; 1566 return (EIO); 1567 } 1568 1569 KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments")); 1570 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE); 1571 1572 cbp = txp->tx_cb; 1573 for (i = 0; i < nseg; i++) { 1574 /* 1575 * If this is an 82550/82551, then we're using extended 1576 * TxCBs _and_ we're using checksum offload. This means 1577 * that the TxCB is really an IPCB. One major difference 1578 * between the two is that with plain extended TxCBs, 1579 * the bottom half of the TxCB contains two entries from 1580 * the TBD array, whereas IPCBs contain just one entry: 1581 * one entry (8 bytes) has been sacrificed for the TCP/IP 1582 * checksum offload control bits. So to make things work 1583 * right, we have to start filling in the TBD array 1584 * starting from a different place depending on whether 1585 * the chip is an 82550/82551 or not. 1586 */ 1587 if (sc->flags & FXP_FLAG_EXT_RFA) { 1588 cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr); 1589 cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len); 1590 } else { 1591 cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr); 1592 cbp->tbd[i].tb_size = htole32(segs[i].ds_len); 1593 } 1594 } 1595 if (sc->flags & FXP_FLAG_EXT_RFA) { 1596 /* Configure dynamic TBD for 82550/82551. */ 1597 cbp->tbd_number = 0xFF; 1598 cbp->tbd[nseg].tb_size |= htole32(0x8000); 1599 } else 1600 cbp->tbd_number = nseg; 1601 /* Configure TSO. */ 1602 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1603 cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16); 1604 cbp->tbd[1].tb_size |= htole32(tcp_payload << 16); 1605 cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE | 1606 FXP_IPCB_IP_CHECKSUM_ENABLE | 1607 FXP_IPCB_TCP_PACKET | 1608 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; 1609 } 1610 /* Configure VLAN hardware tag insertion. */ 1611 if ((m->m_flags & M_VLANTAG) != 0) { 1612 cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag); 1613 txp->tx_cb->ipcb_ip_activation_high |= 1614 FXP_IPCB_INSERTVLAN_ENABLE; 1615 } 1616 1617 txp->tx_mbuf = m; 1618 txp->tx_cb->cb_status = 0; 1619 txp->tx_cb->byte_count = 0; 1620 if (sc->tx_queued != FXP_CXINT_THRESH - 1) 1621 txp->tx_cb->cb_command = 1622 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1623 FXP_CB_COMMAND_S); 1624 else 1625 txp->tx_cb->cb_command = 1626 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1627 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); 1628 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) 1629 txp->tx_cb->tx_threshold = tx_threshold; 1630 1631 /* 1632 * Advance the end of list forward. 1633 */ 1634 1635 #ifdef __alpha__ 1636 /* 1637 * On platforms which can't access memory in 16-bit 1638 * granularities, we must prevent the card from DMA'ing 1639 * up the status while we update the command field. 1640 * This could cause us to overwrite the completion status. 1641 * XXX This is probably bogus and we're _not_ looking 1642 * for atomicity here. 1643 */ 1644 atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command, 1645 htole16(FXP_CB_COMMAND_S)); 1646 #else 1647 sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S); 1648 #endif /*__alpha__*/ 1649 sc->fxp_desc.tx_last = txp; 1650 1651 /* 1652 * Advance the beginning of the list forward if there are 1653 * no other packets queued (when nothing is queued, tx_first 1654 * sits on the last TxCB that was sent out). 1655 */ 1656 if (sc->tx_queued == 0) 1657 sc->fxp_desc.tx_first = txp; 1658 1659 sc->tx_queued++; 1660 1661 return (0); 1662 } 1663 1664 #ifdef DEVICE_POLLING 1665 static poll_handler_t fxp_poll; 1666 1667 static int 1668 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1669 { 1670 struct fxp_softc *sc = ifp->if_softc; 1671 uint8_t statack; 1672 int rx_npkts = 0; 1673 1674 FXP_LOCK(sc); 1675 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1676 FXP_UNLOCK(sc); 1677 return (rx_npkts); 1678 } 1679 1680 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA | 1681 FXP_SCB_STATACK_FR; 1682 if (cmd == POLL_AND_CHECK_STATUS) { 1683 uint8_t tmp; 1684 1685 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK); 1686 if (tmp == 0xff || tmp == 0) { 1687 FXP_UNLOCK(sc); 1688 return (rx_npkts); /* nothing to do */ 1689 } 1690 tmp &= ~statack; 1691 /* ack what we can */ 1692 if (tmp != 0) 1693 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp); 1694 statack |= tmp; 1695 } 1696 rx_npkts = fxp_intr_body(sc, ifp, statack, count); 1697 FXP_UNLOCK(sc); 1698 return (rx_npkts); 1699 } 1700 #endif /* DEVICE_POLLING */ 1701 1702 /* 1703 * Process interface interrupts. 1704 */ 1705 static void 1706 fxp_intr(void *xsc) 1707 { 1708 struct fxp_softc *sc = xsc; 1709 struct ifnet *ifp = sc->ifp; 1710 uint8_t statack; 1711 1712 FXP_LOCK(sc); 1713 if (sc->suspended) { 1714 FXP_UNLOCK(sc); 1715 return; 1716 } 1717 1718 #ifdef DEVICE_POLLING 1719 if (ifp->if_capenable & IFCAP_POLLING) { 1720 FXP_UNLOCK(sc); 1721 return; 1722 } 1723 #endif 1724 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { 1725 /* 1726 * It should not be possible to have all bits set; the 1727 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If 1728 * all bits are set, this may indicate that the card has 1729 * been physically ejected, so ignore it. 1730 */ 1731 if (statack == 0xff) { 1732 FXP_UNLOCK(sc); 1733 return; 1734 } 1735 1736 /* 1737 * First ACK all the interrupts in this pass. 1738 */ 1739 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); 1740 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1741 fxp_intr_body(sc, ifp, statack, -1); 1742 } 1743 FXP_UNLOCK(sc); 1744 } 1745 1746 static void 1747 fxp_txeof(struct fxp_softc *sc) 1748 { 1749 struct ifnet *ifp; 1750 struct fxp_tx *txp; 1751 1752 ifp = sc->ifp; 1753 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1754 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1755 for (txp = sc->fxp_desc.tx_first; sc->tx_queued && 1756 (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0; 1757 txp = txp->tx_next) { 1758 if (txp->tx_mbuf != NULL) { 1759 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, 1760 BUS_DMASYNC_POSTWRITE); 1761 bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map); 1762 m_freem(txp->tx_mbuf); 1763 txp->tx_mbuf = NULL; 1764 /* clear this to reset csum offload bits */ 1765 txp->tx_cb->tbd[0].tb_addr = 0; 1766 } 1767 sc->tx_queued--; 1768 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1769 } 1770 sc->fxp_desc.tx_first = txp; 1771 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1772 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1773 if (sc->tx_queued == 0) 1774 sc->watchdog_timer = 0; 1775 } 1776 1777 static void 1778 fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m, 1779 uint16_t status, int pos) 1780 { 1781 struct ether_header *eh; 1782 struct ip *ip; 1783 struct udphdr *uh; 1784 int32_t hlen, len, pktlen, temp32; 1785 uint16_t csum, *opts; 1786 1787 if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) { 1788 if ((status & FXP_RFA_STATUS_PARSE) != 0) { 1789 if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID) 1790 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1791 if (status & FXP_RFDX_CS_IP_CSUM_VALID) 1792 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1793 if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) && 1794 (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) { 1795 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 1796 CSUM_PSEUDO_HDR; 1797 m->m_pkthdr.csum_data = 0xffff; 1798 } 1799 } 1800 return; 1801 } 1802 1803 pktlen = m->m_pkthdr.len; 1804 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) 1805 return; 1806 eh = mtod(m, struct ether_header *); 1807 if (eh->ether_type != htons(ETHERTYPE_IP)) 1808 return; 1809 ip = (struct ip *)(eh + 1); 1810 if (ip->ip_v != IPVERSION) 1811 return; 1812 1813 hlen = ip->ip_hl << 2; 1814 pktlen -= sizeof(struct ether_header); 1815 if (hlen < sizeof(struct ip)) 1816 return; 1817 if (ntohs(ip->ip_len) < hlen) 1818 return; 1819 if (ntohs(ip->ip_len) != pktlen) 1820 return; 1821 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) 1822 return; /* can't handle fragmented packet */ 1823 1824 switch (ip->ip_p) { 1825 case IPPROTO_TCP: 1826 if (pktlen < (hlen + sizeof(struct tcphdr))) 1827 return; 1828 break; 1829 case IPPROTO_UDP: 1830 if (pktlen < (hlen + sizeof(struct udphdr))) 1831 return; 1832 uh = (struct udphdr *)((caddr_t)ip + hlen); 1833 if (uh->uh_sum == 0) 1834 return; /* no checksum */ 1835 break; 1836 default: 1837 return; 1838 } 1839 /* Extract computed checksum. */ 1840 csum = be16dec(mtod(m, char *) + pos); 1841 /* checksum fixup for IP options */ 1842 len = hlen - sizeof(struct ip); 1843 if (len > 0) { 1844 opts = (uint16_t *)(ip + 1); 1845 for (; len > 0; len -= sizeof(uint16_t), opts++) { 1846 temp32 = csum - *opts; 1847 temp32 = (temp32 >> 16) + (temp32 & 65535); 1848 csum = temp32 & 65535; 1849 } 1850 } 1851 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 1852 m->m_pkthdr.csum_data = csum; 1853 } 1854 1855 static int 1856 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack, 1857 int count) 1858 { 1859 struct mbuf *m; 1860 struct fxp_rx *rxp; 1861 struct fxp_rfa *rfa; 1862 int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0; 1863 int rx_npkts; 1864 uint16_t status; 1865 1866 rx_npkts = 0; 1867 FXP_LOCK_ASSERT(sc, MA_OWNED); 1868 1869 if (rnr) 1870 sc->rnr++; 1871 #ifdef DEVICE_POLLING 1872 /* Pick up a deferred RNR condition if `count' ran out last time. */ 1873 if (sc->flags & FXP_FLAG_DEFERRED_RNR) { 1874 sc->flags &= ~FXP_FLAG_DEFERRED_RNR; 1875 rnr = 1; 1876 } 1877 #endif 1878 1879 /* 1880 * Free any finished transmit mbuf chains. 1881 * 1882 * Handle the CNA event likt a CXTNO event. It used to 1883 * be that this event (control unit not ready) was not 1884 * encountered, but it is now with the SMPng modifications. 1885 * The exact sequence of events that occur when the interface 1886 * is brought up are different now, and if this event 1887 * goes unhandled, the configuration/rxfilter setup sequence 1888 * can stall for several seconds. The result is that no 1889 * packets go out onto the wire for about 5 to 10 seconds 1890 * after the interface is ifconfig'ed for the first time. 1891 */ 1892 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) 1893 fxp_txeof(sc); 1894 1895 /* 1896 * Try to start more packets transmitting. 1897 */ 1898 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1899 fxp_start_body(ifp); 1900 1901 /* 1902 * Just return if nothing happened on the receive side. 1903 */ 1904 if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0) 1905 return (rx_npkts); 1906 1907 /* 1908 * Process receiver interrupts. If a no-resource (RNR) 1909 * condition exists, get whatever packets we can and 1910 * re-start the receiver. 1911 * 1912 * When using polling, we do not process the list to completion, 1913 * so when we get an RNR interrupt we must defer the restart 1914 * until we hit the last buffer with the C bit set. 1915 * If we run out of cycles and rfa_headm has the C bit set, 1916 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so 1917 * that the info will be used in the subsequent polling cycle. 1918 */ 1919 for (;;) { 1920 rxp = sc->fxp_desc.rx_head; 1921 m = rxp->rx_mbuf; 1922 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + 1923 RFA_ALIGNMENT_FUDGE); 1924 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 1925 BUS_DMASYNC_POSTREAD); 1926 1927 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */ 1928 if (count >= 0 && count-- == 0) { 1929 if (rnr) { 1930 /* Defer RNR processing until the next time. */ 1931 sc->flags |= FXP_FLAG_DEFERRED_RNR; 1932 rnr = 0; 1933 } 1934 break; 1935 } 1936 #endif /* DEVICE_POLLING */ 1937 1938 status = le16toh(rfa->rfa_status); 1939 if ((status & FXP_RFA_STATUS_C) == 0) 1940 break; 1941 1942 /* 1943 * Advance head forward. 1944 */ 1945 sc->fxp_desc.rx_head = rxp->rx_next; 1946 1947 /* 1948 * Add a new buffer to the receive chain. 1949 * If this fails, the old buffer is recycled 1950 * instead. 1951 */ 1952 if (fxp_new_rfabuf(sc, rxp) == 0) { 1953 int total_len; 1954 1955 /* 1956 * Fetch packet length (the top 2 bits of 1957 * actual_size are flags set by the controller 1958 * upon completion), and drop the packet in case 1959 * of bogus length or CRC errors. 1960 */ 1961 total_len = le16toh(rfa->actual_size) & 0x3fff; 1962 if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 && 1963 (ifp->if_capenable & IFCAP_RXCSUM) != 0) { 1964 /* Adjust for appended checksum bytes. */ 1965 total_len -= 2; 1966 } 1967 if (total_len < sizeof(struct ether_header) || 1968 total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE - 1969 sc->rfa_size || status & FXP_RFA_STATUS_CRC) { 1970 m_freem(m); 1971 continue; 1972 } 1973 1974 m->m_pkthdr.len = m->m_len = total_len; 1975 m->m_pkthdr.rcvif = ifp; 1976 1977 /* Do IP checksum checking. */ 1978 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 1979 fxp_rxcsum(sc, ifp, m, status, total_len); 1980 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 1981 (status & FXP_RFA_STATUS_VLAN) != 0) { 1982 m->m_pkthdr.ether_vtag = 1983 ntohs(rfa->rfax_vlan_id); 1984 m->m_flags |= M_VLANTAG; 1985 } 1986 /* 1987 * Drop locks before calling if_input() since it 1988 * may re-enter fxp_start() in the netisr case. 1989 * This would result in a lock reversal. Better 1990 * performance might be obtained by chaining all 1991 * packets received, dropping the lock, and then 1992 * calling if_input() on each one. 1993 */ 1994 FXP_UNLOCK(sc); 1995 (*ifp->if_input)(ifp, m); 1996 FXP_LOCK(sc); 1997 rx_npkts++; 1998 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1999 return (rx_npkts); 2000 } else { 2001 /* Reuse RFA and loaded DMA map. */ 2002 ifp->if_iqdrops++; 2003 fxp_discard_rfabuf(sc, rxp); 2004 } 2005 fxp_add_rfabuf(sc, rxp); 2006 } 2007 if (rnr) { 2008 fxp_scb_wait(sc); 2009 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 2010 sc->fxp_desc.rx_head->rx_addr); 2011 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 2012 } 2013 return (rx_npkts); 2014 } 2015 2016 /* 2017 * Update packet in/out/collision statistics. The i82557 doesn't 2018 * allow you to access these counters without doing a fairly 2019 * expensive DMA to get _all_ of the statistics it maintains, so 2020 * we do this operation here only once per second. The statistics 2021 * counters in the kernel are updated from the previous dump-stats 2022 * DMA and then a new dump-stats DMA is started. The on-chip 2023 * counters are zeroed when the DMA completes. If we can't start 2024 * the DMA immediately, we don't wait - we just prepare to read 2025 * them again next time. 2026 */ 2027 static void 2028 fxp_tick(void *xsc) 2029 { 2030 struct fxp_softc *sc = xsc; 2031 struct ifnet *ifp = sc->ifp; 2032 struct fxp_stats *sp = sc->fxp_stats; 2033 2034 FXP_LOCK_ASSERT(sc, MA_OWNED); 2035 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD); 2036 ifp->if_opackets += le32toh(sp->tx_good); 2037 ifp->if_collisions += le32toh(sp->tx_total_collisions); 2038 if (sp->rx_good) { 2039 ifp->if_ipackets += le32toh(sp->rx_good); 2040 sc->rx_idle_secs = 0; 2041 } else if (sc->flags & FXP_FLAG_RXBUG) { 2042 /* 2043 * Receiver's been idle for another second. 2044 */ 2045 sc->rx_idle_secs++; 2046 } 2047 ifp->if_ierrors += 2048 le32toh(sp->rx_crc_errors) + 2049 le32toh(sp->rx_alignment_errors) + 2050 le32toh(sp->rx_rnr_errors) + 2051 le32toh(sp->rx_overrun_errors); 2052 /* 2053 * If any transmit underruns occured, bump up the transmit 2054 * threshold by another 512 bytes (64 * 8). 2055 */ 2056 if (sp->tx_underruns) { 2057 ifp->if_oerrors += le32toh(sp->tx_underruns); 2058 if (tx_threshold < 192) 2059 tx_threshold += 64; 2060 } 2061 2062 /* 2063 * Release any xmit buffers that have completed DMA. This isn't 2064 * strictly necessary to do here, but it's advantagous for mbufs 2065 * with external storage to be released in a timely manner rather 2066 * than being defered for a potentially long time. This limits 2067 * the delay to a maximum of one second. 2068 */ 2069 fxp_txeof(sc); 2070 2071 /* 2072 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, 2073 * then assume the receiver has locked up and attempt to clear 2074 * the condition by reprogramming the multicast filter. This is 2075 * a work-around for a bug in the 82557 where the receiver locks 2076 * up if it gets certain types of garbage in the syncronization 2077 * bits prior to the packet header. This bug is supposed to only 2078 * occur in 10Mbps mode, but has been seen to occur in 100Mbps 2079 * mode as well (perhaps due to a 10/100 speed transition). 2080 */ 2081 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { 2082 sc->rx_idle_secs = 0; 2083 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2084 fxp_init_body(sc); 2085 return; 2086 } 2087 /* 2088 * If there is no pending command, start another stats 2089 * dump. Otherwise punt for now. 2090 */ 2091 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { 2092 /* 2093 * Start another stats dump. 2094 */ 2095 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 2096 BUS_DMASYNC_PREREAD); 2097 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); 2098 } else { 2099 /* 2100 * A previous command is still waiting to be accepted. 2101 * Just zero our copy of the stats and wait for the 2102 * next timer event to update them. 2103 */ 2104 sp->tx_good = 0; 2105 sp->tx_underruns = 0; 2106 sp->tx_total_collisions = 0; 2107 2108 sp->rx_good = 0; 2109 sp->rx_crc_errors = 0; 2110 sp->rx_alignment_errors = 0; 2111 sp->rx_rnr_errors = 0; 2112 sp->rx_overrun_errors = 0; 2113 } 2114 if (sc->miibus != NULL) 2115 mii_tick(device_get_softc(sc->miibus)); 2116 2117 /* 2118 * Check that chip hasn't hung. 2119 */ 2120 fxp_watchdog(sc); 2121 2122 /* 2123 * Schedule another timeout one second from now. 2124 */ 2125 callout_reset(&sc->stat_ch, hz, fxp_tick, sc); 2126 } 2127 2128 /* 2129 * Stop the interface. Cancels the statistics updater and resets 2130 * the interface. 2131 */ 2132 static void 2133 fxp_stop(struct fxp_softc *sc) 2134 { 2135 struct ifnet *ifp = sc->ifp; 2136 struct fxp_tx *txp; 2137 int i; 2138 2139 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2140 sc->watchdog_timer = 0; 2141 2142 /* 2143 * Cancel stats updater. 2144 */ 2145 callout_stop(&sc->stat_ch); 2146 2147 /* 2148 * Preserve PCI configuration, configure, IA/multicast 2149 * setup and put RU and CU into idle state. 2150 */ 2151 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 2152 DELAY(50); 2153 /* Disable interrupts. */ 2154 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 2155 2156 /* 2157 * Release any xmit buffers. 2158 */ 2159 txp = sc->fxp_desc.tx_list; 2160 if (txp != NULL) { 2161 for (i = 0; i < FXP_NTXCB; i++) { 2162 if (txp[i].tx_mbuf != NULL) { 2163 bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map, 2164 BUS_DMASYNC_POSTWRITE); 2165 bus_dmamap_unload(sc->fxp_txmtag, 2166 txp[i].tx_map); 2167 m_freem(txp[i].tx_mbuf); 2168 txp[i].tx_mbuf = NULL; 2169 /* clear this to reset csum offload bits */ 2170 txp[i].tx_cb->tbd[0].tb_addr = 0; 2171 } 2172 } 2173 } 2174 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2175 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2176 sc->tx_queued = 0; 2177 } 2178 2179 /* 2180 * Watchdog/transmission transmit timeout handler. Called when a 2181 * transmission is started on the interface, but no interrupt is 2182 * received before the timeout. This usually indicates that the 2183 * card has wedged for some reason. 2184 */ 2185 static void 2186 fxp_watchdog(struct fxp_softc *sc) 2187 { 2188 2189 FXP_LOCK_ASSERT(sc, MA_OWNED); 2190 2191 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 2192 return; 2193 2194 device_printf(sc->dev, "device timeout\n"); 2195 sc->ifp->if_oerrors++; 2196 2197 fxp_init_body(sc); 2198 } 2199 2200 /* 2201 * Acquire locks and then call the real initialization function. This 2202 * is necessary because ether_ioctl() calls if_init() and this would 2203 * result in mutex recursion if the mutex was held. 2204 */ 2205 static void 2206 fxp_init(void *xsc) 2207 { 2208 struct fxp_softc *sc = xsc; 2209 2210 FXP_LOCK(sc); 2211 fxp_init_body(sc); 2212 FXP_UNLOCK(sc); 2213 } 2214 2215 /* 2216 * Perform device initialization. This routine must be called with the 2217 * softc lock held. 2218 */ 2219 static void 2220 fxp_init_body(struct fxp_softc *sc) 2221 { 2222 struct ifnet *ifp = sc->ifp; 2223 struct fxp_cb_config *cbp; 2224 struct fxp_cb_ias *cb_ias; 2225 struct fxp_cb_tx *tcbp; 2226 struct fxp_tx *txp; 2227 int i, prm; 2228 2229 FXP_LOCK_ASSERT(sc, MA_OWNED); 2230 /* 2231 * Cancel any pending I/O 2232 */ 2233 fxp_stop(sc); 2234 2235 /* 2236 * Issue software reset, which also unloads the microcode. 2237 */ 2238 sc->flags &= ~FXP_FLAG_UCODE; 2239 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 2240 DELAY(50); 2241 2242 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; 2243 2244 /* 2245 * Initialize base of CBL and RFA memory. Loading with zero 2246 * sets it up for regular linear addressing. 2247 */ 2248 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); 2249 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); 2250 2251 fxp_scb_wait(sc); 2252 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); 2253 2254 /* 2255 * Initialize base of dump-stats buffer. 2256 */ 2257 fxp_scb_wait(sc); 2258 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD); 2259 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr); 2260 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); 2261 2262 /* 2263 * Attempt to load microcode if requested. 2264 * For ICH based controllers do not load microcode. 2265 */ 2266 if (sc->ident->ich == 0) { 2267 if (ifp->if_flags & IFF_LINK0 && 2268 (sc->flags & FXP_FLAG_UCODE) == 0) 2269 fxp_load_ucode(sc); 2270 } 2271 2272 /* 2273 * Set IFF_ALLMULTI status. It's needed in configure action 2274 * command. 2275 */ 2276 fxp_mc_addrs(sc); 2277 2278 /* 2279 * We temporarily use memory that contains the TxCB list to 2280 * construct the config CB. The TxCB list memory is rebuilt 2281 * later. 2282 */ 2283 cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list; 2284 2285 /* 2286 * This bcopy is kind of disgusting, but there are a bunch of must be 2287 * zero and must be one bits in this structure and this is the easiest 2288 * way to initialize them all to proper values. 2289 */ 2290 bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template)); 2291 2292 cbp->cb_status = 0; 2293 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG | 2294 FXP_CB_COMMAND_EL); 2295 cbp->link_addr = 0xffffffff; /* (no) next command */ 2296 cbp->byte_count = sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22; 2297 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ 2298 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ 2299 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ 2300 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0; 2301 cbp->type_enable = 0; /* actually reserved */ 2302 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0; 2303 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0; 2304 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ 2305 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ 2306 cbp->dma_mbce = 0; /* (disable) dma max counters */ 2307 cbp->late_scb = 0; /* (don't) defer SCB update */ 2308 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */ 2309 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */ 2310 cbp->ci_int = 1; /* interrupt on CU idle */ 2311 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1; 2312 cbp->ext_stats_dis = 1; /* disable extended counters */ 2313 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */ 2314 cbp->save_bf = sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm; 2315 cbp->disc_short_rx = !prm; /* discard short packets */ 2316 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */ 2317 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */ 2318 cbp->dyn_tbd = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2319 cbp->ext_rfa = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2320 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1; 2321 cbp->csma_dis = 0; /* (don't) disable link */ 2322 cbp->tcp_udp_cksum = ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 && 2323 (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0; 2324 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */ 2325 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */ 2326 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */ 2327 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */ 2328 cbp->nsai = 1; /* (don't) disable source addr insert */ 2329 cbp->preamble_length = 2; /* (7 byte) preamble */ 2330 cbp->loopback = 0; /* (don't) loopback */ 2331 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ 2332 cbp->linear_pri_mode = 0; /* (wait after xmit only) */ 2333 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ 2334 cbp->promiscuous = prm; /* promiscuous mode */ 2335 cbp->bcast_disable = 0; /* (don't) disable broadcasts */ 2336 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/ 2337 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */ 2338 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */ 2339 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0; 2340 2341 cbp->stripping = !prm; /* truncate rx packet to byte count */ 2342 cbp->padding = 1; /* (do) pad short tx packets */ 2343 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ 2344 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0; 2345 cbp->ia_wake_en = 0; /* (don't) wake up on address match */ 2346 cbp->magic_pkt_dis = sc->flags & FXP_FLAG_WOL ? 0 : 1; 2347 cbp->force_fdx = 0; /* (don't) force full duplex */ 2348 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ 2349 cbp->multi_ia = 0; /* (don't) accept multiple IAs */ 2350 cbp->mc_all = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; 2351 cbp->gamla_rx = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2352 cbp->vlan_strip_en = ((sc->flags & FXP_FLAG_EXT_RFA) != 0 && 2353 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0; 2354 2355 if (sc->tunable_noflow || sc->revision == FXP_REV_82557) { 2356 /* 2357 * The 82557 has no hardware flow control, the values 2358 * below are the defaults for the chip. 2359 */ 2360 cbp->fc_delay_lsb = 0; 2361 cbp->fc_delay_msb = 0x40; 2362 cbp->pri_fc_thresh = 3; 2363 cbp->tx_fc_dis = 0; 2364 cbp->rx_fc_restop = 0; 2365 cbp->rx_fc_restart = 0; 2366 cbp->fc_filter = 0; 2367 cbp->pri_fc_loc = 1; 2368 } else { 2369 cbp->fc_delay_lsb = 0x1f; 2370 cbp->fc_delay_msb = 0x01; 2371 cbp->pri_fc_thresh = 3; 2372 cbp->tx_fc_dis = 0; /* enable transmit FC */ 2373 cbp->rx_fc_restop = 1; /* enable FC restop frames */ 2374 cbp->rx_fc_restart = 1; /* enable FC restart frames */ 2375 cbp->fc_filter = !prm; /* drop FC frames to host */ 2376 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */ 2377 } 2378 2379 /* 2380 * Start the config command/DMA. 2381 */ 2382 fxp_scb_wait(sc); 2383 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2384 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2385 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2386 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2387 /* ...and wait for it to complete. */ 2388 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 2389 2390 /* 2391 * Now initialize the station address. Temporarily use the TxCB 2392 * memory area like we did above for the config CB. 2393 */ 2394 cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list; 2395 cb_ias->cb_status = 0; 2396 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL); 2397 cb_ias->link_addr = 0xffffffff; 2398 bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN); 2399 2400 /* 2401 * Start the IAS (Individual Address Setup) command/DMA. 2402 */ 2403 fxp_scb_wait(sc); 2404 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2405 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2406 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2407 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2408 /* ...and wait for it to complete. */ 2409 fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map); 2410 2411 /* 2412 * Initialize the multicast address list. 2413 */ 2414 fxp_mc_setup(sc); 2415 2416 /* 2417 * Initialize transmit control block (TxCB) list. 2418 */ 2419 txp = sc->fxp_desc.tx_list; 2420 tcbp = sc->fxp_desc.cbl_list; 2421 bzero(tcbp, FXP_TXCB_SZ); 2422 for (i = 0; i < FXP_NTXCB; i++) { 2423 txp[i].tx_mbuf = NULL; 2424 tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK); 2425 tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP); 2426 tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr + 2427 (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx))); 2428 if (sc->flags & FXP_FLAG_EXT_TXCB) 2429 tcbp[i].tbd_array_addr = 2430 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2])); 2431 else 2432 tcbp[i].tbd_array_addr = 2433 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0])); 2434 txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK]; 2435 } 2436 /* 2437 * Set the suspend flag on the first TxCB and start the control 2438 * unit. It will execute the NOP and then suspend. 2439 */ 2440 tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S); 2441 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2442 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2443 sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp; 2444 sc->tx_queued = 1; 2445 2446 fxp_scb_wait(sc); 2447 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2448 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2449 2450 /* 2451 * Initialize receiver buffer area - RFA. 2452 */ 2453 fxp_scb_wait(sc); 2454 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr); 2455 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 2456 2457 /* 2458 * Set current media. 2459 */ 2460 if (sc->miibus != NULL) 2461 mii_mediachg(device_get_softc(sc->miibus)); 2462 2463 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2464 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2465 2466 /* 2467 * Enable interrupts. 2468 */ 2469 #ifdef DEVICE_POLLING 2470 /* 2471 * ... but only do that if we are not polling. And because (presumably) 2472 * the default is interrupts on, we need to disable them explicitly! 2473 */ 2474 if (ifp->if_capenable & IFCAP_POLLING ) 2475 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 2476 else 2477 #endif /* DEVICE_POLLING */ 2478 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 2479 2480 /* 2481 * Start stats updater. 2482 */ 2483 callout_reset(&sc->stat_ch, hz, fxp_tick, sc); 2484 } 2485 2486 static int 2487 fxp_serial_ifmedia_upd(struct ifnet *ifp) 2488 { 2489 2490 return (0); 2491 } 2492 2493 static void 2494 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2495 { 2496 2497 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2498 } 2499 2500 /* 2501 * Change media according to request. 2502 */ 2503 static int 2504 fxp_ifmedia_upd(struct ifnet *ifp) 2505 { 2506 struct fxp_softc *sc = ifp->if_softc; 2507 struct mii_data *mii; 2508 2509 mii = device_get_softc(sc->miibus); 2510 FXP_LOCK(sc); 2511 if (mii->mii_instance) { 2512 struct mii_softc *miisc; 2513 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 2514 mii_phy_reset(miisc); 2515 } 2516 mii_mediachg(mii); 2517 FXP_UNLOCK(sc); 2518 return (0); 2519 } 2520 2521 /* 2522 * Notify the world which media we're using. 2523 */ 2524 static void 2525 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2526 { 2527 struct fxp_softc *sc = ifp->if_softc; 2528 struct mii_data *mii; 2529 2530 mii = device_get_softc(sc->miibus); 2531 FXP_LOCK(sc); 2532 mii_pollstat(mii); 2533 ifmr->ifm_active = mii->mii_media_active; 2534 ifmr->ifm_status = mii->mii_media_status; 2535 2536 if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T && 2537 sc->flags & FXP_FLAG_CU_RESUME_BUG) 2538 sc->cu_resume_bug = 1; 2539 else 2540 sc->cu_resume_bug = 0; 2541 FXP_UNLOCK(sc); 2542 } 2543 2544 /* 2545 * Add a buffer to the end of the RFA buffer list. 2546 * Return 0 if successful, 1 for failure. A failure results in 2547 * reusing the RFA buffer. 2548 * The RFA struct is stuck at the beginning of mbuf cluster and the 2549 * data pointer is fixed up to point just past it. 2550 */ 2551 static int 2552 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2553 { 2554 struct mbuf *m; 2555 struct fxp_rfa *rfa; 2556 bus_dmamap_t tmp_map; 2557 int error; 2558 2559 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2560 if (m == NULL) 2561 return (ENOBUFS); 2562 2563 /* 2564 * Move the data pointer up so that the incoming data packet 2565 * will be 32-bit aligned. 2566 */ 2567 m->m_data += RFA_ALIGNMENT_FUDGE; 2568 2569 /* 2570 * Get a pointer to the base of the mbuf cluster and move 2571 * data start past it. 2572 */ 2573 rfa = mtod(m, struct fxp_rfa *); 2574 m->m_data += sc->rfa_size; 2575 rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE); 2576 2577 rfa->rfa_status = 0; 2578 rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL); 2579 rfa->actual_size = 0; 2580 m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE - 2581 sc->rfa_size; 2582 2583 /* 2584 * Initialize the rest of the RFA. Note that since the RFA 2585 * is misaligned, we cannot store values directly. We're thus 2586 * using the le32enc() function which handles endianness and 2587 * is also alignment-safe. 2588 */ 2589 le32enc(&rfa->link_addr, 0xffffffff); 2590 le32enc(&rfa->rbd_addr, 0xffffffff); 2591 2592 /* Map the RFA into DMA memory. */ 2593 error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa, 2594 MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr, 2595 &rxp->rx_addr, 0); 2596 if (error) { 2597 m_freem(m); 2598 return (error); 2599 } 2600 2601 if (rxp->rx_mbuf != NULL) 2602 bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map); 2603 tmp_map = sc->spare_map; 2604 sc->spare_map = rxp->rx_map; 2605 rxp->rx_map = tmp_map; 2606 rxp->rx_mbuf = m; 2607 2608 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 2609 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2610 return (0); 2611 } 2612 2613 static void 2614 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2615 { 2616 struct fxp_rfa *p_rfa; 2617 struct fxp_rx *p_rx; 2618 2619 /* 2620 * If there are other buffers already on the list, attach this 2621 * one to the end by fixing up the tail to point to this one. 2622 */ 2623 if (sc->fxp_desc.rx_head != NULL) { 2624 p_rx = sc->fxp_desc.rx_tail; 2625 p_rfa = (struct fxp_rfa *) 2626 (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE); 2627 p_rx->rx_next = rxp; 2628 le32enc(&p_rfa->link_addr, rxp->rx_addr); 2629 p_rfa->rfa_control = 0; 2630 bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map, 2631 BUS_DMASYNC_PREWRITE); 2632 } else { 2633 rxp->rx_next = NULL; 2634 sc->fxp_desc.rx_head = rxp; 2635 } 2636 sc->fxp_desc.rx_tail = rxp; 2637 } 2638 2639 static void 2640 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2641 { 2642 struct mbuf *m; 2643 struct fxp_rfa *rfa; 2644 2645 m = rxp->rx_mbuf; 2646 m->m_data = m->m_ext.ext_buf; 2647 /* 2648 * Move the data pointer up so that the incoming data packet 2649 * will be 32-bit aligned. 2650 */ 2651 m->m_data += RFA_ALIGNMENT_FUDGE; 2652 2653 /* 2654 * Get a pointer to the base of the mbuf cluster and move 2655 * data start past it. 2656 */ 2657 rfa = mtod(m, struct fxp_rfa *); 2658 m->m_data += sc->rfa_size; 2659 rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE); 2660 2661 rfa->rfa_status = 0; 2662 rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL); 2663 rfa->actual_size = 0; 2664 2665 /* 2666 * Initialize the rest of the RFA. Note that since the RFA 2667 * is misaligned, we cannot store values directly. We're thus 2668 * using the le32enc() function which handles endianness and 2669 * is also alignment-safe. 2670 */ 2671 le32enc(&rfa->link_addr, 0xffffffff); 2672 le32enc(&rfa->rbd_addr, 0xffffffff); 2673 2674 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 2675 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2676 } 2677 2678 static int 2679 fxp_miibus_readreg(device_t dev, int phy, int reg) 2680 { 2681 struct fxp_softc *sc = device_get_softc(dev); 2682 int count = 10000; 2683 int value; 2684 2685 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2686 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); 2687 2688 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 2689 && count--) 2690 DELAY(10); 2691 2692 if (count <= 0) 2693 device_printf(dev, "fxp_miibus_readreg: timed out\n"); 2694 2695 return (value & 0xffff); 2696 } 2697 2698 static int 2699 fxp_miibus_writereg(device_t dev, int phy, int reg, int value) 2700 { 2701 struct fxp_softc *sc = device_get_softc(dev); 2702 int count = 10000; 2703 2704 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2705 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | 2706 (value & 0xffff)); 2707 2708 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && 2709 count--) 2710 DELAY(10); 2711 2712 if (count <= 0) 2713 device_printf(dev, "fxp_miibus_writereg: timed out\n"); 2714 return (0); 2715 } 2716 2717 static int 2718 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 2719 { 2720 struct fxp_softc *sc = ifp->if_softc; 2721 struct ifreq *ifr = (struct ifreq *)data; 2722 struct mii_data *mii; 2723 int flag, mask, error = 0, reinit; 2724 2725 switch (command) { 2726 case SIOCSIFFLAGS: 2727 FXP_LOCK(sc); 2728 /* 2729 * If interface is marked up and not running, then start it. 2730 * If it is marked down and running, stop it. 2731 * XXX If it's up then re-initialize it. This is so flags 2732 * such as IFF_PROMISC are handled. 2733 */ 2734 if (ifp->if_flags & IFF_UP) { 2735 if (((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) && 2736 ((ifp->if_flags ^ sc->if_flags) & 2737 (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) 2738 fxp_init_body(sc); 2739 else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2740 fxp_init_body(sc); 2741 } else { 2742 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2743 fxp_stop(sc); 2744 } 2745 sc->if_flags = ifp->if_flags; 2746 FXP_UNLOCK(sc); 2747 break; 2748 2749 case SIOCADDMULTI: 2750 case SIOCDELMULTI: 2751 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2752 fxp_init(sc); 2753 break; 2754 2755 case SIOCSIFMEDIA: 2756 case SIOCGIFMEDIA: 2757 if (sc->miibus != NULL) { 2758 mii = device_get_softc(sc->miibus); 2759 error = ifmedia_ioctl(ifp, ifr, 2760 &mii->mii_media, command); 2761 } else { 2762 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); 2763 } 2764 break; 2765 2766 case SIOCSIFCAP: 2767 reinit = 0; 2768 mask = ifp->if_capenable ^ ifr->ifr_reqcap; 2769 #ifdef DEVICE_POLLING 2770 if (mask & IFCAP_POLLING) { 2771 if (ifr->ifr_reqcap & IFCAP_POLLING) { 2772 error = ether_poll_register(fxp_poll, ifp); 2773 if (error) 2774 return(error); 2775 FXP_LOCK(sc); 2776 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 2777 FXP_SCB_INTR_DISABLE); 2778 ifp->if_capenable |= IFCAP_POLLING; 2779 FXP_UNLOCK(sc); 2780 } else { 2781 error = ether_poll_deregister(ifp); 2782 /* Enable interrupts in any case */ 2783 FXP_LOCK(sc); 2784 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 2785 ifp->if_capenable &= ~IFCAP_POLLING; 2786 FXP_UNLOCK(sc); 2787 } 2788 } 2789 #endif 2790 FXP_LOCK(sc); 2791 if ((mask & IFCAP_TXCSUM) != 0 && 2792 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 2793 ifp->if_capenable ^= IFCAP_TXCSUM; 2794 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 2795 ifp->if_hwassist |= FXP_CSUM_FEATURES; 2796 else 2797 ifp->if_hwassist &= ~FXP_CSUM_FEATURES; 2798 } 2799 if ((mask & IFCAP_RXCSUM) != 0 && 2800 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) { 2801 ifp->if_capenable ^= IFCAP_RXCSUM; 2802 if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0) 2803 reinit++; 2804 } 2805 if ((mask & IFCAP_TSO4) != 0 && 2806 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 2807 ifp->if_capenable ^= IFCAP_TSO4; 2808 if ((ifp->if_capenable & IFCAP_TSO4) != 0) 2809 ifp->if_hwassist |= CSUM_TSO; 2810 else 2811 ifp->if_hwassist &= ~CSUM_TSO; 2812 } 2813 if ((mask & IFCAP_WOL_MAGIC) != 0 && 2814 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) 2815 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2816 if ((mask & IFCAP_VLAN_MTU) != 0 && 2817 (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) { 2818 ifp->if_capenable ^= IFCAP_VLAN_MTU; 2819 if (sc->revision != FXP_REV_82557) 2820 flag = FXP_FLAG_LONG_PKT_EN; 2821 else /* a hack to get long frames on the old chip */ 2822 flag = FXP_FLAG_SAVE_BAD; 2823 sc->flags ^= flag; 2824 if (ifp->if_flags & IFF_UP) 2825 reinit++; 2826 } 2827 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2828 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 2829 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2830 reinit++; 2831 } 2832 if (reinit > 0 && ifp->if_flags & IFF_UP) 2833 fxp_init_body(sc); 2834 FXP_UNLOCK(sc); 2835 VLAN_CAPABILITIES(ifp); 2836 break; 2837 2838 default: 2839 error = ether_ioctl(ifp, command, data); 2840 } 2841 return (error); 2842 } 2843 2844 /* 2845 * Fill in the multicast address list and return number of entries. 2846 */ 2847 static int 2848 fxp_mc_addrs(struct fxp_softc *sc) 2849 { 2850 struct fxp_cb_mcs *mcsp = sc->mcsp; 2851 struct ifnet *ifp = sc->ifp; 2852 struct ifmultiaddr *ifma; 2853 int nmcasts; 2854 2855 nmcasts = 0; 2856 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2857 if_maddr_rlock(ifp); 2858 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2859 if (ifma->ifma_addr->sa_family != AF_LINK) 2860 continue; 2861 if (nmcasts >= MAXMCADDR) { 2862 ifp->if_flags |= IFF_ALLMULTI; 2863 nmcasts = 0; 2864 break; 2865 } 2866 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 2867 &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN); 2868 nmcasts++; 2869 } 2870 if_maddr_runlock(ifp); 2871 } 2872 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN); 2873 return (nmcasts); 2874 } 2875 2876 /* 2877 * Program the multicast filter. 2878 * 2879 * We have an artificial restriction that the multicast setup command 2880 * must be the first command in the chain, so we take steps to ensure 2881 * this. By requiring this, it allows us to keep up the performance of 2882 * the pre-initialized command ring (esp. link pointers) by not actually 2883 * inserting the mcsetup command in the ring - i.e. its link pointer 2884 * points to the TxCB ring, but the mcsetup descriptor itself is not part 2885 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it 2886 * lead into the regular TxCB ring when it completes. 2887 */ 2888 static void 2889 fxp_mc_setup(struct fxp_softc *sc) 2890 { 2891 struct fxp_cb_mcs *mcsp; 2892 int count; 2893 2894 FXP_LOCK_ASSERT(sc, MA_OWNED); 2895 2896 mcsp = sc->mcsp; 2897 mcsp->cb_status = 0; 2898 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL); 2899 mcsp->link_addr = 0xffffffff; 2900 fxp_mc_addrs(sc); 2901 2902 /* 2903 * Wait until command unit is idle. This should never be the 2904 * case when nothing is queued, but make sure anyway. 2905 */ 2906 count = 100; 2907 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) != 2908 FXP_SCB_CUS_IDLE && --count) 2909 DELAY(10); 2910 if (count == 0) { 2911 device_printf(sc->dev, "command queue timeout\n"); 2912 return; 2913 } 2914 2915 /* 2916 * Start the multicast setup command. 2917 */ 2918 fxp_scb_wait(sc); 2919 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, 2920 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2921 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr); 2922 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2923 /* ...and wait for it to complete. */ 2924 fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map); 2925 } 2926 2927 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE; 2928 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE; 2929 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE; 2930 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE; 2931 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE; 2932 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE; 2933 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE; 2934 2935 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t) 2936 2937 struct ucode { 2938 uint32_t revision; 2939 uint32_t *ucode; 2940 int length; 2941 u_short int_delay_offset; 2942 u_short bundle_max_offset; 2943 } ucode_table[] = { 2944 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 }, 2945 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 }, 2946 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma), 2947 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD }, 2948 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s), 2949 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD }, 2950 { FXP_REV_82550, UCODE(fxp_ucode_d102), 2951 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD }, 2952 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c), 2953 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD }, 2954 { FXP_REV_82551_F, UCODE(fxp_ucode_d102e), 2955 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD }, 2956 { 0, NULL, 0, 0, 0 } 2957 }; 2958 2959 static void 2960 fxp_load_ucode(struct fxp_softc *sc) 2961 { 2962 struct ucode *uc; 2963 struct fxp_cb_ucode *cbp; 2964 int i; 2965 2966 for (uc = ucode_table; uc->ucode != NULL; uc++) 2967 if (sc->revision == uc->revision) 2968 break; 2969 if (uc->ucode == NULL) 2970 return; 2971 cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list; 2972 cbp->cb_status = 0; 2973 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL); 2974 cbp->link_addr = 0xffffffff; /* (no) next command */ 2975 for (i = 0; i < uc->length; i++) 2976 cbp->ucode[i] = htole32(uc->ucode[i]); 2977 if (uc->int_delay_offset) 2978 *(uint16_t *)&cbp->ucode[uc->int_delay_offset] = 2979 htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2); 2980 if (uc->bundle_max_offset) 2981 *(uint16_t *)&cbp->ucode[uc->bundle_max_offset] = 2982 htole16(sc->tunable_bundle_max); 2983 /* 2984 * Download the ucode to the chip. 2985 */ 2986 fxp_scb_wait(sc); 2987 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2988 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2989 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2990 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2991 /* ...and wait for it to complete. */ 2992 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 2993 device_printf(sc->dev, 2994 "Microcode loaded, int_delay: %d usec bundle_max: %d\n", 2995 sc->tunable_int_delay, 2996 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max); 2997 sc->flags |= FXP_FLAG_UCODE; 2998 } 2999 3000 static int 3001 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3002 { 3003 int error, value; 3004 3005 value = *(int *)arg1; 3006 error = sysctl_handle_int(oidp, &value, 0, req); 3007 if (error || !req->newptr) 3008 return (error); 3009 if (value < low || value > high) 3010 return (EINVAL); 3011 *(int *)arg1 = value; 3012 return (0); 3013 } 3014 3015 /* 3016 * Interrupt delay is expressed in microseconds, a multiplier is used 3017 * to convert this to the appropriate clock ticks before using. 3018 */ 3019 static int 3020 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS) 3021 { 3022 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000)); 3023 } 3024 3025 static int 3026 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS) 3027 { 3028 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff)); 3029 } 3030