xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 488ab515d6cc02f6f743f0badfc8e94eb553cd30)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-NetBSD
3  *
4  * Copyright (c) 1995, David Greenman
5  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 /*
36  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
37  */
38 
39 #ifdef HAVE_KERNEL_OPTION_HEADERS
40 #include "opt_device_polling.h"
41 #endif
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/bus.h>
46 #include <sys/endian.h>
47 #include <sys/kernel.h>
48 #include <sys/mbuf.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/module.h>
52 #include <sys/mutex.h>
53 #include <sys/rman.h>
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <sys/sysctl.h>
57 
58 #include <net/bpf.h>
59 #include <net/ethernet.h>
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_arp.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 #include <net/if_vlan_var.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 
74 #include <machine/bus.h>
75 #include <machine/in_cksum.h>
76 #include <machine/resource.h>
77 
78 #include <dev/pci/pcivar.h>
79 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
80 
81 #include <dev/mii/mii.h>
82 #include <dev/mii/miivar.h>
83 
84 #include <dev/fxp/if_fxpreg.h>
85 #include <dev/fxp/if_fxpvar.h>
86 #include <dev/fxp/rcvbundl.h>
87 
88 MODULE_DEPEND(fxp, pci, 1, 1, 1);
89 MODULE_DEPEND(fxp, ether, 1, 1, 1);
90 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
91 #include "miibus_if.h"
92 
93 /*
94  * NOTE!  On !x86 we typically have an alignment constraint.  The
95  * card DMAs the packet immediately following the RFA.  However,
96  * the first thing in the packet is a 14-byte Ethernet header.
97  * This means that the packet is misaligned.  To compensate,
98  * we actually offset the RFA 2 bytes into the cluster.  This
99  * alignes the packet after the Ethernet header at a 32-bit
100  * boundary.  HOWEVER!  This means that the RFA is misaligned!
101  */
102 #define	RFA_ALIGNMENT_FUDGE	2
103 
104 /*
105  * Set initial transmit threshold at 64 (512 bytes). This is
106  * increased by 64 (512 bytes) at a time, to maximum of 192
107  * (1536 bytes), if an underrun occurs.
108  */
109 static int tx_threshold = 64;
110 
111 /*
112  * The configuration byte map has several undefined fields which
113  * must be one or must be zero.  Set up a template for these bits.
114  * The actual configuration is performed in fxp_init_body.
115  *
116  * See struct fxp_cb_config for the bit definitions.
117  */
118 static const u_char fxp_cb_config_template[] = {
119 	0x0, 0x0,		/* cb_status */
120 	0x0, 0x0,		/* cb_command */
121 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
122 	0x0,	/*  0 */
123 	0x0,	/*  1 */
124 	0x0,	/*  2 */
125 	0x0,	/*  3 */
126 	0x0,	/*  4 */
127 	0x0,	/*  5 */
128 	0x32,	/*  6 */
129 	0x0,	/*  7 */
130 	0x0,	/*  8 */
131 	0x0,	/*  9 */
132 	0x6,	/* 10 */
133 	0x0,	/* 11 */
134 	0x0,	/* 12 */
135 	0x0,	/* 13 */
136 	0xf2,	/* 14 */
137 	0x48,	/* 15 */
138 	0x0,	/* 16 */
139 	0x40,	/* 17 */
140 	0xf0,	/* 18 */
141 	0x0,	/* 19 */
142 	0x3f,	/* 20 */
143 	0x5,	/* 21 */
144 	0x0,	/* 22 */
145 	0x0,	/* 23 */
146 	0x0,	/* 24 */
147 	0x0,	/* 25 */
148 	0x0,	/* 26 */
149 	0x0,	/* 27 */
150 	0x0,	/* 28 */
151 	0x0,	/* 29 */
152 	0x0,	/* 30 */
153 	0x0	/* 31 */
154 };
155 
156 /*
157  * Claim various Intel PCI device identifiers for this driver.  The
158  * sub-vendor and sub-device field are extensively used to identify
159  * particular variants, but we don't currently differentiate between
160  * them.
161  */
162 static const struct fxp_ident fxp_ident_table[] = {
163     { 0x8086, 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
164     { 0x8086, 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
165     { 0x8086, 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
166     { 0x8086, 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
167     { 0x8086, 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
168     { 0x8086, 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
169     { 0x8086, 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
170     { 0x8086, 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
171     { 0x8086, 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
172     { 0x8086, 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
173     { 0x8086, 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
174     { 0x8086, 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
175     { 0x8086, 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
176     { 0x8086, 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
177     { 0x8086, 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
178     { 0x8086, 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
179     { 0x8086, 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
180     { 0x8086, 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
181     { 0x8086, 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
182     { 0x8086, 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
183     { 0x8086, 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
184     { 0x8086, 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
185     { 0x8086, 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
186     { 0x8086, 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
187     { 0x8086, 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
188     { 0x8086, 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
189     { 0x8086, 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
190     { 0x8086, 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
191     { 0x8086, 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
192     { 0x8086, 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
193     { 0x8086, 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
194     { 0x8086, 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
195     { 0x8086, 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
196     { 0x8086, 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
197     { 0x8086, 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
198     { 0x8086, 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
199     { 0x8086, 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
200     { 0x8086, 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
201     { 0x8086, 0x1229,	0x0d,	0, "Intel 82550C Pro/100 Ethernet" },
202     { 0x8086, 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
203     { 0x8086, 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
204     { 0x8086, 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
205     { 0x8086, 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
206     { 0x8086, 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
207     { 0x8086, 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
208     { 0,      0,	-1,	0, NULL },
209 };
210 
211 #ifdef FXP_IP_CSUM_WAR
212 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
213 #else
214 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
215 #endif
216 
217 static int		fxp_probe(device_t dev);
218 static int		fxp_attach(device_t dev);
219 static int		fxp_detach(device_t dev);
220 static int		fxp_shutdown(device_t dev);
221 static int		fxp_suspend(device_t dev);
222 static int		fxp_resume(device_t dev);
223 
224 static const struct fxp_ident *fxp_find_ident(device_t dev);
225 static void		fxp_intr(void *xsc);
226 static void		fxp_rxcsum(struct fxp_softc *sc, if_t ifp,
227 			    struct mbuf *m, uint16_t status, int pos);
228 static int		fxp_intr_body(struct fxp_softc *sc, if_t ifp,
229 			    uint8_t statack, int count);
230 static void 		fxp_init(void *xsc);
231 static void 		fxp_init_body(struct fxp_softc *sc, int);
232 static void 		fxp_tick(void *xsc);
233 static void 		fxp_start(if_t ifp);
234 static void 		fxp_start_body(if_t ifp);
235 static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
236 static void		fxp_txeof(struct fxp_softc *sc);
237 static void		fxp_stop(struct fxp_softc *sc);
238 static void 		fxp_release(struct fxp_softc *sc);
239 static int		fxp_ioctl(if_t ifp, u_long command,
240 			    caddr_t data);
241 static void 		fxp_watchdog(struct fxp_softc *sc);
242 static void		fxp_add_rfabuf(struct fxp_softc *sc,
243 			    struct fxp_rx *rxp);
244 static void		fxp_discard_rfabuf(struct fxp_softc *sc,
245 			    struct fxp_rx *rxp);
246 static int		fxp_new_rfabuf(struct fxp_softc *sc,
247 			    struct fxp_rx *rxp);
248 static int		fxp_mc_addrs(struct fxp_softc *sc);
249 static void		fxp_mc_setup(struct fxp_softc *sc);
250 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
251 			    int autosize);
252 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
253 			    uint16_t data);
254 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
255 static void		fxp_load_eeprom(struct fxp_softc *sc);
256 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
257 			    int offset, int words);
258 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
259 			    int offset, int words);
260 static int		fxp_ifmedia_upd(if_t ifp);
261 static void		fxp_ifmedia_sts(if_t ifp,
262 			    struct ifmediareq *ifmr);
263 static int		fxp_serial_ifmedia_upd(if_t ifp);
264 static void		fxp_serial_ifmedia_sts(if_t ifp,
265 			    struct ifmediareq *ifmr);
266 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
267 static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
268 			    int value);
269 static void		fxp_miibus_statchg(device_t dev);
270 static void		fxp_load_ucode(struct fxp_softc *sc);
271 static void		fxp_update_stats(struct fxp_softc *sc);
272 static void		fxp_sysctl_node(struct fxp_softc *sc);
273 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
274 			    int low, int high);
275 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
276 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
277 static void 		fxp_scb_wait(struct fxp_softc *sc);
278 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
279 static void		fxp_dma_wait(struct fxp_softc *sc,
280 			    volatile uint16_t *status, bus_dma_tag_t dmat,
281 			    bus_dmamap_t map);
282 
283 static device_method_t fxp_methods[] = {
284 	/* Device interface */
285 	DEVMETHOD(device_probe,		fxp_probe),
286 	DEVMETHOD(device_attach,	fxp_attach),
287 	DEVMETHOD(device_detach,	fxp_detach),
288 	DEVMETHOD(device_shutdown,	fxp_shutdown),
289 	DEVMETHOD(device_suspend,	fxp_suspend),
290 	DEVMETHOD(device_resume,	fxp_resume),
291 
292 	/* MII interface */
293 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
294 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
295 	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
296 
297 	DEVMETHOD_END
298 };
299 
300 static driver_t fxp_driver = {
301 	"fxp",
302 	fxp_methods,
303 	sizeof(struct fxp_softc),
304 };
305 
306 static devclass_t fxp_devclass;
307 
308 DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, fxp_devclass, NULL, NULL,
309     SI_ORDER_ANY);
310 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
311 
312 static struct resource_spec fxp_res_spec_mem[] = {
313 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
314 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
315 	{ -1, 0 }
316 };
317 
318 static struct resource_spec fxp_res_spec_io[] = {
319 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
320 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
321 	{ -1, 0 }
322 };
323 
324 /*
325  * Wait for the previous command to be accepted (but not necessarily
326  * completed).
327  */
328 static void
329 fxp_scb_wait(struct fxp_softc *sc)
330 {
331 	union {
332 		uint16_t w;
333 		uint8_t b[2];
334 	} flowctl;
335 	int i = 10000;
336 
337 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
338 		DELAY(2);
339 	if (i == 0) {
340 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
341 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
342 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
343 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
344 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
345 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
346 	}
347 }
348 
349 static void
350 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
351 {
352 
353 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
354 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
355 		fxp_scb_wait(sc);
356 	}
357 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
358 }
359 
360 static void
361 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
362     bus_dma_tag_t dmat, bus_dmamap_t map)
363 {
364 	int i;
365 
366 	for (i = 10000; i > 0; i--) {
367 		DELAY(2);
368 		bus_dmamap_sync(dmat, map,
369 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
370 		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
371 			break;
372 	}
373 	if (i == 0)
374 		device_printf(sc->dev, "DMA timeout\n");
375 }
376 
377 static const struct fxp_ident *
378 fxp_find_ident(device_t dev)
379 {
380 	uint16_t vendor;
381 	uint16_t device;
382 	uint8_t revid;
383 	const struct fxp_ident *ident;
384 
385 	vendor = pci_get_vendor(dev);
386 	device = pci_get_device(dev);
387 	revid = pci_get_revid(dev);
388 	for (ident = fxp_ident_table; ident->name != NULL; ident++) {
389 		if (ident->vendor == vendor && ident->device == device &&
390 		    (ident->revid == revid || ident->revid == -1)) {
391 			return (ident);
392 		}
393 	}
394 	return (NULL);
395 }
396 
397 /*
398  * Return identification string if this device is ours.
399  */
400 static int
401 fxp_probe(device_t dev)
402 {
403 	const struct fxp_ident *ident;
404 
405 	ident = fxp_find_ident(dev);
406 	if (ident != NULL) {
407 		device_set_desc(dev, ident->name);
408 		return (BUS_PROBE_DEFAULT);
409 	}
410 	return (ENXIO);
411 }
412 
413 static void
414 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
415 {
416 	uint32_t *addr;
417 
418 	if (error)
419 		return;
420 
421 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
422 	addr = arg;
423 	*addr = segs->ds_addr;
424 }
425 
426 static int
427 fxp_attach(device_t dev)
428 {
429 	struct fxp_softc *sc;
430 	struct fxp_cb_tx *tcbp;
431 	struct fxp_tx *txp;
432 	struct fxp_rx *rxp;
433 	if_t ifp;
434 	uint32_t val;
435 	uint16_t data;
436 	u_char eaddr[ETHER_ADDR_LEN];
437 	int error, flags, i, pmc, prefer_iomap;
438 
439 	error = 0;
440 	sc = device_get_softc(dev);
441 	sc->dev = dev;
442 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
443 	    MTX_DEF);
444 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
445 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
446 	    fxp_serial_ifmedia_sts);
447 
448 	ifp = sc->ifp = if_gethandle(IFT_ETHER);
449 	if (ifp == (void *)NULL) {
450 		device_printf(dev, "can not if_alloc()\n");
451 		error = ENOSPC;
452 		goto fail;
453 	}
454 
455 	/*
456 	 * Enable bus mastering.
457 	 */
458 	pci_enable_busmaster(dev);
459 
460 	/*
461 	 * Figure out which we should try first - memory mapping or i/o mapping?
462 	 * We default to memory mapping. Then we accept an override from the
463 	 * command line. Then we check to see which one is enabled.
464 	 */
465 	prefer_iomap = 0;
466 	resource_int_value(device_get_name(dev), device_get_unit(dev),
467 	    "prefer_iomap", &prefer_iomap);
468 	if (prefer_iomap)
469 		sc->fxp_spec = fxp_res_spec_io;
470 	else
471 		sc->fxp_spec = fxp_res_spec_mem;
472 
473 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
474 	if (error) {
475 		if (sc->fxp_spec == fxp_res_spec_mem)
476 			sc->fxp_spec = fxp_res_spec_io;
477 		else
478 			sc->fxp_spec = fxp_res_spec_mem;
479 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
480 	}
481 	if (error) {
482 		device_printf(dev, "could not allocate resources\n");
483 		error = ENXIO;
484 		goto fail;
485 	}
486 
487 	if (bootverbose) {
488 		device_printf(dev, "using %s space register mapping\n",
489 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
490 	}
491 
492 	/*
493 	 * Put CU/RU idle state and prepare full reset.
494 	 */
495 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
496 	DELAY(10);
497 	/* Full reset and disable interrupts. */
498 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
499 	DELAY(10);
500 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
501 
502 	/*
503 	 * Find out how large of an SEEPROM we have.
504 	 */
505 	fxp_autosize_eeprom(sc);
506 	fxp_load_eeprom(sc);
507 
508 	/*
509 	 * Find out the chip revision; lump all 82557 revs together.
510 	 */
511 	sc->ident = fxp_find_ident(dev);
512 	if (sc->ident->ich > 0) {
513 		/* Assume ICH controllers are 82559. */
514 		sc->revision = FXP_REV_82559_A0;
515 	} else {
516 		data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
517 		if ((data >> 8) == 1)
518 			sc->revision = FXP_REV_82557;
519 		else
520 			sc->revision = pci_get_revid(dev);
521 	}
522 
523 	/*
524 	 * Check availability of WOL. 82559ER does not support WOL.
525 	 */
526 	if (sc->revision >= FXP_REV_82558_A4 &&
527 	    sc->revision != FXP_REV_82559S_A) {
528 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
529 		if ((data & 0x20) != 0 &&
530 		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
531 			sc->flags |= FXP_FLAG_WOLCAP;
532 	}
533 
534 	if (sc->revision == FXP_REV_82550_C) {
535 		/*
536 		 * 82550C with server extension requires microcode to
537 		 * receive fragmented UDP datagrams.  However if the
538 		 * microcode is used for client-only featured 82550C
539 		 * it locks up controller.
540 		 */
541 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
542 		if ((data & 0x0400) == 0)
543 			sc->flags |= FXP_FLAG_NO_UCODE;
544 	}
545 
546 	/* Receiver lock-up workaround detection. */
547 	if (sc->revision < FXP_REV_82558_A4) {
548 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
549 		if ((data & 0x03) != 0x03) {
550 			sc->flags |= FXP_FLAG_RXBUG;
551 			device_printf(dev, "Enabling Rx lock-up workaround\n");
552 		}
553 	}
554 
555 	/*
556 	 * Determine whether we must use the 503 serial interface.
557 	 */
558 	data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
559 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
560 	    && (data & FXP_PHY_SERIAL_ONLY))
561 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
562 
563 	fxp_sysctl_node(sc);
564 	/*
565 	 * Enable workarounds for certain chip revision deficiencies.
566 	 *
567 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
568 	 * some systems based a normal 82559 design, have a defect where
569 	 * the chip can cause a PCI protocol violation if it receives
570 	 * a CU_RESUME command when it is entering the IDLE state.  The
571 	 * workaround is to disable Dynamic Standby Mode, so the chip never
572 	 * deasserts CLKRUN#, and always remains in an active state.
573 	 *
574 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
575 	 */
576 	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
577 	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
578 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
579 		if (data & 0x02) {			/* STB enable */
580 			uint16_t cksum;
581 			int i;
582 
583 			device_printf(dev,
584 			    "Disabling dynamic standby mode in EEPROM\n");
585 			data &= ~0x02;
586 			sc->eeprom[FXP_EEPROM_MAP_ID] = data;
587 			fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
588 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
589 			cksum = 0;
590 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
591 				cksum += sc->eeprom[i];
592 			i = (1 << sc->eeprom_size) - 1;
593 			cksum = 0xBABA - cksum;
594 			fxp_write_eeprom(sc, &cksum, i, 1);
595 			device_printf(dev,
596 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
597 			    i, sc->eeprom[i], cksum);
598 			sc->eeprom[i] = cksum;
599 			/*
600 			 * If the user elects to continue, try the software
601 			 * workaround, as it is better than nothing.
602 			 */
603 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
604 		}
605 	}
606 
607 	/*
608 	 * If we are not a 82557 chip, we can enable extended features.
609 	 */
610 	if (sc->revision != FXP_REV_82557) {
611 		/*
612 		 * If MWI is enabled in the PCI configuration, and there
613 		 * is a valid cacheline size (8 or 16 dwords), then tell
614 		 * the board to turn on MWI.
615 		 */
616 		val = pci_read_config(dev, PCIR_COMMAND, 2);
617 		if (val & PCIM_CMD_MWRICEN &&
618 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
619 			sc->flags |= FXP_FLAG_MWI_ENABLE;
620 
621 		/* turn on the extended TxCB feature */
622 		sc->flags |= FXP_FLAG_EXT_TXCB;
623 
624 		/* enable reception of long frames for VLAN */
625 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
626 	} else {
627 		/* a hack to get long VLAN frames on a 82557 */
628 		sc->flags |= FXP_FLAG_SAVE_BAD;
629 	}
630 
631 	/* For 82559 or later chips, Rx checksum offload is supported. */
632 	if (sc->revision >= FXP_REV_82559_A0) {
633 		/* 82559ER does not support Rx checksum offloading. */
634 		if (sc->ident->device != 0x1209)
635 			sc->flags |= FXP_FLAG_82559_RXCSUM;
636 	}
637 	/*
638 	 * Enable use of extended RFDs and TCBs for 82550
639 	 * and later chips. Note: we need extended TXCB support
640 	 * too, but that's already enabled by the code above.
641 	 * Be careful to do this only on the right devices.
642 	 */
643 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
644 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
645 	    || sc->revision == FXP_REV_82551_10) {
646 		sc->rfa_size = sizeof (struct fxp_rfa);
647 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
648 		sc->flags |= FXP_FLAG_EXT_RFA;
649 		/* Use extended RFA instead of 82559 checksum mode. */
650 		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
651 	} else {
652 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
653 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
654 	}
655 
656 	/*
657 	 * Allocate DMA tags and DMA safe memory.
658 	 */
659 	sc->maxtxseg = FXP_NTXSEG;
660 	sc->maxsegsize = MCLBYTES;
661 	if (sc->flags & FXP_FLAG_EXT_RFA) {
662 		sc->maxtxseg--;
663 		sc->maxsegsize = FXP_TSO_SEGSIZE;
664 	}
665 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
666 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
667 	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
668 	    sc->maxtxseg, sc->maxsegsize, 0,
669 	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
670 	if (error) {
671 		device_printf(dev, "could not create TX DMA tag\n");
672 		goto fail;
673 	}
674 
675 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
676 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
677 	    MCLBYTES, 1, MCLBYTES, 0,
678 	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
679 	if (error) {
680 		device_printf(dev, "could not create RX DMA tag\n");
681 		goto fail;
682 	}
683 
684 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
685 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
686 	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
687 	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
688 	if (error) {
689 		device_printf(dev, "could not create stats DMA tag\n");
690 		goto fail;
691 	}
692 
693 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
694 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
695 	if (error) {
696 		device_printf(dev, "could not allocate stats DMA memory\n");
697 		goto fail;
698 	}
699 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
700 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
701 	    BUS_DMA_NOWAIT);
702 	if (error) {
703 		device_printf(dev, "could not load the stats DMA buffer\n");
704 		goto fail;
705 	}
706 
707 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
708 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
709 	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
710 	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
711 	if (error) {
712 		device_printf(dev, "could not create TxCB DMA tag\n");
713 		goto fail;
714 	}
715 
716 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
717 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
718 	if (error) {
719 		device_printf(dev, "could not allocate TxCB DMA memory\n");
720 		goto fail;
721 	}
722 
723 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
724 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
725 	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
726 	if (error) {
727 		device_printf(dev, "could not load TxCB DMA buffer\n");
728 		goto fail;
729 	}
730 
731 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
732 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
733 	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
734 	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
735 	if (error) {
736 		device_printf(dev,
737 		    "could not create multicast setup DMA tag\n");
738 		goto fail;
739 	}
740 
741 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
742 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
743 	if (error) {
744 		device_printf(dev,
745 		    "could not allocate multicast setup DMA memory\n");
746 		goto fail;
747 	}
748 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
749 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
750 	    BUS_DMA_NOWAIT);
751 	if (error) {
752 		device_printf(dev,
753 		    "can't load the multicast setup DMA buffer\n");
754 		goto fail;
755 	}
756 
757 	/*
758 	 * Pre-allocate the TX DMA maps and setup the pointers to
759 	 * the TX command blocks.
760 	 */
761 	txp = sc->fxp_desc.tx_list;
762 	tcbp = sc->fxp_desc.cbl_list;
763 	for (i = 0; i < FXP_NTXCB; i++) {
764 		txp[i].tx_cb = tcbp + i;
765 		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
766 		if (error) {
767 			device_printf(dev, "can't create DMA map for TX\n");
768 			goto fail;
769 		}
770 	}
771 	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
772 	if (error) {
773 		device_printf(dev, "can't create spare DMA map\n");
774 		goto fail;
775 	}
776 
777 	/*
778 	 * Pre-allocate our receive buffers.
779 	 */
780 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
781 	for (i = 0; i < FXP_NRFABUFS; i++) {
782 		rxp = &sc->fxp_desc.rx_list[i];
783 		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
784 		if (error) {
785 			device_printf(dev, "can't create DMA map for RX\n");
786 			goto fail;
787 		}
788 		if (fxp_new_rfabuf(sc, rxp) != 0) {
789 			error = ENOMEM;
790 			goto fail;
791 		}
792 		fxp_add_rfabuf(sc, rxp);
793 	}
794 
795 	/*
796 	 * Read MAC address.
797 	 */
798 	eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
799 	eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
800 	eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
801 	eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
802 	eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
803 	eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
804 	if (bootverbose) {
805 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
806 		    pci_get_vendor(dev), pci_get_device(dev),
807 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
808 		    pci_get_revid(dev));
809 		device_printf(dev, "Dynamic Standby mode is %s\n",
810 		    sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
811 		    "disabled");
812 	}
813 
814 	/*
815 	 * If this is only a 10Mbps device, then there is no MII, and
816 	 * the PHY will use a serial interface instead.
817 	 *
818 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
819 	 * doesn't have a programming interface of any sort.  The
820 	 * media is sensed automatically based on how the link partner
821 	 * is configured.  This is, in essence, manual configuration.
822 	 */
823 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
824 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
825 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
826 	} else {
827 		/*
828 		 * i82557 wedge when isolating all of their PHYs.
829 		 */
830 		flags = MIIF_NOISOLATE;
831 		if (sc->revision >= FXP_REV_82558_A4)
832 			flags |= MIIF_DOPAUSE;
833 		error = mii_attach(dev, &sc->miibus, ifp,
834 		    (ifm_change_cb_t)fxp_ifmedia_upd,
835 		    (ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK,
836 		    MII_PHY_ANY, MII_OFFSET_ANY, flags);
837 		if (error != 0) {
838 			device_printf(dev, "attaching PHYs failed\n");
839 			goto fail;
840 		}
841 	}
842 
843 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
844 	if_setdev(ifp, dev);
845 	if_setinitfn(ifp, fxp_init);
846 	if_setsoftc(ifp, sc);
847 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
848 	if_setioctlfn(ifp, fxp_ioctl);
849 	if_setstartfn(ifp, fxp_start);
850 
851 	if_setcapabilities(ifp, 0);
852 	if_setcapenable(ifp, 0);
853 
854 	/* Enable checksum offload/TSO for 82550 or better chips */
855 	if (sc->flags & FXP_FLAG_EXT_RFA) {
856 		if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO);
857 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
858 		if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
859 	}
860 
861 	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
862 		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
863 		if_setcapenablebit(ifp, IFCAP_RXCSUM, 0);
864 	}
865 
866 	if (sc->flags & FXP_FLAG_WOLCAP) {
867 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
868 		if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0);
869 	}
870 
871 #ifdef DEVICE_POLLING
872 	/* Inform the world we support polling. */
873 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
874 #endif
875 
876 	/*
877 	 * Attach the interface.
878 	 */
879 	ether_ifattach(ifp, eaddr);
880 
881 	/*
882 	 * Tell the upper layer(s) we support long frames.
883 	 * Must appear after the call to ether_ifattach() because
884 	 * ether_ifattach() sets ifi_hdrlen to the default value.
885 	 */
886 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
887 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
888 	if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
889 	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
890 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING |
891 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
892 		if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING |
893 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
894 	}
895 
896 	/*
897 	 * Let the system queue as many packets as we have available
898 	 * TX descriptors.
899 	 */
900 	if_setsendqlen(ifp, FXP_NTXCB - 1);
901 	if_setsendqready(ifp);
902 
903 	/*
904 	 * Hook our interrupt after all initialization is complete.
905 	 */
906 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
907 			       NULL, fxp_intr, sc, &sc->ih);
908 	if (error) {
909 		device_printf(dev, "could not setup irq\n");
910 		ether_ifdetach(sc->ifp);
911 		goto fail;
912 	}
913 
914 	/*
915 	 * Configure hardware to reject magic frames otherwise
916 	 * system will hang on recipt of magic frames.
917 	 */
918 	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
919 		FXP_LOCK(sc);
920 		/* Clear wakeup events. */
921 		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
922 		fxp_init_body(sc, 0);
923 		fxp_stop(sc);
924 		FXP_UNLOCK(sc);
925 	}
926 
927 fail:
928 	if (error)
929 		fxp_release(sc);
930 	return (error);
931 }
932 
933 /*
934  * Release all resources.  The softc lock should not be held and the
935  * interrupt should already be torn down.
936  */
937 static void
938 fxp_release(struct fxp_softc *sc)
939 {
940 	struct fxp_rx *rxp;
941 	struct fxp_tx *txp;
942 	int i;
943 
944 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
945 	KASSERT(sc->ih == NULL,
946 	    ("fxp_release() called with intr handle still active"));
947 	if (sc->miibus)
948 		device_delete_child(sc->dev, sc->miibus);
949 	bus_generic_detach(sc->dev);
950 	ifmedia_removeall(&sc->sc_media);
951 	if (sc->fxp_desc.cbl_list) {
952 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
953 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
954 		    sc->cbl_map);
955 	}
956 	if (sc->fxp_stats) {
957 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
958 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
959 	}
960 	if (sc->mcsp) {
961 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
962 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
963 	}
964 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
965 	if (sc->fxp_rxmtag) {
966 		for (i = 0; i < FXP_NRFABUFS; i++) {
967 			rxp = &sc->fxp_desc.rx_list[i];
968 			if (rxp->rx_mbuf != NULL) {
969 				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
970 				    BUS_DMASYNC_POSTREAD);
971 				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
972 				m_freem(rxp->rx_mbuf);
973 			}
974 			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
975 		}
976 		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
977 		bus_dma_tag_destroy(sc->fxp_rxmtag);
978 	}
979 	if (sc->fxp_txmtag) {
980 		for (i = 0; i < FXP_NTXCB; i++) {
981 			txp = &sc->fxp_desc.tx_list[i];
982 			if (txp->tx_mbuf != NULL) {
983 				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
984 				    BUS_DMASYNC_POSTWRITE);
985 				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
986 				m_freem(txp->tx_mbuf);
987 			}
988 			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
989 		}
990 		bus_dma_tag_destroy(sc->fxp_txmtag);
991 	}
992 	if (sc->fxp_stag)
993 		bus_dma_tag_destroy(sc->fxp_stag);
994 	if (sc->cbl_tag)
995 		bus_dma_tag_destroy(sc->cbl_tag);
996 	if (sc->mcs_tag)
997 		bus_dma_tag_destroy(sc->mcs_tag);
998 	if (sc->ifp)
999 		if_free(sc->ifp);
1000 
1001 	mtx_destroy(&sc->sc_mtx);
1002 }
1003 
1004 /*
1005  * Detach interface.
1006  */
1007 static int
1008 fxp_detach(device_t dev)
1009 {
1010 	struct fxp_softc *sc = device_get_softc(dev);
1011 
1012 #ifdef DEVICE_POLLING
1013 	if (if_getcapenable(sc->ifp) & IFCAP_POLLING)
1014 		ether_poll_deregister(sc->ifp);
1015 #endif
1016 
1017 	FXP_LOCK(sc);
1018 	/*
1019 	 * Stop DMA and drop transmit queue, but disable interrupts first.
1020 	 */
1021 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1022 	fxp_stop(sc);
1023 	FXP_UNLOCK(sc);
1024 	callout_drain(&sc->stat_ch);
1025 
1026 	/*
1027 	 * Close down routes etc.
1028 	 */
1029 	ether_ifdetach(sc->ifp);
1030 
1031 	/*
1032 	 * Unhook interrupt before dropping lock. This is to prevent
1033 	 * races with fxp_intr().
1034 	 */
1035 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1036 	sc->ih = NULL;
1037 
1038 	/* Release our allocated resources. */
1039 	fxp_release(sc);
1040 	return (0);
1041 }
1042 
1043 /*
1044  * Device shutdown routine. Called at system shutdown after sync. The
1045  * main purpose of this routine is to shut off receiver DMA so that
1046  * kernel memory doesn't get clobbered during warmboot.
1047  */
1048 static int
1049 fxp_shutdown(device_t dev)
1050 {
1051 
1052 	/*
1053 	 * Make sure that DMA is disabled prior to reboot. Not doing
1054 	 * do could allow DMA to corrupt kernel memory during the
1055 	 * reboot before the driver initializes.
1056 	 */
1057 	return (fxp_suspend(dev));
1058 }
1059 
1060 /*
1061  * Device suspend routine.  Stop the interface and save some PCI
1062  * settings in case the BIOS doesn't restore them properly on
1063  * resume.
1064  */
1065 static int
1066 fxp_suspend(device_t dev)
1067 {
1068 	struct fxp_softc *sc = device_get_softc(dev);
1069 	if_t ifp;
1070 	int pmc;
1071 	uint16_t pmstat;
1072 
1073 	FXP_LOCK(sc);
1074 
1075 	ifp = sc->ifp;
1076 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1077 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1078 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1079 		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1080 			/* Request PME. */
1081 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1082 			sc->flags |= FXP_FLAG_WOL;
1083 			/* Reconfigure hardware to accept magic frames. */
1084 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1085 			fxp_init_body(sc, 0);
1086 		}
1087 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1088 	}
1089 	fxp_stop(sc);
1090 
1091 	sc->suspended = 1;
1092 
1093 	FXP_UNLOCK(sc);
1094 	return (0);
1095 }
1096 
1097 /*
1098  * Device resume routine. re-enable busmastering, and restart the interface if
1099  * appropriate.
1100  */
1101 static int
1102 fxp_resume(device_t dev)
1103 {
1104 	struct fxp_softc *sc = device_get_softc(dev);
1105 	if_t ifp = sc->ifp;
1106 	int pmc;
1107 	uint16_t pmstat;
1108 
1109 	FXP_LOCK(sc);
1110 
1111 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1112 		sc->flags &= ~FXP_FLAG_WOL;
1113 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1114 		/* Disable PME and clear PME status. */
1115 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1116 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1117 		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1118 			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1119 			    CSR_READ_1(sc, FXP_CSR_PMDR));
1120 	}
1121 
1122 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1123 	DELAY(10);
1124 
1125 	/* reinitialize interface if necessary */
1126 	if (if_getflags(ifp) & IFF_UP)
1127 		fxp_init_body(sc, 1);
1128 
1129 	sc->suspended = 0;
1130 
1131 	FXP_UNLOCK(sc);
1132 	return (0);
1133 }
1134 
1135 static void
1136 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1137 {
1138 	uint16_t reg;
1139 	int x;
1140 
1141 	/*
1142 	 * Shift in data.
1143 	 */
1144 	for (x = 1 << (length - 1); x; x >>= 1) {
1145 		if (data & x)
1146 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1147 		else
1148 			reg = FXP_EEPROM_EECS;
1149 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1150 		DELAY(1);
1151 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1152 		DELAY(1);
1153 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1154 		DELAY(1);
1155 	}
1156 }
1157 
1158 /*
1159  * Read from the serial EEPROM. Basically, you manually shift in
1160  * the read opcode (one bit at a time) and then shift in the address,
1161  * and then you shift out the data (all of this one bit at a time).
1162  * The word size is 16 bits, so you have to provide the address for
1163  * every 16 bits of data.
1164  */
1165 static uint16_t
1166 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1167 {
1168 	uint16_t reg, data;
1169 	int x;
1170 
1171 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1172 	/*
1173 	 * Shift in read opcode.
1174 	 */
1175 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1176 	/*
1177 	 * Shift in address.
1178 	 */
1179 	data = 0;
1180 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1181 		if (offset & x)
1182 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1183 		else
1184 			reg = FXP_EEPROM_EECS;
1185 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1186 		DELAY(1);
1187 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1188 		DELAY(1);
1189 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1190 		DELAY(1);
1191 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1192 		data++;
1193 		if (autosize && reg == 0) {
1194 			sc->eeprom_size = data;
1195 			break;
1196 		}
1197 	}
1198 	/*
1199 	 * Shift out data.
1200 	 */
1201 	data = 0;
1202 	reg = FXP_EEPROM_EECS;
1203 	for (x = 1 << 15; x; x >>= 1) {
1204 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1205 		DELAY(1);
1206 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1207 			data |= x;
1208 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1209 		DELAY(1);
1210 	}
1211 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1212 	DELAY(1);
1213 
1214 	return (data);
1215 }
1216 
1217 static void
1218 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1219 {
1220 	int i;
1221 
1222 	/*
1223 	 * Erase/write enable.
1224 	 */
1225 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1226 	fxp_eeprom_shiftin(sc, 0x4, 3);
1227 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1228 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1229 	DELAY(1);
1230 	/*
1231 	 * Shift in write opcode, address, data.
1232 	 */
1233 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1234 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1235 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1236 	fxp_eeprom_shiftin(sc, data, 16);
1237 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1238 	DELAY(1);
1239 	/*
1240 	 * Wait for EEPROM to finish up.
1241 	 */
1242 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1243 	DELAY(1);
1244 	for (i = 0; i < 1000; i++) {
1245 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1246 			break;
1247 		DELAY(50);
1248 	}
1249 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1250 	DELAY(1);
1251 	/*
1252 	 * Erase/write disable.
1253 	 */
1254 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1255 	fxp_eeprom_shiftin(sc, 0x4, 3);
1256 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1257 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1258 	DELAY(1);
1259 }
1260 
1261 /*
1262  * From NetBSD:
1263  *
1264  * Figure out EEPROM size.
1265  *
1266  * 559's can have either 64-word or 256-word EEPROMs, the 558
1267  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1268  * talks about the existence of 16 to 256 word EEPROMs.
1269  *
1270  * The only known sizes are 64 and 256, where the 256 version is used
1271  * by CardBus cards to store CIS information.
1272  *
1273  * The address is shifted in msb-to-lsb, and after the last
1274  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1275  * after which follows the actual data. We try to detect this zero, by
1276  * probing the data-out bit in the EEPROM control register just after
1277  * having shifted in a bit. If the bit is zero, we assume we've
1278  * shifted enough address bits. The data-out should be tri-state,
1279  * before this, which should translate to a logical one.
1280  */
1281 static void
1282 fxp_autosize_eeprom(struct fxp_softc *sc)
1283 {
1284 
1285 	/* guess maximum size of 256 words */
1286 	sc->eeprom_size = 8;
1287 
1288 	/* autosize */
1289 	(void) fxp_eeprom_getword(sc, 0, 1);
1290 }
1291 
1292 static void
1293 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1294 {
1295 	int i;
1296 
1297 	for (i = 0; i < words; i++)
1298 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1299 }
1300 
1301 static void
1302 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1303 {
1304 	int i;
1305 
1306 	for (i = 0; i < words; i++)
1307 		fxp_eeprom_putword(sc, offset + i, data[i]);
1308 }
1309 
1310 static void
1311 fxp_load_eeprom(struct fxp_softc *sc)
1312 {
1313 	int i;
1314 	uint16_t cksum;
1315 
1316 	fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1317 	cksum = 0;
1318 	for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1319 		cksum += sc->eeprom[i];
1320 	cksum = 0xBABA - cksum;
1321 	if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1322 		device_printf(sc->dev,
1323 		    "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1324 		    cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1325 }
1326 
1327 /*
1328  * Grab the softc lock and call the real fxp_start_body() routine
1329  */
1330 static void
1331 fxp_start(if_t ifp)
1332 {
1333 	struct fxp_softc *sc = if_getsoftc(ifp);
1334 
1335 	FXP_LOCK(sc);
1336 	fxp_start_body(ifp);
1337 	FXP_UNLOCK(sc);
1338 }
1339 
1340 /*
1341  * Start packet transmission on the interface.
1342  * This routine must be called with the softc lock held, and is an
1343  * internal entry point only.
1344  */
1345 static void
1346 fxp_start_body(if_t ifp)
1347 {
1348 	struct fxp_softc *sc = if_getsoftc(ifp);
1349 	struct mbuf *mb_head;
1350 	int txqueued;
1351 
1352 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1353 
1354 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1355 	    IFF_DRV_RUNNING)
1356 		return;
1357 
1358 	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1359 		fxp_txeof(sc);
1360 	/*
1361 	 * We're finished if there is nothing more to add to the list or if
1362 	 * we're all filled up with buffers to transmit.
1363 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1364 	 *       a NOP command when needed.
1365 	 */
1366 	txqueued = 0;
1367 	while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) {
1368 
1369 		/*
1370 		 * Grab a packet to transmit.
1371 		 */
1372 		mb_head = if_dequeue(ifp);
1373 		if (mb_head == NULL)
1374 			break;
1375 
1376 		if (fxp_encap(sc, &mb_head)) {
1377 			if (mb_head == NULL)
1378 				break;
1379 			if_sendq_prepend(ifp, mb_head);
1380 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1381 		}
1382 		txqueued++;
1383 		/*
1384 		 * Pass packet to bpf if there is a listener.
1385 		 */
1386 		if_bpfmtap(ifp, mb_head);
1387 	}
1388 
1389 	/*
1390 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1391 	 * going again if suspended.
1392 	 */
1393 	if (txqueued > 0) {
1394 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1395 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1396 		fxp_scb_wait(sc);
1397 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1398 		/*
1399 		 * Set a 5 second timer just in case we don't hear
1400 		 * from the card again.
1401 		 */
1402 		sc->watchdog_timer = 5;
1403 	}
1404 }
1405 
1406 static int
1407 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1408 {
1409 	if_t ifp;
1410 	struct mbuf *m;
1411 	struct fxp_tx *txp;
1412 	struct fxp_cb_tx *cbp;
1413 	struct tcphdr *tcp;
1414 	bus_dma_segment_t segs[FXP_NTXSEG];
1415 	int error, i, nseg, tcp_payload;
1416 
1417 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1418 	ifp = sc->ifp;
1419 
1420 	tcp_payload = 0;
1421 	tcp = NULL;
1422 	/*
1423 	 * Get pointer to next available tx desc.
1424 	 */
1425 	txp = sc->fxp_desc.tx_last->tx_next;
1426 
1427 	/*
1428 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1429 	 * Ethernet Controller Family Open Source Software
1430 	 * Developer Manual says:
1431 	 *   Using software parsing is only allowed with legal
1432 	 *   TCP/IP or UDP/IP packets.
1433 	 *   ...
1434 	 *   For all other datagrams, hardware parsing must
1435 	 *   be used.
1436 	 * Software parsing appears to truncate ICMP and
1437 	 * fragmented UDP packets that contain one to three
1438 	 * bytes in the second (and final) mbuf of the packet.
1439 	 */
1440 	if (sc->flags & FXP_FLAG_EXT_RFA)
1441 		txp->tx_cb->ipcb_ip_activation_high =
1442 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1443 
1444 	m = *m_head;
1445 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1446 		/*
1447 		 * 82550/82551 requires ethernet/IP/TCP headers must be
1448 		 * contained in the first active transmit buffer.
1449 		 */
1450 		struct ether_header *eh;
1451 		struct ip *ip;
1452 		uint32_t ip_off, poff;
1453 
1454 		if (M_WRITABLE(*m_head) == 0) {
1455 			/* Get a writable copy. */
1456 			m = m_dup(*m_head, M_NOWAIT);
1457 			m_freem(*m_head);
1458 			if (m == NULL) {
1459 				*m_head = NULL;
1460 				return (ENOBUFS);
1461 			}
1462 			*m_head = m;
1463 		}
1464 		ip_off = sizeof(struct ether_header);
1465 		m = m_pullup(*m_head, ip_off);
1466 		if (m == NULL) {
1467 			*m_head = NULL;
1468 			return (ENOBUFS);
1469 		}
1470 		eh = mtod(m, struct ether_header *);
1471 		/* Check the existence of VLAN tag. */
1472 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1473 			ip_off = sizeof(struct ether_vlan_header);
1474 			m = m_pullup(m, ip_off);
1475 			if (m == NULL) {
1476 				*m_head = NULL;
1477 				return (ENOBUFS);
1478 			}
1479 		}
1480 		m = m_pullup(m, ip_off + sizeof(struct ip));
1481 		if (m == NULL) {
1482 			*m_head = NULL;
1483 			return (ENOBUFS);
1484 		}
1485 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1486 		poff = ip_off + (ip->ip_hl << 2);
1487 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1488 		if (m == NULL) {
1489 			*m_head = NULL;
1490 			return (ENOBUFS);
1491 		}
1492 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1493 		m = m_pullup(m, poff + (tcp->th_off << 2));
1494 		if (m == NULL) {
1495 			*m_head = NULL;
1496 			return (ENOBUFS);
1497 		}
1498 
1499 		/*
1500 		 * Since 82550/82551 doesn't modify IP length and pseudo
1501 		 * checksum in the first frame driver should compute it.
1502 		 */
1503 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1504 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1505 		ip->ip_sum = 0;
1506 		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1507 		    (tcp->th_off << 2));
1508 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1509 		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1510 		    m->m_pkthdr.tso_segsz));
1511 		/* Compute total TCP payload. */
1512 		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1513 		tcp_payload -= tcp->th_off << 2;
1514 		*m_head = m;
1515 	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1516 		/*
1517 		 * Deal with TCP/IP checksum offload. Note that
1518 		 * in order for TCP checksum offload to work,
1519 		 * the pseudo header checksum must have already
1520 		 * been computed and stored in the checksum field
1521 		 * in the TCP header. The stack should have
1522 		 * already done this for us.
1523 		 */
1524 		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1525 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1526 			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1527 
1528 #ifdef FXP_IP_CSUM_WAR
1529 		/*
1530 		 * XXX The 82550 chip appears to have trouble
1531 		 * dealing with IP header checksums in very small
1532 		 * datagrams, namely fragments from 1 to 3 bytes
1533 		 * in size. For example, say you want to transmit
1534 		 * a UDP packet of 1473 bytes. The packet will be
1535 		 * fragmented over two IP datagrams, the latter
1536 		 * containing only one byte of data. The 82550 will
1537 		 * botch the header checksum on the 1-byte fragment.
1538 		 * As long as the datagram contains 4 or more bytes
1539 		 * of data, you're ok.
1540 		 *
1541                  * The following code attempts to work around this
1542 		 * problem: if the datagram is less than 38 bytes
1543 		 * in size (14 bytes ether header, 20 bytes IP header,
1544 		 * plus 4 bytes of data), we punt and compute the IP
1545 		 * header checksum by hand. This workaround doesn't
1546 		 * work very well, however, since it can be fooled
1547 		 * by things like VLAN tags and IP options that make
1548 		 * the header sizes/offsets vary.
1549 		 */
1550 
1551 		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1552 			if (m->m_pkthdr.len < 38) {
1553 				struct ip *ip;
1554 				m->m_data += ETHER_HDR_LEN;
1555 				ip = mtod(m, struct ip *);
1556 				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1557 				m->m_data -= ETHER_HDR_LEN;
1558 				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1559 			} else {
1560 				txp->tx_cb->ipcb_ip_activation_high =
1561 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1562 				txp->tx_cb->ipcb_ip_schedule |=
1563 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1564 			}
1565 		}
1566 #endif
1567 	}
1568 
1569 	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1570 	    segs, &nseg, 0);
1571 	if (error == EFBIG) {
1572 		m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg);
1573 		if (m == NULL) {
1574 			m_freem(*m_head);
1575 			*m_head = NULL;
1576 			return (ENOMEM);
1577 		}
1578 		*m_head = m;
1579 		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1580 		    *m_head, segs, &nseg, 0);
1581 		if (error != 0) {
1582 			m_freem(*m_head);
1583 			*m_head = NULL;
1584 			return (ENOMEM);
1585 		}
1586 	} else if (error != 0)
1587 		return (error);
1588 	if (nseg == 0) {
1589 		m_freem(*m_head);
1590 		*m_head = NULL;
1591 		return (EIO);
1592 	}
1593 
1594 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1595 	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1596 
1597 	cbp = txp->tx_cb;
1598 	for (i = 0; i < nseg; i++) {
1599 		/*
1600 		 * If this is an 82550/82551, then we're using extended
1601 		 * TxCBs _and_ we're using checksum offload. This means
1602 		 * that the TxCB is really an IPCB. One major difference
1603 		 * between the two is that with plain extended TxCBs,
1604 		 * the bottom half of the TxCB contains two entries from
1605 		 * the TBD array, whereas IPCBs contain just one entry:
1606 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1607 		 * checksum offload control bits. So to make things work
1608 		 * right, we have to start filling in the TBD array
1609 		 * starting from a different place depending on whether
1610 		 * the chip is an 82550/82551 or not.
1611 		 */
1612 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1613 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1614 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1615 		} else {
1616 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1617 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1618 		}
1619 	}
1620 	if (sc->flags & FXP_FLAG_EXT_RFA) {
1621 		/* Configure dynamic TBD for 82550/82551. */
1622 		cbp->tbd_number = 0xFF;
1623 		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1624 	} else
1625 		cbp->tbd_number = nseg;
1626 	/* Configure TSO. */
1627 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1628 		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1629 		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1630 		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1631 		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1632 		    FXP_IPCB_TCP_PACKET |
1633 		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1634 	}
1635 	/* Configure VLAN hardware tag insertion. */
1636 	if ((m->m_flags & M_VLANTAG) != 0) {
1637 		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1638 		txp->tx_cb->ipcb_ip_activation_high |=
1639 		    FXP_IPCB_INSERTVLAN_ENABLE;
1640 	}
1641 
1642 	txp->tx_mbuf = m;
1643 	txp->tx_cb->cb_status = 0;
1644 	txp->tx_cb->byte_count = 0;
1645 	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1646 		txp->tx_cb->cb_command =
1647 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1648 		    FXP_CB_COMMAND_S);
1649 	else
1650 		txp->tx_cb->cb_command =
1651 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1652 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1653 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1654 		txp->tx_cb->tx_threshold = tx_threshold;
1655 
1656 	/*
1657 	 * Advance the end of list forward.
1658 	 */
1659 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1660 	sc->fxp_desc.tx_last = txp;
1661 
1662 	/*
1663 	 * Advance the beginning of the list forward if there are
1664 	 * no other packets queued (when nothing is queued, tx_first
1665 	 * sits on the last TxCB that was sent out).
1666 	 */
1667 	if (sc->tx_queued == 0)
1668 		sc->fxp_desc.tx_first = txp;
1669 
1670 	sc->tx_queued++;
1671 
1672 	return (0);
1673 }
1674 
1675 #ifdef DEVICE_POLLING
1676 static poll_handler_t fxp_poll;
1677 
1678 static int
1679 fxp_poll(if_t ifp, enum poll_cmd cmd, int count)
1680 {
1681 	struct fxp_softc *sc = if_getsoftc(ifp);
1682 	uint8_t statack;
1683 	int rx_npkts = 0;
1684 
1685 	FXP_LOCK(sc);
1686 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1687 		FXP_UNLOCK(sc);
1688 		return (rx_npkts);
1689 	}
1690 
1691 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1692 	    FXP_SCB_STATACK_FR;
1693 	if (cmd == POLL_AND_CHECK_STATUS) {
1694 		uint8_t tmp;
1695 
1696 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1697 		if (tmp == 0xff || tmp == 0) {
1698 			FXP_UNLOCK(sc);
1699 			return (rx_npkts); /* nothing to do */
1700 		}
1701 		tmp &= ~statack;
1702 		/* ack what we can */
1703 		if (tmp != 0)
1704 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1705 		statack |= tmp;
1706 	}
1707 	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1708 	FXP_UNLOCK(sc);
1709 	return (rx_npkts);
1710 }
1711 #endif /* DEVICE_POLLING */
1712 
1713 /*
1714  * Process interface interrupts.
1715  */
1716 static void
1717 fxp_intr(void *xsc)
1718 {
1719 	struct fxp_softc *sc = xsc;
1720 	if_t ifp = sc->ifp;
1721 	uint8_t statack;
1722 
1723 	FXP_LOCK(sc);
1724 	if (sc->suspended) {
1725 		FXP_UNLOCK(sc);
1726 		return;
1727 	}
1728 
1729 #ifdef DEVICE_POLLING
1730 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
1731 		FXP_UNLOCK(sc);
1732 		return;
1733 	}
1734 #endif
1735 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1736 		/*
1737 		 * It should not be possible to have all bits set; the
1738 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1739 		 * all bits are set, this may indicate that the card has
1740 		 * been physically ejected, so ignore it.
1741 		 */
1742 		if (statack == 0xff) {
1743 			FXP_UNLOCK(sc);
1744 			return;
1745 		}
1746 
1747 		/*
1748 		 * First ACK all the interrupts in this pass.
1749 		 */
1750 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1751 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1752 			fxp_intr_body(sc, ifp, statack, -1);
1753 	}
1754 	FXP_UNLOCK(sc);
1755 }
1756 
1757 static void
1758 fxp_txeof(struct fxp_softc *sc)
1759 {
1760 	if_t ifp;
1761 	struct fxp_tx *txp;
1762 
1763 	ifp = sc->ifp;
1764 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1765 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1766 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1767 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1768 	    txp = txp->tx_next) {
1769 		if (txp->tx_mbuf != NULL) {
1770 			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1771 			    BUS_DMASYNC_POSTWRITE);
1772 			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1773 			m_freem(txp->tx_mbuf);
1774 			txp->tx_mbuf = NULL;
1775 			/* clear this to reset csum offload bits */
1776 			txp->tx_cb->tbd[0].tb_addr = 0;
1777 		}
1778 		sc->tx_queued--;
1779 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1780 	}
1781 	sc->fxp_desc.tx_first = txp;
1782 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1783 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1784 	if (sc->tx_queued == 0)
1785 		sc->watchdog_timer = 0;
1786 }
1787 
1788 static void
1789 fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m,
1790     uint16_t status, int pos)
1791 {
1792 	struct ether_header *eh;
1793 	struct ip *ip;
1794 	struct udphdr *uh;
1795 	int32_t hlen, len, pktlen, temp32;
1796 	uint16_t csum, *opts;
1797 
1798 	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1799 		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1800 			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1801 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1802 			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1803 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1804 			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1805 			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1806 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1807 				    CSUM_PSEUDO_HDR;
1808 				m->m_pkthdr.csum_data = 0xffff;
1809 			}
1810 		}
1811 		return;
1812 	}
1813 
1814 	pktlen = m->m_pkthdr.len;
1815 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1816 		return;
1817 	eh = mtod(m, struct ether_header *);
1818 	if (eh->ether_type != htons(ETHERTYPE_IP))
1819 		return;
1820 	ip = (struct ip *)(eh + 1);
1821 	if (ip->ip_v != IPVERSION)
1822 		return;
1823 
1824 	hlen = ip->ip_hl << 2;
1825 	pktlen -= sizeof(struct ether_header);
1826 	if (hlen < sizeof(struct ip))
1827 		return;
1828 	if (ntohs(ip->ip_len) < hlen)
1829 		return;
1830 	if (ntohs(ip->ip_len) != pktlen)
1831 		return;
1832 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1833 		return;	/* can't handle fragmented packet */
1834 
1835 	switch (ip->ip_p) {
1836 	case IPPROTO_TCP:
1837 		if (pktlen < (hlen + sizeof(struct tcphdr)))
1838 			return;
1839 		break;
1840 	case IPPROTO_UDP:
1841 		if (pktlen < (hlen + sizeof(struct udphdr)))
1842 			return;
1843 		uh = (struct udphdr *)((caddr_t)ip + hlen);
1844 		if (uh->uh_sum == 0)
1845 			return; /* no checksum */
1846 		break;
1847 	default:
1848 		return;
1849 	}
1850 	/* Extract computed checksum. */
1851 	csum = be16dec(mtod(m, char *) + pos);
1852 	/* checksum fixup for IP options */
1853 	len = hlen - sizeof(struct ip);
1854 	if (len > 0) {
1855 		opts = (uint16_t *)(ip + 1);
1856 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1857 			temp32 = csum - *opts;
1858 			temp32 = (temp32 >> 16) + (temp32 & 65535);
1859 			csum = temp32 & 65535;
1860 		}
1861 	}
1862 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1863 	m->m_pkthdr.csum_data = csum;
1864 }
1865 
1866 static int
1867 fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack,
1868     int count)
1869 {
1870 	struct mbuf *m;
1871 	struct fxp_rx *rxp;
1872 	struct fxp_rfa *rfa;
1873 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1874 	int rx_npkts;
1875 	uint16_t status;
1876 
1877 	rx_npkts = 0;
1878 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1879 
1880 	if (rnr)
1881 		sc->rnr++;
1882 #ifdef DEVICE_POLLING
1883 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1884 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1885 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1886 		rnr = 1;
1887 	}
1888 #endif
1889 
1890 	/*
1891 	 * Free any finished transmit mbuf chains.
1892 	 *
1893 	 * Handle the CNA event likt a CXTNO event. It used to
1894 	 * be that this event (control unit not ready) was not
1895 	 * encountered, but it is now with the SMPng modifications.
1896 	 * The exact sequence of events that occur when the interface
1897 	 * is brought up are different now, and if this event
1898 	 * goes unhandled, the configuration/rxfilter setup sequence
1899 	 * can stall for several seconds. The result is that no
1900 	 * packets go out onto the wire for about 5 to 10 seconds
1901 	 * after the interface is ifconfig'ed for the first time.
1902 	 */
1903 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1904 		fxp_txeof(sc);
1905 
1906 	/*
1907 	 * Try to start more packets transmitting.
1908 	 */
1909 	if (!if_sendq_empty(ifp))
1910 		fxp_start_body(ifp);
1911 
1912 	/*
1913 	 * Just return if nothing happened on the receive side.
1914 	 */
1915 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1916 		return (rx_npkts);
1917 
1918 	/*
1919 	 * Process receiver interrupts. If a no-resource (RNR)
1920 	 * condition exists, get whatever packets we can and
1921 	 * re-start the receiver.
1922 	 *
1923 	 * When using polling, we do not process the list to completion,
1924 	 * so when we get an RNR interrupt we must defer the restart
1925 	 * until we hit the last buffer with the C bit set.
1926 	 * If we run out of cycles and rfa_headm has the C bit set,
1927 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1928 	 * that the info will be used in the subsequent polling cycle.
1929 	 */
1930 	for (;;) {
1931 		rxp = sc->fxp_desc.rx_head;
1932 		m = rxp->rx_mbuf;
1933 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1934 		    RFA_ALIGNMENT_FUDGE);
1935 		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1936 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1937 
1938 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1939 		if (count >= 0 && count-- == 0) {
1940 			if (rnr) {
1941 				/* Defer RNR processing until the next time. */
1942 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1943 				rnr = 0;
1944 			}
1945 			break;
1946 		}
1947 #endif /* DEVICE_POLLING */
1948 
1949 		status = le16toh(rfa->rfa_status);
1950 		if ((status & FXP_RFA_STATUS_C) == 0)
1951 			break;
1952 
1953 		if ((status & FXP_RFA_STATUS_RNR) != 0)
1954 			rnr++;
1955 		/*
1956 		 * Advance head forward.
1957 		 */
1958 		sc->fxp_desc.rx_head = rxp->rx_next;
1959 
1960 		/*
1961 		 * Add a new buffer to the receive chain.
1962 		 * If this fails, the old buffer is recycled
1963 		 * instead.
1964 		 */
1965 		if (fxp_new_rfabuf(sc, rxp) == 0) {
1966 			int total_len;
1967 
1968 			/*
1969 			 * Fetch packet length (the top 2 bits of
1970 			 * actual_size are flags set by the controller
1971 			 * upon completion), and drop the packet in case
1972 			 * of bogus length or CRC errors.
1973 			 */
1974 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1975 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1976 			    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1977 				/* Adjust for appended checksum bytes. */
1978 				total_len -= 2;
1979 			}
1980 			if (total_len < (int)sizeof(struct ether_header) ||
1981 			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1982 			    sc->rfa_size) ||
1983 			    status & (FXP_RFA_STATUS_CRC |
1984 			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1985 				m_freem(m);
1986 				fxp_add_rfabuf(sc, rxp);
1987 				continue;
1988 			}
1989 
1990 			m->m_pkthdr.len = m->m_len = total_len;
1991 			if_setrcvif(m, ifp);
1992 
1993                         /* Do IP checksum checking. */
1994 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1995 				fxp_rxcsum(sc, ifp, m, status, total_len);
1996 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1997 			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1998 				m->m_pkthdr.ether_vtag =
1999 				    ntohs(rfa->rfax_vlan_id);
2000 				m->m_flags |= M_VLANTAG;
2001 			}
2002 			/*
2003 			 * Drop locks before calling if_input() since it
2004 			 * may re-enter fxp_start() in the netisr case.
2005 			 * This would result in a lock reversal.  Better
2006 			 * performance might be obtained by chaining all
2007 			 * packets received, dropping the lock, and then
2008 			 * calling if_input() on each one.
2009 			 */
2010 			FXP_UNLOCK(sc);
2011 			if_input(ifp, m);
2012 			FXP_LOCK(sc);
2013 			rx_npkts++;
2014 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2015 				return (rx_npkts);
2016 		} else {
2017 			/* Reuse RFA and loaded DMA map. */
2018 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2019 			fxp_discard_rfabuf(sc, rxp);
2020 		}
2021 		fxp_add_rfabuf(sc, rxp);
2022 	}
2023 	if (rnr) {
2024 		fxp_scb_wait(sc);
2025 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2026 		    sc->fxp_desc.rx_head->rx_addr);
2027 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2028 	}
2029 	return (rx_npkts);
2030 }
2031 
2032 static void
2033 fxp_update_stats(struct fxp_softc *sc)
2034 {
2035 	if_t ifp = sc->ifp;
2036 	struct fxp_stats *sp = sc->fxp_stats;
2037 	struct fxp_hwstats *hsp;
2038 	uint32_t *status;
2039 
2040 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2041 
2042 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2043 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2044 	/* Update statistical counters. */
2045 	if (sc->revision >= FXP_REV_82559_A0)
2046 		status = &sp->completion_status;
2047 	else if (sc->revision >= FXP_REV_82558_A4)
2048 		status = (uint32_t *)&sp->tx_tco;
2049 	else
2050 		status = &sp->tx_pause;
2051 	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2052 		hsp = &sc->fxp_hwstats;
2053 		hsp->tx_good += le32toh(sp->tx_good);
2054 		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2055 		hsp->tx_latecols += le32toh(sp->tx_latecols);
2056 		hsp->tx_underruns += le32toh(sp->tx_underruns);
2057 		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2058 		hsp->tx_deffered += le32toh(sp->tx_deffered);
2059 		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2060 		hsp->tx_multiple_collisions +=
2061 		    le32toh(sp->tx_multiple_collisions);
2062 		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2063 		hsp->rx_good += le32toh(sp->rx_good);
2064 		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2065 		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2066 		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2067 		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2068 		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2069 		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2070 		hsp->tx_pause += le32toh(sp->tx_pause);
2071 		hsp->rx_pause += le32toh(sp->rx_pause);
2072 		hsp->rx_controls += le32toh(sp->rx_controls);
2073 		hsp->tx_tco += le16toh(sp->tx_tco);
2074 		hsp->rx_tco += le16toh(sp->rx_tco);
2075 
2076 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good));
2077 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2078 		    le32toh(sp->tx_total_collisions));
2079 		if (sp->rx_good) {
2080 			if_inc_counter(ifp, IFCOUNTER_IPACKETS,
2081 			    le32toh(sp->rx_good));
2082 			sc->rx_idle_secs = 0;
2083 		} else if (sc->flags & FXP_FLAG_RXBUG) {
2084 			/*
2085 			 * Receiver's been idle for another second.
2086 			 */
2087 			sc->rx_idle_secs++;
2088 		}
2089 		if_inc_counter(ifp, IFCOUNTER_IERRORS,
2090 		    le32toh(sp->rx_crc_errors) +
2091 		    le32toh(sp->rx_alignment_errors) +
2092 		    le32toh(sp->rx_rnr_errors) +
2093 		    le32toh(sp->rx_overrun_errors));
2094 		/*
2095 		 * If any transmit underruns occurred, bump up the transmit
2096 		 * threshold by another 512 bytes (64 * 8).
2097 		 */
2098 		if (sp->tx_underruns) {
2099 			if_inc_counter(ifp, IFCOUNTER_OERRORS,
2100 			    le32toh(sp->tx_underruns));
2101 			if (tx_threshold < 192)
2102 				tx_threshold += 64;
2103 		}
2104 		*status = 0;
2105 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2106 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2107 	}
2108 }
2109 
2110 /*
2111  * Update packet in/out/collision statistics. The i82557 doesn't
2112  * allow you to access these counters without doing a fairly
2113  * expensive DMA to get _all_ of the statistics it maintains, so
2114  * we do this operation here only once per second. The statistics
2115  * counters in the kernel are updated from the previous dump-stats
2116  * DMA and then a new dump-stats DMA is started. The on-chip
2117  * counters are zeroed when the DMA completes. If we can't start
2118  * the DMA immediately, we don't wait - we just prepare to read
2119  * them again next time.
2120  */
2121 static void
2122 fxp_tick(void *xsc)
2123 {
2124 	struct fxp_softc *sc = xsc;
2125 	if_t ifp = sc->ifp;
2126 
2127 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2128 
2129 	/* Update statistical counters. */
2130 	fxp_update_stats(sc);
2131 
2132 	/*
2133 	 * Release any xmit buffers that have completed DMA. This isn't
2134 	 * strictly necessary to do here, but it's advantagous for mbufs
2135 	 * with external storage to be released in a timely manner rather
2136 	 * than being defered for a potentially long time. This limits
2137 	 * the delay to a maximum of one second.
2138 	 */
2139 	fxp_txeof(sc);
2140 
2141 	/*
2142 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2143 	 * then assume the receiver has locked up and attempt to clear
2144 	 * the condition by reprogramming the multicast filter. This is
2145 	 * a work-around for a bug in the 82557 where the receiver locks
2146 	 * up if it gets certain types of garbage in the synchronization
2147 	 * bits prior to the packet header. This bug is supposed to only
2148 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2149 	 * mode as well (perhaps due to a 10/100 speed transition).
2150 	 */
2151 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2152 		sc->rx_idle_secs = 0;
2153 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2154 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2155 			fxp_init_body(sc, 1);
2156 		}
2157 		return;
2158 	}
2159 	/*
2160 	 * If there is no pending command, start another stats
2161 	 * dump. Otherwise punt for now.
2162 	 */
2163 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2164 		/*
2165 		 * Start another stats dump.
2166 		 */
2167 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2168 	}
2169 	if (sc->miibus != NULL)
2170 		mii_tick(device_get_softc(sc->miibus));
2171 
2172 	/*
2173 	 * Check that chip hasn't hung.
2174 	 */
2175 	fxp_watchdog(sc);
2176 
2177 	/*
2178 	 * Schedule another timeout one second from now.
2179 	 */
2180 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2181 }
2182 
2183 /*
2184  * Stop the interface. Cancels the statistics updater and resets
2185  * the interface.
2186  */
2187 static void
2188 fxp_stop(struct fxp_softc *sc)
2189 {
2190 	if_t ifp = sc->ifp;
2191 	struct fxp_tx *txp;
2192 	int i;
2193 
2194 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2195 	sc->watchdog_timer = 0;
2196 
2197 	/*
2198 	 * Cancel stats updater.
2199 	 */
2200 	callout_stop(&sc->stat_ch);
2201 
2202 	/*
2203 	 * Preserve PCI configuration, configure, IA/multicast
2204 	 * setup and put RU and CU into idle state.
2205 	 */
2206 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2207 	DELAY(50);
2208 	/* Disable interrupts. */
2209 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2210 
2211 	fxp_update_stats(sc);
2212 
2213 	/*
2214 	 * Release any xmit buffers.
2215 	 */
2216 	txp = sc->fxp_desc.tx_list;
2217 	for (i = 0; i < FXP_NTXCB; i++) {
2218 		if (txp[i].tx_mbuf != NULL) {
2219 			bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2220 			    BUS_DMASYNC_POSTWRITE);
2221 			bus_dmamap_unload(sc->fxp_txmtag, txp[i].tx_map);
2222 			m_freem(txp[i].tx_mbuf);
2223 			txp[i].tx_mbuf = NULL;
2224 			/* clear this to reset csum offload bits */
2225 			txp[i].tx_cb->tbd[0].tb_addr = 0;
2226 		}
2227 	}
2228 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2229 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2230 	sc->tx_queued = 0;
2231 }
2232 
2233 /*
2234  * Watchdog/transmission transmit timeout handler. Called when a
2235  * transmission is started on the interface, but no interrupt is
2236  * received before the timeout. This usually indicates that the
2237  * card has wedged for some reason.
2238  */
2239 static void
2240 fxp_watchdog(struct fxp_softc *sc)
2241 {
2242 	if_t ifp = sc->ifp;
2243 
2244 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2245 
2246 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2247 		return;
2248 
2249 	device_printf(sc->dev, "device timeout\n");
2250 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2251 
2252 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2253 	fxp_init_body(sc, 1);
2254 }
2255 
2256 /*
2257  * Acquire locks and then call the real initialization function.  This
2258  * is necessary because ether_ioctl() calls if_init() and this would
2259  * result in mutex recursion if the mutex was held.
2260  */
2261 static void
2262 fxp_init(void *xsc)
2263 {
2264 	struct fxp_softc *sc = xsc;
2265 
2266 	FXP_LOCK(sc);
2267 	fxp_init_body(sc, 1);
2268 	FXP_UNLOCK(sc);
2269 }
2270 
2271 /*
2272  * Perform device initialization. This routine must be called with the
2273  * softc lock held.
2274  */
2275 static void
2276 fxp_init_body(struct fxp_softc *sc, int setmedia)
2277 {
2278 	if_t ifp = sc->ifp;
2279 	struct mii_data *mii;
2280 	struct fxp_cb_config *cbp;
2281 	struct fxp_cb_ias *cb_ias;
2282 	struct fxp_cb_tx *tcbp;
2283 	struct fxp_tx *txp;
2284 	int i, prm;
2285 
2286 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2287 
2288 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2289 		return;
2290 
2291 	/*
2292 	 * Cancel any pending I/O
2293 	 */
2294 	fxp_stop(sc);
2295 
2296 	/*
2297 	 * Issue software reset, which also unloads the microcode.
2298 	 */
2299 	sc->flags &= ~FXP_FLAG_UCODE;
2300 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2301 	DELAY(50);
2302 
2303 	prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0;
2304 
2305 	/*
2306 	 * Initialize base of CBL and RFA memory. Loading with zero
2307 	 * sets it up for regular linear addressing.
2308 	 */
2309 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2310 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2311 
2312 	fxp_scb_wait(sc);
2313 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2314 
2315 	/*
2316 	 * Initialize base of dump-stats buffer.
2317 	 */
2318 	fxp_scb_wait(sc);
2319 	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2320 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2321 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2322 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2323 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2324 
2325 	/*
2326 	 * Attempt to load microcode if requested.
2327 	 * For ICH based controllers do not load microcode.
2328 	 */
2329 	if (sc->ident->ich == 0) {
2330 		if (if_getflags(ifp) & IFF_LINK0 &&
2331 		    (sc->flags & FXP_FLAG_UCODE) == 0)
2332 			fxp_load_ucode(sc);
2333 	}
2334 
2335 	/*
2336 	 * Set IFF_ALLMULTI status. It's needed in configure action
2337 	 * command.
2338 	 */
2339 	fxp_mc_addrs(sc);
2340 
2341 	/*
2342 	 * We temporarily use memory that contains the TxCB list to
2343 	 * construct the config CB. The TxCB list memory is rebuilt
2344 	 * later.
2345 	 */
2346 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2347 
2348 	/*
2349 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2350 	 * zero and must be one bits in this structure and this is the easiest
2351 	 * way to initialize them all to proper values.
2352 	 */
2353 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2354 
2355 	cbp->cb_status =	0;
2356 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2357 	    FXP_CB_COMMAND_EL);
2358 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2359 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2360 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2361 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2362 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2363 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2364 	cbp->type_enable =	0;	/* actually reserved */
2365 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2366 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2367 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2368 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2369 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2370 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2371 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2372 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2373 	cbp->ci_int =		1;	/* interrupt on CU idle */
2374 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2375 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2376 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2377 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2378 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2379 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2380 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2381 	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2382 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2383 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2384 	cbp->csma_dis =		0;	/* (don't) disable link */
2385 	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2386 	    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0;
2387 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2388 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2389 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2390 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2391 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2392 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2393 	cbp->loopback =		0;	/* (don't) loopback */
2394 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2395 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2396 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2397 	cbp->promiscuous =	prm;	/* promiscuous mode */
2398 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2399 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2400 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2401 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2402 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2403 
2404 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2405 	cbp->padding =		1;	/* (do) pad short tx packets */
2406 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2407 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2408 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2409 	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2410 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2411 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2412 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2413 	cbp->mc_all =		if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm;
2414 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2415 	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2416 	    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2417 
2418 	if (sc->revision == FXP_REV_82557) {
2419 		/*
2420 		 * The 82557 has no hardware flow control, the values
2421 		 * below are the defaults for the chip.
2422 		 */
2423 		cbp->fc_delay_lsb =	0;
2424 		cbp->fc_delay_msb =	0x40;
2425 		cbp->pri_fc_thresh =	3;
2426 		cbp->tx_fc_dis =	0;
2427 		cbp->rx_fc_restop =	0;
2428 		cbp->rx_fc_restart =	0;
2429 		cbp->fc_filter =	0;
2430 		cbp->pri_fc_loc =	1;
2431 	} else {
2432 		/* Set pause RX FIFO threshold to 1KB. */
2433 		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2434 		/* Set pause time. */
2435 		cbp->fc_delay_lsb =	0xff;
2436 		cbp->fc_delay_msb =	0xff;
2437 		cbp->pri_fc_thresh =	3;
2438 		mii = device_get_softc(sc->miibus);
2439 		if ((IFM_OPTIONS(mii->mii_media_active) &
2440 		    IFM_ETH_TXPAUSE) != 0)
2441 			/* enable transmit FC */
2442 			cbp->tx_fc_dis = 0;
2443 		else
2444 			/* disable transmit FC */
2445 			cbp->tx_fc_dis = 1;
2446 		if ((IFM_OPTIONS(mii->mii_media_active) &
2447 		    IFM_ETH_RXPAUSE) != 0) {
2448 			/* enable FC restart/restop frames */
2449 			cbp->rx_fc_restart = 1;
2450 			cbp->rx_fc_restop = 1;
2451 		} else {
2452 			/* disable FC restart/restop frames */
2453 			cbp->rx_fc_restart = 0;
2454 			cbp->rx_fc_restop = 0;
2455 		}
2456 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2457 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2458 	}
2459 
2460 	/* Enable 82558 and 82559 extended statistics functionality. */
2461 	if (sc->revision >= FXP_REV_82558_A4) {
2462 		if (sc->revision >= FXP_REV_82559_A0) {
2463 			/*
2464 			 * Extend configuration table size to 32
2465 			 * to include TCO configuration.
2466 			 */
2467 			cbp->byte_count = 32;
2468 			cbp->ext_stats_dis = 1;
2469 			/* Enable TCO stats. */
2470 			cbp->tno_int_or_tco_en = 1;
2471 			cbp->gamla_rx = 1;
2472 		} else
2473 			cbp->ext_stats_dis = 0;
2474 	}
2475 
2476 	/*
2477 	 * Start the config command/DMA.
2478 	 */
2479 	fxp_scb_wait(sc);
2480 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2481 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2482 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2483 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2484 	/* ...and wait for it to complete. */
2485 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2486 
2487 	/*
2488 	 * Now initialize the station address. Temporarily use the TxCB
2489 	 * memory area like we did above for the config CB.
2490 	 */
2491 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2492 	cb_ias->cb_status = 0;
2493 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2494 	cb_ias->link_addr = 0xffffffff;
2495 	bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2496 
2497 	/*
2498 	 * Start the IAS (Individual Address Setup) command/DMA.
2499 	 */
2500 	fxp_scb_wait(sc);
2501 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2502 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2503 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2504 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2505 	/* ...and wait for it to complete. */
2506 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2507 
2508 	/*
2509 	 * Initialize the multicast address list.
2510 	 */
2511 	fxp_mc_setup(sc);
2512 
2513 	/*
2514 	 * Initialize transmit control block (TxCB) list.
2515 	 */
2516 	txp = sc->fxp_desc.tx_list;
2517 	tcbp = sc->fxp_desc.cbl_list;
2518 	bzero(tcbp, FXP_TXCB_SZ);
2519 	for (i = 0; i < FXP_NTXCB; i++) {
2520 		txp[i].tx_mbuf = NULL;
2521 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2522 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2523 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2524 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2525 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2526 			tcbp[i].tbd_array_addr =
2527 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2528 		else
2529 			tcbp[i].tbd_array_addr =
2530 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2531 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2532 	}
2533 	/*
2534 	 * Set the suspend flag on the first TxCB and start the control
2535 	 * unit. It will execute the NOP and then suspend.
2536 	 */
2537 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2538 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2539 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2540 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2541 	sc->tx_queued = 1;
2542 
2543 	fxp_scb_wait(sc);
2544 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2545 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2546 
2547 	/*
2548 	 * Initialize receiver buffer area - RFA.
2549 	 */
2550 	fxp_scb_wait(sc);
2551 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2552 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2553 
2554 	if (sc->miibus != NULL && setmedia != 0)
2555 		mii_mediachg(device_get_softc(sc->miibus));
2556 
2557 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2558 
2559 	/*
2560 	 * Enable interrupts.
2561 	 */
2562 #ifdef DEVICE_POLLING
2563 	/*
2564 	 * ... but only do that if we are not polling. And because (presumably)
2565 	 * the default is interrupts on, we need to disable them explicitly!
2566 	 */
2567 	if (if_getcapenable(ifp) & IFCAP_POLLING )
2568 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2569 	else
2570 #endif /* DEVICE_POLLING */
2571 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2572 
2573 	/*
2574 	 * Start stats updater.
2575 	 */
2576 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2577 }
2578 
2579 static int
2580 fxp_serial_ifmedia_upd(if_t ifp)
2581 {
2582 
2583 	return (0);
2584 }
2585 
2586 static void
2587 fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2588 {
2589 
2590 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2591 }
2592 
2593 /*
2594  * Change media according to request.
2595  */
2596 static int
2597 fxp_ifmedia_upd(if_t ifp)
2598 {
2599 	struct fxp_softc *sc = if_getsoftc(ifp);
2600 	struct mii_data *mii;
2601 	struct mii_softc	*miisc;
2602 
2603 	mii = device_get_softc(sc->miibus);
2604 	FXP_LOCK(sc);
2605 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2606 		PHY_RESET(miisc);
2607 	mii_mediachg(mii);
2608 	FXP_UNLOCK(sc);
2609 	return (0);
2610 }
2611 
2612 /*
2613  * Notify the world which media we're using.
2614  */
2615 static void
2616 fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2617 {
2618 	struct fxp_softc *sc = if_getsoftc(ifp);
2619 	struct mii_data *mii;
2620 
2621 	mii = device_get_softc(sc->miibus);
2622 	FXP_LOCK(sc);
2623 	mii_pollstat(mii);
2624 	ifmr->ifm_active = mii->mii_media_active;
2625 	ifmr->ifm_status = mii->mii_media_status;
2626 	FXP_UNLOCK(sc);
2627 }
2628 
2629 /*
2630  * Add a buffer to the end of the RFA buffer list.
2631  * Return 0 if successful, 1 for failure. A failure results in
2632  * reusing the RFA buffer.
2633  * The RFA struct is stuck at the beginning of mbuf cluster and the
2634  * data pointer is fixed up to point just past it.
2635  */
2636 static int
2637 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2638 {
2639 	struct mbuf *m;
2640 	struct fxp_rfa *rfa;
2641 	bus_dmamap_t tmp_map;
2642 	int error;
2643 
2644 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2645 	if (m == NULL)
2646 		return (ENOBUFS);
2647 
2648 	/*
2649 	 * Move the data pointer up so that the incoming data packet
2650 	 * will be 32-bit aligned.
2651 	 */
2652 	m->m_data += RFA_ALIGNMENT_FUDGE;
2653 
2654 	/*
2655 	 * Get a pointer to the base of the mbuf cluster and move
2656 	 * data start past it.
2657 	 */
2658 	rfa = mtod(m, struct fxp_rfa *);
2659 	m->m_data += sc->rfa_size;
2660 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2661 
2662 	rfa->rfa_status = 0;
2663 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2664 	rfa->actual_size = 0;
2665 	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2666 	    sc->rfa_size;
2667 
2668 	/*
2669 	 * Initialize the rest of the RFA.  Note that since the RFA
2670 	 * is misaligned, we cannot store values directly.  We're thus
2671 	 * using the le32enc() function which handles endianness and
2672 	 * is also alignment-safe.
2673 	 */
2674 	le32enc(&rfa->link_addr, 0xffffffff);
2675 	le32enc(&rfa->rbd_addr, 0xffffffff);
2676 
2677 	/* Map the RFA into DMA memory. */
2678 	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2679 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2680 	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2681 	if (error) {
2682 		m_freem(m);
2683 		return (error);
2684 	}
2685 
2686 	if (rxp->rx_mbuf != NULL)
2687 		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2688 	tmp_map = sc->spare_map;
2689 	sc->spare_map = rxp->rx_map;
2690 	rxp->rx_map = tmp_map;
2691 	rxp->rx_mbuf = m;
2692 
2693 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2694 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2695 	return (0);
2696 }
2697 
2698 static void
2699 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2700 {
2701 	struct fxp_rfa *p_rfa;
2702 	struct fxp_rx *p_rx;
2703 
2704 	/*
2705 	 * If there are other buffers already on the list, attach this
2706 	 * one to the end by fixing up the tail to point to this one.
2707 	 */
2708 	if (sc->fxp_desc.rx_head != NULL) {
2709 		p_rx = sc->fxp_desc.rx_tail;
2710 		p_rfa = (struct fxp_rfa *)
2711 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2712 		p_rx->rx_next = rxp;
2713 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2714 		p_rfa->rfa_control = 0;
2715 		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2716 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2717 	} else {
2718 		rxp->rx_next = NULL;
2719 		sc->fxp_desc.rx_head = rxp;
2720 	}
2721 	sc->fxp_desc.rx_tail = rxp;
2722 }
2723 
2724 static void
2725 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2726 {
2727 	struct mbuf *m;
2728 	struct fxp_rfa *rfa;
2729 
2730 	m = rxp->rx_mbuf;
2731 	m->m_data = m->m_ext.ext_buf;
2732 	/*
2733 	 * Move the data pointer up so that the incoming data packet
2734 	 * will be 32-bit aligned.
2735 	 */
2736 	m->m_data += RFA_ALIGNMENT_FUDGE;
2737 
2738 	/*
2739 	 * Get a pointer to the base of the mbuf cluster and move
2740 	 * data start past it.
2741 	 */
2742 	rfa = mtod(m, struct fxp_rfa *);
2743 	m->m_data += sc->rfa_size;
2744 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2745 
2746 	rfa->rfa_status = 0;
2747 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2748 	rfa->actual_size = 0;
2749 
2750 	/*
2751 	 * Initialize the rest of the RFA.  Note that since the RFA
2752 	 * is misaligned, we cannot store values directly.  We're thus
2753 	 * using the le32enc() function which handles endianness and
2754 	 * is also alignment-safe.
2755 	 */
2756 	le32enc(&rfa->link_addr, 0xffffffff);
2757 	le32enc(&rfa->rbd_addr, 0xffffffff);
2758 
2759 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2760 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2761 }
2762 
2763 static int
2764 fxp_miibus_readreg(device_t dev, int phy, int reg)
2765 {
2766 	struct fxp_softc *sc = device_get_softc(dev);
2767 	int count = 10000;
2768 	int value;
2769 
2770 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2771 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2772 
2773 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2774 	    && count--)
2775 		DELAY(10);
2776 
2777 	if (count <= 0)
2778 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2779 
2780 	return (value & 0xffff);
2781 }
2782 
2783 static int
2784 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2785 {
2786 	struct fxp_softc *sc = device_get_softc(dev);
2787 	int count = 10000;
2788 
2789 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2790 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2791 	    (value & 0xffff));
2792 
2793 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2794 	    count--)
2795 		DELAY(10);
2796 
2797 	if (count <= 0)
2798 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2799 	return (0);
2800 }
2801 
2802 static void
2803 fxp_miibus_statchg(device_t dev)
2804 {
2805 	struct fxp_softc *sc;
2806 	struct mii_data *mii;
2807 	if_t ifp;
2808 
2809 	sc = device_get_softc(dev);
2810 	mii = device_get_softc(sc->miibus);
2811 	ifp = sc->ifp;
2812 	if (mii == NULL || ifp == (void *)NULL ||
2813 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
2814 	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2815 	    (IFM_AVALID | IFM_ACTIVE))
2816 		return;
2817 
2818 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2819 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2820 		sc->cu_resume_bug = 1;
2821 	else
2822 		sc->cu_resume_bug = 0;
2823 	/*
2824 	 * Call fxp_init_body in order to adjust the flow control settings.
2825 	 * Note that the 82557 doesn't support hardware flow control.
2826 	 */
2827 	if (sc->revision == FXP_REV_82557)
2828 		return;
2829 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2830 	fxp_init_body(sc, 0);
2831 }
2832 
2833 static int
2834 fxp_ioctl(if_t ifp, u_long command, caddr_t data)
2835 {
2836 	struct fxp_softc *sc = if_getsoftc(ifp);
2837 	struct ifreq *ifr = (struct ifreq *)data;
2838 	struct mii_data *mii;
2839 	int flag, mask, error = 0, reinit;
2840 
2841 	switch (command) {
2842 	case SIOCSIFFLAGS:
2843 		FXP_LOCK(sc);
2844 		/*
2845 		 * If interface is marked up and not running, then start it.
2846 		 * If it is marked down and running, stop it.
2847 		 * XXX If it's up then re-initialize it. This is so flags
2848 		 * such as IFF_PROMISC are handled.
2849 		 */
2850 		if (if_getflags(ifp) & IFF_UP) {
2851 			if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) &&
2852 			    ((if_getflags(ifp) ^ sc->if_flags) &
2853 			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) {
2854 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2855 				fxp_init_body(sc, 0);
2856 			} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2857 				fxp_init_body(sc, 1);
2858 		} else {
2859 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2860 				fxp_stop(sc);
2861 		}
2862 		sc->if_flags = if_getflags(ifp);
2863 		FXP_UNLOCK(sc);
2864 		break;
2865 
2866 	case SIOCADDMULTI:
2867 	case SIOCDELMULTI:
2868 		FXP_LOCK(sc);
2869 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2870 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2871 			fxp_init_body(sc, 0);
2872 		}
2873 		FXP_UNLOCK(sc);
2874 		break;
2875 
2876 	case SIOCSIFMEDIA:
2877 	case SIOCGIFMEDIA:
2878 		if (sc->miibus != NULL) {
2879 			mii = device_get_softc(sc->miibus);
2880                         error = ifmedia_ioctl(ifp, ifr,
2881                             &mii->mii_media, command);
2882 		} else {
2883                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2884 		}
2885 		break;
2886 
2887 	case SIOCSIFCAP:
2888 		reinit = 0;
2889 		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
2890 #ifdef DEVICE_POLLING
2891 		if (mask & IFCAP_POLLING) {
2892 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2893 				error = ether_poll_register(fxp_poll, ifp);
2894 				if (error)
2895 					return(error);
2896 				FXP_LOCK(sc);
2897 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2898 				    FXP_SCB_INTR_DISABLE);
2899 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2900 				FXP_UNLOCK(sc);
2901 			} else {
2902 				error = ether_poll_deregister(ifp);
2903 				/* Enable interrupts in any case */
2904 				FXP_LOCK(sc);
2905 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2906 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2907 				FXP_UNLOCK(sc);
2908 			}
2909 		}
2910 #endif
2911 		FXP_LOCK(sc);
2912 		if ((mask & IFCAP_TXCSUM) != 0 &&
2913 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2914 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2915 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2916 				if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0);
2917 			else
2918 				if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES);
2919 		}
2920 		if ((mask & IFCAP_RXCSUM) != 0 &&
2921 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
2922 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2923 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2924 				reinit++;
2925 		}
2926 		if ((mask & IFCAP_TSO4) != 0 &&
2927 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
2928 			if_togglecapenable(ifp, IFCAP_TSO4);
2929 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
2930 				if_sethwassistbits(ifp, CSUM_TSO, 0);
2931 			else
2932 				if_sethwassistbits(ifp, 0, CSUM_TSO);
2933 		}
2934 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2935 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2936 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2937 		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2938 		    (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) {
2939 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
2940 			if (sc->revision != FXP_REV_82557)
2941 				flag = FXP_FLAG_LONG_PKT_EN;
2942 			else /* a hack to get long frames on the old chip */
2943 				flag = FXP_FLAG_SAVE_BAD;
2944 			sc->flags ^= flag;
2945 			if (if_getflags(ifp) & IFF_UP)
2946 				reinit++;
2947 		}
2948 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2949 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2950 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2951 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2952 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2953 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2954 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2955 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2956 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2957 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2958 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO |
2959 				    IFCAP_VLAN_HWCSUM);
2960 			reinit++;
2961 		}
2962 		if (reinit > 0 &&
2963 		    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2964 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2965 			fxp_init_body(sc, 0);
2966 		}
2967 		FXP_UNLOCK(sc);
2968 		if_vlancap(ifp);
2969 		break;
2970 
2971 	default:
2972 		error = ether_ioctl(ifp, command, data);
2973 	}
2974 	return (error);
2975 }
2976 
2977 /*
2978  * Fill in the multicast address list and return number of entries.
2979  */
2980 static int
2981 fxp_mc_addrs(struct fxp_softc *sc)
2982 {
2983 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2984 	if_t ifp = sc->ifp;
2985 	int nmcasts = 0;
2986 
2987 	if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) {
2988 		if_maddr_rlock(ifp);
2989 		if_setupmultiaddr(ifp, mcsp->mc_addr, &nmcasts, MAXMCADDR);
2990 		if (nmcasts >= MAXMCADDR) {
2991 			if_setflagbits(ifp, IFF_ALLMULTI, 0);
2992 			nmcasts = 0;
2993 		}
2994 		if_maddr_runlock(ifp);
2995 	}
2996 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2997 	return (nmcasts);
2998 }
2999 
3000 /*
3001  * Program the multicast filter.
3002  *
3003  * We have an artificial restriction that the multicast setup command
3004  * must be the first command in the chain, so we take steps to ensure
3005  * this. By requiring this, it allows us to keep up the performance of
3006  * the pre-initialized command ring (esp. link pointers) by not actually
3007  * inserting the mcsetup command in the ring - i.e. its link pointer
3008  * points to the TxCB ring, but the mcsetup descriptor itself is not part
3009  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
3010  * lead into the regular TxCB ring when it completes.
3011  */
3012 static void
3013 fxp_mc_setup(struct fxp_softc *sc)
3014 {
3015 	struct fxp_cb_mcs *mcsp;
3016 	int count;
3017 
3018 	FXP_LOCK_ASSERT(sc, MA_OWNED);
3019 
3020 	mcsp = sc->mcsp;
3021 	mcsp->cb_status = 0;
3022 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3023 	mcsp->link_addr = 0xffffffff;
3024 	fxp_mc_addrs(sc);
3025 
3026 	/*
3027 	 * Wait until command unit is idle. This should never be the
3028 	 * case when nothing is queued, but make sure anyway.
3029 	 */
3030 	count = 100;
3031 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3032 	    FXP_SCB_CUS_IDLE && --count)
3033 		DELAY(10);
3034 	if (count == 0) {
3035 		device_printf(sc->dev, "command queue timeout\n");
3036 		return;
3037 	}
3038 
3039 	/*
3040 	 * Start the multicast setup command.
3041 	 */
3042 	fxp_scb_wait(sc);
3043 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3044 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3045 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3046 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3047 	/* ...and wait for it to complete. */
3048 	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3049 }
3050 
3051 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3052 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3053 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3054 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3055 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3056 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3057 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3058 
3059 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3060 
3061 static const struct ucode {
3062 	uint32_t	revision;
3063 	uint32_t	*ucode;
3064 	int		length;
3065 	u_short		int_delay_offset;
3066 	u_short		bundle_max_offset;
3067 } ucode_table[] = {
3068 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3069 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3070 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3071 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3072 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3073 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3074 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3075 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3076 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3077 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3078 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3079 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3080 	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3081 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3082 	{ 0, NULL, 0, 0, 0 }
3083 };
3084 
3085 static void
3086 fxp_load_ucode(struct fxp_softc *sc)
3087 {
3088 	const struct ucode *uc;
3089 	struct fxp_cb_ucode *cbp;
3090 	int i;
3091 
3092 	if (sc->flags & FXP_FLAG_NO_UCODE)
3093 		return;
3094 
3095 	for (uc = ucode_table; uc->ucode != NULL; uc++)
3096 		if (sc->revision == uc->revision)
3097 			break;
3098 	if (uc->ucode == NULL)
3099 		return;
3100 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3101 	cbp->cb_status = 0;
3102 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3103 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3104 	for (i = 0; i < uc->length; i++)
3105 		cbp->ucode[i] = htole32(uc->ucode[i]);
3106 	if (uc->int_delay_offset)
3107 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3108 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3109 	if (uc->bundle_max_offset)
3110 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3111 		    htole16(sc->tunable_bundle_max);
3112 	/*
3113 	 * Download the ucode to the chip.
3114 	 */
3115 	fxp_scb_wait(sc);
3116 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3117 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3118 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3119 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3120 	/* ...and wait for it to complete. */
3121 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3122 	device_printf(sc->dev,
3123 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3124 	    sc->tunable_int_delay,
3125 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3126 	sc->flags |= FXP_FLAG_UCODE;
3127 	bzero(cbp, FXP_TXCB_SZ);
3128 }
3129 
3130 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3131 	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3132 
3133 static void
3134 fxp_sysctl_node(struct fxp_softc *sc)
3135 {
3136 	struct sysctl_ctx_list *ctx;
3137 	struct sysctl_oid_list *child, *parent;
3138 	struct sysctl_oid *tree;
3139 	struct fxp_hwstats *hsp;
3140 
3141 	ctx = device_get_sysctl_ctx(sc->dev);
3142 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3143 
3144 	SYSCTL_ADD_PROC(ctx, child,
3145 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
3146 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3147 	    "FXP driver receive interrupt microcode bundling delay");
3148 	SYSCTL_ADD_PROC(ctx, child,
3149 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
3150 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3151 	    "FXP driver receive interrupt microcode bundle size limit");
3152 	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3153 	    "FXP RNR events");
3154 
3155 	/*
3156 	 * Pull in device tunables.
3157 	 */
3158 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3159 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3160 	(void) resource_int_value(device_get_name(sc->dev),
3161 	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3162 	(void) resource_int_value(device_get_name(sc->dev),
3163 	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3164 	sc->rnr = 0;
3165 
3166 	hsp = &sc->fxp_hwstats;
3167 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3168 	    NULL, "FXP statistics");
3169 	parent = SYSCTL_CHILDREN(tree);
3170 
3171 	/* Rx MAC statistics. */
3172 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3173 	    NULL, "Rx MAC statistics");
3174 	child = SYSCTL_CHILDREN(tree);
3175 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3176 	    &hsp->rx_good, "Good frames");
3177 	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3178 	    &hsp->rx_crc_errors, "CRC errors");
3179 	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3180 	    &hsp->rx_alignment_errors, "Alignment errors");
3181 	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3182 	    &hsp->rx_rnr_errors, "RNR errors");
3183 	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3184 	    &hsp->rx_overrun_errors, "Overrun errors");
3185 	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3186 	    &hsp->rx_cdt_errors, "Collision detect errors");
3187 	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3188 	    &hsp->rx_shortframes, "Short frame errors");
3189 	if (sc->revision >= FXP_REV_82558_A4) {
3190 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3191 		    &hsp->rx_pause, "Pause frames");
3192 		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3193 		    &hsp->rx_controls, "Unsupported control frames");
3194 	}
3195 	if (sc->revision >= FXP_REV_82559_A0)
3196 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3197 		    &hsp->rx_tco, "TCO frames");
3198 
3199 	/* Tx MAC statistics. */
3200 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3201 	    NULL, "Tx MAC statistics");
3202 	child = SYSCTL_CHILDREN(tree);
3203 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3204 	    &hsp->tx_good, "Good frames");
3205 	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3206 	    &hsp->tx_maxcols, "Maximum collisions errors");
3207 	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3208 	    &hsp->tx_latecols, "Late collisions errors");
3209 	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3210 	    &hsp->tx_underruns, "Underrun errors");
3211 	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3212 	    &hsp->tx_lostcrs, "Lost carrier sense");
3213 	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3214 	    &hsp->tx_deffered, "Deferred");
3215 	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3216 	    &hsp->tx_single_collisions, "Single collisions");
3217 	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3218 	    &hsp->tx_multiple_collisions, "Multiple collisions");
3219 	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3220 	    &hsp->tx_total_collisions, "Total collisions");
3221 	if (sc->revision >= FXP_REV_82558_A4)
3222 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3223 		    &hsp->tx_pause, "Pause frames");
3224 	if (sc->revision >= FXP_REV_82559_A0)
3225 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3226 		    &hsp->tx_tco, "TCO frames");
3227 }
3228 
3229 #undef FXP_SYSCTL_STAT_ADD
3230 
3231 static int
3232 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3233 {
3234 	int error, value;
3235 
3236 	value = *(int *)arg1;
3237 	error = sysctl_handle_int(oidp, &value, 0, req);
3238 	if (error || !req->newptr)
3239 		return (error);
3240 	if (value < low || value > high)
3241 		return (EINVAL);
3242 	*(int *)arg1 = value;
3243 	return (0);
3244 }
3245 
3246 /*
3247  * Interrupt delay is expressed in microseconds, a multiplier is used
3248  * to convert this to the appropriate clock ticks before using.
3249  */
3250 static int
3251 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3252 {
3253 
3254 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3255 }
3256 
3257 static int
3258 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3259 {
3260 
3261 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3262 }
3263