xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 4b2eaea43fec8e8792be611dea204071a10b655a)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/mbuf.h>
38 #include <sys/malloc.h>
39 		/* #include <sys/mutex.h> */
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/sysctl.h>
43 
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 
48 #ifdef NS
49 #include <netns/ns.h>
50 #include <netns/ns_if.h>
51 #endif
52 
53 #include <net/bpf.h>
54 #include <sys/sockio.h>
55 #include <sys/bus.h>
56 #include <machine/bus.h>
57 #include <sys/rman.h>
58 #include <machine/resource.h>
59 
60 #include <net/ethernet.h>
61 #include <net/if_arp.h>
62 
63 #include <vm/vm.h>		/* for vtophys */
64 #include <vm/pmap.h>		/* for vtophys */
65 #include <machine/clock.h>	/* for DELAY */
66 
67 #include <net/if_types.h>
68 #include <net/if_vlan_var.h>
69 
70 #include <pci/pcivar.h>
71 #include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
72 
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/fxp/if_fxpreg.h>
77 #include <dev/fxp/if_fxpvar.h>
78 #include <dev/fxp/rcvbundl.h>
79 
80 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
81 #include "miibus_if.h"
82 
83 /*
84  * NOTE!  On the Alpha, we have an alignment constraint.  The
85  * card DMAs the packet immediately following the RFA.  However,
86  * the first thing in the packet is a 14-byte Ethernet header.
87  * This means that the packet is misaligned.  To compensate,
88  * we actually offset the RFA 2 bytes into the cluster.  This
89  * alignes the packet after the Ethernet header at a 32-bit
90  * boundary.  HOWEVER!  This means that the RFA is misaligned!
91  */
92 #define	RFA_ALIGNMENT_FUDGE	2
93 
94 /*
95  * Set initial transmit threshold at 64 (512 bytes). This is
96  * increased by 64 (512 bytes) at a time, to maximum of 192
97  * (1536 bytes), if an underrun occurs.
98  */
99 static int tx_threshold = 64;
100 
101 /*
102  * The configuration byte map has several undefined fields which
103  * must be one or must be zero.  Set up a template for these bits
104  * only, (assuming a 82557 chip) leaving the actual configuration
105  * to fxp_init.
106  *
107  * See struct fxp_cb_config for the bit definitions.
108  */
109 static u_char fxp_cb_config_template[] = {
110 	0x0, 0x0,		/* cb_status */
111 	0x0, 0x0,		/* cb_command */
112 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113 	0x0,	/*  0 */
114 	0x0,	/*  1 */
115 	0x0,	/*  2 */
116 	0x0,	/*  3 */
117 	0x0,	/*  4 */
118 	0x0,	/*  5 */
119 	0x32,	/*  6 */
120 	0x0,	/*  7 */
121 	0x0,	/*  8 */
122 	0x0,	/*  9 */
123 	0x6,	/* 10 */
124 	0x0,	/* 11 */
125 	0x0,	/* 12 */
126 	0x0,	/* 13 */
127 	0xf2,	/* 14 */
128 	0x48,	/* 15 */
129 	0x0,	/* 16 */
130 	0x40,	/* 17 */
131 	0xf0,	/* 18 */
132 	0x0,	/* 19 */
133 	0x3f,	/* 20 */
134 	0x5	/* 21 */
135 };
136 
137 struct fxp_ident {
138 	u_int16_t	devid;
139 	char 		*name;
140 };
141 
142 /*
143  * Claim various Intel PCI device identifiers for this driver.  The
144  * sub-vendor and sub-device field are extensively used to identify
145  * particular variants, but we don't currently differentiate between
146  * them.
147  */
148 static struct fxp_ident fxp_ident_table[] = {
149     { 0x1229,		"Intel Pro 10/100B/100+ Ethernet" },
150     { 0x2449,		"Intel Pro/100 Ethernet" },
151     { 0x1209,		"Intel Embedded 10/100 Ethernet" },
152     { 0x1029,		"Intel Pro/100 Ethernet" },
153     { 0x1030,		"Intel Pro/100 Ethernet" },
154     { 0x1031,		"Intel Pro/100 Ethernet" },
155     { 0x1032,		"Intel Pro/100 Ethernet" },
156     { 0x1033,		"Intel Pro/100 Ethernet" },
157     { 0x1034,		"Intel Pro/100 Ethernet" },
158     { 0x1035,		"Intel Pro/100 Ethernet" },
159     { 0x1036,		"Intel Pro/100 Ethernet" },
160     { 0x1037,		"Intel Pro/100 Ethernet" },
161     { 0x1038,		"Intel Pro/100 Ethernet" },
162     { 0x1039,		"Intel Pro/100 Ethernet" },
163     { 0x103A,		"Intel Pro/100 Ethernet" },
164     { 0x103B,		"Intel Pro/100 Ethernet" },
165     { 0x103C,		"Intel Pro/100 Ethernet" },
166     { 0x103D,		"Intel Pro/100 Ethernet" },
167     { 0x103E,		"Intel Pro/100 Ethernet" },
168     { 0x1059,		"Intel Pro/100 M Mobile Connection" },
169     { 0,		NULL },
170 };
171 
172 static int		fxp_probe(device_t dev);
173 static int		fxp_attach(device_t dev);
174 static int		fxp_detach(device_t dev);
175 static int		fxp_shutdown(device_t dev);
176 static int		fxp_suspend(device_t dev);
177 static int		fxp_resume(device_t dev);
178 
179 static void		fxp_intr(void *xsc);
180 static void 		fxp_init(void *xsc);
181 static void 		fxp_tick(void *xsc);
182 static void		fxp_powerstate_d0(device_t dev);
183 static void 		fxp_start(struct ifnet *ifp);
184 static void		fxp_stop(struct fxp_softc *sc);
185 static void 		fxp_release(struct fxp_softc *sc);
186 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
187 			    caddr_t data);
188 static void 		fxp_watchdog(struct ifnet *ifp);
189 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
190 static int		fxp_mc_addrs(struct fxp_softc *sc);
191 static void		fxp_mc_setup(struct fxp_softc *sc);
192 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
193 			    int autosize);
194 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
195 			    u_int16_t data);
196 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
197 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
198 			    int offset, int words);
199 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
200 			    int offset, int words);
201 static int		fxp_ifmedia_upd(struct ifnet *ifp);
202 static void		fxp_ifmedia_sts(struct ifnet *ifp,
203 			    struct ifmediareq *ifmr);
204 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
205 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
206 			    struct ifmediareq *ifmr);
207 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
208 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
209 			    int value);
210 static void		fxp_load_ucode(struct fxp_softc *sc);
211 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
212 			    int low, int high);
213 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
214 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
215 static __inline void	fxp_lwcopy(volatile u_int32_t *src,
216 			    volatile u_int32_t *dst);
217 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
218 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
219 static __inline void	fxp_dma_wait(volatile u_int16_t *status,
220 			    struct fxp_softc *sc);
221 
222 static device_method_t fxp_methods[] = {
223 	/* Device interface */
224 	DEVMETHOD(device_probe,		fxp_probe),
225 	DEVMETHOD(device_attach,	fxp_attach),
226 	DEVMETHOD(device_detach,	fxp_detach),
227 	DEVMETHOD(device_shutdown,	fxp_shutdown),
228 	DEVMETHOD(device_suspend,	fxp_suspend),
229 	DEVMETHOD(device_resume,	fxp_resume),
230 
231 	/* MII interface */
232 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
233 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
234 
235 	{ 0, 0 }
236 };
237 
238 static driver_t fxp_driver = {
239 	"fxp",
240 	fxp_methods,
241 	sizeof(struct fxp_softc),
242 };
243 
244 static devclass_t fxp_devclass;
245 
246 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
247 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
248 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
249 
250 static int fxp_rnr;
251 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
252 
253 /*
254  * Inline function to copy a 16-bit aligned 32-bit quantity.
255  */
256 static __inline void
257 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
258 {
259 #ifdef __i386__
260 	*dst = *src;
261 #else
262 	volatile u_int16_t *a = (volatile u_int16_t *)src;
263 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
264 
265 	b[0] = a[0];
266 	b[1] = a[1];
267 #endif
268 }
269 
270 /*
271  * Wait for the previous command to be accepted (but not necessarily
272  * completed).
273  */
274 static __inline void
275 fxp_scb_wait(struct fxp_softc *sc)
276 {
277 	int i = 10000;
278 
279 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
280 		DELAY(2);
281 	if (i == 0)
282 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
283 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
284 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
285 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
286 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
287 }
288 
289 static __inline void
290 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
291 {
292 
293 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
294 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
295 		fxp_scb_wait(sc);
296 	}
297 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
298 }
299 
300 static __inline void
301 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
302 {
303 	int i = 10000;
304 
305 	while (!(*status & FXP_CB_STATUS_C) && --i)
306 		DELAY(2);
307 	if (i == 0)
308 		device_printf(sc->dev, "DMA timeout\n");
309 }
310 
311 /*
312  * Return identification string if this is device is ours.
313  */
314 static int
315 fxp_probe(device_t dev)
316 {
317 	u_int16_t devid;
318 	struct fxp_ident *ident;
319 
320 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
321 		devid = pci_get_device(dev);
322 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
323 			if (ident->devid == devid) {
324 				device_set_desc(dev, ident->name);
325 				return (0);
326 			}
327 		}
328 	}
329 	return (ENXIO);
330 }
331 
332 static void
333 fxp_powerstate_d0(device_t dev)
334 {
335 #if __FreeBSD_version >= 430002
336 	u_int32_t iobase, membase, irq;
337 
338 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
339 		/* Save important PCI config data. */
340 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
341 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
342 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
343 
344 		/* Reset the power state. */
345 		device_printf(dev, "chip is in D%d power mode "
346 		    "-- setting to D0\n", pci_get_powerstate(dev));
347 
348 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
349 
350 		/* Restore PCI config data. */
351 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
352 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
353 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
354 	}
355 #endif
356 }
357 
358 static int
359 fxp_attach(device_t dev)
360 {
361 	int error = 0;
362 	struct fxp_softc *sc = device_get_softc(dev);
363 	struct ifnet *ifp;
364 	u_int32_t val;
365 	u_int16_t data;
366 	int i, rid, m1, m2, prefer_iomap;
367 	int s;
368 
369 	bzero(sc, sizeof(*sc));
370 	sc->dev = dev;
371 	callout_handle_init(&sc->stat_ch);
372 	sysctl_ctx_init(&sc->sysctl_ctx);
373 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
374 	    MTX_DEF | MTX_RECURSE);
375 
376 	s = splimp();
377 
378 	/*
379 	 * Enable bus mastering. Enable memory space too, in case
380 	 * BIOS/Prom forgot about it.
381 	 */
382 	val = pci_read_config(dev, PCIR_COMMAND, 2);
383 	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
384 	pci_write_config(dev, PCIR_COMMAND, val, 2);
385 	val = pci_read_config(dev, PCIR_COMMAND, 2);
386 
387 	fxp_powerstate_d0(dev);
388 
389 	/*
390 	 * Figure out which we should try first - memory mapping or i/o mapping?
391 	 * We default to memory mapping. Then we accept an override from the
392 	 * command line. Then we check to see which one is enabled.
393 	 */
394 	m1 = PCIM_CMD_MEMEN;
395 	m2 = PCIM_CMD_PORTEN;
396 	prefer_iomap = 0;
397 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
398 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
399 		m1 = PCIM_CMD_PORTEN;
400 		m2 = PCIM_CMD_MEMEN;
401 	}
402 
403 	if (val & m1) {
404 		sc->rtp =
405 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
406 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
407 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
408 	                                     0, ~0, 1, RF_ACTIVE);
409 	}
410 	if (sc->mem == NULL && (val & m2)) {
411 		sc->rtp =
412 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
413 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
414 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
415                                             0, ~0, 1, RF_ACTIVE);
416 	}
417 
418 	if (!sc->mem) {
419 		device_printf(dev, "could not map device registers\n");
420 		error = ENXIO;
421 		goto fail;
422         }
423 	if (bootverbose) {
424 		device_printf(dev, "using %s space register mapping\n",
425 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
426 	}
427 
428 	sc->sc_st = rman_get_bustag(sc->mem);
429 	sc->sc_sh = rman_get_bushandle(sc->mem);
430 
431 	/*
432 	 * Allocate our interrupt.
433 	 */
434 	rid = 0;
435 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
436 				 RF_SHAREABLE | RF_ACTIVE);
437 	if (sc->irq == NULL) {
438 		device_printf(dev, "could not map interrupt\n");
439 		error = ENXIO;
440 		goto fail;
441 	}
442 
443 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
444 			       fxp_intr, sc, &sc->ih);
445 	if (error) {
446 		device_printf(dev, "could not setup irq\n");
447 		goto fail;
448 	}
449 
450 	/*
451 	 * Reset to a stable state.
452 	 */
453 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
454 	DELAY(10);
455 
456 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
457 	    M_DEVBUF, M_NOWAIT | M_ZERO);
458 	if (sc->cbl_base == NULL)
459 		goto failmem;
460 
461 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
462 	    M_NOWAIT | M_ZERO);
463 	if (sc->fxp_stats == NULL)
464 		goto failmem;
465 
466 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
467 	if (sc->mcsp == NULL)
468 		goto failmem;
469 
470 	/*
471 	 * Pre-allocate our receive buffers.
472 	 */
473 	for (i = 0; i < FXP_NRFABUFS; i++) {
474 		if (fxp_add_rfabuf(sc, NULL) != 0) {
475 			goto failmem;
476 		}
477 	}
478 
479 	/*
480 	 * Find out how large of an SEEPROM we have.
481 	 */
482 	fxp_autosize_eeprom(sc);
483 
484 	/*
485 	 * Determine whether we must use the 503 serial interface.
486 	 */
487 	fxp_read_eeprom(sc, &data, 6, 1);
488 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
489 	    (data & FXP_PHY_SERIAL_ONLY))
490 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
491 
492 	/*
493 	 * Create the sysctl tree
494 	 */
495 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
496 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
497 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
498 	if (sc->sysctl_tree == NULL)
499 		goto fail;
500 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
501 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
502 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
503 	    "FXP driver receive interrupt microcode bundling delay");
504 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
505 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
506 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
507 	    "FXP driver receive interrupt microcode bundle size limit");
508 
509 	/*
510 	 * Pull in device tunables.
511 	 */
512 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
513 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
514 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
515 	    "int_delay", &sc->tunable_int_delay);
516 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
517 	    "bundle_max", &sc->tunable_bundle_max);
518 
519 	/*
520 	 * Find out the chip revision; lump all 82557 revs together.
521 	 */
522 	fxp_read_eeprom(sc, &data, 5, 1);
523 	if ((data >> 8) == 1)
524 		sc->revision = FXP_REV_82557;
525 	else
526 		sc->revision = pci_get_revid(dev);
527 
528 	/*
529 	 * Enable workarounds for certain chip revision deficiencies.
530 	 *
531 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
532 	 * some systems based a normal 82559 design, have a defect where
533 	 * the chip can cause a PCI protocol violation if it receives
534 	 * a CU_RESUME command when it is entering the IDLE state.  The
535 	 * workaround is to disable Dynamic Standby Mode, so the chip never
536 	 * deasserts CLKRUN#, and always remains in an active state.
537 	 *
538 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
539 	 */
540 	i = pci_get_device(dev);
541 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
542 	    sc->revision >= FXP_REV_82559_A0) {
543 		fxp_read_eeprom(sc, &data, 10, 1);
544 		if (data & 0x02) {			/* STB enable */
545 			u_int16_t cksum;
546 			int i;
547 
548 			device_printf(dev,
549 			    "Disabling dynamic standby mode in EEPROM\n");
550 			data &= ~0x02;
551 			fxp_write_eeprom(sc, &data, 10, 1);
552 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
553 			cksum = 0;
554 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
555 				fxp_read_eeprom(sc, &data, i, 1);
556 				cksum += data;
557 			}
558 			i = (1 << sc->eeprom_size) - 1;
559 			cksum = 0xBABA - cksum;
560 			fxp_read_eeprom(sc, &data, i, 1);
561 			fxp_write_eeprom(sc, &cksum, i, 1);
562 			device_printf(dev,
563 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
564 			    i, data, cksum);
565 #if 1
566 			/*
567 			 * If the user elects to continue, try the software
568 			 * workaround, as it is better than nothing.
569 			 */
570 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
571 #endif
572 		}
573 	}
574 
575 	/*
576 	 * If we are not a 82557 chip, we can enable extended features.
577 	 */
578 	if (sc->revision != FXP_REV_82557) {
579 		/*
580 		 * If MWI is enabled in the PCI configuration, and there
581 		 * is a valid cacheline size (8 or 16 dwords), then tell
582 		 * the board to turn on MWI.
583 		 */
584 		if (val & PCIM_CMD_MWRICEN &&
585 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
586 			sc->flags |= FXP_FLAG_MWI_ENABLE;
587 
588 		/* turn on the extended TxCB feature */
589 		sc->flags |= FXP_FLAG_EXT_TXCB;
590 
591 		/* enable reception of long frames for VLAN */
592 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
593 	}
594 
595 	/*
596 	 * Read MAC address.
597 	 */
598 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
599 	device_printf(dev, "Ethernet address %6D%s\n",
600 	    sc->arpcom.ac_enaddr, ":",
601 	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
602 	if (bootverbose) {
603 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
604 		    pci_get_vendor(dev), pci_get_device(dev),
605 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
606 		    pci_get_revid(dev));
607 		fxp_read_eeprom(sc, &data, 10, 1);
608 		device_printf(dev, "Dynamic Standby mode is %s\n",
609 		    data & 0x02 ? "enabled" : "disabled");
610 	}
611 
612 	/*
613 	 * If this is only a 10Mbps device, then there is no MII, and
614 	 * the PHY will use a serial interface instead.
615 	 *
616 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
617 	 * doesn't have a programming interface of any sort.  The
618 	 * media is sensed automatically based on how the link partner
619 	 * is configured.  This is, in essence, manual configuration.
620 	 */
621 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
622 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
623 		    fxp_serial_ifmedia_sts);
624 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
625 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
626 	} else {
627 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
628 		    fxp_ifmedia_sts)) {
629 	                device_printf(dev, "MII without any PHY!\n");
630 			error = ENXIO;
631 			goto fail;
632 		}
633 	}
634 
635 	ifp = &sc->arpcom.ac_if;
636 	ifp->if_unit = device_get_unit(dev);
637 	ifp->if_name = "fxp";
638 	ifp->if_output = ether_output;
639 	ifp->if_baudrate = 100000000;
640 	ifp->if_init = fxp_init;
641 	ifp->if_softc = sc;
642 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
643 	ifp->if_ioctl = fxp_ioctl;
644 	ifp->if_start = fxp_start;
645 	ifp->if_watchdog = fxp_watchdog;
646 
647 	/*
648 	 * Attach the interface.
649 	 */
650 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
651 
652 	/*
653 	 * Tell the upper layer(s) we support long frames.
654 	 */
655 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
656 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
657 
658 	/*
659 	 * Let the system queue as many packets as we have available
660 	 * TX descriptors.
661 	 */
662 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
663 
664 	splx(s);
665 	return (0);
666 
667 failmem:
668 	device_printf(dev, "Failed to malloc memory\n");
669 	error = ENOMEM;
670 fail:
671 	splx(s);
672 	fxp_release(sc);
673 	return (error);
674 }
675 
676 /*
677  * release all resources
678  */
679 static void
680 fxp_release(struct fxp_softc *sc)
681 {
682 
683 	bus_generic_detach(sc->dev);
684 	if (sc->miibus)
685 		device_delete_child(sc->dev, sc->miibus);
686 
687 	if (sc->cbl_base)
688 		free(sc->cbl_base, M_DEVBUF);
689 	if (sc->fxp_stats)
690 		free(sc->fxp_stats, M_DEVBUF);
691 	if (sc->mcsp)
692 		free(sc->mcsp, M_DEVBUF);
693 	if (sc->rfa_headm)
694 		m_freem(sc->rfa_headm);
695 
696 	if (sc->ih)
697 		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
698 	if (sc->irq)
699 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
700 	if (sc->mem)
701 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
702 
703         sysctl_ctx_free(&sc->sysctl_ctx);
704 
705 	mtx_destroy(&sc->sc_mtx);
706 }
707 
708 /*
709  * Detach interface.
710  */
711 static int
712 fxp_detach(device_t dev)
713 {
714 	struct fxp_softc *sc = device_get_softc(dev);
715 	int s;
716 
717 	/* disable interrupts */
718 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
719 
720 	s = splimp();
721 
722 	/*
723 	 * Stop DMA and drop transmit queue.
724 	 */
725 	fxp_stop(sc);
726 
727 	/*
728 	 * Close down routes etc.
729 	 */
730 	ether_ifdetach(&sc->arpcom.ac_if);
731 
732 	/*
733 	 * Free all media structures.
734 	 */
735 	ifmedia_removeall(&sc->sc_media);
736 
737 	splx(s);
738 
739 	/* Release our allocated resources. */
740 	fxp_release(sc);
741 
742 	return (0);
743 }
744 
745 /*
746  * Device shutdown routine. Called at system shutdown after sync. The
747  * main purpose of this routine is to shut off receiver DMA so that
748  * kernel memory doesn't get clobbered during warmboot.
749  */
750 static int
751 fxp_shutdown(device_t dev)
752 {
753 	/*
754 	 * Make sure that DMA is disabled prior to reboot. Not doing
755 	 * do could allow DMA to corrupt kernel memory during the
756 	 * reboot before the driver initializes.
757 	 */
758 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
759 	return (0);
760 }
761 
762 /*
763  * Device suspend routine.  Stop the interface and save some PCI
764  * settings in case the BIOS doesn't restore them properly on
765  * resume.
766  */
767 static int
768 fxp_suspend(device_t dev)
769 {
770 	struct fxp_softc *sc = device_get_softc(dev);
771 	int i, s;
772 
773 	s = splimp();
774 
775 	fxp_stop(sc);
776 
777 	for (i = 0; i < 5; i++)
778 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
779 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
780 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
781 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
782 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
783 
784 	sc->suspended = 1;
785 
786 	splx(s);
787 	return (0);
788 }
789 
790 /*
791  * Device resume routine.  Restore some PCI settings in case the BIOS
792  * doesn't, re-enable busmastering, and restart the interface if
793  * appropriate.
794  */
795 static int
796 fxp_resume(device_t dev)
797 {
798 	struct fxp_softc *sc = device_get_softc(dev);
799 	struct ifnet *ifp = &sc->sc_if;
800 	u_int16_t pci_command;
801 	int i, s;
802 
803 	s = splimp();
804 
805 	fxp_powerstate_d0(dev);
806 
807 	/* better way to do this? */
808 	for (i = 0; i < 5; i++)
809 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
810 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
811 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
812 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
813 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
814 
815 	/* reenable busmastering */
816 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
817 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
818 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
819 
820 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
821 	DELAY(10);
822 
823 	/* reinitialize interface if necessary */
824 	if (ifp->if_flags & IFF_UP)
825 		fxp_init(sc);
826 
827 	sc->suspended = 0;
828 
829 	splx(s);
830 	return (0);
831 }
832 
833 static void
834 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
835 {
836 	u_int16_t reg;
837 	int x;
838 
839 	/*
840 	 * Shift in data.
841 	 */
842 	for (x = 1 << (length - 1); x; x >>= 1) {
843 		if (data & x)
844 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
845 		else
846 			reg = FXP_EEPROM_EECS;
847 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
848 		DELAY(1);
849 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
850 		DELAY(1);
851 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
852 		DELAY(1);
853 	}
854 }
855 
856 /*
857  * Read from the serial EEPROM. Basically, you manually shift in
858  * the read opcode (one bit at a time) and then shift in the address,
859  * and then you shift out the data (all of this one bit at a time).
860  * The word size is 16 bits, so you have to provide the address for
861  * every 16 bits of data.
862  */
863 static u_int16_t
864 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
865 {
866 	u_int16_t reg, data;
867 	int x;
868 
869 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
870 	/*
871 	 * Shift in read opcode.
872 	 */
873 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
874 	/*
875 	 * Shift in address.
876 	 */
877 	data = 0;
878 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
879 		if (offset & x)
880 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
881 		else
882 			reg = FXP_EEPROM_EECS;
883 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
884 		DELAY(1);
885 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
886 		DELAY(1);
887 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
888 		DELAY(1);
889 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
890 		data++;
891 		if (autosize && reg == 0) {
892 			sc->eeprom_size = data;
893 			break;
894 		}
895 	}
896 	/*
897 	 * Shift out data.
898 	 */
899 	data = 0;
900 	reg = FXP_EEPROM_EECS;
901 	for (x = 1 << 15; x; x >>= 1) {
902 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
903 		DELAY(1);
904 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
905 			data |= x;
906 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
907 		DELAY(1);
908 	}
909 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
910 	DELAY(1);
911 
912 	return (data);
913 }
914 
915 static void
916 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
917 {
918 	int i;
919 
920 	/*
921 	 * Erase/write enable.
922 	 */
923 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
924 	fxp_eeprom_shiftin(sc, 0x4, 3);
925 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
926 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
927 	DELAY(1);
928 	/*
929 	 * Shift in write opcode, address, data.
930 	 */
931 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
932 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
933 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
934 	fxp_eeprom_shiftin(sc, data, 16);
935 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
936 	DELAY(1);
937 	/*
938 	 * Wait for EEPROM to finish up.
939 	 */
940 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
941 	DELAY(1);
942 	for (i = 0; i < 1000; i++) {
943 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
944 			break;
945 		DELAY(50);
946 	}
947 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
948 	DELAY(1);
949 	/*
950 	 * Erase/write disable.
951 	 */
952 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
953 	fxp_eeprom_shiftin(sc, 0x4, 3);
954 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
955 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
956 	DELAY(1);
957 }
958 
959 /*
960  * From NetBSD:
961  *
962  * Figure out EEPROM size.
963  *
964  * 559's can have either 64-word or 256-word EEPROMs, the 558
965  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
966  * talks about the existance of 16 to 256 word EEPROMs.
967  *
968  * The only known sizes are 64 and 256, where the 256 version is used
969  * by CardBus cards to store CIS information.
970  *
971  * The address is shifted in msb-to-lsb, and after the last
972  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
973  * after which follows the actual data. We try to detect this zero, by
974  * probing the data-out bit in the EEPROM control register just after
975  * having shifted in a bit. If the bit is zero, we assume we've
976  * shifted enough address bits. The data-out should be tri-state,
977  * before this, which should translate to a logical one.
978  */
979 static void
980 fxp_autosize_eeprom(struct fxp_softc *sc)
981 {
982 
983 	/* guess maximum size of 256 words */
984 	sc->eeprom_size = 8;
985 
986 	/* autosize */
987 	(void) fxp_eeprom_getword(sc, 0, 1);
988 }
989 
990 static void
991 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
992 {
993 	int i;
994 
995 	for (i = 0; i < words; i++)
996 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
997 }
998 
999 static void
1000 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1001 {
1002 	int i;
1003 
1004 	for (i = 0; i < words; i++)
1005 		fxp_eeprom_putword(sc, offset + i, data[i]);
1006 }
1007 
1008 /*
1009  * Start packet transmission on the interface.
1010  */
1011 static void
1012 fxp_start(struct ifnet *ifp)
1013 {
1014 	struct fxp_softc *sc = ifp->if_softc;
1015 	struct fxp_cb_tx *txp;
1016 
1017 	/*
1018 	 * See if we need to suspend xmit until the multicast filter
1019 	 * has been reprogrammed (which can only be done at the head
1020 	 * of the command chain).
1021 	 */
1022 	if (sc->need_mcsetup) {
1023 		return;
1024 	}
1025 
1026 	txp = NULL;
1027 
1028 	/*
1029 	 * We're finished if there is nothing more to add to the list or if
1030 	 * we're all filled up with buffers to transmit.
1031 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1032 	 *       a NOP command when needed.
1033 	 */
1034 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1035 		struct mbuf *m, *mb_head;
1036 		int segment;
1037 
1038 		/*
1039 		 * Grab a packet to transmit.
1040 		 */
1041 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1042 
1043 		/*
1044 		 * Get pointer to next available tx desc.
1045 		 */
1046 		txp = sc->cbl_last->next;
1047 
1048 		/*
1049 		 * Go through each of the mbufs in the chain and initialize
1050 		 * the transmit buffer descriptors with the physical address
1051 		 * and size of the mbuf.
1052 		 */
1053 tbdinit:
1054 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1055 			if (m->m_len != 0) {
1056 				if (segment == FXP_NTXSEG)
1057 					break;
1058 				txp->tbd[segment].tb_addr =
1059 				    vtophys(mtod(m, vm_offset_t));
1060 				txp->tbd[segment].tb_size = m->m_len;
1061 				segment++;
1062 			}
1063 		}
1064 		if (m != NULL) {
1065 			struct mbuf *mn;
1066 
1067 			/*
1068 			 * We ran out of segments. We have to recopy this
1069 			 * mbuf chain first. Bail out if we can't get the
1070 			 * new buffers.
1071 			 */
1072 			MGETHDR(mn, M_NOWAIT, MT_DATA);
1073 			if (mn == NULL) {
1074 				m_freem(mb_head);
1075 				break;
1076 			}
1077 			if (mb_head->m_pkthdr.len > MHLEN) {
1078 				MCLGET(mn, M_NOWAIT);
1079 				if ((mn->m_flags & M_EXT) == 0) {
1080 					m_freem(mn);
1081 					m_freem(mb_head);
1082 					break;
1083 				}
1084 			}
1085 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1086 			    mtod(mn, caddr_t));
1087 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1088 			m_freem(mb_head);
1089 			mb_head = mn;
1090 			goto tbdinit;
1091 		}
1092 
1093 		txp->tbd_number = segment;
1094 		txp->mb_head = mb_head;
1095 		txp->cb_status = 0;
1096 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1097 			txp->cb_command =
1098 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1099 			    FXP_CB_COMMAND_S;
1100 		} else {
1101 			txp->cb_command =
1102 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1103 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1104 			/*
1105 			 * Set a 5 second timer just in case we don't hear
1106 			 * from the card again.
1107 			 */
1108 			ifp->if_timer = 5;
1109 		}
1110 		txp->tx_threshold = tx_threshold;
1111 
1112 		/*
1113 		 * Advance the end of list forward.
1114 		 */
1115 
1116 #ifdef __alpha__
1117 		/*
1118 		 * On platforms which can't access memory in 16-bit
1119 		 * granularities, we must prevent the card from DMA'ing
1120 		 * up the status while we update the command field.
1121 		 * This could cause us to overwrite the completion status.
1122 		 */
1123 		atomic_clear_short(&sc->cbl_last->cb_command,
1124 		    FXP_CB_COMMAND_S);
1125 #else
1126 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1127 #endif /*__alpha__*/
1128 		sc->cbl_last = txp;
1129 
1130 		/*
1131 		 * Advance the beginning of the list forward if there are
1132 		 * no other packets queued (when nothing is queued, cbl_first
1133 		 * sits on the last TxCB that was sent out).
1134 		 */
1135 		if (sc->tx_queued == 0)
1136 			sc->cbl_first = txp;
1137 
1138 		sc->tx_queued++;
1139 
1140 		/*
1141 		 * Pass packet to bpf if there is a listener.
1142 		 */
1143 		BPF_MTAP(ifp, mb_head);
1144 	}
1145 
1146 	/*
1147 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1148 	 * going again if suspended.
1149 	 */
1150 	if (txp != NULL) {
1151 		fxp_scb_wait(sc);
1152 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1153 	}
1154 }
1155 
1156 static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count);
1157 
1158 #ifdef DEVICE_POLLING
1159 static poll_handler_t fxp_poll;
1160 
1161 static void
1162 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1163 {
1164 	struct fxp_softc *sc = ifp->if_softc;
1165 	u_int8_t statack;
1166 
1167 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1168 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1169 		return;
1170 	}
1171 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1172 	    FXP_SCB_STATACK_FR;
1173 	if (cmd == POLL_AND_CHECK_STATUS) {
1174 		u_int8_t tmp;
1175 
1176 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1177 		if (tmp == 0xff || tmp == 0)
1178 			return; /* nothing to do */
1179 		tmp &= ~statack;
1180 		/* ack what we can */
1181 		if (tmp != 0)
1182 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1183 		statack |= tmp;
1184 	}
1185 	fxp_intr_body(sc, statack, count);
1186 }
1187 #endif /* DEVICE_POLLING */
1188 
1189 /*
1190  * Process interface interrupts.
1191  */
1192 static void
1193 fxp_intr(void *xsc)
1194 {
1195 	struct fxp_softc *sc = xsc;
1196 	u_int8_t statack;
1197 
1198 #ifdef DEVICE_POLLING
1199 	struct ifnet *ifp = &sc->sc_if;
1200 
1201 	if (ifp->if_flags & IFF_POLLING)
1202 		return;
1203 	if (ether_poll_register(fxp_poll, ifp)) {
1204 		/* disable interrupts */
1205 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1206 		fxp_poll(ifp, 0, 1);
1207 		return;
1208 	}
1209 #endif
1210 
1211 	if (sc->suspended) {
1212 		return;
1213 	}
1214 
1215 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1216 		/*
1217 		 * It should not be possible to have all bits set; the
1218 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1219 		 * all bits are set, this may indicate that the card has
1220 		 * been physically ejected, so ignore it.
1221 		 */
1222 		if (statack == 0xff)
1223 			return;
1224 
1225 		/*
1226 		 * First ACK all the interrupts in this pass.
1227 		 */
1228 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1229 		fxp_intr_body(sc, statack, -1);
1230 	}
1231 }
1232 
1233 static void
1234 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1235 {
1236 	struct ifnet *ifp = &sc->sc_if;
1237 	struct mbuf *m;
1238 	struct fxp_rfa *rfa;
1239 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1240 
1241 	if (rnr)
1242 		fxp_rnr++;
1243 #ifdef DEVICE_POLLING
1244 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1245 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1246 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1247 		rnr = 1;
1248 	}
1249 #endif
1250 
1251 	/*
1252 	 * Free any finished transmit mbuf chains.
1253 	 *
1254 	 * Handle the CNA event likt a CXTNO event. It used to
1255 	 * be that this event (control unit not ready) was not
1256 	 * encountered, but it is now with the SMPng modifications.
1257 	 * The exact sequence of events that occur when the interface
1258 	 * is brought up are different now, and if this event
1259 	 * goes unhandled, the configuration/rxfilter setup sequence
1260 	 * can stall for several seconds. The result is that no
1261 	 * packets go out onto the wire for about 5 to 10 seconds
1262 	 * after the interface is ifconfig'ed for the first time.
1263 	 */
1264 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1265 		struct fxp_cb_tx *txp;
1266 
1267 		for (txp = sc->cbl_first; sc->tx_queued &&
1268 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1269 		    txp = txp->next) {
1270 			if (txp->mb_head != NULL) {
1271 				m_freem(txp->mb_head);
1272 				txp->mb_head = NULL;
1273 			}
1274 			sc->tx_queued--;
1275 		}
1276 		sc->cbl_first = txp;
1277 		ifp->if_timer = 0;
1278 		if (sc->tx_queued == 0) {
1279 			if (sc->need_mcsetup)
1280 				fxp_mc_setup(sc);
1281 		}
1282 		/*
1283 		 * Try to start more packets transmitting.
1284 		 */
1285 		if (ifp->if_snd.ifq_head != NULL)
1286 			fxp_start(ifp);
1287 	}
1288 
1289 	/*
1290 	 * Just return if nothing happened on the receive side.
1291 	 */
1292 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1293 		return;
1294 
1295 	/*
1296 	 * Process receiver interrupts. If a no-resource (RNR)
1297 	 * condition exists, get whatever packets we can and
1298 	 * re-start the receiver.
1299 	 *
1300 	 * When using polling, we do not process the list to completion,
1301 	 * so when we get an RNR interrupt we must defer the restart
1302 	 * until we hit the last buffer with the C bit set.
1303 	 * If we run out of cycles and rfa_headm has the C bit set,
1304 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1305 	 * that the info will be used in the subsequent polling cycle.
1306 	 */
1307 	for (;;) {
1308 		m = sc->rfa_headm;
1309 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1310 		    RFA_ALIGNMENT_FUDGE);
1311 
1312 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1313 		if (count >= 0 && count-- == 0) {
1314 			if (rnr) {
1315 				/* Defer RNR processing until the next time. */
1316 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1317 				rnr = 0;
1318 			}
1319 			break;
1320 		}
1321 #endif /* DEVICE_POLLING */
1322 
1323 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1324 			break;
1325 
1326 		/*
1327 		 * Remove first packet from the chain.
1328 		 */
1329 		sc->rfa_headm = m->m_next;
1330 		m->m_next = NULL;
1331 
1332 		/*
1333 		 * Add a new buffer to the receive chain.
1334 		 * If this fails, the old buffer is recycled
1335 		 * instead.
1336 		 */
1337 		if (fxp_add_rfabuf(sc, m) == 0) {
1338 			int total_len;
1339 
1340 			/*
1341 			 * Fetch packet length (the top 2 bits of
1342 			 * actual_size are flags set by the controller
1343 			 * upon completion), and drop the packet in case
1344 			 * of bogus length or CRC errors.
1345 			 */
1346 			total_len = rfa->actual_size & 0x3fff;
1347 			if (total_len < sizeof(struct ether_header) ||
1348 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1349 				sizeof(struct fxp_rfa) ||
1350 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1351 				m_freem(m);
1352 				continue;
1353 			}
1354 
1355 			m->m_pkthdr.len = m->m_len = total_len;
1356 			m->m_pkthdr.rcvif = ifp;
1357 
1358 			(*ifp->if_input)(ifp, m);
1359 		}
1360 	}
1361 	if (rnr) {
1362 		fxp_scb_wait(sc);
1363 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1364 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1365 		    RFA_ALIGNMENT_FUDGE);
1366 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1367 	}
1368 }
1369 
1370 /*
1371  * Update packet in/out/collision statistics. The i82557 doesn't
1372  * allow you to access these counters without doing a fairly
1373  * expensive DMA to get _all_ of the statistics it maintains, so
1374  * we do this operation here only once per second. The statistics
1375  * counters in the kernel are updated from the previous dump-stats
1376  * DMA and then a new dump-stats DMA is started. The on-chip
1377  * counters are zeroed when the DMA completes. If we can't start
1378  * the DMA immediately, we don't wait - we just prepare to read
1379  * them again next time.
1380  */
1381 static void
1382 fxp_tick(void *xsc)
1383 {
1384 	struct fxp_softc *sc = xsc;
1385 	struct ifnet *ifp = &sc->sc_if;
1386 	struct fxp_stats *sp = sc->fxp_stats;
1387 	struct fxp_cb_tx *txp;
1388 	int s;
1389 
1390 	ifp->if_opackets += sp->tx_good;
1391 	ifp->if_collisions += sp->tx_total_collisions;
1392 	if (sp->rx_good) {
1393 		ifp->if_ipackets += sp->rx_good;
1394 		sc->rx_idle_secs = 0;
1395 	} else {
1396 		/*
1397 		 * Receiver's been idle for another second.
1398 		 */
1399 		sc->rx_idle_secs++;
1400 	}
1401 	ifp->if_ierrors +=
1402 	    sp->rx_crc_errors +
1403 	    sp->rx_alignment_errors +
1404 	    sp->rx_rnr_errors +
1405 	    sp->rx_overrun_errors;
1406 	/*
1407 	 * If any transmit underruns occured, bump up the transmit
1408 	 * threshold by another 512 bytes (64 * 8).
1409 	 */
1410 	if (sp->tx_underruns) {
1411 		ifp->if_oerrors += sp->tx_underruns;
1412 		if (tx_threshold < 192)
1413 			tx_threshold += 64;
1414 	}
1415 	s = splimp();
1416 	/*
1417 	 * Release any xmit buffers that have completed DMA. This isn't
1418 	 * strictly necessary to do here, but it's advantagous for mbufs
1419 	 * with external storage to be released in a timely manner rather
1420 	 * than being defered for a potentially long time. This limits
1421 	 * the delay to a maximum of one second.
1422 	 */
1423 	for (txp = sc->cbl_first; sc->tx_queued &&
1424 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1425 	    txp = txp->next) {
1426 		if (txp->mb_head != NULL) {
1427 			m_freem(txp->mb_head);
1428 			txp->mb_head = NULL;
1429 		}
1430 		sc->tx_queued--;
1431 	}
1432 	sc->cbl_first = txp;
1433 	/*
1434 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1435 	 * then assume the receiver has locked up and attempt to clear
1436 	 * the condition by reprogramming the multicast filter. This is
1437 	 * a work-around for a bug in the 82557 where the receiver locks
1438 	 * up if it gets certain types of garbage in the syncronization
1439 	 * bits prior to the packet header. This bug is supposed to only
1440 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1441 	 * mode as well (perhaps due to a 10/100 speed transition).
1442 	 */
1443 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1444 		sc->rx_idle_secs = 0;
1445 		fxp_mc_setup(sc);
1446 	}
1447 	/*
1448 	 * If there is no pending command, start another stats
1449 	 * dump. Otherwise punt for now.
1450 	 */
1451 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1452 		/*
1453 		 * Start another stats dump.
1454 		 */
1455 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1456 	} else {
1457 		/*
1458 		 * A previous command is still waiting to be accepted.
1459 		 * Just zero our copy of the stats and wait for the
1460 		 * next timer event to update them.
1461 		 */
1462 		sp->tx_good = 0;
1463 		sp->tx_underruns = 0;
1464 		sp->tx_total_collisions = 0;
1465 
1466 		sp->rx_good = 0;
1467 		sp->rx_crc_errors = 0;
1468 		sp->rx_alignment_errors = 0;
1469 		sp->rx_rnr_errors = 0;
1470 		sp->rx_overrun_errors = 0;
1471 	}
1472 	if (sc->miibus != NULL)
1473 		mii_tick(device_get_softc(sc->miibus));
1474 	splx(s);
1475 	/*
1476 	 * Schedule another timeout one second from now.
1477 	 */
1478 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1479 }
1480 
1481 /*
1482  * Stop the interface. Cancels the statistics updater and resets
1483  * the interface.
1484  */
1485 static void
1486 fxp_stop(struct fxp_softc *sc)
1487 {
1488 	struct ifnet *ifp = &sc->sc_if;
1489 	struct fxp_cb_tx *txp;
1490 	int i;
1491 
1492 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1493 	ifp->if_timer = 0;
1494 
1495 #ifdef DEVICE_POLLING
1496 	ether_poll_deregister(ifp);
1497 #endif
1498 	/*
1499 	 * Cancel stats updater.
1500 	 */
1501 	untimeout(fxp_tick, sc, sc->stat_ch);
1502 
1503 	/*
1504 	 * Issue software reset, which also unloads the microcode.
1505 	 */
1506 	sc->flags &= ~FXP_FLAG_UCODE;
1507 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1508 	DELAY(50);
1509 
1510 	/*
1511 	 * Release any xmit buffers.
1512 	 */
1513 	txp = sc->cbl_base;
1514 	if (txp != NULL) {
1515 		for (i = 0; i < FXP_NTXCB; i++) {
1516 			if (txp[i].mb_head != NULL) {
1517 				m_freem(txp[i].mb_head);
1518 				txp[i].mb_head = NULL;
1519 			}
1520 		}
1521 	}
1522 	sc->tx_queued = 0;
1523 
1524 	/*
1525 	 * Free all the receive buffers then reallocate/reinitialize
1526 	 */
1527 	if (sc->rfa_headm != NULL)
1528 		m_freem(sc->rfa_headm);
1529 	sc->rfa_headm = NULL;
1530 	sc->rfa_tailm = NULL;
1531 	for (i = 0; i < FXP_NRFABUFS; i++) {
1532 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1533 			/*
1534 			 * This "can't happen" - we're at splimp()
1535 			 * and we just freed all the buffers we need
1536 			 * above.
1537 			 */
1538 			panic("fxp_stop: no buffers!");
1539 		}
1540 	}
1541 }
1542 
1543 /*
1544  * Watchdog/transmission transmit timeout handler. Called when a
1545  * transmission is started on the interface, but no interrupt is
1546  * received before the timeout. This usually indicates that the
1547  * card has wedged for some reason.
1548  */
1549 static void
1550 fxp_watchdog(struct ifnet *ifp)
1551 {
1552 	struct fxp_softc *sc = ifp->if_softc;
1553 
1554 	device_printf(sc->dev, "device timeout\n");
1555 	ifp->if_oerrors++;
1556 
1557 	fxp_init(sc);
1558 }
1559 
1560 static void
1561 fxp_init(void *xsc)
1562 {
1563 	struct fxp_softc *sc = xsc;
1564 	struct ifnet *ifp = &sc->sc_if;
1565 	struct fxp_cb_config *cbp;
1566 	struct fxp_cb_ias *cb_ias;
1567 	struct fxp_cb_tx *txp;
1568 	struct fxp_cb_mcs *mcsp;
1569 	int i, prm, s;
1570 
1571 	s = splimp();
1572 	/*
1573 	 * Cancel any pending I/O
1574 	 */
1575 	fxp_stop(sc);
1576 
1577 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1578 
1579 	/*
1580 	 * Initialize base of CBL and RFA memory. Loading with zero
1581 	 * sets it up for regular linear addressing.
1582 	 */
1583 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1584 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1585 
1586 	fxp_scb_wait(sc);
1587 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1588 
1589 	/*
1590 	 * Initialize base of dump-stats buffer.
1591 	 */
1592 	fxp_scb_wait(sc);
1593 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1594 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1595 
1596 	/*
1597 	 * Attempt to load microcode if requested.
1598 	 */
1599 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1600 		fxp_load_ucode(sc);
1601 
1602 	/*
1603 	 * Initialize the multicast address list.
1604 	 */
1605 	if (fxp_mc_addrs(sc)) {
1606 		mcsp = sc->mcsp;
1607 		mcsp->cb_status = 0;
1608 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1609 		mcsp->link_addr = -1;
1610 		/*
1611 	 	 * Start the multicast setup command.
1612 		 */
1613 		fxp_scb_wait(sc);
1614 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1615 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1616 		/* ...and wait for it to complete. */
1617 		fxp_dma_wait(&mcsp->cb_status, sc);
1618 	}
1619 
1620 	/*
1621 	 * We temporarily use memory that contains the TxCB list to
1622 	 * construct the config CB. The TxCB list memory is rebuilt
1623 	 * later.
1624 	 */
1625 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1626 
1627 	/*
1628 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1629 	 * zero and must be one bits in this structure and this is the easiest
1630 	 * way to initialize them all to proper values.
1631 	 */
1632 	bcopy(fxp_cb_config_template,
1633 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1634 		sizeof(fxp_cb_config_template));
1635 
1636 	cbp->cb_status =	0;
1637 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1638 	cbp->link_addr =	-1;	/* (no) next command */
1639 	cbp->byte_count =	22;	/* (22) bytes to config */
1640 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1641 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1642 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1643 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1644 	cbp->type_enable =	0;	/* actually reserved */
1645 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1646 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1647 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1648 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1649 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1650 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1651 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1652 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1653 	cbp->ci_int =		1;	/* interrupt on CU idle */
1654 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1655 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1656 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1657 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1658 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1659 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1660 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1661 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1662 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1663 	cbp->csma_dis =		0;	/* (don't) disable link */
1664 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1665 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1666 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1667 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1668 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1669 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1670 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1671 	cbp->loopback =		0;	/* (don't) loopback */
1672 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1673 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1674 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1675 	cbp->promiscuous =	prm;	/* promiscuous mode */
1676 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1677 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1678 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1679 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1680 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1681 
1682 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1683 	cbp->padding =		1;	/* (do) pad short tx packets */
1684 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1685 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1686 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1687 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1688 					/* must set wake_en in PMCSR also */
1689 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1690 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1691 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1692 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1693 
1694 	if (sc->revision == FXP_REV_82557) {
1695 		/*
1696 		 * The 82557 has no hardware flow control, the values
1697 		 * below are the defaults for the chip.
1698 		 */
1699 		cbp->fc_delay_lsb =	0;
1700 		cbp->fc_delay_msb =	0x40;
1701 		cbp->pri_fc_thresh =	3;
1702 		cbp->tx_fc_dis =	0;
1703 		cbp->rx_fc_restop =	0;
1704 		cbp->rx_fc_restart =	0;
1705 		cbp->fc_filter =	0;
1706 		cbp->pri_fc_loc =	1;
1707 	} else {
1708 		cbp->fc_delay_lsb =	0x1f;
1709 		cbp->fc_delay_msb =	0x01;
1710 		cbp->pri_fc_thresh =	3;
1711 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1712 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1713 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1714 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1715 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1716 	}
1717 
1718 	/*
1719 	 * Start the config command/DMA.
1720 	 */
1721 	fxp_scb_wait(sc);
1722 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1723 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1724 	/* ...and wait for it to complete. */
1725 	fxp_dma_wait(&cbp->cb_status, sc);
1726 
1727 	/*
1728 	 * Now initialize the station address. Temporarily use the TxCB
1729 	 * memory area like we did above for the config CB.
1730 	 */
1731 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1732 	cb_ias->cb_status = 0;
1733 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1734 	cb_ias->link_addr = -1;
1735 	bcopy(sc->arpcom.ac_enaddr,
1736 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1737 	    sizeof(sc->arpcom.ac_enaddr));
1738 
1739 	/*
1740 	 * Start the IAS (Individual Address Setup) command/DMA.
1741 	 */
1742 	fxp_scb_wait(sc);
1743 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1744 	/* ...and wait for it to complete. */
1745 	fxp_dma_wait(&cb_ias->cb_status, sc);
1746 
1747 	/*
1748 	 * Initialize transmit control block (TxCB) list.
1749 	 */
1750 
1751 	txp = sc->cbl_base;
1752 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1753 	for (i = 0; i < FXP_NTXCB; i++) {
1754 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1755 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1756 		txp[i].link_addr =
1757 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1758 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1759 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1760 		else
1761 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1762 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1763 	}
1764 	/*
1765 	 * Set the suspend flag on the first TxCB and start the control
1766 	 * unit. It will execute the NOP and then suspend.
1767 	 */
1768 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1769 	sc->cbl_first = sc->cbl_last = txp;
1770 	sc->tx_queued = 1;
1771 
1772 	fxp_scb_wait(sc);
1773 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1774 
1775 	/*
1776 	 * Initialize receiver buffer area - RFA.
1777 	 */
1778 	fxp_scb_wait(sc);
1779 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1780 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1781 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1782 
1783 	/*
1784 	 * Set current media.
1785 	 */
1786 	if (sc->miibus != NULL)
1787 		mii_mediachg(device_get_softc(sc->miibus));
1788 
1789 	ifp->if_flags |= IFF_RUNNING;
1790 	ifp->if_flags &= ~IFF_OACTIVE;
1791 
1792 	/*
1793 	 * Enable interrupts.
1794 	 */
1795 #ifdef DEVICE_POLLING
1796 	/*
1797 	 * ... but only do that if we are not polling. And because (presumably)
1798 	 * the default is interrupts on, we need to disable them explicitly!
1799 	 */
1800 	if ( ifp->if_flags & IFF_POLLING )
1801 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1802 	else
1803 #endif /* DEVICE_POLLING */
1804 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1805 	splx(s);
1806 
1807 	/*
1808 	 * Start stats updater.
1809 	 */
1810 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1811 }
1812 
1813 static int
1814 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1815 {
1816 
1817 	return (0);
1818 }
1819 
1820 static void
1821 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1822 {
1823 
1824 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1825 }
1826 
1827 /*
1828  * Change media according to request.
1829  */
1830 static int
1831 fxp_ifmedia_upd(struct ifnet *ifp)
1832 {
1833 	struct fxp_softc *sc = ifp->if_softc;
1834 	struct mii_data *mii;
1835 
1836 	mii = device_get_softc(sc->miibus);
1837 	mii_mediachg(mii);
1838 	return (0);
1839 }
1840 
1841 /*
1842  * Notify the world which media we're using.
1843  */
1844 static void
1845 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1846 {
1847 	struct fxp_softc *sc = ifp->if_softc;
1848 	struct mii_data *mii;
1849 
1850 	mii = device_get_softc(sc->miibus);
1851 	mii_pollstat(mii);
1852 	ifmr->ifm_active = mii->mii_media_active;
1853 	ifmr->ifm_status = mii->mii_media_status;
1854 
1855 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1856 		sc->cu_resume_bug = 1;
1857 	else
1858 		sc->cu_resume_bug = 0;
1859 }
1860 
1861 /*
1862  * Add a buffer to the end of the RFA buffer list.
1863  * Return 0 if successful, 1 for failure. A failure results in
1864  * adding the 'oldm' (if non-NULL) on to the end of the list -
1865  * tossing out its old contents and recycling it.
1866  * The RFA struct is stuck at the beginning of mbuf cluster and the
1867  * data pointer is fixed up to point just past it.
1868  */
1869 static int
1870 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1871 {
1872 	u_int32_t v;
1873 	struct mbuf *m;
1874 	struct fxp_rfa *rfa, *p_rfa;
1875 
1876 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1877 	if (m == NULL) { /* try to recycle the old mbuf instead */
1878 		if (oldm == NULL)
1879 			return 1;
1880 		m = oldm;
1881 		m->m_data = m->m_ext.ext_buf;
1882 	}
1883 
1884 	/*
1885 	 * Move the data pointer up so that the incoming data packet
1886 	 * will be 32-bit aligned.
1887 	 */
1888 	m->m_data += RFA_ALIGNMENT_FUDGE;
1889 
1890 	/*
1891 	 * Get a pointer to the base of the mbuf cluster and move
1892 	 * data start past it.
1893 	 */
1894 	rfa = mtod(m, struct fxp_rfa *);
1895 	m->m_data += sizeof(struct fxp_rfa);
1896 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1897 
1898 	/*
1899 	 * Initialize the rest of the RFA.  Note that since the RFA
1900 	 * is misaligned, we cannot store values directly.  Instead,
1901 	 * we use an optimized, inline copy.
1902 	 */
1903 
1904 	rfa->rfa_status = 0;
1905 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1906 	rfa->actual_size = 0;
1907 
1908 	v = -1;
1909 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1910 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1911 
1912 	/*
1913 	 * If there are other buffers already on the list, attach this
1914 	 * one to the end by fixing up the tail to point to this one.
1915 	 */
1916 	if (sc->rfa_headm != NULL) {
1917 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1918 		    RFA_ALIGNMENT_FUDGE);
1919 		sc->rfa_tailm->m_next = m;
1920 		v = vtophys(rfa);
1921 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1922 		p_rfa->rfa_control = 0;
1923 	} else {
1924 		sc->rfa_headm = m;
1925 	}
1926 	sc->rfa_tailm = m;
1927 
1928 	return (m == oldm);
1929 }
1930 
1931 static volatile int
1932 fxp_miibus_readreg(device_t dev, int phy, int reg)
1933 {
1934 	struct fxp_softc *sc = device_get_softc(dev);
1935 	int count = 10000;
1936 	int value;
1937 
1938 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1939 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1940 
1941 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1942 	    && count--)
1943 		DELAY(10);
1944 
1945 	if (count <= 0)
1946 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1947 
1948 	return (value & 0xffff);
1949 }
1950 
1951 static void
1952 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1953 {
1954 	struct fxp_softc *sc = device_get_softc(dev);
1955 	int count = 10000;
1956 
1957 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1958 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1959 	    (value & 0xffff));
1960 
1961 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1962 	    count--)
1963 		DELAY(10);
1964 
1965 	if (count <= 0)
1966 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1967 }
1968 
1969 static int
1970 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1971 {
1972 	struct fxp_softc *sc = ifp->if_softc;
1973 	struct ifreq *ifr = (struct ifreq *)data;
1974 	struct mii_data *mii;
1975 	int s, error = 0;
1976 
1977 	s = splimp();
1978 
1979 	switch (command) {
1980 	case SIOCSIFFLAGS:
1981 		if (ifp->if_flags & IFF_ALLMULTI)
1982 			sc->flags |= FXP_FLAG_ALL_MCAST;
1983 		else
1984 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1985 
1986 		/*
1987 		 * If interface is marked up and not running, then start it.
1988 		 * If it is marked down and running, stop it.
1989 		 * XXX If it's up then re-initialize it. This is so flags
1990 		 * such as IFF_PROMISC are handled.
1991 		 */
1992 		if (ifp->if_flags & IFF_UP) {
1993 			fxp_init(sc);
1994 		} else {
1995 			if (ifp->if_flags & IFF_RUNNING)
1996 				fxp_stop(sc);
1997 		}
1998 		break;
1999 
2000 	case SIOCADDMULTI:
2001 	case SIOCDELMULTI:
2002 		if (ifp->if_flags & IFF_ALLMULTI)
2003 			sc->flags |= FXP_FLAG_ALL_MCAST;
2004 		else
2005 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2006 		/*
2007 		 * Multicast list has changed; set the hardware filter
2008 		 * accordingly.
2009 		 */
2010 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2011 			fxp_mc_setup(sc);
2012 		/*
2013 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2014 		 * again rather than else {}.
2015 		 */
2016 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2017 			fxp_init(sc);
2018 		error = 0;
2019 		break;
2020 
2021 	case SIOCSIFMEDIA:
2022 	case SIOCGIFMEDIA:
2023 		if (sc->miibus != NULL) {
2024 			mii = device_get_softc(sc->miibus);
2025                         error = ifmedia_ioctl(ifp, ifr,
2026                             &mii->mii_media, command);
2027 		} else {
2028                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2029 		}
2030 		break;
2031 
2032 	default:
2033 		error = ether_ioctl(ifp, command, data);
2034 	}
2035 	splx(s);
2036 	return (error);
2037 }
2038 
2039 /*
2040  * Fill in the multicast address list and return number of entries.
2041  */
2042 static int
2043 fxp_mc_addrs(struct fxp_softc *sc)
2044 {
2045 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2046 	struct ifnet *ifp = &sc->sc_if;
2047 	struct ifmultiaddr *ifma;
2048 	int nmcasts;
2049 
2050 	nmcasts = 0;
2051 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2052 #if __FreeBSD_version < 500000
2053 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2054 #else
2055 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2056 #endif
2057 			if (ifma->ifma_addr->sa_family != AF_LINK)
2058 				continue;
2059 			if (nmcasts >= MAXMCADDR) {
2060 				sc->flags |= FXP_FLAG_ALL_MCAST;
2061 				nmcasts = 0;
2062 				break;
2063 			}
2064 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2065 			    (void *)(uintptr_t)(volatile void *)
2066 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2067 			nmcasts++;
2068 		}
2069 	}
2070 	mcsp->mc_cnt = nmcasts * 6;
2071 	return (nmcasts);
2072 }
2073 
2074 /*
2075  * Program the multicast filter.
2076  *
2077  * We have an artificial restriction that the multicast setup command
2078  * must be the first command in the chain, so we take steps to ensure
2079  * this. By requiring this, it allows us to keep up the performance of
2080  * the pre-initialized command ring (esp. link pointers) by not actually
2081  * inserting the mcsetup command in the ring - i.e. its link pointer
2082  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2083  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2084  * lead into the regular TxCB ring when it completes.
2085  *
2086  * This function must be called at splimp.
2087  */
2088 static void
2089 fxp_mc_setup(struct fxp_softc *sc)
2090 {
2091 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2092 	struct ifnet *ifp = &sc->sc_if;
2093 	int count;
2094 
2095 	/*
2096 	 * If there are queued commands, we must wait until they are all
2097 	 * completed. If we are already waiting, then add a NOP command
2098 	 * with interrupt option so that we're notified when all commands
2099 	 * have been completed - fxp_start() ensures that no additional
2100 	 * TX commands will be added when need_mcsetup is true.
2101 	 */
2102 	if (sc->tx_queued) {
2103 		struct fxp_cb_tx *txp;
2104 
2105 		/*
2106 		 * need_mcsetup will be true if we are already waiting for the
2107 		 * NOP command to be completed (see below). In this case, bail.
2108 		 */
2109 		if (sc->need_mcsetup)
2110 			return;
2111 		sc->need_mcsetup = 1;
2112 
2113 		/*
2114 		 * Add a NOP command with interrupt so that we are notified
2115 		 * when all TX commands have been processed.
2116 		 */
2117 		txp = sc->cbl_last->next;
2118 		txp->mb_head = NULL;
2119 		txp->cb_status = 0;
2120 		txp->cb_command = FXP_CB_COMMAND_NOP |
2121 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2122 		/*
2123 		 * Advance the end of list forward.
2124 		 */
2125 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2126 		sc->cbl_last = txp;
2127 		sc->tx_queued++;
2128 		/*
2129 		 * Issue a resume in case the CU has just suspended.
2130 		 */
2131 		fxp_scb_wait(sc);
2132 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2133 		/*
2134 		 * Set a 5 second timer just in case we don't hear from the
2135 		 * card again.
2136 		 */
2137 		ifp->if_timer = 5;
2138 
2139 		return;
2140 	}
2141 	sc->need_mcsetup = 0;
2142 
2143 	/*
2144 	 * Initialize multicast setup descriptor.
2145 	 */
2146 	mcsp->next = sc->cbl_base;
2147 	mcsp->mb_head = NULL;
2148 	mcsp->cb_status = 0;
2149 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2150 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2151 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2152 	(void) fxp_mc_addrs(sc);
2153 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2154 	sc->tx_queued = 1;
2155 
2156 	/*
2157 	 * Wait until command unit is not active. This should never
2158 	 * be the case when nothing is queued, but make sure anyway.
2159 	 */
2160 	count = 100;
2161 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2162 	    FXP_SCB_CUS_ACTIVE && --count)
2163 		DELAY(10);
2164 	if (count == 0) {
2165 		device_printf(sc->dev, "command queue timeout\n");
2166 		return;
2167 	}
2168 
2169 	/*
2170 	 * Start the multicast setup command.
2171 	 */
2172 	fxp_scb_wait(sc);
2173 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2174 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2175 
2176 	ifp->if_timer = 2;
2177 	return;
2178 }
2179 
2180 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2181 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2182 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2183 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2184 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2185 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2186 
2187 #define UCODE(x)	x, sizeof(x)
2188 
2189 struct ucode {
2190 	u_int32_t	revision;
2191 	u_int32_t	*ucode;
2192 	int		length;
2193 	u_short		int_delay_offset;
2194 	u_short		bundle_max_offset;
2195 } ucode_table[] = {
2196 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2197 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2198 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2199 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2200 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2201 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2202 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2203 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2204 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2205 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2206 	{ 0, NULL, 0, 0, 0 }
2207 };
2208 
2209 static void
2210 fxp_load_ucode(struct fxp_softc *sc)
2211 {
2212 	struct ucode *uc;
2213 	struct fxp_cb_ucode *cbp;
2214 
2215 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2216 		if (sc->revision == uc->revision)
2217 			break;
2218 	if (uc->ucode == NULL)
2219 		return;
2220 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2221 	cbp->cb_status = 0;
2222 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2223 	cbp->link_addr = -1;    	/* (no) next command */
2224 	memcpy(cbp->ucode, uc->ucode, uc->length);
2225 	if (uc->int_delay_offset)
2226 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2227 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2228 	if (uc->bundle_max_offset)
2229 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2230 		    sc->tunable_bundle_max;
2231 	/*
2232 	 * Download the ucode to the chip.
2233 	 */
2234 	fxp_scb_wait(sc);
2235 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2236 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2237 	/* ...and wait for it to complete. */
2238 	fxp_dma_wait(&cbp->cb_status, sc);
2239 	device_printf(sc->dev,
2240 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2241 	    sc->tunable_int_delay,
2242 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2243 	sc->flags |= FXP_FLAG_UCODE;
2244 }
2245 
2246 static int
2247 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2248 {
2249 	int error, value;
2250 
2251 	value = *(int *)arg1;
2252 	error = sysctl_handle_int(oidp, &value, 0, req);
2253 	if (error || !req->newptr)
2254 		return (error);
2255 	if (value < low || value > high)
2256 		return (EINVAL);
2257 	*(int *)arg1 = value;
2258 	return (0);
2259 }
2260 
2261 /*
2262  * Interrupt delay is expressed in microseconds, a multiplier is used
2263  * to convert this to the appropriate clock ticks before using.
2264  */
2265 static int
2266 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2267 {
2268 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2269 }
2270 
2271 static int
2272 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2273 {
2274 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2275 }
2276