xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 39beb93c3f8bdbf72a61fda42300b5ebed7390c8)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #ifdef HAVE_KERNEL_OPTION_HEADERS
38 #include "opt_device_polling.h"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/lock.h>
48 #include <sys/module.h>
49 #include <sys/mutex.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 
55 #include <net/bpf.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_vlan_var.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 
70 #include <machine/bus.h>
71 #include <machine/in_cksum.h>
72 #include <machine/resource.h>
73 
74 #include <dev/pci/pcivar.h>
75 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 
80 #include <dev/fxp/if_fxpreg.h>
81 #include <dev/fxp/if_fxpvar.h>
82 #include <dev/fxp/rcvbundl.h>
83 
84 MODULE_DEPEND(fxp, pci, 1, 1, 1);
85 MODULE_DEPEND(fxp, ether, 1, 1, 1);
86 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
87 #include "miibus_if.h"
88 
89 /*
90  * NOTE!  On the Alpha, we have an alignment constraint.  The
91  * card DMAs the packet immediately following the RFA.  However,
92  * the first thing in the packet is a 14-byte Ethernet header.
93  * This means that the packet is misaligned.  To compensate,
94  * we actually offset the RFA 2 bytes into the cluster.  This
95  * alignes the packet after the Ethernet header at a 32-bit
96  * boundary.  HOWEVER!  This means that the RFA is misaligned!
97  */
98 #define	RFA_ALIGNMENT_FUDGE	2
99 
100 /*
101  * Set initial transmit threshold at 64 (512 bytes). This is
102  * increased by 64 (512 bytes) at a time, to maximum of 192
103  * (1536 bytes), if an underrun occurs.
104  */
105 static int tx_threshold = 64;
106 
107 /*
108  * The configuration byte map has several undefined fields which
109  * must be one or must be zero.  Set up a template for these bits
110  * only, (assuming a 82557 chip) leaving the actual configuration
111  * to fxp_init.
112  *
113  * See struct fxp_cb_config for the bit definitions.
114  */
115 static u_char fxp_cb_config_template[] = {
116 	0x0, 0x0,		/* cb_status */
117 	0x0, 0x0,		/* cb_command */
118 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
119 	0x0,	/*  0 */
120 	0x0,	/*  1 */
121 	0x0,	/*  2 */
122 	0x0,	/*  3 */
123 	0x0,	/*  4 */
124 	0x0,	/*  5 */
125 	0x32,	/*  6 */
126 	0x0,	/*  7 */
127 	0x0,	/*  8 */
128 	0x0,	/*  9 */
129 	0x6,	/* 10 */
130 	0x0,	/* 11 */
131 	0x0,	/* 12 */
132 	0x0,	/* 13 */
133 	0xf2,	/* 14 */
134 	0x48,	/* 15 */
135 	0x0,	/* 16 */
136 	0x40,	/* 17 */
137 	0xf0,	/* 18 */
138 	0x0,	/* 19 */
139 	0x3f,	/* 20 */
140 	0x5	/* 21 */
141 };
142 
143 struct fxp_ident {
144 	uint16_t	devid;
145 	int16_t		revid;		/* -1 matches anything */
146 	char 		*name;
147 };
148 
149 /*
150  * Claim various Intel PCI device identifiers for this driver.  The
151  * sub-vendor and sub-device field are extensively used to identify
152  * particular variants, but we don't currently differentiate between
153  * them.
154  */
155 static struct fxp_ident fxp_ident_table[] = {
156     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
157     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
158     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
160     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
162     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
165     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
166     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
167     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
168     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
169     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
170     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
171     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
172     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
173     { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
174     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
175     { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
176     { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
177     { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
178     { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
179     { 0x1091,	-1,	"Intel 82562GX Pro/100 Ethernet" },
180     { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
181     { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
182     { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
183     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
184     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
185     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
186     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
187     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
188     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
189     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
190     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
191     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
192     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
193     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
194     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
195     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
196     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
197     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
198     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
199     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
200     { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
201     { 0,	-1,	NULL },
202 };
203 
204 #ifdef FXP_IP_CSUM_WAR
205 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
206 #else
207 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
208 #endif
209 
210 static int		fxp_probe(device_t dev);
211 static int		fxp_attach(device_t dev);
212 static int		fxp_detach(device_t dev);
213 static int		fxp_shutdown(device_t dev);
214 static int		fxp_suspend(device_t dev);
215 static int		fxp_resume(device_t dev);
216 
217 static void		fxp_intr(void *xsc);
218 static void		fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp,
219 			    struct mbuf *m, uint16_t status, int pos);
220 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
221 			    uint8_t statack, int count);
222 static void 		fxp_init(void *xsc);
223 static void 		fxp_init_body(struct fxp_softc *sc);
224 static void 		fxp_tick(void *xsc);
225 static void 		fxp_start(struct ifnet *ifp);
226 static void 		fxp_start_body(struct ifnet *ifp);
227 static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
228 static void		fxp_txeof(struct fxp_softc *sc);
229 static void		fxp_stop(struct fxp_softc *sc);
230 static void 		fxp_release(struct fxp_softc *sc);
231 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
232 			    caddr_t data);
233 static void 		fxp_watchdog(struct fxp_softc *sc);
234 static void		fxp_add_rfabuf(struct fxp_softc *sc,
235     			    struct fxp_rx *rxp);
236 static void		fxp_discard_rfabuf(struct fxp_softc *sc,
237     			    struct fxp_rx *rxp);
238 static int		fxp_new_rfabuf(struct fxp_softc *sc,
239     			    struct fxp_rx *rxp);
240 static int		fxp_mc_addrs(struct fxp_softc *sc);
241 static void		fxp_mc_setup(struct fxp_softc *sc);
242 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
243 			    int autosize);
244 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
245 			    uint16_t data);
246 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
247 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
248 			    int offset, int words);
249 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
250 			    int offset, int words);
251 static int		fxp_ifmedia_upd(struct ifnet *ifp);
252 static void		fxp_ifmedia_sts(struct ifnet *ifp,
253 			    struct ifmediareq *ifmr);
254 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
255 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
256 			    struct ifmediareq *ifmr);
257 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
258 static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
259 			    int value);
260 static void		fxp_load_ucode(struct fxp_softc *sc);
261 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
262 			    int low, int high);
263 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
264 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
265 static void 		fxp_scb_wait(struct fxp_softc *sc);
266 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
267 static void		fxp_dma_wait(struct fxp_softc *sc,
268     			    volatile uint16_t *status, bus_dma_tag_t dmat,
269 			    bus_dmamap_t map);
270 
271 static device_method_t fxp_methods[] = {
272 	/* Device interface */
273 	DEVMETHOD(device_probe,		fxp_probe),
274 	DEVMETHOD(device_attach,	fxp_attach),
275 	DEVMETHOD(device_detach,	fxp_detach),
276 	DEVMETHOD(device_shutdown,	fxp_shutdown),
277 	DEVMETHOD(device_suspend,	fxp_suspend),
278 	DEVMETHOD(device_resume,	fxp_resume),
279 
280 	/* MII interface */
281 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
282 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
283 
284 	{ 0, 0 }
285 };
286 
287 static driver_t fxp_driver = {
288 	"fxp",
289 	fxp_methods,
290 	sizeof(struct fxp_softc),
291 };
292 
293 static devclass_t fxp_devclass;
294 
295 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
296 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
297 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
298 
299 static struct resource_spec fxp_res_spec_mem[] = {
300 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
301 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
302 	{ -1, 0 }
303 };
304 
305 static struct resource_spec fxp_res_spec_io[] = {
306 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
307 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
308 	{ -1, 0 }
309 };
310 
311 /*
312  * Wait for the previous command to be accepted (but not necessarily
313  * completed).
314  */
315 static void
316 fxp_scb_wait(struct fxp_softc *sc)
317 {
318 	union {
319 		uint16_t w;
320 		uint8_t b[2];
321 	} flowctl;
322 	int i = 10000;
323 
324 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
325 		DELAY(2);
326 	if (i == 0) {
327 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
328 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
329 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
330 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
331 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
332 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
333 	}
334 }
335 
336 static void
337 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
338 {
339 
340 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
341 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
342 		fxp_scb_wait(sc);
343 	}
344 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
345 }
346 
347 static void
348 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
349     bus_dma_tag_t dmat, bus_dmamap_t map)
350 {
351 	int i = 10000;
352 
353 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
354 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
355 		DELAY(2);
356 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
357 	}
358 	if (i == 0)
359 		device_printf(sc->dev, "DMA timeout\n");
360 }
361 
362 /*
363  * Return identification string if this device is ours.
364  */
365 static int
366 fxp_probe(device_t dev)
367 {
368 	uint16_t devid;
369 	uint8_t revid;
370 	struct fxp_ident *ident;
371 
372 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
373 		devid = pci_get_device(dev);
374 		revid = pci_get_revid(dev);
375 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
376 			if (ident->devid == devid &&
377 			    (ident->revid == revid || ident->revid == -1)) {
378 				device_set_desc(dev, ident->name);
379 				return (BUS_PROBE_DEFAULT);
380 			}
381 		}
382 	}
383 	return (ENXIO);
384 }
385 
386 static void
387 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
388 {
389 	uint32_t *addr;
390 
391 	if (error)
392 		return;
393 
394 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
395 	addr = arg;
396 	*addr = segs->ds_addr;
397 }
398 
399 static int
400 fxp_attach(device_t dev)
401 {
402 	struct fxp_softc *sc;
403 	struct fxp_cb_tx *tcbp;
404 	struct fxp_tx *txp;
405 	struct fxp_rx *rxp;
406 	struct ifnet *ifp;
407 	uint32_t val;
408 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
409 	u_char eaddr[ETHER_ADDR_LEN];
410 	int i, pmc, prefer_iomap;
411 	int error;
412 
413 	error = 0;
414 	sc = device_get_softc(dev);
415 	sc->dev = dev;
416 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
417 	    MTX_DEF);
418 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
419 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
420 	    fxp_serial_ifmedia_sts);
421 
422 	ifp = sc->ifp = if_alloc(IFT_ETHER);
423 	if (ifp == NULL) {
424 		device_printf(dev, "can not if_alloc()\n");
425 		error = ENOSPC;
426 		goto fail;
427 	}
428 
429 	/*
430 	 * Enable bus mastering.
431 	 */
432 	pci_enable_busmaster(dev);
433 	val = pci_read_config(dev, PCIR_COMMAND, 2);
434 
435 	/*
436 	 * Figure out which we should try first - memory mapping or i/o mapping?
437 	 * We default to memory mapping. Then we accept an override from the
438 	 * command line. Then we check to see which one is enabled.
439 	 */
440 	prefer_iomap = 0;
441 	resource_int_value(device_get_name(dev), device_get_unit(dev),
442 	    "prefer_iomap", &prefer_iomap);
443 	if (prefer_iomap)
444 		sc->fxp_spec = fxp_res_spec_io;
445 	else
446 		sc->fxp_spec = fxp_res_spec_mem;
447 
448 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
449 	if (error) {
450 		if (sc->fxp_spec == fxp_res_spec_mem)
451 			sc->fxp_spec = fxp_res_spec_io;
452 		else
453 			sc->fxp_spec = fxp_res_spec_mem;
454 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
455 	}
456 	if (error) {
457 		device_printf(dev, "could not allocate resources\n");
458 		error = ENXIO;
459 		goto fail;
460 	}
461 
462 	if (bootverbose) {
463 		device_printf(dev, "using %s space register mapping\n",
464 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
465 	}
466 
467 	/*
468 	 * Reset to a stable state.
469 	 */
470 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
471 	DELAY(10);
472 
473 	/*
474 	 * Find out how large of an SEEPROM we have.
475 	 */
476 	fxp_autosize_eeprom(sc);
477 
478 	/*
479 	 * Find out the chip revision; lump all 82557 revs together.
480 	 */
481 	fxp_read_eeprom(sc, &data, 5, 1);
482 	if ((data >> 8) == 1)
483 		sc->revision = FXP_REV_82557;
484 	else
485 		sc->revision = pci_get_revid(dev);
486 
487 	/*
488 	 * Check availability of WOL. 82559ER does not support WOL.
489 	 */
490 	if (sc->revision >= FXP_REV_82558_A4 &&
491 	    sc->revision != FXP_REV_82559S_A) {
492 		fxp_read_eeprom(sc, &data, 10, 1);
493 		if ((data & 0x20) != 0 &&
494 		    pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0)
495 			sc->flags |= FXP_FLAG_WOLCAP;
496 	}
497 
498 	/*
499 	 * Determine whether we must use the 503 serial interface.
500 	 */
501 	fxp_read_eeprom(sc, &data, 6, 1);
502 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
503 	    && (data & FXP_PHY_SERIAL_ONLY))
504 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
505 
506 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
507 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
508 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
509 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
510 	    "FXP driver receive interrupt microcode bundling delay");
511 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
512 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
513 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
514 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
515 	    "FXP driver receive interrupt microcode bundle size limit");
516 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
517 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
518 	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
519 	    "FXP RNR events");
520 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
521 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
522 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
523 	    "FXP flow control disabled");
524 
525 	/*
526 	 * Pull in device tunables.
527 	 */
528 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
529 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
530 	sc->tunable_noflow = 1;
531 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
532 	    "int_delay", &sc->tunable_int_delay);
533 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
534 	    "bundle_max", &sc->tunable_bundle_max);
535 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
536 	    "noflow", &sc->tunable_noflow);
537 	sc->rnr = 0;
538 
539 	/*
540 	 * Enable workarounds for certain chip revision deficiencies.
541 	 *
542 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
543 	 * some systems based a normal 82559 design, have a defect where
544 	 * the chip can cause a PCI protocol violation if it receives
545 	 * a CU_RESUME command when it is entering the IDLE state.  The
546 	 * workaround is to disable Dynamic Standby Mode, so the chip never
547 	 * deasserts CLKRUN#, and always remains in an active state.
548 	 *
549 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
550 	 */
551 	i = pci_get_device(dev);
552 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
553 	    sc->revision >= FXP_REV_82559_A0) {
554 		fxp_read_eeprom(sc, &data, 10, 1);
555 		if (data & 0x02) {			/* STB enable */
556 			uint16_t cksum;
557 			int i;
558 
559 			device_printf(dev,
560 			    "Disabling dynamic standby mode in EEPROM\n");
561 			data &= ~0x02;
562 			fxp_write_eeprom(sc, &data, 10, 1);
563 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
564 			cksum = 0;
565 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
566 				fxp_read_eeprom(sc, &data, i, 1);
567 				cksum += data;
568 			}
569 			i = (1 << sc->eeprom_size) - 1;
570 			cksum = 0xBABA - cksum;
571 			fxp_read_eeprom(sc, &data, i, 1);
572 			fxp_write_eeprom(sc, &cksum, i, 1);
573 			device_printf(dev,
574 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
575 			    i, data, cksum);
576 #if 1
577 			/*
578 			 * If the user elects to continue, try the software
579 			 * workaround, as it is better than nothing.
580 			 */
581 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
582 #endif
583 		}
584 	}
585 
586 	/*
587 	 * If we are not a 82557 chip, we can enable extended features.
588 	 */
589 	if (sc->revision != FXP_REV_82557) {
590 		/*
591 		 * If MWI is enabled in the PCI configuration, and there
592 		 * is a valid cacheline size (8 or 16 dwords), then tell
593 		 * the board to turn on MWI.
594 		 */
595 		if (val & PCIM_CMD_MWRICEN &&
596 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
597 			sc->flags |= FXP_FLAG_MWI_ENABLE;
598 
599 		/* turn on the extended TxCB feature */
600 		sc->flags |= FXP_FLAG_EXT_TXCB;
601 
602 		/* enable reception of long frames for VLAN */
603 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
604 	} else {
605 		/* a hack to get long VLAN frames on a 82557 */
606 		sc->flags |= FXP_FLAG_SAVE_BAD;
607 	}
608 
609 	/* For 82559 or later chips, Rx checksum offload is supported. */
610 	if (sc->revision >= FXP_REV_82559_A0)
611 		sc->flags |= FXP_FLAG_82559_RXCSUM;
612 	/*
613 	 * Enable use of extended RFDs and TCBs for 82550
614 	 * and later chips. Note: we need extended TXCB support
615 	 * too, but that's already enabled by the code above.
616 	 * Be careful to do this only on the right devices.
617 	 */
618 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
619 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
620 	    || sc->revision == FXP_REV_82551_10) {
621 		sc->rfa_size = sizeof (struct fxp_rfa);
622 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
623 		sc->flags |= FXP_FLAG_EXT_RFA;
624 		/* Use extended RFA instead of 82559 checksum mode. */
625 		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
626 	} else {
627 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
628 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
629 	}
630 
631 	/*
632 	 * Allocate DMA tags and DMA safe memory.
633 	 */
634 	sc->maxtxseg = FXP_NTXSEG;
635 	sc->maxsegsize = MCLBYTES;
636 	if (sc->flags & FXP_FLAG_EXT_RFA) {
637 		sc->maxtxseg--;
638 		sc->maxsegsize = FXP_TSO_SEGSIZE;
639 	}
640 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
641 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
642 	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
643 	    sc->maxtxseg, sc->maxsegsize, 0,
644 	    busdma_lock_mutex, &Giant, &sc->fxp_mtag);
645 	if (error) {
646 		device_printf(dev, "could not allocate dma tag\n");
647 		goto fail;
648 	}
649 
650 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
651 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
652 	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
653 	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
654 	if (error) {
655 		device_printf(dev, "could not allocate dma tag\n");
656 		goto fail;
657 	}
658 
659 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
660 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
661 	if (error)
662 		goto fail;
663 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
664 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
665 	if (error) {
666 		device_printf(dev, "could not map the stats buffer\n");
667 		goto fail;
668 	}
669 
670 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
671 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
672 	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
673 	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
674 	if (error) {
675 		device_printf(dev, "could not allocate dma tag\n");
676 		goto fail;
677 	}
678 
679 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
680 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
681 	if (error)
682 		goto fail;
683 
684 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
685 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
686 	    &sc->fxp_desc.cbl_addr, 0);
687 	if (error) {
688 		device_printf(dev, "could not map DMA memory\n");
689 		goto fail;
690 	}
691 
692 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
693 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
694 	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
695 	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
696 	if (error) {
697 		device_printf(dev, "could not allocate dma tag\n");
698 		goto fail;
699 	}
700 
701 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
702 	    BUS_DMA_NOWAIT, &sc->mcs_map);
703 	if (error)
704 		goto fail;
705 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
706 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
707 	if (error) {
708 		device_printf(dev, "can't map the multicast setup command\n");
709 		goto fail;
710 	}
711 
712 	/*
713 	 * Pre-allocate the TX DMA maps and setup the pointers to
714 	 * the TX command blocks.
715 	 */
716 	txp = sc->fxp_desc.tx_list;
717 	tcbp = sc->fxp_desc.cbl_list;
718 	for (i = 0; i < FXP_NTXCB; i++) {
719 		txp[i].tx_cb = tcbp + i;
720 		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
721 		if (error) {
722 			device_printf(dev, "can't create DMA map for TX\n");
723 			goto fail;
724 		}
725 	}
726 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
727 	if (error) {
728 		device_printf(dev, "can't create spare DMA map\n");
729 		goto fail;
730 	}
731 
732 	/*
733 	 * Pre-allocate our receive buffers.
734 	 */
735 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
736 	for (i = 0; i < FXP_NRFABUFS; i++) {
737 		rxp = &sc->fxp_desc.rx_list[i];
738 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
739 		if (error) {
740 			device_printf(dev, "can't create DMA map for RX\n");
741 			goto fail;
742 		}
743 		if (fxp_new_rfabuf(sc, rxp) != 0) {
744 			error = ENOMEM;
745 			goto fail;
746 		}
747 		fxp_add_rfabuf(sc, rxp);
748 	}
749 
750 	/*
751 	 * Read MAC address.
752 	 */
753 	fxp_read_eeprom(sc, myea, 0, 3);
754 	eaddr[0] = myea[0] & 0xff;
755 	eaddr[1] = myea[0] >> 8;
756 	eaddr[2] = myea[1] & 0xff;
757 	eaddr[3] = myea[1] >> 8;
758 	eaddr[4] = myea[2] & 0xff;
759 	eaddr[5] = myea[2] >> 8;
760 	if (bootverbose) {
761 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
762 		    pci_get_vendor(dev), pci_get_device(dev),
763 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
764 		    pci_get_revid(dev));
765 		fxp_read_eeprom(sc, &data, 10, 1);
766 		device_printf(dev, "Dynamic Standby mode is %s\n",
767 		    data & 0x02 ? "enabled" : "disabled");
768 	}
769 
770 	/*
771 	 * If this is only a 10Mbps device, then there is no MII, and
772 	 * the PHY will use a serial interface instead.
773 	 *
774 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
775 	 * doesn't have a programming interface of any sort.  The
776 	 * media is sensed automatically based on how the link partner
777 	 * is configured.  This is, in essence, manual configuration.
778 	 */
779 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
780 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
781 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
782 	} else {
783 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
784 		    fxp_ifmedia_sts)) {
785 	                device_printf(dev, "MII without any PHY!\n");
786 			error = ENXIO;
787 			goto fail;
788 		}
789 	}
790 
791 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
792 	ifp->if_init = fxp_init;
793 	ifp->if_softc = sc;
794 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
795 	ifp->if_ioctl = fxp_ioctl;
796 	ifp->if_start = fxp_start;
797 
798 	ifp->if_capabilities = ifp->if_capenable = 0;
799 
800 	/* Enable checksum offload/TSO for 82550 or better chips */
801 	if (sc->flags & FXP_FLAG_EXT_RFA) {
802 		ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO;
803 		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
804 		ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4;
805 	}
806 
807 	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
808 		ifp->if_capabilities |= IFCAP_RXCSUM;
809 		ifp->if_capenable |= IFCAP_RXCSUM;
810 	}
811 
812 	if (sc->flags & FXP_FLAG_WOLCAP) {
813 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
814 		ifp->if_capenable |= IFCAP_WOL_MAGIC;
815 	}
816 
817 #ifdef DEVICE_POLLING
818 	/* Inform the world we support polling. */
819 	ifp->if_capabilities |= IFCAP_POLLING;
820 #endif
821 
822 	/*
823 	 * Attach the interface.
824 	 */
825 	ether_ifattach(ifp, eaddr);
826 
827 	/*
828 	 * Tell the upper layer(s) we support long frames.
829 	 * Must appear after the call to ether_ifattach() because
830 	 * ether_ifattach() sets ifi_hdrlen to the default value.
831 	 */
832 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
833 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
834 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
835 	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
836 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING |
837 		    IFCAP_VLAN_HWCSUM;
838 		ifp->if_capenable |= IFCAP_VLAN_HWTAGGING |
839 		    IFCAP_VLAN_HWCSUM;
840 	}
841 
842 	/*
843 	 * Let the system queue as many packets as we have available
844 	 * TX descriptors.
845 	 */
846 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
847 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
848 	IFQ_SET_READY(&ifp->if_snd);
849 
850 	/*
851 	 * Hook our interrupt after all initialization is complete.
852 	 */
853 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
854 			       NULL, fxp_intr, sc, &sc->ih);
855 	if (error) {
856 		device_printf(dev, "could not setup irq\n");
857 		ether_ifdetach(sc->ifp);
858 		goto fail;
859 	}
860 
861 	/*
862 	 * Configure hardware to reject magic frames otherwise
863 	 * system will hang on recipt of magic frames.
864 	 */
865 	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
866 		FXP_LOCK(sc);
867 		/* Clear wakeup events. */
868 		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
869 		fxp_init_body(sc);
870 		fxp_stop(sc);
871 		FXP_UNLOCK(sc);
872 	}
873 
874 fail:
875 	if (error)
876 		fxp_release(sc);
877 	return (error);
878 }
879 
880 /*
881  * Release all resources.  The softc lock should not be held and the
882  * interrupt should already be torn down.
883  */
884 static void
885 fxp_release(struct fxp_softc *sc)
886 {
887 	struct fxp_rx *rxp;
888 	struct fxp_tx *txp;
889 	int i;
890 
891 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
892 	KASSERT(sc->ih == NULL,
893 	    ("fxp_release() called with intr handle still active"));
894 	if (sc->miibus)
895 		device_delete_child(sc->dev, sc->miibus);
896 	bus_generic_detach(sc->dev);
897 	ifmedia_removeall(&sc->sc_media);
898 	if (sc->fxp_desc.cbl_list) {
899 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
900 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
901 		    sc->cbl_map);
902 	}
903 	if (sc->fxp_stats) {
904 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
905 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
906 	}
907 	if (sc->mcsp) {
908 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
909 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
910 	}
911 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
912 	if (sc->fxp_mtag) {
913 		for (i = 0; i < FXP_NRFABUFS; i++) {
914 			rxp = &sc->fxp_desc.rx_list[i];
915 			if (rxp->rx_mbuf != NULL) {
916 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
917 				    BUS_DMASYNC_POSTREAD);
918 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
919 				m_freem(rxp->rx_mbuf);
920 			}
921 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
922 		}
923 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
924 		for (i = 0; i < FXP_NTXCB; i++) {
925 			txp = &sc->fxp_desc.tx_list[i];
926 			if (txp->tx_mbuf != NULL) {
927 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
928 				    BUS_DMASYNC_POSTWRITE);
929 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
930 				m_freem(txp->tx_mbuf);
931 			}
932 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
933 		}
934 		bus_dma_tag_destroy(sc->fxp_mtag);
935 	}
936 	if (sc->fxp_stag)
937 		bus_dma_tag_destroy(sc->fxp_stag);
938 	if (sc->cbl_tag)
939 		bus_dma_tag_destroy(sc->cbl_tag);
940 	if (sc->mcs_tag)
941 		bus_dma_tag_destroy(sc->mcs_tag);
942 	if (sc->ifp)
943 		if_free(sc->ifp);
944 
945 	mtx_destroy(&sc->sc_mtx);
946 }
947 
948 /*
949  * Detach interface.
950  */
951 static int
952 fxp_detach(device_t dev)
953 {
954 	struct fxp_softc *sc = device_get_softc(dev);
955 
956 #ifdef DEVICE_POLLING
957 	if (sc->ifp->if_capenable & IFCAP_POLLING)
958 		ether_poll_deregister(sc->ifp);
959 #endif
960 
961 	FXP_LOCK(sc);
962 	sc->suspended = 1;	/* Do same thing as we do for suspend */
963 	/*
964 	 * Stop DMA and drop transmit queue, but disable interrupts first.
965 	 */
966 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
967 	fxp_stop(sc);
968 	FXP_UNLOCK(sc);
969 	callout_drain(&sc->stat_ch);
970 
971 	/*
972 	 * Close down routes etc.
973 	 */
974 	ether_ifdetach(sc->ifp);
975 
976 	/*
977 	 * Unhook interrupt before dropping lock. This is to prevent
978 	 * races with fxp_intr().
979 	 */
980 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
981 	sc->ih = NULL;
982 
983 	/* Release our allocated resources. */
984 	fxp_release(sc);
985 	return (0);
986 }
987 
988 /*
989  * Device shutdown routine. Called at system shutdown after sync. The
990  * main purpose of this routine is to shut off receiver DMA so that
991  * kernel memory doesn't get clobbered during warmboot.
992  */
993 static int
994 fxp_shutdown(device_t dev)
995 {
996 
997 	/*
998 	 * Make sure that DMA is disabled prior to reboot. Not doing
999 	 * do could allow DMA to corrupt kernel memory during the
1000 	 * reboot before the driver initializes.
1001 	 */
1002 	return (fxp_suspend(dev));
1003 }
1004 
1005 /*
1006  * Device suspend routine.  Stop the interface and save some PCI
1007  * settings in case the BIOS doesn't restore them properly on
1008  * resume.
1009  */
1010 static int
1011 fxp_suspend(device_t dev)
1012 {
1013 	struct fxp_softc *sc = device_get_softc(dev);
1014 	struct ifnet *ifp;
1015 	int pmc;
1016 	uint16_t pmstat;
1017 
1018 	FXP_LOCK(sc);
1019 
1020 	ifp = sc->ifp;
1021 	if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) {
1022 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1023 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1024 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1025 			/* Request PME. */
1026 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1027 			sc->flags |= FXP_FLAG_WOL;
1028 			/* Reconfigure hardware to accept magic frames. */
1029 			fxp_init_body(sc);
1030 		}
1031 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1032 	}
1033 	fxp_stop(sc);
1034 
1035 	sc->suspended = 1;
1036 
1037 	FXP_UNLOCK(sc);
1038 	return (0);
1039 }
1040 
1041 /*
1042  * Device resume routine. re-enable busmastering, and restart the interface if
1043  * appropriate.
1044  */
1045 static int
1046 fxp_resume(device_t dev)
1047 {
1048 	struct fxp_softc *sc = device_get_softc(dev);
1049 	struct ifnet *ifp = sc->ifp;
1050 	int pmc;
1051 	uint16_t pmstat;
1052 
1053 	FXP_LOCK(sc);
1054 
1055 	if (pci_find_extcap(sc->dev, PCIY_PMG, &pmc) == 0) {
1056 		sc->flags &= ~FXP_FLAG_WOL;
1057 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1058 		/* Disable PME and clear PME status. */
1059 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1060 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1061 		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1062 			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1063 			    CSR_READ_1(sc, FXP_CSR_PMDR));
1064 	}
1065 
1066 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1067 	DELAY(10);
1068 
1069 	/* reinitialize interface if necessary */
1070 	if (ifp->if_flags & IFF_UP)
1071 		fxp_init_body(sc);
1072 
1073 	sc->suspended = 0;
1074 
1075 	FXP_UNLOCK(sc);
1076 	return (0);
1077 }
1078 
1079 static void
1080 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1081 {
1082 	uint16_t reg;
1083 	int x;
1084 
1085 	/*
1086 	 * Shift in data.
1087 	 */
1088 	for (x = 1 << (length - 1); x; x >>= 1) {
1089 		if (data & x)
1090 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1091 		else
1092 			reg = FXP_EEPROM_EECS;
1093 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1094 		DELAY(1);
1095 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1096 		DELAY(1);
1097 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1098 		DELAY(1);
1099 	}
1100 }
1101 
1102 /*
1103  * Read from the serial EEPROM. Basically, you manually shift in
1104  * the read opcode (one bit at a time) and then shift in the address,
1105  * and then you shift out the data (all of this one bit at a time).
1106  * The word size is 16 bits, so you have to provide the address for
1107  * every 16 bits of data.
1108  */
1109 static uint16_t
1110 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1111 {
1112 	uint16_t reg, data;
1113 	int x;
1114 
1115 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1116 	/*
1117 	 * Shift in read opcode.
1118 	 */
1119 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1120 	/*
1121 	 * Shift in address.
1122 	 */
1123 	data = 0;
1124 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1125 		if (offset & x)
1126 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1127 		else
1128 			reg = FXP_EEPROM_EECS;
1129 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1130 		DELAY(1);
1131 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1132 		DELAY(1);
1133 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1134 		DELAY(1);
1135 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1136 		data++;
1137 		if (autosize && reg == 0) {
1138 			sc->eeprom_size = data;
1139 			break;
1140 		}
1141 	}
1142 	/*
1143 	 * Shift out data.
1144 	 */
1145 	data = 0;
1146 	reg = FXP_EEPROM_EECS;
1147 	for (x = 1 << 15; x; x >>= 1) {
1148 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1149 		DELAY(1);
1150 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1151 			data |= x;
1152 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1153 		DELAY(1);
1154 	}
1155 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1156 	DELAY(1);
1157 
1158 	return (data);
1159 }
1160 
1161 static void
1162 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1163 {
1164 	int i;
1165 
1166 	/*
1167 	 * Erase/write enable.
1168 	 */
1169 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1170 	fxp_eeprom_shiftin(sc, 0x4, 3);
1171 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1172 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1173 	DELAY(1);
1174 	/*
1175 	 * Shift in write opcode, address, data.
1176 	 */
1177 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1178 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1179 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1180 	fxp_eeprom_shiftin(sc, data, 16);
1181 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1182 	DELAY(1);
1183 	/*
1184 	 * Wait for EEPROM to finish up.
1185 	 */
1186 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1187 	DELAY(1);
1188 	for (i = 0; i < 1000; i++) {
1189 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1190 			break;
1191 		DELAY(50);
1192 	}
1193 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1194 	DELAY(1);
1195 	/*
1196 	 * Erase/write disable.
1197 	 */
1198 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1199 	fxp_eeprom_shiftin(sc, 0x4, 3);
1200 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1201 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1202 	DELAY(1);
1203 }
1204 
1205 /*
1206  * From NetBSD:
1207  *
1208  * Figure out EEPROM size.
1209  *
1210  * 559's can have either 64-word or 256-word EEPROMs, the 558
1211  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1212  * talks about the existance of 16 to 256 word EEPROMs.
1213  *
1214  * The only known sizes are 64 and 256, where the 256 version is used
1215  * by CardBus cards to store CIS information.
1216  *
1217  * The address is shifted in msb-to-lsb, and after the last
1218  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1219  * after which follows the actual data. We try to detect this zero, by
1220  * probing the data-out bit in the EEPROM control register just after
1221  * having shifted in a bit. If the bit is zero, we assume we've
1222  * shifted enough address bits. The data-out should be tri-state,
1223  * before this, which should translate to a logical one.
1224  */
1225 static void
1226 fxp_autosize_eeprom(struct fxp_softc *sc)
1227 {
1228 
1229 	/* guess maximum size of 256 words */
1230 	sc->eeprom_size = 8;
1231 
1232 	/* autosize */
1233 	(void) fxp_eeprom_getword(sc, 0, 1);
1234 }
1235 
1236 static void
1237 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1238 {
1239 	int i;
1240 
1241 	for (i = 0; i < words; i++)
1242 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1243 }
1244 
1245 static void
1246 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1247 {
1248 	int i;
1249 
1250 	for (i = 0; i < words; i++)
1251 		fxp_eeprom_putword(sc, offset + i, data[i]);
1252 }
1253 
1254 /*
1255  * Grab the softc lock and call the real fxp_start_body() routine
1256  */
1257 static void
1258 fxp_start(struct ifnet *ifp)
1259 {
1260 	struct fxp_softc *sc = ifp->if_softc;
1261 
1262 	FXP_LOCK(sc);
1263 	fxp_start_body(ifp);
1264 	FXP_UNLOCK(sc);
1265 }
1266 
1267 /*
1268  * Start packet transmission on the interface.
1269  * This routine must be called with the softc lock held, and is an
1270  * internal entry point only.
1271  */
1272 static void
1273 fxp_start_body(struct ifnet *ifp)
1274 {
1275 	struct fxp_softc *sc = ifp->if_softc;
1276 	struct mbuf *mb_head;
1277 	int txqueued;
1278 
1279 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1280 
1281 	/*
1282 	 * See if we need to suspend xmit until the multicast filter
1283 	 * has been reprogrammed (which can only be done at the head
1284 	 * of the command chain).
1285 	 */
1286 	if (sc->need_mcsetup)
1287 		return;
1288 
1289 	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1290 		fxp_txeof(sc);
1291 	/*
1292 	 * We're finished if there is nothing more to add to the list or if
1293 	 * we're all filled up with buffers to transmit.
1294 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1295 	 *       a NOP command when needed.
1296 	 */
1297 	txqueued = 0;
1298 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1299 	    sc->tx_queued < FXP_NTXCB - 1) {
1300 
1301 		/*
1302 		 * Grab a packet to transmit.
1303 		 */
1304 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1305 		if (mb_head == NULL)
1306 			break;
1307 
1308 		if (fxp_encap(sc, &mb_head)) {
1309 			if (mb_head == NULL)
1310 				break;
1311 			IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
1312 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1313 		}
1314 		txqueued++;
1315 		/*
1316 		 * Pass packet to bpf if there is a listener.
1317 		 */
1318 		BPF_MTAP(ifp, mb_head);
1319 	}
1320 
1321 	/*
1322 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1323 	 * going again if suspended.
1324 	 */
1325 	if (txqueued > 0) {
1326 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1327 		fxp_scb_wait(sc);
1328 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1329 		/*
1330 		 * Set a 5 second timer just in case we don't hear
1331 		 * from the card again.
1332 		 */
1333 		sc->watchdog_timer = 5;
1334 	}
1335 }
1336 
1337 static int
1338 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1339 {
1340 	struct ifnet *ifp;
1341 	struct mbuf *m;
1342 	struct fxp_tx *txp;
1343 	struct fxp_cb_tx *cbp;
1344 	struct tcphdr *tcp;
1345 	bus_dma_segment_t segs[FXP_NTXSEG];
1346 	int error, i, nseg, tcp_payload;
1347 
1348 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1349 	ifp = sc->ifp;
1350 
1351 	tcp_payload = 0;
1352 	tcp = NULL;
1353 	/*
1354 	 * Get pointer to next available tx desc.
1355 	 */
1356 	txp = sc->fxp_desc.tx_last->tx_next;
1357 
1358 	/*
1359 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1360 	 * Ethernet Controller Family Open Source Software
1361 	 * Developer Manual says:
1362 	 *   Using software parsing is only allowed with legal
1363 	 *   TCP/IP or UDP/IP packets.
1364 	 *   ...
1365 	 *   For all other datagrams, hardware parsing must
1366 	 *   be used.
1367 	 * Software parsing appears to truncate ICMP and
1368 	 * fragmented UDP packets that contain one to three
1369 	 * bytes in the second (and final) mbuf of the packet.
1370 	 */
1371 	if (sc->flags & FXP_FLAG_EXT_RFA)
1372 		txp->tx_cb->ipcb_ip_activation_high =
1373 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1374 
1375 	m = *m_head;
1376 	/*
1377 	 * Deal with TCP/IP checksum offload. Note that
1378 	 * in order for TCP checksum offload to work,
1379 	 * the pseudo header checksum must have already
1380 	 * been computed and stored in the checksum field
1381 	 * in the TCP header. The stack should have
1382 	 * already done this for us.
1383 	 */
1384 	if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1385 		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1386 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1387 			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1388 
1389 #ifdef FXP_IP_CSUM_WAR
1390 		/*
1391 		 * XXX The 82550 chip appears to have trouble
1392 		 * dealing with IP header checksums in very small
1393 		 * datagrams, namely fragments from 1 to 3 bytes
1394 		 * in size. For example, say you want to transmit
1395 		 * a UDP packet of 1473 bytes. The packet will be
1396 		 * fragmented over two IP datagrams, the latter
1397 		 * containing only one byte of data. The 82550 will
1398 		 * botch the header checksum on the 1-byte fragment.
1399 		 * As long as the datagram contains 4 or more bytes
1400 		 * of data, you're ok.
1401 		 *
1402                  * The following code attempts to work around this
1403 		 * problem: if the datagram is less than 38 bytes
1404 		 * in size (14 bytes ether header, 20 bytes IP header,
1405 		 * plus 4 bytes of data), we punt and compute the IP
1406 		 * header checksum by hand. This workaround doesn't
1407 		 * work very well, however, since it can be fooled
1408 		 * by things like VLAN tags and IP options that make
1409 		 * the header sizes/offsets vary.
1410 		 */
1411 
1412 		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1413 			if (m->m_pkthdr.len < 38) {
1414 				struct ip *ip;
1415 				m->m_data += ETHER_HDR_LEN;
1416 				ip = mtod(m, struct ip *);
1417 				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1418 				m->m_data -= ETHER_HDR_LEN;
1419 				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1420 			} else {
1421 				txp->tx_cb->ipcb_ip_activation_high =
1422 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1423 				txp->tx_cb->ipcb_ip_schedule |=
1424 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1425 			}
1426 		}
1427 #endif
1428 	}
1429 
1430 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1431 		/*
1432 		 * 82550/82551 requires ethernet/IP/TCP headers must be
1433 		 * contained in the first active transmit buffer.
1434 		 */
1435 		struct ether_header *eh;
1436 		struct ip *ip;
1437 		uint32_t ip_off, poff;
1438 
1439 		if (M_WRITABLE(*m_head) == 0) {
1440 			/* Get a writable copy. */
1441 			m = m_dup(*m_head, M_DONTWAIT);
1442 			m_freem(*m_head);
1443 			if (m == NULL) {
1444 				*m_head = NULL;
1445 				return (ENOBUFS);
1446 			}
1447 			*m_head = m;
1448 		}
1449 		ip_off = sizeof(struct ether_header);
1450 		m = m_pullup(*m_head, ip_off);
1451 		if (m == NULL) {
1452 			*m_head = NULL;
1453 			return (ENOBUFS);
1454 		}
1455 		eh = mtod(m, struct ether_header *);
1456 		/* Check the existence of VLAN tag. */
1457 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1458 			ip_off = sizeof(struct ether_vlan_header);
1459 			m = m_pullup(m, ip_off);
1460 			if (m == NULL) {
1461 				*m_head = NULL;
1462 				return (ENOBUFS);
1463 			}
1464 		}
1465 		m = m_pullup(m, ip_off + sizeof(struct ip));
1466 		if (m == NULL) {
1467 			*m_head = NULL;
1468 			return (ENOBUFS);
1469 		}
1470 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1471 		poff = ip_off + (ip->ip_hl << 2);
1472 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1473 		if (m == NULL) {
1474 			*m_head = NULL;
1475 			return (ENOBUFS);
1476 		}
1477 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1478 		m = m_pullup(m, poff + sizeof(struct tcphdr) + tcp->th_off);
1479 		if (m == NULL) {
1480 			*m_head = NULL;
1481 			return (ENOBUFS);
1482 		}
1483 
1484 		/*
1485 		 * Since 82550/82551 doesn't modify IP length and pseudo
1486 		 * checksum in the first frame driver should compute it.
1487 		 */
1488 		ip->ip_sum = 0;
1489 		ip->ip_len = htons(ifp->if_mtu);
1490 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1491 		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1492 		    m->m_pkthdr.tso_segsz));
1493 		/* Compute total TCP payload. */
1494 		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1495 		tcp_payload -= tcp->th_off << 2;
1496 		*m_head = m;
1497 	}
1498 
1499 	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map, *m_head,
1500 	    segs, &nseg, 0);
1501 	if (error == EFBIG) {
1502 		m = m_collapse(*m_head, M_DONTWAIT, sc->maxtxseg);
1503 		if (m == NULL) {
1504 			m_freem(*m_head);
1505 			*m_head = NULL;
1506 			return (ENOMEM);
1507 		}
1508 		*m_head = m;
1509 		error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1510 	    	    *m_head, segs, &nseg, 0);
1511 		if (error != 0) {
1512 			m_freem(*m_head);
1513 			*m_head = NULL;
1514 			return (ENOMEM);
1515 		}
1516 	} else if (error != 0)
1517 		return (error);
1518 	if (nseg == 0) {
1519 		m_freem(*m_head);
1520 		*m_head = NULL;
1521 		return (EIO);
1522 	}
1523 
1524 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1525 	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1526 
1527 	cbp = txp->tx_cb;
1528 	for (i = 0; i < nseg; i++) {
1529 		/*
1530 		 * If this is an 82550/82551, then we're using extended
1531 		 * TxCBs _and_ we're using checksum offload. This means
1532 		 * that the TxCB is really an IPCB. One major difference
1533 		 * between the two is that with plain extended TxCBs,
1534 		 * the bottom half of the TxCB contains two entries from
1535 		 * the TBD array, whereas IPCBs contain just one entry:
1536 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1537 		 * checksum offload control bits. So to make things work
1538 		 * right, we have to start filling in the TBD array
1539 		 * starting from a different place depending on whether
1540 		 * the chip is an 82550/82551 or not.
1541 		 */
1542 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1543 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1544 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1545 		} else {
1546 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1547 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1548 		}
1549 	}
1550 	if (sc->flags & FXP_FLAG_EXT_RFA) {
1551 		/* Configure dynamic TBD for 82550/82551. */
1552 		cbp->tbd_number = 0xFF;
1553 		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1554 	} else
1555 		cbp->tbd_number = nseg;
1556 	/* Configure TSO. */
1557 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1558 		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1559 		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1560 		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1561 		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1562 		    FXP_IPCB_TCP_PACKET |
1563 		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1564 	}
1565 	/* Configure VLAN hardware tag insertion. */
1566 	if ((m->m_flags & M_VLANTAG) != 0) {
1567 		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1568 		txp->tx_cb->ipcb_ip_activation_high |=
1569 		    FXP_IPCB_INSERTVLAN_ENABLE;
1570 	}
1571 
1572 	txp->tx_mbuf = m;
1573 	txp->tx_cb->cb_status = 0;
1574 	txp->tx_cb->byte_count = 0;
1575 	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1576 		txp->tx_cb->cb_command =
1577 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1578 		    FXP_CB_COMMAND_S);
1579 	else
1580 		txp->tx_cb->cb_command =
1581 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1582 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1583 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1584 		txp->tx_cb->tx_threshold = tx_threshold;
1585 
1586 	/*
1587 	 * Advance the end of list forward.
1588 	 */
1589 
1590 #ifdef __alpha__
1591 	/*
1592 	 * On platforms which can't access memory in 16-bit
1593 	 * granularities, we must prevent the card from DMA'ing
1594 	 * up the status while we update the command field.
1595 	 * This could cause us to overwrite the completion status.
1596 	 * XXX This is probably bogus and we're _not_ looking
1597 	 * for atomicity here.
1598 	 */
1599 	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1600 	    htole16(FXP_CB_COMMAND_S));
1601 #else
1602 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1603 #endif /*__alpha__*/
1604 	sc->fxp_desc.tx_last = txp;
1605 
1606 	/*
1607 	 * Advance the beginning of the list forward if there are
1608 	 * no other packets queued (when nothing is queued, tx_first
1609 	 * sits on the last TxCB that was sent out).
1610 	 */
1611 	if (sc->tx_queued == 0)
1612 		sc->fxp_desc.tx_first = txp;
1613 
1614 	sc->tx_queued++;
1615 
1616 	return (0);
1617 }
1618 
1619 #ifdef DEVICE_POLLING
1620 static poll_handler_t fxp_poll;
1621 
1622 static void
1623 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1624 {
1625 	struct fxp_softc *sc = ifp->if_softc;
1626 	uint8_t statack;
1627 
1628 	FXP_LOCK(sc);
1629 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1630 		FXP_UNLOCK(sc);
1631 		return;
1632 	}
1633 
1634 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1635 	    FXP_SCB_STATACK_FR;
1636 	if (cmd == POLL_AND_CHECK_STATUS) {
1637 		uint8_t tmp;
1638 
1639 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1640 		if (tmp == 0xff || tmp == 0) {
1641 			FXP_UNLOCK(sc);
1642 			return; /* nothing to do */
1643 		}
1644 		tmp &= ~statack;
1645 		/* ack what we can */
1646 		if (tmp != 0)
1647 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1648 		statack |= tmp;
1649 	}
1650 	fxp_intr_body(sc, ifp, statack, count);
1651 	FXP_UNLOCK(sc);
1652 }
1653 #endif /* DEVICE_POLLING */
1654 
1655 /*
1656  * Process interface interrupts.
1657  */
1658 static void
1659 fxp_intr(void *xsc)
1660 {
1661 	struct fxp_softc *sc = xsc;
1662 	struct ifnet *ifp = sc->ifp;
1663 	uint8_t statack;
1664 
1665 	FXP_LOCK(sc);
1666 	if (sc->suspended) {
1667 		FXP_UNLOCK(sc);
1668 		return;
1669 	}
1670 
1671 #ifdef DEVICE_POLLING
1672 	if (ifp->if_capenable & IFCAP_POLLING) {
1673 		FXP_UNLOCK(sc);
1674 		return;
1675 	}
1676 #endif
1677 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1678 		/*
1679 		 * It should not be possible to have all bits set; the
1680 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1681 		 * all bits are set, this may indicate that the card has
1682 		 * been physically ejected, so ignore it.
1683 		 */
1684 		if (statack == 0xff) {
1685 			FXP_UNLOCK(sc);
1686 			return;
1687 		}
1688 
1689 		/*
1690 		 * First ACK all the interrupts in this pass.
1691 		 */
1692 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1693 		fxp_intr_body(sc, ifp, statack, -1);
1694 	}
1695 	FXP_UNLOCK(sc);
1696 }
1697 
1698 static void
1699 fxp_txeof(struct fxp_softc *sc)
1700 {
1701 	struct ifnet *ifp;
1702 	struct fxp_tx *txp;
1703 
1704 	ifp = sc->ifp;
1705 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1706 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1707 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1708 	    txp = txp->tx_next) {
1709 		if (txp->tx_mbuf != NULL) {
1710 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1711 			    BUS_DMASYNC_POSTWRITE);
1712 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1713 			m_freem(txp->tx_mbuf);
1714 			txp->tx_mbuf = NULL;
1715 			/* clear this to reset csum offload bits */
1716 			txp->tx_cb->tbd[0].tb_addr = 0;
1717 		}
1718 		sc->tx_queued--;
1719 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1720 	}
1721 	sc->fxp_desc.tx_first = txp;
1722 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1723 	if (sc->tx_queued == 0) {
1724 		sc->watchdog_timer = 0;
1725 		if (sc->need_mcsetup)
1726 			fxp_mc_setup(sc);
1727 	}
1728 }
1729 
1730 static void
1731 fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m,
1732     uint16_t status, int pos)
1733 {
1734 	struct ether_header *eh;
1735 	struct ip *ip;
1736 	struct udphdr *uh;
1737 	int32_t hlen, len, pktlen, temp32;
1738 	uint16_t csum, *opts;
1739 
1740 	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1741 		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1742 			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1743 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1744 			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1745 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1746 			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1747 			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1748 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1749 				    CSUM_PSEUDO_HDR;
1750 				m->m_pkthdr.csum_data = 0xffff;
1751 			}
1752 		}
1753 		return;
1754 	}
1755 
1756 	pktlen = m->m_pkthdr.len;
1757 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1758 		return;
1759 	eh = mtod(m, struct ether_header *);
1760 	if (eh->ether_type != htons(ETHERTYPE_IP))
1761 		return;
1762 	ip = (struct ip *)(eh + 1);
1763 	if (ip->ip_v != IPVERSION)
1764 		return;
1765 
1766 	hlen = ip->ip_hl << 2;
1767 	pktlen -= sizeof(struct ether_header);
1768 	if (hlen < sizeof(struct ip))
1769 		return;
1770 	if (ntohs(ip->ip_len) < hlen)
1771 		return;
1772 	if (ntohs(ip->ip_len) != pktlen)
1773 		return;
1774 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1775 		return;	/* can't handle fragmented packet */
1776 
1777 	switch (ip->ip_p) {
1778 	case IPPROTO_TCP:
1779 		if (pktlen < (hlen + sizeof(struct tcphdr)))
1780 			return;
1781 		break;
1782 	case IPPROTO_UDP:
1783 		if (pktlen < (hlen + sizeof(struct udphdr)))
1784 			return;
1785 		uh = (struct udphdr *)((caddr_t)ip + hlen);
1786 		if (uh->uh_sum == 0)
1787 			return; /* no checksum */
1788 		break;
1789 	default:
1790 		return;
1791 	}
1792 	/* Extract computed checksum. */
1793 	csum = be16dec(mtod(m, char *) + pos);
1794 	/* checksum fixup for IP options */
1795 	len = hlen - sizeof(struct ip);
1796 	if (len > 0) {
1797 		opts = (uint16_t *)(ip + 1);
1798 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1799 			temp32 = csum - *opts;
1800 			temp32 = (temp32 >> 16) + (temp32 & 65535);
1801 			csum = temp32 & 65535;
1802 		}
1803 	}
1804 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1805 	m->m_pkthdr.csum_data = csum;
1806 }
1807 
1808 static void
1809 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1810     int count)
1811 {
1812 	struct mbuf *m;
1813 	struct fxp_rx *rxp;
1814 	struct fxp_rfa *rfa;
1815 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1816 	uint16_t status;
1817 
1818 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1819 	if (rnr)
1820 		sc->rnr++;
1821 #ifdef DEVICE_POLLING
1822 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1823 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1824 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1825 		rnr = 1;
1826 	}
1827 #endif
1828 
1829 	/*
1830 	 * Free any finished transmit mbuf chains.
1831 	 *
1832 	 * Handle the CNA event likt a CXTNO event. It used to
1833 	 * be that this event (control unit not ready) was not
1834 	 * encountered, but it is now with the SMPng modifications.
1835 	 * The exact sequence of events that occur when the interface
1836 	 * is brought up are different now, and if this event
1837 	 * goes unhandled, the configuration/rxfilter setup sequence
1838 	 * can stall for several seconds. The result is that no
1839 	 * packets go out onto the wire for about 5 to 10 seconds
1840 	 * after the interface is ifconfig'ed for the first time.
1841 	 */
1842 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1843 		fxp_txeof(sc);
1844 
1845 	/*
1846 	 * Try to start more packets transmitting.
1847 	 */
1848 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1849 		fxp_start_body(ifp);
1850 
1851 	/*
1852 	 * Just return if nothing happened on the receive side.
1853 	 */
1854 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1855 		return;
1856 
1857 	/*
1858 	 * Process receiver interrupts. If a no-resource (RNR)
1859 	 * condition exists, get whatever packets we can and
1860 	 * re-start the receiver.
1861 	 *
1862 	 * When using polling, we do not process the list to completion,
1863 	 * so when we get an RNR interrupt we must defer the restart
1864 	 * until we hit the last buffer with the C bit set.
1865 	 * If we run out of cycles and rfa_headm has the C bit set,
1866 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1867 	 * that the info will be used in the subsequent polling cycle.
1868 	 */
1869 	for (;;) {
1870 		rxp = sc->fxp_desc.rx_head;
1871 		m = rxp->rx_mbuf;
1872 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1873 		    RFA_ALIGNMENT_FUDGE);
1874 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1875 		    BUS_DMASYNC_POSTREAD);
1876 
1877 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1878 		if (count >= 0 && count-- == 0) {
1879 			if (rnr) {
1880 				/* Defer RNR processing until the next time. */
1881 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1882 				rnr = 0;
1883 			}
1884 			break;
1885 		}
1886 #endif /* DEVICE_POLLING */
1887 
1888 		status = le16toh(rfa->rfa_status);
1889 		if ((status & FXP_RFA_STATUS_C) == 0)
1890 			break;
1891 
1892 		/*
1893 		 * Advance head forward.
1894 		 */
1895 		sc->fxp_desc.rx_head = rxp->rx_next;
1896 
1897 		/*
1898 		 * Add a new buffer to the receive chain.
1899 		 * If this fails, the old buffer is recycled
1900 		 * instead.
1901 		 */
1902 		if (fxp_new_rfabuf(sc, rxp) == 0) {
1903 			int total_len;
1904 
1905 			/*
1906 			 * Fetch packet length (the top 2 bits of
1907 			 * actual_size are flags set by the controller
1908 			 * upon completion), and drop the packet in case
1909 			 * of bogus length or CRC errors.
1910 			 */
1911 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1912 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1913 			    (ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1914 				/* Adjust for appended checksum bytes. */
1915 				total_len -= 2;
1916 			}
1917 			if (total_len < sizeof(struct ether_header) ||
1918 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1919 				sc->rfa_size || status & FXP_RFA_STATUS_CRC) {
1920 				m_freem(m);
1921 				continue;
1922 			}
1923 
1924 			m->m_pkthdr.len = m->m_len = total_len;
1925 			m->m_pkthdr.rcvif = ifp;
1926 
1927                         /* Do IP checksum checking. */
1928 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1929 				fxp_rxcsum(sc, ifp, m, status, total_len);
1930 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1931 			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1932 				m->m_pkthdr.ether_vtag =
1933 				    ntohs(rfa->rfax_vlan_id);
1934 				m->m_flags |= M_VLANTAG;
1935 			}
1936 			/*
1937 			 * Drop locks before calling if_input() since it
1938 			 * may re-enter fxp_start() in the netisr case.
1939 			 * This would result in a lock reversal.  Better
1940 			 * performance might be obtained by chaining all
1941 			 * packets received, dropping the lock, and then
1942 			 * calling if_input() on each one.
1943 			 */
1944 			FXP_UNLOCK(sc);
1945 			(*ifp->if_input)(ifp, m);
1946 			FXP_LOCK(sc);
1947 		} else {
1948 			/* Reuse RFA and loaded DMA map. */
1949 			ifp->if_iqdrops++;
1950 			fxp_discard_rfabuf(sc, rxp);
1951 		}
1952 		fxp_add_rfabuf(sc, rxp);
1953 	}
1954 	if (rnr) {
1955 		fxp_scb_wait(sc);
1956 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1957 		    sc->fxp_desc.rx_head->rx_addr);
1958 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1959 	}
1960 }
1961 
1962 /*
1963  * Update packet in/out/collision statistics. The i82557 doesn't
1964  * allow you to access these counters without doing a fairly
1965  * expensive DMA to get _all_ of the statistics it maintains, so
1966  * we do this operation here only once per second. The statistics
1967  * counters in the kernel are updated from the previous dump-stats
1968  * DMA and then a new dump-stats DMA is started. The on-chip
1969  * counters are zeroed when the DMA completes. If we can't start
1970  * the DMA immediately, we don't wait - we just prepare to read
1971  * them again next time.
1972  */
1973 static void
1974 fxp_tick(void *xsc)
1975 {
1976 	struct fxp_softc *sc = xsc;
1977 	struct ifnet *ifp = sc->ifp;
1978 	struct fxp_stats *sp = sc->fxp_stats;
1979 
1980 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1981 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1982 	ifp->if_opackets += le32toh(sp->tx_good);
1983 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1984 	if (sp->rx_good) {
1985 		ifp->if_ipackets += le32toh(sp->rx_good);
1986 		sc->rx_idle_secs = 0;
1987 	} else {
1988 		/*
1989 		 * Receiver's been idle for another second.
1990 		 */
1991 		sc->rx_idle_secs++;
1992 	}
1993 	ifp->if_ierrors +=
1994 	    le32toh(sp->rx_crc_errors) +
1995 	    le32toh(sp->rx_alignment_errors) +
1996 	    le32toh(sp->rx_rnr_errors) +
1997 	    le32toh(sp->rx_overrun_errors);
1998 	/*
1999 	 * If any transmit underruns occured, bump up the transmit
2000 	 * threshold by another 512 bytes (64 * 8).
2001 	 */
2002 	if (sp->tx_underruns) {
2003 		ifp->if_oerrors += le32toh(sp->tx_underruns);
2004 		if (tx_threshold < 192)
2005 			tx_threshold += 64;
2006 	}
2007 
2008 	/*
2009 	 * Release any xmit buffers that have completed DMA. This isn't
2010 	 * strictly necessary to do here, but it's advantagous for mbufs
2011 	 * with external storage to be released in a timely manner rather
2012 	 * than being defered for a potentially long time. This limits
2013 	 * the delay to a maximum of one second.
2014 	 */
2015 	fxp_txeof(sc);
2016 
2017 	/*
2018 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2019 	 * then assume the receiver has locked up and attempt to clear
2020 	 * the condition by reprogramming the multicast filter. This is
2021 	 * a work-around for a bug in the 82557 where the receiver locks
2022 	 * up if it gets certain types of garbage in the syncronization
2023 	 * bits prior to the packet header. This bug is supposed to only
2024 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2025 	 * mode as well (perhaps due to a 10/100 speed transition).
2026 	 */
2027 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2028 		sc->rx_idle_secs = 0;
2029 		fxp_mc_setup(sc);
2030 	}
2031 	/*
2032 	 * If there is no pending command, start another stats
2033 	 * dump. Otherwise punt for now.
2034 	 */
2035 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2036 		/*
2037 		 * Start another stats dump.
2038 		 */
2039 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2040 		    BUS_DMASYNC_PREREAD);
2041 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2042 	} else {
2043 		/*
2044 		 * A previous command is still waiting to be accepted.
2045 		 * Just zero our copy of the stats and wait for the
2046 		 * next timer event to update them.
2047 		 */
2048 		sp->tx_good = 0;
2049 		sp->tx_underruns = 0;
2050 		sp->tx_total_collisions = 0;
2051 
2052 		sp->rx_good = 0;
2053 		sp->rx_crc_errors = 0;
2054 		sp->rx_alignment_errors = 0;
2055 		sp->rx_rnr_errors = 0;
2056 		sp->rx_overrun_errors = 0;
2057 	}
2058 	if (sc->miibus != NULL)
2059 		mii_tick(device_get_softc(sc->miibus));
2060 
2061 	/*
2062 	 * Check that chip hasn't hung.
2063 	 */
2064 	fxp_watchdog(sc);
2065 
2066 	/*
2067 	 * Schedule another timeout one second from now.
2068 	 */
2069 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2070 }
2071 
2072 /*
2073  * Stop the interface. Cancels the statistics updater and resets
2074  * the interface.
2075  */
2076 static void
2077 fxp_stop(struct fxp_softc *sc)
2078 {
2079 	struct ifnet *ifp = sc->ifp;
2080 	struct fxp_tx *txp;
2081 	int i;
2082 
2083 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2084 	sc->watchdog_timer = 0;
2085 
2086 	/*
2087 	 * Cancel stats updater.
2088 	 */
2089 	callout_stop(&sc->stat_ch);
2090 
2091 	/*
2092 	 * Preserve PCI configuration, configure, IA/multicast
2093 	 * setup and put RU and CU into idle state.
2094 	 */
2095 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2096 	DELAY(50);
2097 	/* Disable interrupts. */
2098 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2099 
2100 	/*
2101 	 * Release any xmit buffers.
2102 	 */
2103 	txp = sc->fxp_desc.tx_list;
2104 	if (txp != NULL) {
2105 		for (i = 0; i < FXP_NTXCB; i++) {
2106  			if (txp[i].tx_mbuf != NULL) {
2107 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
2108 				    BUS_DMASYNC_POSTWRITE);
2109 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
2110 				m_freem(txp[i].tx_mbuf);
2111 				txp[i].tx_mbuf = NULL;
2112 				/* clear this to reset csum offload bits */
2113 				txp[i].tx_cb->tbd[0].tb_addr = 0;
2114 			}
2115 		}
2116 	}
2117 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2118 	sc->tx_queued = 0;
2119 }
2120 
2121 /*
2122  * Watchdog/transmission transmit timeout handler. Called when a
2123  * transmission is started on the interface, but no interrupt is
2124  * received before the timeout. This usually indicates that the
2125  * card has wedged for some reason.
2126  */
2127 static void
2128 fxp_watchdog(struct fxp_softc *sc)
2129 {
2130 
2131 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2132 
2133 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2134 		return;
2135 
2136 	device_printf(sc->dev, "device timeout\n");
2137 	sc->ifp->if_oerrors++;
2138 
2139 	fxp_init_body(sc);
2140 }
2141 
2142 /*
2143  * Acquire locks and then call the real initialization function.  This
2144  * is necessary because ether_ioctl() calls if_init() and this would
2145  * result in mutex recursion if the mutex was held.
2146  */
2147 static void
2148 fxp_init(void *xsc)
2149 {
2150 	struct fxp_softc *sc = xsc;
2151 
2152 	FXP_LOCK(sc);
2153 	fxp_init_body(sc);
2154 	FXP_UNLOCK(sc);
2155 }
2156 
2157 /*
2158  * Perform device initialization. This routine must be called with the
2159  * softc lock held.
2160  */
2161 static void
2162 fxp_init_body(struct fxp_softc *sc)
2163 {
2164 	struct ifnet *ifp = sc->ifp;
2165 	struct fxp_cb_config *cbp;
2166 	struct fxp_cb_ias *cb_ias;
2167 	struct fxp_cb_tx *tcbp;
2168 	struct fxp_tx *txp;
2169 	struct fxp_cb_mcs *mcsp;
2170 	int i, prm;
2171 
2172 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2173 	/*
2174 	 * Cancel any pending I/O
2175 	 */
2176 	fxp_stop(sc);
2177 
2178 	/*
2179 	 * Issue software reset, which also unloads the microcode.
2180 	 */
2181 	sc->flags &= ~FXP_FLAG_UCODE;
2182 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2183 	DELAY(50);
2184 
2185 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2186 
2187 	/*
2188 	 * Initialize base of CBL and RFA memory. Loading with zero
2189 	 * sets it up for regular linear addressing.
2190 	 */
2191 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2192 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2193 
2194 	fxp_scb_wait(sc);
2195 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2196 
2197 	/*
2198 	 * Initialize base of dump-stats buffer.
2199 	 */
2200 	fxp_scb_wait(sc);
2201 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
2202 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2203 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2204 
2205 	/*
2206 	 * Attempt to load microcode if requested.
2207 	 */
2208 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
2209 		fxp_load_ucode(sc);
2210 
2211 	/*
2212 	 * Initialize the multicast address list.
2213 	 */
2214 	if (fxp_mc_addrs(sc)) {
2215 		mcsp = sc->mcsp;
2216 		mcsp->cb_status = 0;
2217 		mcsp->cb_command =
2218 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2219 		mcsp->link_addr = 0xffffffff;
2220 		/*
2221 	 	 * Start the multicast setup command.
2222 		 */
2223 		fxp_scb_wait(sc);
2224 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2225 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2226 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2227 		/* ...and wait for it to complete. */
2228 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2229 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2230 		    BUS_DMASYNC_POSTWRITE);
2231 	}
2232 
2233 	/*
2234 	 * We temporarily use memory that contains the TxCB list to
2235 	 * construct the config CB. The TxCB list memory is rebuilt
2236 	 * later.
2237 	 */
2238 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2239 
2240 	/*
2241 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2242 	 * zero and must be one bits in this structure and this is the easiest
2243 	 * way to initialize them all to proper values.
2244 	 */
2245 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2246 
2247 	cbp->cb_status =	0;
2248 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2249 	    FXP_CB_COMMAND_EL);
2250 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2251 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2252 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2253 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2254 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2255 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2256 	cbp->type_enable =	0;	/* actually reserved */
2257 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2258 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2259 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2260 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2261 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2262 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2263 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2264 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2265 	cbp->ci_int =		1;	/* interrupt on CU idle */
2266 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2267 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2268 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2269 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2270 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2271 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2272 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2273 	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2274 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2275 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2276 	cbp->csma_dis =		0;	/* (don't) disable link */
2277 	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2278 	    (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0;
2279 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2280 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2281 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2282 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2283 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2284 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2285 	cbp->loopback =		0;	/* (don't) loopback */
2286 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2287 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2288 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2289 	cbp->promiscuous =	prm;	/* promiscuous mode */
2290 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2291 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2292 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2293 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2294 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2295 
2296 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2297 	cbp->padding =		1;	/* (do) pad short tx packets */
2298 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2299 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2300 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2301 	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2302 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2303 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2304 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2305 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2306 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2307 	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2308 	    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2309 
2310 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2311 		/*
2312 		 * The 82557 has no hardware flow control, the values
2313 		 * below are the defaults for the chip.
2314 		 */
2315 		cbp->fc_delay_lsb =	0;
2316 		cbp->fc_delay_msb =	0x40;
2317 		cbp->pri_fc_thresh =	3;
2318 		cbp->tx_fc_dis =	0;
2319 		cbp->rx_fc_restop =	0;
2320 		cbp->rx_fc_restart =	0;
2321 		cbp->fc_filter =	0;
2322 		cbp->pri_fc_loc =	1;
2323 	} else {
2324 		cbp->fc_delay_lsb =	0x1f;
2325 		cbp->fc_delay_msb =	0x01;
2326 		cbp->pri_fc_thresh =	3;
2327 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2328 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2329 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2330 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2331 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2332 	}
2333 
2334 	/*
2335 	 * Start the config command/DMA.
2336 	 */
2337 	fxp_scb_wait(sc);
2338 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2339 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2340 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2341 	/* ...and wait for it to complete. */
2342 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2343 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2344 
2345 	/*
2346 	 * Now initialize the station address. Temporarily use the TxCB
2347 	 * memory area like we did above for the config CB.
2348 	 */
2349 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2350 	cb_ias->cb_status = 0;
2351 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2352 	cb_ias->link_addr = 0xffffffff;
2353 	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2354 
2355 	/*
2356 	 * Start the IAS (Individual Address Setup) command/DMA.
2357 	 */
2358 	fxp_scb_wait(sc);
2359 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2360 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2361 	/* ...and wait for it to complete. */
2362 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2363 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2364 
2365 	/*
2366 	 * Initialize transmit control block (TxCB) list.
2367 	 */
2368 	txp = sc->fxp_desc.tx_list;
2369 	tcbp = sc->fxp_desc.cbl_list;
2370 	bzero(tcbp, FXP_TXCB_SZ);
2371 	for (i = 0; i < FXP_NTXCB; i++) {
2372 		txp[i].tx_mbuf = NULL;
2373 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2374 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2375 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2376 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2377 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2378 			tcbp[i].tbd_array_addr =
2379 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2380 		else
2381 			tcbp[i].tbd_array_addr =
2382 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2383 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2384 	}
2385 	/*
2386 	 * Set the suspend flag on the first TxCB and start the control
2387 	 * unit. It will execute the NOP and then suspend.
2388 	 */
2389 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2390 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2391 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2392 	sc->tx_queued = 1;
2393 
2394 	fxp_scb_wait(sc);
2395 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2396 
2397 	/*
2398 	 * Initialize receiver buffer area - RFA.
2399 	 */
2400 	fxp_scb_wait(sc);
2401 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2402 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2403 
2404 	/*
2405 	 * Set current media.
2406 	 */
2407 	if (sc->miibus != NULL)
2408 		mii_mediachg(device_get_softc(sc->miibus));
2409 
2410 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2411 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2412 
2413 	/*
2414 	 * Enable interrupts.
2415 	 */
2416 #ifdef DEVICE_POLLING
2417 	/*
2418 	 * ... but only do that if we are not polling. And because (presumably)
2419 	 * the default is interrupts on, we need to disable them explicitly!
2420 	 */
2421 	if (ifp->if_capenable & IFCAP_POLLING )
2422 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2423 	else
2424 #endif /* DEVICE_POLLING */
2425 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2426 
2427 	/*
2428 	 * Start stats updater.
2429 	 */
2430 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2431 }
2432 
2433 static int
2434 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2435 {
2436 
2437 	return (0);
2438 }
2439 
2440 static void
2441 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2442 {
2443 
2444 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2445 }
2446 
2447 /*
2448  * Change media according to request.
2449  */
2450 static int
2451 fxp_ifmedia_upd(struct ifnet *ifp)
2452 {
2453 	struct fxp_softc *sc = ifp->if_softc;
2454 	struct mii_data *mii;
2455 
2456 	mii = device_get_softc(sc->miibus);
2457 	FXP_LOCK(sc);
2458 	if (mii->mii_instance) {
2459 		struct mii_softc	*miisc;
2460 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2461 			mii_phy_reset(miisc);
2462 	}
2463 	mii_mediachg(mii);
2464 	FXP_UNLOCK(sc);
2465 	return (0);
2466 }
2467 
2468 /*
2469  * Notify the world which media we're using.
2470  */
2471 static void
2472 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2473 {
2474 	struct fxp_softc *sc = ifp->if_softc;
2475 	struct mii_data *mii;
2476 
2477 	mii = device_get_softc(sc->miibus);
2478 	FXP_LOCK(sc);
2479 	mii_pollstat(mii);
2480 	ifmr->ifm_active = mii->mii_media_active;
2481 	ifmr->ifm_status = mii->mii_media_status;
2482 
2483 	if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T &&
2484 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2485 		sc->cu_resume_bug = 1;
2486 	else
2487 		sc->cu_resume_bug = 0;
2488 	FXP_UNLOCK(sc);
2489 }
2490 
2491 /*
2492  * Add a buffer to the end of the RFA buffer list.
2493  * Return 0 if successful, 1 for failure. A failure results in
2494  * reusing the RFA buffer.
2495  * The RFA struct is stuck at the beginning of mbuf cluster and the
2496  * data pointer is fixed up to point just past it.
2497  */
2498 static int
2499 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2500 {
2501 	struct mbuf *m;
2502 	struct fxp_rfa *rfa;
2503 	bus_dmamap_t tmp_map;
2504 	int error;
2505 
2506 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2507 	if (m == NULL)
2508 		return (ENOBUFS);
2509 
2510 	/*
2511 	 * Move the data pointer up so that the incoming data packet
2512 	 * will be 32-bit aligned.
2513 	 */
2514 	m->m_data += RFA_ALIGNMENT_FUDGE;
2515 
2516 	/*
2517 	 * Get a pointer to the base of the mbuf cluster and move
2518 	 * data start past it.
2519 	 */
2520 	rfa = mtod(m, struct fxp_rfa *);
2521 	m->m_data += sc->rfa_size;
2522 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2523 
2524 	rfa->rfa_status = 0;
2525 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2526 	rfa->actual_size = 0;
2527 	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2528 	    sc->rfa_size;
2529 
2530 	/*
2531 	 * Initialize the rest of the RFA.  Note that since the RFA
2532 	 * is misaligned, we cannot store values directly.  We're thus
2533 	 * using the le32enc() function which handles endianness and
2534 	 * is also alignment-safe.
2535 	 */
2536 	le32enc(&rfa->link_addr, 0xffffffff);
2537 	le32enc(&rfa->rbd_addr, 0xffffffff);
2538 
2539 	/* Map the RFA into DMA memory. */
2540 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2541 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2542 	    &rxp->rx_addr, 0);
2543 	if (error) {
2544 		m_freem(m);
2545 		return (error);
2546 	}
2547 
2548 	if (rxp->rx_mbuf != NULL)
2549 		bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2550 	tmp_map = sc->spare_map;
2551 	sc->spare_map = rxp->rx_map;
2552 	rxp->rx_map = tmp_map;
2553 	rxp->rx_mbuf = m;
2554 
2555 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2556 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2557 	return (0);
2558 }
2559 
2560 static void
2561 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2562 {
2563 	struct fxp_rfa *p_rfa;
2564 	struct fxp_rx *p_rx;
2565 
2566 	/*
2567 	 * If there are other buffers already on the list, attach this
2568 	 * one to the end by fixing up the tail to point to this one.
2569 	 */
2570 	if (sc->fxp_desc.rx_head != NULL) {
2571 		p_rx = sc->fxp_desc.rx_tail;
2572 		p_rfa = (struct fxp_rfa *)
2573 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2574 		p_rx->rx_next = rxp;
2575 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2576 		p_rfa->rfa_control = 0;
2577 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2578 		    BUS_DMASYNC_PREWRITE);
2579 	} else {
2580 		rxp->rx_next = NULL;
2581 		sc->fxp_desc.rx_head = rxp;
2582 	}
2583 	sc->fxp_desc.rx_tail = rxp;
2584 }
2585 
2586 static void
2587 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2588 {
2589 	struct mbuf *m;
2590 	struct fxp_rfa *rfa;
2591 
2592 	m = rxp->rx_mbuf;
2593 	m->m_data = m->m_ext.ext_buf;
2594 	/*
2595 	 * Move the data pointer up so that the incoming data packet
2596 	 * will be 32-bit aligned.
2597 	 */
2598 	m->m_data += RFA_ALIGNMENT_FUDGE;
2599 
2600 	/*
2601 	 * Get a pointer to the base of the mbuf cluster and move
2602 	 * data start past it.
2603 	 */
2604 	rfa = mtod(m, struct fxp_rfa *);
2605 	m->m_data += sc->rfa_size;
2606 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2607 
2608 	rfa->rfa_status = 0;
2609 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2610 	rfa->actual_size = 0;
2611 
2612 	/*
2613 	 * Initialize the rest of the RFA.  Note that since the RFA
2614 	 * is misaligned, we cannot store values directly.  We're thus
2615 	 * using the le32enc() function which handles endianness and
2616 	 * is also alignment-safe.
2617 	 */
2618 	le32enc(&rfa->link_addr, 0xffffffff);
2619 	le32enc(&rfa->rbd_addr, 0xffffffff);
2620 
2621 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2622 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2623 }
2624 
2625 static int
2626 fxp_miibus_readreg(device_t dev, int phy, int reg)
2627 {
2628 	struct fxp_softc *sc = device_get_softc(dev);
2629 	int count = 10000;
2630 	int value;
2631 
2632 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2633 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2634 
2635 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2636 	    && count--)
2637 		DELAY(10);
2638 
2639 	if (count <= 0)
2640 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2641 
2642 	return (value & 0xffff);
2643 }
2644 
2645 static int
2646 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2647 {
2648 	struct fxp_softc *sc = device_get_softc(dev);
2649 	int count = 10000;
2650 
2651 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2652 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2653 	    (value & 0xffff));
2654 
2655 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2656 	    count--)
2657 		DELAY(10);
2658 
2659 	if (count <= 0)
2660 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2661 	return (0);
2662 }
2663 
2664 static int
2665 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2666 {
2667 	struct fxp_softc *sc = ifp->if_softc;
2668 	struct ifreq *ifr = (struct ifreq *)data;
2669 	struct mii_data *mii;
2670 	int flag, mask, error = 0, reinit;
2671 
2672 	switch (command) {
2673 	case SIOCSIFFLAGS:
2674 		FXP_LOCK(sc);
2675 		if (ifp->if_flags & IFF_ALLMULTI)
2676 			sc->flags |= FXP_FLAG_ALL_MCAST;
2677 		else
2678 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2679 
2680 		/*
2681 		 * If interface is marked up and not running, then start it.
2682 		 * If it is marked down and running, stop it.
2683 		 * XXX If it's up then re-initialize it. This is so flags
2684 		 * such as IFF_PROMISC are handled.
2685 		 */
2686 		if (ifp->if_flags & IFF_UP) {
2687 			fxp_init_body(sc);
2688 		} else {
2689 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2690 				fxp_stop(sc);
2691 		}
2692 		FXP_UNLOCK(sc);
2693 		break;
2694 
2695 	case SIOCADDMULTI:
2696 	case SIOCDELMULTI:
2697 		FXP_LOCK(sc);
2698 		if (ifp->if_flags & IFF_ALLMULTI)
2699 			sc->flags |= FXP_FLAG_ALL_MCAST;
2700 		else
2701 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2702 		/*
2703 		 * Multicast list has changed; set the hardware filter
2704 		 * accordingly.
2705 		 */
2706 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2707 			fxp_mc_setup(sc);
2708 		/*
2709 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2710 		 * again rather than else {}.
2711 		 */
2712 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2713 			fxp_init_body(sc);
2714 		FXP_UNLOCK(sc);
2715 		error = 0;
2716 		break;
2717 
2718 	case SIOCSIFMEDIA:
2719 	case SIOCGIFMEDIA:
2720 		if (sc->miibus != NULL) {
2721 			mii = device_get_softc(sc->miibus);
2722                         error = ifmedia_ioctl(ifp, ifr,
2723                             &mii->mii_media, command);
2724 		} else {
2725                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2726 		}
2727 		break;
2728 
2729 	case SIOCSIFCAP:
2730 		reinit = 0;
2731 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2732 #ifdef DEVICE_POLLING
2733 		if (mask & IFCAP_POLLING) {
2734 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2735 				error = ether_poll_register(fxp_poll, ifp);
2736 				if (error)
2737 					return(error);
2738 				FXP_LOCK(sc);
2739 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2740 				    FXP_SCB_INTR_DISABLE);
2741 				ifp->if_capenable |= IFCAP_POLLING;
2742 				FXP_UNLOCK(sc);
2743 			} else {
2744 				error = ether_poll_deregister(ifp);
2745 				/* Enable interrupts in any case */
2746 				FXP_LOCK(sc);
2747 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2748 				ifp->if_capenable &= ~IFCAP_POLLING;
2749 				FXP_UNLOCK(sc);
2750 			}
2751 		}
2752 #endif
2753 		FXP_LOCK(sc);
2754 		if ((mask & IFCAP_TXCSUM) != 0 &&
2755 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2756 			ifp->if_capenable ^= IFCAP_TXCSUM;
2757 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2758 				ifp->if_hwassist |= FXP_CSUM_FEATURES;
2759 			else
2760 				ifp->if_hwassist &= ~FXP_CSUM_FEATURES;
2761 		}
2762 		if ((mask & IFCAP_RXCSUM) != 0 &&
2763 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
2764 			ifp->if_capenable ^= IFCAP_RXCSUM;
2765 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2766 				reinit++;
2767 		}
2768 		if ((mask & IFCAP_TSO4) != 0 &&
2769 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2770 			ifp->if_capenable ^= IFCAP_TSO4;
2771 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2772 				ifp->if_hwassist |= CSUM_TSO;
2773 			else
2774 				ifp->if_hwassist &= ~CSUM_TSO;
2775 		}
2776 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2777 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2778 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2779 		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2780 		    (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) {
2781 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2782 			if (sc->revision != FXP_REV_82557)
2783 				flag = FXP_FLAG_LONG_PKT_EN;
2784 			else /* a hack to get long frames on the old chip */
2785 				flag = FXP_FLAG_SAVE_BAD;
2786 			sc->flags ^= flag;
2787 			if (ifp->if_flags & IFF_UP)
2788 				reinit++;
2789 		}
2790 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2791 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2792 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2793 				reinit++;
2794 		}
2795 		if (reinit > 0 && ifp->if_flags & IFF_UP)
2796 			fxp_init_body(sc);
2797 		FXP_UNLOCK(sc);
2798 		VLAN_CAPABILITIES(ifp);
2799 		break;
2800 
2801 	default:
2802 		error = ether_ioctl(ifp, command, data);
2803 	}
2804 	return (error);
2805 }
2806 
2807 /*
2808  * Fill in the multicast address list and return number of entries.
2809  */
2810 static int
2811 fxp_mc_addrs(struct fxp_softc *sc)
2812 {
2813 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2814 	struct ifnet *ifp = sc->ifp;
2815 	struct ifmultiaddr *ifma;
2816 	int nmcasts;
2817 
2818 	nmcasts = 0;
2819 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2820 		IF_ADDR_LOCK(ifp);
2821 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2822 			if (ifma->ifma_addr->sa_family != AF_LINK)
2823 				continue;
2824 			if (nmcasts >= MAXMCADDR) {
2825 				sc->flags |= FXP_FLAG_ALL_MCAST;
2826 				nmcasts = 0;
2827 				break;
2828 			}
2829 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2830 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2831 			nmcasts++;
2832 		}
2833 		IF_ADDR_UNLOCK(ifp);
2834 	}
2835 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2836 	return (nmcasts);
2837 }
2838 
2839 /*
2840  * Program the multicast filter.
2841  *
2842  * We have an artificial restriction that the multicast setup command
2843  * must be the first command in the chain, so we take steps to ensure
2844  * this. By requiring this, it allows us to keep up the performance of
2845  * the pre-initialized command ring (esp. link pointers) by not actually
2846  * inserting the mcsetup command in the ring - i.e. its link pointer
2847  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2848  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2849  * lead into the regular TxCB ring when it completes.
2850  *
2851  * This function must be called at splimp.
2852  */
2853 static void
2854 fxp_mc_setup(struct fxp_softc *sc)
2855 {
2856 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2857 	struct fxp_tx *txp;
2858 	int count;
2859 
2860 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2861 	/*
2862 	 * If there are queued commands, we must wait until they are all
2863 	 * completed. If we are already waiting, then add a NOP command
2864 	 * with interrupt option so that we're notified when all commands
2865 	 * have been completed - fxp_start() ensures that no additional
2866 	 * TX commands will be added when need_mcsetup is true.
2867 	 */
2868 	if (sc->tx_queued) {
2869 		/*
2870 		 * need_mcsetup will be true if we are already waiting for the
2871 		 * NOP command to be completed (see below). In this case, bail.
2872 		 */
2873 		if (sc->need_mcsetup)
2874 			return;
2875 		sc->need_mcsetup = 1;
2876 
2877 		/*
2878 		 * Add a NOP command with interrupt so that we are notified
2879 		 * when all TX commands have been processed.
2880 		 */
2881 		txp = sc->fxp_desc.tx_last->tx_next;
2882 		txp->tx_mbuf = NULL;
2883 		txp->tx_cb->cb_status = 0;
2884 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2885 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2886 		/*
2887 		 * Advance the end of list forward.
2888 		 */
2889 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2890 		    htole16(~FXP_CB_COMMAND_S);
2891 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2892 		sc->fxp_desc.tx_last = txp;
2893 		sc->tx_queued++;
2894 		/*
2895 		 * Issue a resume in case the CU has just suspended.
2896 		 */
2897 		fxp_scb_wait(sc);
2898 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2899 		/*
2900 		 * Set a 5 second timer just in case we don't hear from the
2901 		 * card again.
2902 		 */
2903 		sc->watchdog_timer = 5;
2904 
2905 		return;
2906 	}
2907 	sc->need_mcsetup = 0;
2908 
2909 	/*
2910 	 * Initialize multicast setup descriptor.
2911 	 */
2912 	mcsp->cb_status = 0;
2913 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2914 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2915 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2916 	txp = &sc->fxp_desc.mcs_tx;
2917 	txp->tx_mbuf = NULL;
2918 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2919 	txp->tx_next = sc->fxp_desc.tx_list;
2920 	(void) fxp_mc_addrs(sc);
2921 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2922 	sc->tx_queued = 1;
2923 
2924 	/*
2925 	 * Wait until command unit is not active. This should never
2926 	 * be the case when nothing is queued, but make sure anyway.
2927 	 */
2928 	count = 100;
2929 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2930 	    FXP_SCB_CUS_ACTIVE && --count)
2931 		DELAY(10);
2932 	if (count == 0) {
2933 		device_printf(sc->dev, "command queue timeout\n");
2934 		return;
2935 	}
2936 
2937 	/*
2938 	 * Start the multicast setup command.
2939 	 */
2940 	fxp_scb_wait(sc);
2941 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2942 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2943 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2944 
2945 	sc->watchdog_timer = 2;
2946 	return;
2947 }
2948 
2949 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2950 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2951 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2952 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2953 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2954 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2955 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2956 
2957 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2958 
2959 struct ucode {
2960 	uint32_t	revision;
2961 	uint32_t	*ucode;
2962 	int		length;
2963 	u_short		int_delay_offset;
2964 	u_short		bundle_max_offset;
2965 } ucode_table[] = {
2966 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2967 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2968 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2969 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2970 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2971 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2972 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2973 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2974 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2975 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2976 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2977 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2978 	{ 0, NULL, 0, 0, 0 }
2979 };
2980 
2981 static void
2982 fxp_load_ucode(struct fxp_softc *sc)
2983 {
2984 	struct ucode *uc;
2985 	struct fxp_cb_ucode *cbp;
2986 	int i;
2987 
2988 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2989 		if (sc->revision == uc->revision)
2990 			break;
2991 	if (uc->ucode == NULL)
2992 		return;
2993 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2994 	cbp->cb_status = 0;
2995 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2996 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2997 	for (i = 0; i < uc->length; i++)
2998 		cbp->ucode[i] = htole32(uc->ucode[i]);
2999 	if (uc->int_delay_offset)
3000 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3001 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3002 	if (uc->bundle_max_offset)
3003 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3004 		    htole16(sc->tunable_bundle_max);
3005 	/*
3006 	 * Download the ucode to the chip.
3007 	 */
3008 	fxp_scb_wait(sc);
3009 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
3010 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3011 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3012 	/* ...and wait for it to complete. */
3013 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3014 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
3015 	device_printf(sc->dev,
3016 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3017 	    sc->tunable_int_delay,
3018 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3019 	sc->flags |= FXP_FLAG_UCODE;
3020 }
3021 
3022 static int
3023 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3024 {
3025 	int error, value;
3026 
3027 	value = *(int *)arg1;
3028 	error = sysctl_handle_int(oidp, &value, 0, req);
3029 	if (error || !req->newptr)
3030 		return (error);
3031 	if (value < low || value > high)
3032 		return (EINVAL);
3033 	*(int *)arg1 = value;
3034 	return (0);
3035 }
3036 
3037 /*
3038  * Interrupt delay is expressed in microseconds, a multiplier is used
3039  * to convert this to the appropriate clock ticks before using.
3040  */
3041 static int
3042 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3043 {
3044 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3045 }
3046 
3047 static int
3048 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3049 {
3050 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3051 }
3052