xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 3642298923e528d795e3a30ec165d2b469e28b40)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/endian.h>
40 #include <sys/mbuf.h>
41 		/* #include <sys/mutex.h> */
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sysctl.h>
46 
47 #include <net/if.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 
51 #include <net/bpf.h>
52 #include <sys/sockio.h>
53 #include <sys/bus.h>
54 #include <machine/bus.h>
55 #include <sys/rman.h>
56 #include <machine/resource.h>
57 
58 #include <net/ethernet.h>
59 #include <net/if_arp.h>
60 
61 #include <machine/clock.h>	/* for DELAY */
62 
63 #include <net/if_types.h>
64 #include <net/if_vlan_var.h>
65 
66 #ifdef FXP_IP_CSUM_WAR
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <machine/in_cksum.h>
71 #endif
72 
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75 
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 
79 #include <dev/fxp/if_fxpreg.h>
80 #include <dev/fxp/if_fxpvar.h>
81 #include <dev/fxp/rcvbundl.h>
82 
83 MODULE_DEPEND(fxp, pci, 1, 1, 1);
84 MODULE_DEPEND(fxp, ether, 1, 1, 1);
85 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86 #include "miibus_if.h"
87 
88 /*
89  * NOTE!  On the Alpha, we have an alignment constraint.  The
90  * card DMAs the packet immediately following the RFA.  However,
91  * the first thing in the packet is a 14-byte Ethernet header.
92  * This means that the packet is misaligned.  To compensate,
93  * we actually offset the RFA 2 bytes into the cluster.  This
94  * alignes the packet after the Ethernet header at a 32-bit
95  * boundary.  HOWEVER!  This means that the RFA is misaligned!
96  */
97 #define	RFA_ALIGNMENT_FUDGE	2
98 
99 /*
100  * Set initial transmit threshold at 64 (512 bytes). This is
101  * increased by 64 (512 bytes) at a time, to maximum of 192
102  * (1536 bytes), if an underrun occurs.
103  */
104 static int tx_threshold = 64;
105 
106 /*
107  * The configuration byte map has several undefined fields which
108  * must be one or must be zero.  Set up a template for these bits
109  * only, (assuming a 82557 chip) leaving the actual configuration
110  * to fxp_init.
111  *
112  * See struct fxp_cb_config for the bit definitions.
113  */
114 static u_char fxp_cb_config_template[] = {
115 	0x0, 0x0,		/* cb_status */
116 	0x0, 0x0,		/* cb_command */
117 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118 	0x0,	/*  0 */
119 	0x0,	/*  1 */
120 	0x0,	/*  2 */
121 	0x0,	/*  3 */
122 	0x0,	/*  4 */
123 	0x0,	/*  5 */
124 	0x32,	/*  6 */
125 	0x0,	/*  7 */
126 	0x0,	/*  8 */
127 	0x0,	/*  9 */
128 	0x6,	/* 10 */
129 	0x0,	/* 11 */
130 	0x0,	/* 12 */
131 	0x0,	/* 13 */
132 	0xf2,	/* 14 */
133 	0x48,	/* 15 */
134 	0x0,	/* 16 */
135 	0x40,	/* 17 */
136 	0xf0,	/* 18 */
137 	0x0,	/* 19 */
138 	0x3f,	/* 20 */
139 	0x5	/* 21 */
140 };
141 
142 struct fxp_ident {
143 	uint16_t	devid;
144 	int16_t		revid;		/* -1 matches anything */
145 	char 		*name;
146 };
147 
148 /*
149  * Claim various Intel PCI device identifiers for this driver.  The
150  * sub-vendor and sub-device field are extensively used to identify
151  * particular variants, but we don't currently differentiate between
152  * them.
153  */
154 static struct fxp_ident fxp_ident_table[] = {
155     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172     { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174     { 0x1064,	-1,	"Intel 82562EZ (ICH6)" },
175     { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
176     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
177     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
178     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
179     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
180     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
181     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
182     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
183     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
184     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
185     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
186     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
187     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
188     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
189     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
190     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
191     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
192     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
193     { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
194     { 0,	-1,	NULL },
195 };
196 
197 #ifdef FXP_IP_CSUM_WAR
198 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
199 #else
200 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
201 #endif
202 
203 static int		fxp_probe(device_t dev);
204 static int		fxp_attach(device_t dev);
205 static int		fxp_detach(device_t dev);
206 static int		fxp_shutdown(device_t dev);
207 static int		fxp_suspend(device_t dev);
208 static int		fxp_resume(device_t dev);
209 
210 static void		fxp_intr(void *xsc);
211 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
212 			    uint8_t statack, int count);
213 static void 		fxp_init(void *xsc);
214 static void 		fxp_init_body(struct fxp_softc *sc);
215 static void 		fxp_tick(void *xsc);
216 static void 		fxp_start(struct ifnet *ifp);
217 static void 		fxp_start_body(struct ifnet *ifp);
218 static int		fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
219 static void		fxp_stop(struct fxp_softc *sc);
220 static void 		fxp_release(struct fxp_softc *sc);
221 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
222 			    caddr_t data);
223 static void 		fxp_watchdog(struct ifnet *ifp);
224 static int		fxp_add_rfabuf(struct fxp_softc *sc,
225     			    struct fxp_rx *rxp);
226 static int		fxp_mc_addrs(struct fxp_softc *sc);
227 static void		fxp_mc_setup(struct fxp_softc *sc);
228 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
229 			    int autosize);
230 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
231 			    uint16_t data);
232 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
233 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
234 			    int offset, int words);
235 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
236 			    int offset, int words);
237 static int		fxp_ifmedia_upd(struct ifnet *ifp);
238 static void		fxp_ifmedia_sts(struct ifnet *ifp,
239 			    struct ifmediareq *ifmr);
240 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
241 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
242 			    struct ifmediareq *ifmr);
243 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
244 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
245 			    int value);
246 static void		fxp_load_ucode(struct fxp_softc *sc);
247 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
248 			    int low, int high);
249 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
250 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
251 static void 		fxp_scb_wait(struct fxp_softc *sc);
252 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
253 static void		fxp_dma_wait(struct fxp_softc *sc,
254     			    volatile uint16_t *status, bus_dma_tag_t dmat,
255 			    bus_dmamap_t map);
256 
257 static device_method_t fxp_methods[] = {
258 	/* Device interface */
259 	DEVMETHOD(device_probe,		fxp_probe),
260 	DEVMETHOD(device_attach,	fxp_attach),
261 	DEVMETHOD(device_detach,	fxp_detach),
262 	DEVMETHOD(device_shutdown,	fxp_shutdown),
263 	DEVMETHOD(device_suspend,	fxp_suspend),
264 	DEVMETHOD(device_resume,	fxp_resume),
265 
266 	/* MII interface */
267 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
268 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
269 
270 	{ 0, 0 }
271 };
272 
273 static driver_t fxp_driver = {
274 	"fxp",
275 	fxp_methods,
276 	sizeof(struct fxp_softc),
277 };
278 
279 static devclass_t fxp_devclass;
280 
281 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
282 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
283 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
284 
285 /*
286  * Wait for the previous command to be accepted (but not necessarily
287  * completed).
288  */
289 static void
290 fxp_scb_wait(struct fxp_softc *sc)
291 {
292 	int i = 10000;
293 
294 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
295 		DELAY(2);
296 	if (i == 0)
297 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
298 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
299 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
300 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
301 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
302 }
303 
304 static void
305 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
306 {
307 
308 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
309 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
310 		fxp_scb_wait(sc);
311 	}
312 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
313 }
314 
315 static void
316 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
317     bus_dma_tag_t dmat, bus_dmamap_t map)
318 {
319 	int i = 10000;
320 
321 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
322 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
323 		DELAY(2);
324 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
325 	}
326 	if (i == 0)
327 		device_printf(sc->dev, "DMA timeout\n");
328 }
329 
330 /*
331  * Return identification string if this device is ours.
332  */
333 static int
334 fxp_probe(device_t dev)
335 {
336 	uint16_t devid;
337 	uint8_t revid;
338 	struct fxp_ident *ident;
339 
340 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
341 		devid = pci_get_device(dev);
342 		revid = pci_get_revid(dev);
343 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
344 			if (ident->devid == devid &&
345 			    (ident->revid == revid || ident->revid == -1)) {
346 				device_set_desc(dev, ident->name);
347 				return (BUS_PROBE_DEFAULT);
348 			}
349 		}
350 	}
351 	return (ENXIO);
352 }
353 
354 static void
355 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
356 {
357 	uint32_t *addr;
358 
359 	if (error)
360 		return;
361 
362 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
363 	addr = arg;
364 	*addr = segs->ds_addr;
365 }
366 
367 static int
368 fxp_attach(device_t dev)
369 {
370 	struct fxp_softc *sc;
371 	struct fxp_cb_tx *tcbp;
372 	struct fxp_tx *txp;
373 	struct fxp_rx *rxp;
374 	struct ifnet *ifp;
375 	uint32_t val;
376 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
377 	u_char eaddr[ETHER_ADDR_LEN];
378 	int i, rid, m1, m2, prefer_iomap;
379 	int error;
380 
381 	error = 0;
382 	sc = device_get_softc(dev);
383 	sc->dev = dev;
384 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
385 	    MTX_DEF);
386 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
387 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
388 	    fxp_serial_ifmedia_sts);
389 
390 	ifp = sc->ifp = if_alloc(IFT_ETHER);
391 	if (ifp == NULL) {
392 		device_printf(dev, "can not if_alloc()\n");
393 		error = ENOSPC;
394 		goto fail;
395 	}
396 
397 	/*
398 	 * Enable bus mastering.
399 	 */
400 	pci_enable_busmaster(dev);
401 	val = pci_read_config(dev, PCIR_COMMAND, 2);
402 
403 	/*
404 	 * Figure out which we should try first - memory mapping or i/o mapping?
405 	 * We default to memory mapping. Then we accept an override from the
406 	 * command line. Then we check to see which one is enabled.
407 	 */
408 	m1 = PCIM_CMD_MEMEN;
409 	m2 = PCIM_CMD_PORTEN;
410 	prefer_iomap = 0;
411 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
412 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
413 		m1 = PCIM_CMD_PORTEN;
414 		m2 = PCIM_CMD_MEMEN;
415 	}
416 
417 	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
418 	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
419 	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
420 	if (sc->mem == NULL) {
421 		sc->rtp =
422 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
423 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
424 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
425                                             RF_ACTIVE);
426 	}
427 
428 	if (!sc->mem) {
429 		error = ENXIO;
430 		goto fail;
431         }
432 	if (bootverbose) {
433 		device_printf(dev, "using %s space register mapping\n",
434 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
435 	}
436 
437 	sc->sc_st = rman_get_bustag(sc->mem);
438 	sc->sc_sh = rman_get_bushandle(sc->mem);
439 
440 	/*
441 	 * Allocate our interrupt.
442 	 */
443 	rid = 0;
444 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
445 				 RF_SHAREABLE | RF_ACTIVE);
446 	if (sc->irq == NULL) {
447 		device_printf(dev, "could not map interrupt\n");
448 		error = ENXIO;
449 		goto fail;
450 	}
451 
452 	/*
453 	 * Reset to a stable state.
454 	 */
455 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
456 	DELAY(10);
457 
458 	/*
459 	 * Find out how large of an SEEPROM we have.
460 	 */
461 	fxp_autosize_eeprom(sc);
462 
463 	/*
464 	 * Find out the chip revision; lump all 82557 revs together.
465 	 */
466 	fxp_read_eeprom(sc, &data, 5, 1);
467 	if ((data >> 8) == 1)
468 		sc->revision = FXP_REV_82557;
469 	else
470 		sc->revision = pci_get_revid(dev);
471 
472 	/*
473 	 * Determine whether we must use the 503 serial interface.
474 	 */
475 	fxp_read_eeprom(sc, &data, 6, 1);
476 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
477 	    && (data & FXP_PHY_SERIAL_ONLY))
478 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
479 
480 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
481 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
482 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
483 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
484 	    "FXP driver receive interrupt microcode bundling delay");
485 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
486 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
487 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
488 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
489 	    "FXP driver receive interrupt microcode bundle size limit");
490 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
491 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
492 	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
493 	    "FXP RNR events");
494 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
495 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
496 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
497 	    "FXP flow control disabled");
498 
499 	/*
500 	 * Pull in device tunables.
501 	 */
502 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
503 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
504 	sc->tunable_noflow = 1;
505 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
506 	    "int_delay", &sc->tunable_int_delay);
507 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
508 	    "bundle_max", &sc->tunable_bundle_max);
509 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
510 	    "noflow", &sc->tunable_noflow);
511 	sc->rnr = 0;
512 
513 	/*
514 	 * Enable workarounds for certain chip revision deficiencies.
515 	 *
516 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
517 	 * some systems based a normal 82559 design, have a defect where
518 	 * the chip can cause a PCI protocol violation if it receives
519 	 * a CU_RESUME command when it is entering the IDLE state.  The
520 	 * workaround is to disable Dynamic Standby Mode, so the chip never
521 	 * deasserts CLKRUN#, and always remains in an active state.
522 	 *
523 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
524 	 */
525 	i = pci_get_device(dev);
526 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
527 	    sc->revision >= FXP_REV_82559_A0) {
528 		fxp_read_eeprom(sc, &data, 10, 1);
529 		if (data & 0x02) {			/* STB enable */
530 			uint16_t cksum;
531 			int i;
532 
533 			device_printf(dev,
534 			    "Disabling dynamic standby mode in EEPROM\n");
535 			data &= ~0x02;
536 			fxp_write_eeprom(sc, &data, 10, 1);
537 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
538 			cksum = 0;
539 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
540 				fxp_read_eeprom(sc, &data, i, 1);
541 				cksum += data;
542 			}
543 			i = (1 << sc->eeprom_size) - 1;
544 			cksum = 0xBABA - cksum;
545 			fxp_read_eeprom(sc, &data, i, 1);
546 			fxp_write_eeprom(sc, &cksum, i, 1);
547 			device_printf(dev,
548 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
549 			    i, data, cksum);
550 #if 1
551 			/*
552 			 * If the user elects to continue, try the software
553 			 * workaround, as it is better than nothing.
554 			 */
555 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
556 #endif
557 		}
558 	}
559 
560 	/*
561 	 * If we are not a 82557 chip, we can enable extended features.
562 	 */
563 	if (sc->revision != FXP_REV_82557) {
564 		/*
565 		 * If MWI is enabled in the PCI configuration, and there
566 		 * is a valid cacheline size (8 or 16 dwords), then tell
567 		 * the board to turn on MWI.
568 		 */
569 		if (val & PCIM_CMD_MWRICEN &&
570 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
571 			sc->flags |= FXP_FLAG_MWI_ENABLE;
572 
573 		/* turn on the extended TxCB feature */
574 		sc->flags |= FXP_FLAG_EXT_TXCB;
575 
576 		/* enable reception of long frames for VLAN */
577 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
578 	} else {
579 		/* a hack to get long VLAN frames on a 82557 */
580 		sc->flags |= FXP_FLAG_SAVE_BAD;
581 	}
582 
583 	/*
584 	 * Enable use of extended RFDs and TCBs for 82550
585 	 * and later chips. Note: we need extended TXCB support
586 	 * too, but that's already enabled by the code above.
587 	 * Be careful to do this only on the right devices.
588 	 */
589 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
590 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
591 	    || sc->revision == FXP_REV_82551_10) {
592 		sc->rfa_size = sizeof (struct fxp_rfa);
593 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
594 		sc->flags |= FXP_FLAG_EXT_RFA;
595 	} else {
596 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
597 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
598 	}
599 
600 	/*
601 	 * Allocate DMA tags and DMA safe memory.
602 	 */
603 	sc->maxtxseg = FXP_NTXSEG;
604 	if (sc->flags & FXP_FLAG_EXT_RFA)
605 		sc->maxtxseg--;
606 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
607 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
608 	    sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
609 	    &sc->fxp_mtag);
610 	if (error) {
611 		device_printf(dev, "could not allocate dma tag\n");
612 		goto fail;
613 	}
614 
615 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
616 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
617 	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
618 	    &sc->fxp_stag);
619 	if (error) {
620 		device_printf(dev, "could not allocate dma tag\n");
621 		goto fail;
622 	}
623 
624 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
625 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
626 	if (error)
627 		goto fail;
628 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
629 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
630 	if (error) {
631 		device_printf(dev, "could not map the stats buffer\n");
632 		goto fail;
633 	}
634 
635 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
636 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
637 	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
638 	if (error) {
639 		device_printf(dev, "could not allocate dma tag\n");
640 		goto fail;
641 	}
642 
643 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
644 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
645 	if (error)
646 		goto fail;
647 
648 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
649 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
650 	    &sc->fxp_desc.cbl_addr, 0);
651 	if (error) {
652 		device_printf(dev, "could not map DMA memory\n");
653 		goto fail;
654 	}
655 
656 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
657 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
658 	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
659 	    &sc->mcs_tag);
660 	if (error) {
661 		device_printf(dev, "could not allocate dma tag\n");
662 		goto fail;
663 	}
664 
665 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
666 	    BUS_DMA_NOWAIT, &sc->mcs_map);
667 	if (error)
668 		goto fail;
669 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
670 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
671 	if (error) {
672 		device_printf(dev, "can't map the multicast setup command\n");
673 		goto fail;
674 	}
675 
676 	/*
677 	 * Pre-allocate the TX DMA maps and setup the pointers to
678 	 * the TX command blocks.
679 	 */
680 	txp = sc->fxp_desc.tx_list;
681 	tcbp = sc->fxp_desc.cbl_list;
682 	for (i = 0; i < FXP_NTXCB; i++) {
683 		txp[i].tx_cb = tcbp + i;
684 		error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
685 		if (error) {
686 			device_printf(dev, "can't create DMA map for TX\n");
687 			goto fail;
688 		}
689 	}
690 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
691 	if (error) {
692 		device_printf(dev, "can't create spare DMA map\n");
693 		goto fail;
694 	}
695 
696 	/*
697 	 * Pre-allocate our receive buffers.
698 	 */
699 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
700 	for (i = 0; i < FXP_NRFABUFS; i++) {
701 		rxp = &sc->fxp_desc.rx_list[i];
702 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
703 		if (error) {
704 			device_printf(dev, "can't create DMA map for RX\n");
705 			goto fail;
706 		}
707 		if (fxp_add_rfabuf(sc, rxp) != 0) {
708 			error = ENOMEM;
709 			goto fail;
710 		}
711 	}
712 
713 	/*
714 	 * Read MAC address.
715 	 */
716 	fxp_read_eeprom(sc, myea, 0, 3);
717 	eaddr[0] = myea[0] & 0xff;
718 	eaddr[1] = myea[0] >> 8;
719 	eaddr[2] = myea[1] & 0xff;
720 	eaddr[3] = myea[1] >> 8;
721 	eaddr[4] = myea[2] & 0xff;
722 	eaddr[5] = myea[2] >> 8;
723 	if (bootverbose) {
724 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
725 		    pci_get_vendor(dev), pci_get_device(dev),
726 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
727 		    pci_get_revid(dev));
728 		fxp_read_eeprom(sc, &data, 10, 1);
729 		device_printf(dev, "Dynamic Standby mode is %s\n",
730 		    data & 0x02 ? "enabled" : "disabled");
731 	}
732 
733 	/*
734 	 * If this is only a 10Mbps device, then there is no MII, and
735 	 * the PHY will use a serial interface instead.
736 	 *
737 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
738 	 * doesn't have a programming interface of any sort.  The
739 	 * media is sensed automatically based on how the link partner
740 	 * is configured.  This is, in essence, manual configuration.
741 	 */
742 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
743 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
744 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
745 	} else {
746 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
747 		    fxp_ifmedia_sts)) {
748 	                device_printf(dev, "MII without any PHY!\n");
749 			error = ENXIO;
750 			goto fail;
751 		}
752 	}
753 
754 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
755 	ifp->if_baudrate = 100000000;
756 	ifp->if_init = fxp_init;
757 	ifp->if_softc = sc;
758 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
759 	ifp->if_ioctl = fxp_ioctl;
760 	ifp->if_start = fxp_start;
761 	ifp->if_watchdog = fxp_watchdog;
762 
763 	ifp->if_capabilities = ifp->if_capenable = 0;
764 
765 	/* Enable checksum offload for 82550 or better chips */
766 	if (sc->flags & FXP_FLAG_EXT_RFA) {
767 		ifp->if_hwassist = FXP_CSUM_FEATURES;
768 		ifp->if_capabilities |= IFCAP_HWCSUM;
769 		ifp->if_capenable |= IFCAP_HWCSUM;
770 	}
771 
772 #ifdef DEVICE_POLLING
773 	/* Inform the world we support polling. */
774 	ifp->if_capabilities |= IFCAP_POLLING;
775 	ifp->if_capenable |= IFCAP_POLLING;
776 #endif
777 
778 	/*
779 	 * Attach the interface.
780 	 */
781 	ether_ifattach(ifp, eaddr);
782 
783 	/*
784 	 * Tell the upper layer(s) we support long frames.
785 	 * Must appear after the call to ether_ifattach() because
786 	 * ether_ifattach() sets ifi_hdrlen to the default value.
787 	 */
788 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
789 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
790 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
791 
792 	/*
793 	 * Let the system queue as many packets as we have available
794 	 * TX descriptors.
795 	 */
796 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
797 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
798 	IFQ_SET_READY(&ifp->if_snd);
799 
800 	/*
801 	 * Hook our interrupt after all initialization is complete.
802 	 */
803 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
804 			       fxp_intr, sc, &sc->ih);
805 	if (error) {
806 		device_printf(dev, "could not setup irq\n");
807 		ether_ifdetach(sc->ifp);
808 		goto fail;
809 	}
810 
811 fail:
812 	if (error)
813 		fxp_release(sc);
814 	return (error);
815 }
816 
817 /*
818  * Release all resources.  The softc lock should not be held and the
819  * interrupt should already be torn down.
820  */
821 static void
822 fxp_release(struct fxp_softc *sc)
823 {
824 	struct fxp_rx *rxp;
825 	struct fxp_tx *txp;
826 	int i;
827 
828 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
829 	KASSERT(sc->ih == NULL,
830 	    ("fxp_release() called with intr handle still active"));
831 	if (sc->miibus)
832 		device_delete_child(sc->dev, sc->miibus);
833 	bus_generic_detach(sc->dev);
834 	ifmedia_removeall(&sc->sc_media);
835 	if (sc->fxp_desc.cbl_list) {
836 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
837 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
838 		    sc->cbl_map);
839 	}
840 	if (sc->fxp_stats) {
841 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
842 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
843 	}
844 	if (sc->mcsp) {
845 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
846 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
847 	}
848 	if (sc->irq)
849 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
850 	if (sc->mem)
851 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
852 	if (sc->fxp_mtag) {
853 		for (i = 0; i < FXP_NRFABUFS; i++) {
854 			rxp = &sc->fxp_desc.rx_list[i];
855 			if (rxp->rx_mbuf != NULL) {
856 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
857 				    BUS_DMASYNC_POSTREAD);
858 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
859 				m_freem(rxp->rx_mbuf);
860 			}
861 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
862 		}
863 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
864 		for (i = 0; i < FXP_NTXCB; i++) {
865 			txp = &sc->fxp_desc.tx_list[i];
866 			if (txp->tx_mbuf != NULL) {
867 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
868 				    BUS_DMASYNC_POSTWRITE);
869 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
870 				m_freem(txp->tx_mbuf);
871 			}
872 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
873 		}
874 		bus_dma_tag_destroy(sc->fxp_mtag);
875 	}
876 	if (sc->fxp_stag)
877 		bus_dma_tag_destroy(sc->fxp_stag);
878 	if (sc->cbl_tag)
879 		bus_dma_tag_destroy(sc->cbl_tag);
880 	if (sc->mcs_tag)
881 		bus_dma_tag_destroy(sc->mcs_tag);
882 	if (sc->ifp)
883 		if_free(sc->ifp);
884 
885 	mtx_destroy(&sc->sc_mtx);
886 }
887 
888 /*
889  * Detach interface.
890  */
891 static int
892 fxp_detach(device_t dev)
893 {
894 	struct fxp_softc *sc = device_get_softc(dev);
895 
896 	FXP_LOCK(sc);
897 	sc->suspended = 1;	/* Do same thing as we do for suspend */
898 	/*
899 	 * Stop DMA and drop transmit queue, but disable interrupts first.
900 	 */
901 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
902 	fxp_stop(sc);
903 	FXP_UNLOCK(sc);
904 	callout_drain(&sc->stat_ch);
905 
906 	/*
907 	 * Close down routes etc.
908 	 */
909 	ether_ifdetach(sc->ifp);
910 
911 	/*
912 	 * Unhook interrupt before dropping lock. This is to prevent
913 	 * races with fxp_intr().
914 	 */
915 	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
916 	sc->ih = NULL;
917 
918 	/* Release our allocated resources. */
919 	fxp_release(sc);
920 	return (0);
921 }
922 
923 /*
924  * Device shutdown routine. Called at system shutdown after sync. The
925  * main purpose of this routine is to shut off receiver DMA so that
926  * kernel memory doesn't get clobbered during warmboot.
927  */
928 static int
929 fxp_shutdown(device_t dev)
930 {
931 	struct fxp_softc *sc = device_get_softc(dev);
932 
933 	/*
934 	 * Make sure that DMA is disabled prior to reboot. Not doing
935 	 * do could allow DMA to corrupt kernel memory during the
936 	 * reboot before the driver initializes.
937 	 */
938 	FXP_LOCK(sc);
939 	fxp_stop(sc);
940 	FXP_UNLOCK(sc);
941 	return (0);
942 }
943 
944 /*
945  * Device suspend routine.  Stop the interface and save some PCI
946  * settings in case the BIOS doesn't restore them properly on
947  * resume.
948  */
949 static int
950 fxp_suspend(device_t dev)
951 {
952 	struct fxp_softc *sc = device_get_softc(dev);
953 
954 	FXP_LOCK(sc);
955 
956 	fxp_stop(sc);
957 
958 	sc->suspended = 1;
959 
960 	FXP_UNLOCK(sc);
961 	return (0);
962 }
963 
964 /*
965  * Device resume routine. re-enable busmastering, and restart the interface if
966  * appropriate.
967  */
968 static int
969 fxp_resume(device_t dev)
970 {
971 	struct fxp_softc *sc = device_get_softc(dev);
972 	struct ifnet *ifp = sc->ifp;
973 
974 	FXP_LOCK(sc);
975 
976 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
977 	DELAY(10);
978 
979 	/* reinitialize interface if necessary */
980 	if (ifp->if_flags & IFF_UP)
981 		fxp_init_body(sc);
982 
983 	sc->suspended = 0;
984 
985 	FXP_UNLOCK(sc);
986 	return (0);
987 }
988 
989 static void
990 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
991 {
992 	uint16_t reg;
993 	int x;
994 
995 	/*
996 	 * Shift in data.
997 	 */
998 	for (x = 1 << (length - 1); x; x >>= 1) {
999 		if (data & x)
1000 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1001 		else
1002 			reg = FXP_EEPROM_EECS;
1003 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1004 		DELAY(1);
1005 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1006 		DELAY(1);
1007 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1008 		DELAY(1);
1009 	}
1010 }
1011 
1012 /*
1013  * Read from the serial EEPROM. Basically, you manually shift in
1014  * the read opcode (one bit at a time) and then shift in the address,
1015  * and then you shift out the data (all of this one bit at a time).
1016  * The word size is 16 bits, so you have to provide the address for
1017  * every 16 bits of data.
1018  */
1019 static uint16_t
1020 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1021 {
1022 	uint16_t reg, data;
1023 	int x;
1024 
1025 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1026 	/*
1027 	 * Shift in read opcode.
1028 	 */
1029 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1030 	/*
1031 	 * Shift in address.
1032 	 */
1033 	data = 0;
1034 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1035 		if (offset & x)
1036 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1037 		else
1038 			reg = FXP_EEPROM_EECS;
1039 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1040 		DELAY(1);
1041 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1042 		DELAY(1);
1043 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1044 		DELAY(1);
1045 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1046 		data++;
1047 		if (autosize && reg == 0) {
1048 			sc->eeprom_size = data;
1049 			break;
1050 		}
1051 	}
1052 	/*
1053 	 * Shift out data.
1054 	 */
1055 	data = 0;
1056 	reg = FXP_EEPROM_EECS;
1057 	for (x = 1 << 15; x; x >>= 1) {
1058 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1059 		DELAY(1);
1060 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1061 			data |= x;
1062 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1063 		DELAY(1);
1064 	}
1065 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1066 	DELAY(1);
1067 
1068 	return (data);
1069 }
1070 
1071 static void
1072 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1073 {
1074 	int i;
1075 
1076 	/*
1077 	 * Erase/write enable.
1078 	 */
1079 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1080 	fxp_eeprom_shiftin(sc, 0x4, 3);
1081 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1082 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1083 	DELAY(1);
1084 	/*
1085 	 * Shift in write opcode, address, data.
1086 	 */
1087 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1088 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1089 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1090 	fxp_eeprom_shiftin(sc, data, 16);
1091 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1092 	DELAY(1);
1093 	/*
1094 	 * Wait for EEPROM to finish up.
1095 	 */
1096 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1097 	DELAY(1);
1098 	for (i = 0; i < 1000; i++) {
1099 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1100 			break;
1101 		DELAY(50);
1102 	}
1103 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1104 	DELAY(1);
1105 	/*
1106 	 * Erase/write disable.
1107 	 */
1108 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1109 	fxp_eeprom_shiftin(sc, 0x4, 3);
1110 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1111 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1112 	DELAY(1);
1113 }
1114 
1115 /*
1116  * From NetBSD:
1117  *
1118  * Figure out EEPROM size.
1119  *
1120  * 559's can have either 64-word or 256-word EEPROMs, the 558
1121  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1122  * talks about the existance of 16 to 256 word EEPROMs.
1123  *
1124  * The only known sizes are 64 and 256, where the 256 version is used
1125  * by CardBus cards to store CIS information.
1126  *
1127  * The address is shifted in msb-to-lsb, and after the last
1128  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1129  * after which follows the actual data. We try to detect this zero, by
1130  * probing the data-out bit in the EEPROM control register just after
1131  * having shifted in a bit. If the bit is zero, we assume we've
1132  * shifted enough address bits. The data-out should be tri-state,
1133  * before this, which should translate to a logical one.
1134  */
1135 static void
1136 fxp_autosize_eeprom(struct fxp_softc *sc)
1137 {
1138 
1139 	/* guess maximum size of 256 words */
1140 	sc->eeprom_size = 8;
1141 
1142 	/* autosize */
1143 	(void) fxp_eeprom_getword(sc, 0, 1);
1144 }
1145 
1146 static void
1147 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1148 {
1149 	int i;
1150 
1151 	for (i = 0; i < words; i++)
1152 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1153 }
1154 
1155 static void
1156 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1157 {
1158 	int i;
1159 
1160 	for (i = 0; i < words; i++)
1161 		fxp_eeprom_putword(sc, offset + i, data[i]);
1162 }
1163 
1164 /*
1165  * Grab the softc lock and call the real fxp_start_body() routine
1166  */
1167 static void
1168 fxp_start(struct ifnet *ifp)
1169 {
1170 	struct fxp_softc *sc = ifp->if_softc;
1171 
1172 	FXP_LOCK(sc);
1173 	fxp_start_body(ifp);
1174 	FXP_UNLOCK(sc);
1175 }
1176 
1177 /*
1178  * Start packet transmission on the interface.
1179  * This routine must be called with the softc lock held, and is an
1180  * internal entry point only.
1181  */
1182 static void
1183 fxp_start_body(struct ifnet *ifp)
1184 {
1185 	struct fxp_softc *sc = ifp->if_softc;
1186 	struct mbuf *mb_head;
1187 	int error, txqueued;
1188 
1189 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1190 
1191 	/*
1192 	 * See if we need to suspend xmit until the multicast filter
1193 	 * has been reprogrammed (which can only be done at the head
1194 	 * of the command chain).
1195 	 */
1196 	if (sc->need_mcsetup)
1197 		return;
1198 
1199 	/*
1200 	 * We're finished if there is nothing more to add to the list or if
1201 	 * we're all filled up with buffers to transmit.
1202 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1203 	 *       a NOP command when needed.
1204 	 */
1205 	txqueued = 0;
1206 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1207 	    sc->tx_queued < FXP_NTXCB - 1) {
1208 
1209 		/*
1210 		 * Grab a packet to transmit.
1211 		 */
1212 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1213 		if (mb_head == NULL)
1214 			break;
1215 
1216 		error = fxp_encap(sc, mb_head);
1217 		if (error)
1218 			break;
1219 		txqueued = 1;
1220 	}
1221 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1222 
1223 	/*
1224 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1225 	 * going again if suspended.
1226 	 */
1227 	if (txqueued) {
1228 		fxp_scb_wait(sc);
1229 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1230 	}
1231 }
1232 
1233 static int
1234 fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
1235 {
1236 	struct ifnet *ifp;
1237 	struct mbuf *m;
1238 	struct fxp_tx *txp;
1239 	struct fxp_cb_tx *cbp;
1240 	bus_dma_segment_t segs[FXP_NTXSEG];
1241 	int chainlen, error, i, nseg;
1242 
1243 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1244 	ifp = sc->ifp;
1245 
1246 	/*
1247 	 * Get pointer to next available tx desc.
1248 	 */
1249 	txp = sc->fxp_desc.tx_last->tx_next;
1250 
1251 	/*
1252 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1253 	 * Ethernet Controller Family Open Source Software
1254 	 * Developer Manual says:
1255 	 *   Using software parsing is only allowed with legal
1256 	 *   TCP/IP or UDP/IP packets.
1257 	 *   ...
1258 	 *   For all other datagrams, hardware parsing must
1259 	 *   be used.
1260 	 * Software parsing appears to truncate ICMP and
1261 	 * fragmented UDP packets that contain one to three
1262 	 * bytes in the second (and final) mbuf of the packet.
1263 	 */
1264 	if (sc->flags & FXP_FLAG_EXT_RFA)
1265 		txp->tx_cb->ipcb_ip_activation_high =
1266 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1267 
1268 	/*
1269 	 * Deal with TCP/IP checksum offload. Note that
1270 	 * in order for TCP checksum offload to work,
1271 	 * the pseudo header checksum must have already
1272 	 * been computed and stored in the checksum field
1273 	 * in the TCP header. The stack should have
1274 	 * already done this for us.
1275 	 */
1276 	if (m_head->m_pkthdr.csum_flags) {
1277 		if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1278 			txp->tx_cb->ipcb_ip_schedule =
1279 			    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1280 			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1281 				txp->tx_cb->ipcb_ip_schedule |=
1282 				    FXP_IPCB_TCP_PACKET;
1283 		}
1284 
1285 #ifdef FXP_IP_CSUM_WAR
1286 		/*
1287 		 * XXX The 82550 chip appears to have trouble
1288 		 * dealing with IP header checksums in very small
1289 		 * datagrams, namely fragments from 1 to 3 bytes
1290 		 * in size. For example, say you want to transmit
1291 		 * a UDP packet of 1473 bytes. The packet will be
1292 		 * fragmented over two IP datagrams, the latter
1293 		 * containing only one byte of data. The 82550 will
1294 		 * botch the header checksum on the 1-byte fragment.
1295 		 * As long as the datagram contains 4 or more bytes
1296 		 * of data, you're ok.
1297 		 *
1298                  * The following code attempts to work around this
1299 		 * problem: if the datagram is less than 38 bytes
1300 		 * in size (14 bytes ether header, 20 bytes IP header,
1301 		 * plus 4 bytes of data), we punt and compute the IP
1302 		 * header checksum by hand. This workaround doesn't
1303 		 * work very well, however, since it can be fooled
1304 		 * by things like VLAN tags and IP options that make
1305 		 * the header sizes/offsets vary.
1306 		 */
1307 
1308 		if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
1309 			if (m_head->m_pkthdr.len < 38) {
1310 				struct ip *ip;
1311 				m_head->m_data += ETHER_HDR_LEN;
1312 				ip = mtod(mb_head, struct ip *);
1313 				ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
1314 				m_head->m_data -= ETHER_HDR_LEN;
1315 			} else {
1316 				txp->tx_cb->ipcb_ip_activation_high =
1317 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1318 				txp->tx_cb->ipcb_ip_schedule |=
1319 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1320 			}
1321 		}
1322 #endif
1323 	}
1324 
1325 	chainlen = 0;
1326 	for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
1327 		chainlen++;
1328 	if (chainlen > sc->maxtxseg) {
1329 		struct mbuf *mn;
1330 
1331 		/*
1332 		 * We ran out of segments. We have to recopy this
1333 		 * mbuf chain first. Bail out if we can't get the
1334 		 * new buffers.
1335 		 */
1336 		mn = m_defrag(m_head, M_DONTWAIT);
1337 		if (mn == NULL) {
1338 			m_freem(m_head);
1339 			return (-1);
1340 		} else {
1341 			m_head = mn;
1342 		}
1343 	}
1344 
1345 	/*
1346 	 * Go through each of the mbufs in the chain and initialize
1347 	 * the transmit buffer descriptors with the physical address
1348 	 * and size of the mbuf.
1349 	 */
1350 	error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
1351 	    m_head, segs, &nseg, 0);
1352 	if (error) {
1353 		device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
1354 		m_freem(m_head);
1355 		return (-1);
1356 	}
1357 
1358 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1359 
1360 	cbp = txp->tx_cb;
1361 	for (i = 0; i < nseg; i++) {
1362 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1363 		/*
1364 		 * If this is an 82550/82551, then we're using extended
1365 		 * TxCBs _and_ we're using checksum offload. This means
1366 		 * that the TxCB is really an IPCB. One major difference
1367 		 * between the two is that with plain extended TxCBs,
1368 		 * the bottom half of the TxCB contains two entries from
1369 		 * the TBD array, whereas IPCBs contain just one entry:
1370 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1371 		 * checksum offload control bits. So to make things work
1372 		 * right, we have to start filling in the TBD array
1373 		 * starting from a different place depending on whether
1374 		 * the chip is an 82550/82551 or not.
1375 		 */
1376 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1377 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1378 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1379 		} else {
1380 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1381 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1382 		}
1383 	}
1384 	cbp->tbd_number = nseg;
1385 
1386 	bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1387 	txp->tx_mbuf = m_head;
1388 	txp->tx_cb->cb_status = 0;
1389 	txp->tx_cb->byte_count = 0;
1390 	if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1391 		txp->tx_cb->cb_command =
1392 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1393 		    FXP_CB_COMMAND_S);
1394 	} else {
1395 		txp->tx_cb->cb_command =
1396 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1397 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1398 		/*
1399 		 * Set a 5 second timer just in case we don't hear
1400 		 * from the card again.
1401 		 */
1402 		ifp->if_timer = 5;
1403 	}
1404 	txp->tx_cb->tx_threshold = tx_threshold;
1405 
1406 	/*
1407 	 * Advance the end of list forward.
1408 	 */
1409 
1410 #ifdef __alpha__
1411 	/*
1412 	 * On platforms which can't access memory in 16-bit
1413 	 * granularities, we must prevent the card from DMA'ing
1414 	 * up the status while we update the command field.
1415 	 * This could cause us to overwrite the completion status.
1416 	 * XXX This is probably bogus and we're _not_ looking
1417 	 * for atomicity here.
1418 	 */
1419 	atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1420 	    htole16(FXP_CB_COMMAND_S));
1421 #else
1422 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1423 #endif /*__alpha__*/
1424 	sc->fxp_desc.tx_last = txp;
1425 
1426 	/*
1427 	 * Advance the beginning of the list forward if there are
1428 	 * no other packets queued (when nothing is queued, tx_first
1429 	 * sits on the last TxCB that was sent out).
1430 	 */
1431 	if (sc->tx_queued == 0)
1432 		sc->fxp_desc.tx_first = txp;
1433 
1434 	sc->tx_queued++;
1435 
1436 	/*
1437 	 * Pass packet to bpf if there is a listener.
1438 	 */
1439 	BPF_MTAP(ifp, m_head);
1440 	return (0);
1441 }
1442 
1443 #ifdef DEVICE_POLLING
1444 static poll_handler_t fxp_poll;
1445 
1446 static void
1447 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1448 {
1449 	struct fxp_softc *sc = ifp->if_softc;
1450 	uint8_t statack;
1451 
1452 	FXP_LOCK(sc);
1453 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1454 		ether_poll_deregister(ifp);
1455 		cmd = POLL_DEREGISTER;
1456 	}
1457 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1458 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1459 		FXP_UNLOCK(sc);
1460 		return;
1461 	}
1462 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1463 	    FXP_SCB_STATACK_FR;
1464 	if (cmd == POLL_AND_CHECK_STATUS) {
1465 		uint8_t tmp;
1466 
1467 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1468 		if (tmp == 0xff || tmp == 0) {
1469 			FXP_UNLOCK(sc);
1470 			return; /* nothing to do */
1471 		}
1472 		tmp &= ~statack;
1473 		/* ack what we can */
1474 		if (tmp != 0)
1475 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1476 		statack |= tmp;
1477 	}
1478 	fxp_intr_body(sc, ifp, statack, count);
1479 	FXP_UNLOCK(sc);
1480 }
1481 #endif /* DEVICE_POLLING */
1482 
1483 /*
1484  * Process interface interrupts.
1485  */
1486 static void
1487 fxp_intr(void *xsc)
1488 {
1489 	struct fxp_softc *sc = xsc;
1490 	struct ifnet *ifp = sc->ifp;
1491 	uint8_t statack;
1492 
1493 	FXP_LOCK(sc);
1494 	if (sc->suspended) {
1495 		FXP_UNLOCK(sc);
1496 		return;
1497 	}
1498 
1499 #ifdef DEVICE_POLLING
1500 	if (ifp->if_flags & IFF_POLLING) {
1501 		FXP_UNLOCK(sc);
1502 		return;
1503 	}
1504 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1505 	    ether_poll_register(fxp_poll, ifp)) {
1506 		/* disable interrupts */
1507 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1508 		FXP_UNLOCK(sc);
1509 		fxp_poll(ifp, 0, 1);
1510 		return;
1511 	}
1512 #endif
1513 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1514 		/*
1515 		 * It should not be possible to have all bits set; the
1516 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1517 		 * all bits are set, this may indicate that the card has
1518 		 * been physically ejected, so ignore it.
1519 		 */
1520 		if (statack == 0xff) {
1521 			FXP_UNLOCK(sc);
1522 			return;
1523 		}
1524 
1525 		/*
1526 		 * First ACK all the interrupts in this pass.
1527 		 */
1528 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1529 		fxp_intr_body(sc, ifp, statack, -1);
1530 	}
1531 	FXP_UNLOCK(sc);
1532 }
1533 
1534 static void
1535 fxp_txeof(struct fxp_softc *sc)
1536 {
1537 	struct fxp_tx *txp;
1538 
1539 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1540 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1541 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1542 	    txp = txp->tx_next) {
1543 		if (txp->tx_mbuf != NULL) {
1544 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1545 			    BUS_DMASYNC_POSTWRITE);
1546 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1547 			m_freem(txp->tx_mbuf);
1548 			txp->tx_mbuf = NULL;
1549 			/* clear this to reset csum offload bits */
1550 			txp->tx_cb->tbd[0].tb_addr = 0;
1551 		}
1552 		sc->tx_queued--;
1553 	}
1554 	sc->fxp_desc.tx_first = txp;
1555 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1556 }
1557 
1558 static void
1559 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1560     int count)
1561 {
1562 	struct mbuf *m;
1563 	struct fxp_rx *rxp;
1564 	struct fxp_rfa *rfa;
1565 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1566 	int fxp_rc = 0;
1567 
1568 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1569 	if (rnr)
1570 		sc->rnr++;
1571 #ifdef DEVICE_POLLING
1572 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1573 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1574 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1575 		rnr = 1;
1576 	}
1577 #endif
1578 
1579 	/*
1580 	 * Free any finished transmit mbuf chains.
1581 	 *
1582 	 * Handle the CNA event likt a CXTNO event. It used to
1583 	 * be that this event (control unit not ready) was not
1584 	 * encountered, but it is now with the SMPng modifications.
1585 	 * The exact sequence of events that occur when the interface
1586 	 * is brought up are different now, and if this event
1587 	 * goes unhandled, the configuration/rxfilter setup sequence
1588 	 * can stall for several seconds. The result is that no
1589 	 * packets go out onto the wire for about 5 to 10 seconds
1590 	 * after the interface is ifconfig'ed for the first time.
1591 	 */
1592 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1593 		fxp_txeof(sc);
1594 
1595 		ifp->if_timer = 0;
1596 		if (sc->tx_queued == 0) {
1597 			if (sc->need_mcsetup)
1598 				fxp_mc_setup(sc);
1599 		}
1600 		/*
1601 		 * Try to start more packets transmitting.
1602 		 */
1603 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1604 			fxp_start_body(ifp);
1605 	}
1606 
1607 	/*
1608 	 * Just return if nothing happened on the receive side.
1609 	 */
1610 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1611 		return;
1612 
1613 	/*
1614 	 * Process receiver interrupts. If a no-resource (RNR)
1615 	 * condition exists, get whatever packets we can and
1616 	 * re-start the receiver.
1617 	 *
1618 	 * When using polling, we do not process the list to completion,
1619 	 * so when we get an RNR interrupt we must defer the restart
1620 	 * until we hit the last buffer with the C bit set.
1621 	 * If we run out of cycles and rfa_headm has the C bit set,
1622 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1623 	 * that the info will be used in the subsequent polling cycle.
1624 	 */
1625 	for (;;) {
1626 		rxp = sc->fxp_desc.rx_head;
1627 		m = rxp->rx_mbuf;
1628 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1629 		    RFA_ALIGNMENT_FUDGE);
1630 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1631 		    BUS_DMASYNC_POSTREAD);
1632 
1633 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1634 		if (count >= 0 && count-- == 0) {
1635 			if (rnr) {
1636 				/* Defer RNR processing until the next time. */
1637 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1638 				rnr = 0;
1639 			}
1640 			break;
1641 		}
1642 #endif /* DEVICE_POLLING */
1643 
1644 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1645 			break;
1646 
1647 		/*
1648 		 * Advance head forward.
1649 		 */
1650 		sc->fxp_desc.rx_head = rxp->rx_next;
1651 
1652 		/*
1653 		 * Add a new buffer to the receive chain.
1654 		 * If this fails, the old buffer is recycled
1655 		 * instead.
1656 		 */
1657 		fxp_rc = fxp_add_rfabuf(sc, rxp);
1658 		if (fxp_rc == 0) {
1659 			int total_len;
1660 
1661 			/*
1662 			 * Fetch packet length (the top 2 bits of
1663 			 * actual_size are flags set by the controller
1664 			 * upon completion), and drop the packet in case
1665 			 * of bogus length or CRC errors.
1666 			 */
1667 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1668 			if (total_len < sizeof(struct ether_header) ||
1669 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1670 				sc->rfa_size ||
1671 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1672 				m_freem(m);
1673 				continue;
1674 			}
1675 
1676                         /* Do IP checksum checking. */
1677 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1678 				if (rfa->rfax_csum_sts &
1679 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1680 					m->m_pkthdr.csum_flags |=
1681 					    CSUM_IP_CHECKED;
1682 				if (rfa->rfax_csum_sts &
1683 				    FXP_RFDX_CS_IP_CSUM_VALID)
1684 					m->m_pkthdr.csum_flags |=
1685 					    CSUM_IP_VALID;
1686 				if ((rfa->rfax_csum_sts &
1687 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1688 				    (rfa->rfax_csum_sts &
1689 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1690 					m->m_pkthdr.csum_flags |=
1691 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1692 					m->m_pkthdr.csum_data = 0xffff;
1693 				}
1694 			}
1695 
1696 			m->m_pkthdr.len = m->m_len = total_len;
1697 			m->m_pkthdr.rcvif = ifp;
1698 
1699 			/*
1700 			 * Drop locks before calling if_input() since it
1701 			 * may re-enter fxp_start() in the netisr case.
1702 			 * This would result in a lock reversal.  Better
1703 			 * performance might be obtained by chaining all
1704 			 * packets received, dropping the lock, and then
1705 			 * calling if_input() on each one.
1706 			 */
1707 			FXP_UNLOCK(sc);
1708 			(*ifp->if_input)(ifp, m);
1709 			FXP_LOCK(sc);
1710 		} else if (fxp_rc == ENOBUFS) {
1711 			rnr = 0;
1712 			break;
1713 		}
1714 	}
1715 	if (rnr) {
1716 		fxp_scb_wait(sc);
1717 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1718 		    sc->fxp_desc.rx_head->rx_addr);
1719 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1720 	}
1721 }
1722 
1723 /*
1724  * Update packet in/out/collision statistics. The i82557 doesn't
1725  * allow you to access these counters without doing a fairly
1726  * expensive DMA to get _all_ of the statistics it maintains, so
1727  * we do this operation here only once per second. The statistics
1728  * counters in the kernel are updated from the previous dump-stats
1729  * DMA and then a new dump-stats DMA is started. The on-chip
1730  * counters are zeroed when the DMA completes. If we can't start
1731  * the DMA immediately, we don't wait - we just prepare to read
1732  * them again next time.
1733  */
1734 static void
1735 fxp_tick(void *xsc)
1736 {
1737 	struct fxp_softc *sc = xsc;
1738 	struct ifnet *ifp = sc->ifp;
1739 	struct fxp_stats *sp = sc->fxp_stats;
1740 
1741 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1742 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1743 	ifp->if_opackets += le32toh(sp->tx_good);
1744 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1745 	if (sp->rx_good) {
1746 		ifp->if_ipackets += le32toh(sp->rx_good);
1747 		sc->rx_idle_secs = 0;
1748 	} else {
1749 		/*
1750 		 * Receiver's been idle for another second.
1751 		 */
1752 		sc->rx_idle_secs++;
1753 	}
1754 	ifp->if_ierrors +=
1755 	    le32toh(sp->rx_crc_errors) +
1756 	    le32toh(sp->rx_alignment_errors) +
1757 	    le32toh(sp->rx_rnr_errors) +
1758 	    le32toh(sp->rx_overrun_errors);
1759 	/*
1760 	 * If any transmit underruns occured, bump up the transmit
1761 	 * threshold by another 512 bytes (64 * 8).
1762 	 */
1763 	if (sp->tx_underruns) {
1764 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1765 		if (tx_threshold < 192)
1766 			tx_threshold += 64;
1767 	}
1768 
1769 	/*
1770 	 * Release any xmit buffers that have completed DMA. This isn't
1771 	 * strictly necessary to do here, but it's advantagous for mbufs
1772 	 * with external storage to be released in a timely manner rather
1773 	 * than being defered for a potentially long time. This limits
1774 	 * the delay to a maximum of one second.
1775 	 */
1776 	fxp_txeof(sc);
1777 
1778 	/*
1779 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1780 	 * then assume the receiver has locked up and attempt to clear
1781 	 * the condition by reprogramming the multicast filter. This is
1782 	 * a work-around for a bug in the 82557 where the receiver locks
1783 	 * up if it gets certain types of garbage in the syncronization
1784 	 * bits prior to the packet header. This bug is supposed to only
1785 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1786 	 * mode as well (perhaps due to a 10/100 speed transition).
1787 	 */
1788 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1789 		sc->rx_idle_secs = 0;
1790 		fxp_mc_setup(sc);
1791 	}
1792 	/*
1793 	 * If there is no pending command, start another stats
1794 	 * dump. Otherwise punt for now.
1795 	 */
1796 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1797 		/*
1798 		 * Start another stats dump.
1799 		 */
1800 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1801 		    BUS_DMASYNC_PREREAD);
1802 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1803 	} else {
1804 		/*
1805 		 * A previous command is still waiting to be accepted.
1806 		 * Just zero our copy of the stats and wait for the
1807 		 * next timer event to update them.
1808 		 */
1809 		sp->tx_good = 0;
1810 		sp->tx_underruns = 0;
1811 		sp->tx_total_collisions = 0;
1812 
1813 		sp->rx_good = 0;
1814 		sp->rx_crc_errors = 0;
1815 		sp->rx_alignment_errors = 0;
1816 		sp->rx_rnr_errors = 0;
1817 		sp->rx_overrun_errors = 0;
1818 	}
1819 	if (sc->miibus != NULL)
1820 		mii_tick(device_get_softc(sc->miibus));
1821 
1822 	/*
1823 	 * Schedule another timeout one second from now.
1824 	 */
1825 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1826 }
1827 
1828 /*
1829  * Stop the interface. Cancels the statistics updater and resets
1830  * the interface.
1831  */
1832 static void
1833 fxp_stop(struct fxp_softc *sc)
1834 {
1835 	struct ifnet *ifp = sc->ifp;
1836 	struct fxp_tx *txp;
1837 	int i;
1838 
1839 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1840 	ifp->if_timer = 0;
1841 
1842 #ifdef DEVICE_POLLING
1843 	ether_poll_deregister(ifp);
1844 #endif
1845 	/*
1846 	 * Cancel stats updater.
1847 	 */
1848 	callout_stop(&sc->stat_ch);
1849 
1850 	/*
1851 	 * Issue software reset, which also unloads the microcode.
1852 	 */
1853 	sc->flags &= ~FXP_FLAG_UCODE;
1854 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1855 	DELAY(50);
1856 
1857 	/*
1858 	 * Release any xmit buffers.
1859 	 */
1860 	txp = sc->fxp_desc.tx_list;
1861 	if (txp != NULL) {
1862 		for (i = 0; i < FXP_NTXCB; i++) {
1863  			if (txp[i].tx_mbuf != NULL) {
1864 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1865 				    BUS_DMASYNC_POSTWRITE);
1866 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1867 				m_freem(txp[i].tx_mbuf);
1868 				txp[i].tx_mbuf = NULL;
1869 				/* clear this to reset csum offload bits */
1870 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1871 			}
1872 		}
1873 	}
1874 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1875 	sc->tx_queued = 0;
1876 }
1877 
1878 /*
1879  * Watchdog/transmission transmit timeout handler. Called when a
1880  * transmission is started on the interface, but no interrupt is
1881  * received before the timeout. This usually indicates that the
1882  * card has wedged for some reason.
1883  */
1884 static void
1885 fxp_watchdog(struct ifnet *ifp)
1886 {
1887 	struct fxp_softc *sc = ifp->if_softc;
1888 
1889 	FXP_LOCK(sc);
1890 	device_printf(sc->dev, "device timeout\n");
1891 	ifp->if_oerrors++;
1892 
1893 	fxp_init_body(sc);
1894 	FXP_UNLOCK(sc);
1895 }
1896 
1897 /*
1898  * Acquire locks and then call the real initialization function.  This
1899  * is necessary because ether_ioctl() calls if_init() and this would
1900  * result in mutex recursion if the mutex was held.
1901  */
1902 static void
1903 fxp_init(void *xsc)
1904 {
1905 	struct fxp_softc *sc = xsc;
1906 
1907 	FXP_LOCK(sc);
1908 	fxp_init_body(sc);
1909 	FXP_UNLOCK(sc);
1910 }
1911 
1912 /*
1913  * Perform device initialization. This routine must be called with the
1914  * softc lock held.
1915  */
1916 static void
1917 fxp_init_body(struct fxp_softc *sc)
1918 {
1919 	struct ifnet *ifp = sc->ifp;
1920 	struct fxp_cb_config *cbp;
1921 	struct fxp_cb_ias *cb_ias;
1922 	struct fxp_cb_tx *tcbp;
1923 	struct fxp_tx *txp;
1924 	struct fxp_cb_mcs *mcsp;
1925 	int i, prm;
1926 
1927 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1928 	/*
1929 	 * Cancel any pending I/O
1930 	 */
1931 	fxp_stop(sc);
1932 
1933 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1934 
1935 	/*
1936 	 * Initialize base of CBL and RFA memory. Loading with zero
1937 	 * sets it up for regular linear addressing.
1938 	 */
1939 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1940 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1941 
1942 	fxp_scb_wait(sc);
1943 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1944 
1945 	/*
1946 	 * Initialize base of dump-stats buffer.
1947 	 */
1948 	fxp_scb_wait(sc);
1949 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1950 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1951 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1952 
1953 	/*
1954 	 * Attempt to load microcode if requested.
1955 	 */
1956 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1957 		fxp_load_ucode(sc);
1958 
1959 	/*
1960 	 * Initialize the multicast address list.
1961 	 */
1962 	if (fxp_mc_addrs(sc)) {
1963 		mcsp = sc->mcsp;
1964 		mcsp->cb_status = 0;
1965 		mcsp->cb_command =
1966 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1967 		mcsp->link_addr = 0xffffffff;
1968 		/*
1969 	 	 * Start the multicast setup command.
1970 		 */
1971 		fxp_scb_wait(sc);
1972 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
1973 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
1974 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1975 		/* ...and wait for it to complete. */
1976 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
1977 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
1978 		    BUS_DMASYNC_POSTWRITE);
1979 	}
1980 
1981 	/*
1982 	 * We temporarily use memory that contains the TxCB list to
1983 	 * construct the config CB. The TxCB list memory is rebuilt
1984 	 * later.
1985 	 */
1986 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
1987 
1988 	/*
1989 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1990 	 * zero and must be one bits in this structure and this is the easiest
1991 	 * way to initialize them all to proper values.
1992 	 */
1993 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
1994 
1995 	cbp->cb_status =	0;
1996 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1997 	    FXP_CB_COMMAND_EL);
1998 	cbp->link_addr =	0xffffffff;	/* (no) next command */
1999 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2000 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2001 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2002 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2003 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2004 	cbp->type_enable =	0;	/* actually reserved */
2005 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2006 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2007 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2008 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2009 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2010 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2011 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2012 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2013 	cbp->ci_int =		1;	/* interrupt on CU idle */
2014 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2015 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2016 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2017 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2018 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2019 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2020 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2021 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2022 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2023 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2024 	cbp->csma_dis =		0;	/* (don't) disable link */
2025 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2026 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2027 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2028 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2029 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2030 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2031 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2032 	cbp->loopback =		0;	/* (don't) loopback */
2033 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2034 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2035 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2036 	cbp->promiscuous =	prm;	/* promiscuous mode */
2037 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2038 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2039 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2040 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2041 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2042 
2043 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2044 	cbp->padding =		1;	/* (do) pad short tx packets */
2045 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2046 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2047 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2048 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2049 					/* must set wake_en in PMCSR also */
2050 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2051 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2052 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2053 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2054 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2055 
2056 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2057 		/*
2058 		 * The 82557 has no hardware flow control, the values
2059 		 * below are the defaults for the chip.
2060 		 */
2061 		cbp->fc_delay_lsb =	0;
2062 		cbp->fc_delay_msb =	0x40;
2063 		cbp->pri_fc_thresh =	3;
2064 		cbp->tx_fc_dis =	0;
2065 		cbp->rx_fc_restop =	0;
2066 		cbp->rx_fc_restart =	0;
2067 		cbp->fc_filter =	0;
2068 		cbp->pri_fc_loc =	1;
2069 	} else {
2070 		cbp->fc_delay_lsb =	0x1f;
2071 		cbp->fc_delay_msb =	0x01;
2072 		cbp->pri_fc_thresh =	3;
2073 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2074 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2075 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2076 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2077 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2078 	}
2079 
2080 	/*
2081 	 * Start the config command/DMA.
2082 	 */
2083 	fxp_scb_wait(sc);
2084 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2085 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2086 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2087 	/* ...and wait for it to complete. */
2088 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2089 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2090 
2091 	/*
2092 	 * Now initialize the station address. Temporarily use the TxCB
2093 	 * memory area like we did above for the config CB.
2094 	 */
2095 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2096 	cb_ias->cb_status = 0;
2097 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2098 	cb_ias->link_addr = 0xffffffff;
2099 	bcopy(IFP2ENADDR(sc->ifp), cb_ias->macaddr,
2100 	    sizeof(IFP2ENADDR(sc->ifp)));
2101 
2102 	/*
2103 	 * Start the IAS (Individual Address Setup) command/DMA.
2104 	 */
2105 	fxp_scb_wait(sc);
2106 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2107 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2108 	/* ...and wait for it to complete. */
2109 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2110 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2111 
2112 	/*
2113 	 * Initialize transmit control block (TxCB) list.
2114 	 */
2115 	txp = sc->fxp_desc.tx_list;
2116 	tcbp = sc->fxp_desc.cbl_list;
2117 	bzero(tcbp, FXP_TXCB_SZ);
2118 	for (i = 0; i < FXP_NTXCB; i++) {
2119 		txp[i].tx_mbuf = NULL;
2120 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2121 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2122 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2123 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2124 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2125 			tcbp[i].tbd_array_addr =
2126 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2127 		else
2128 			tcbp[i].tbd_array_addr =
2129 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2130 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2131 	}
2132 	/*
2133 	 * Set the suspend flag on the first TxCB and start the control
2134 	 * unit. It will execute the NOP and then suspend.
2135 	 */
2136 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2137 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2138 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2139 	sc->tx_queued = 1;
2140 
2141 	fxp_scb_wait(sc);
2142 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2143 
2144 	/*
2145 	 * Initialize receiver buffer area - RFA.
2146 	 */
2147 	fxp_scb_wait(sc);
2148 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2149 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2150 
2151 	/*
2152 	 * Set current media.
2153 	 */
2154 	if (sc->miibus != NULL)
2155 		mii_mediachg(device_get_softc(sc->miibus));
2156 
2157 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2158 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2159 
2160 	/*
2161 	 * Enable interrupts.
2162 	 */
2163 #ifdef DEVICE_POLLING
2164 	/*
2165 	 * ... but only do that if we are not polling. And because (presumably)
2166 	 * the default is interrupts on, we need to disable them explicitly!
2167 	 */
2168 	if ( ifp->if_flags & IFF_POLLING )
2169 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2170 	else
2171 #endif /* DEVICE_POLLING */
2172 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2173 
2174 	/*
2175 	 * Start stats updater.
2176 	 */
2177 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2178 }
2179 
2180 static int
2181 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2182 {
2183 
2184 	return (0);
2185 }
2186 
2187 static void
2188 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2189 {
2190 
2191 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2192 }
2193 
2194 /*
2195  * Change media according to request.
2196  */
2197 static int
2198 fxp_ifmedia_upd(struct ifnet *ifp)
2199 {
2200 	struct fxp_softc *sc = ifp->if_softc;
2201 	struct mii_data *mii;
2202 
2203 	mii = device_get_softc(sc->miibus);
2204 	FXP_LOCK(sc);
2205 	mii_mediachg(mii);
2206 	FXP_UNLOCK(sc);
2207 	return (0);
2208 }
2209 
2210 /*
2211  * Notify the world which media we're using.
2212  */
2213 static void
2214 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2215 {
2216 	struct fxp_softc *sc = ifp->if_softc;
2217 	struct mii_data *mii;
2218 
2219 	mii = device_get_softc(sc->miibus);
2220 	FXP_LOCK(sc);
2221 	mii_pollstat(mii);
2222 	ifmr->ifm_active = mii->mii_media_active;
2223 	ifmr->ifm_status = mii->mii_media_status;
2224 
2225 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2226 		sc->cu_resume_bug = 1;
2227 	else
2228 		sc->cu_resume_bug = 0;
2229 	FXP_UNLOCK(sc);
2230 }
2231 
2232 /*
2233  * Add a buffer to the end of the RFA buffer list.
2234  * Return 0 if successful, 1 for failure. A failure results in
2235  * adding the 'oldm' (if non-NULL) on to the end of the list -
2236  * tossing out its old contents and recycling it.
2237  * The RFA struct is stuck at the beginning of mbuf cluster and the
2238  * data pointer is fixed up to point just past it.
2239  */
2240 static int
2241 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2242 {
2243 	struct mbuf *m;
2244 	struct fxp_rfa *rfa, *p_rfa;
2245 	struct fxp_rx *p_rx;
2246 	bus_dmamap_t tmp_map;
2247 	int error;
2248 
2249 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2250 	if (m == NULL)
2251 		return (ENOBUFS);
2252 
2253 	/*
2254 	 * Move the data pointer up so that the incoming data packet
2255 	 * will be 32-bit aligned.
2256 	 */
2257 	m->m_data += RFA_ALIGNMENT_FUDGE;
2258 
2259 	/*
2260 	 * Get a pointer to the base of the mbuf cluster and move
2261 	 * data start past it.
2262 	 */
2263 	rfa = mtod(m, struct fxp_rfa *);
2264 	m->m_data += sc->rfa_size;
2265 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2266 
2267 	rfa->rfa_status = 0;
2268 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2269 	rfa->actual_size = 0;
2270 
2271 	/*
2272 	 * Initialize the rest of the RFA.  Note that since the RFA
2273 	 * is misaligned, we cannot store values directly.  We're thus
2274 	 * using the le32enc() function which handles endianness and
2275 	 * is also alignment-safe.
2276 	 */
2277 	le32enc(&rfa->link_addr, 0xffffffff);
2278 	le32enc(&rfa->rbd_addr, 0xffffffff);
2279 
2280 	/* Map the RFA into DMA memory. */
2281 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2282 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2283 	    &rxp->rx_addr, 0);
2284 	if (error) {
2285 		m_freem(m);
2286 		return (error);
2287 	}
2288 
2289 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2290 	tmp_map = sc->spare_map;
2291 	sc->spare_map = rxp->rx_map;
2292 	rxp->rx_map = tmp_map;
2293 	rxp->rx_mbuf = m;
2294 
2295 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2296 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2297 
2298 	/*
2299 	 * If there are other buffers already on the list, attach this
2300 	 * one to the end by fixing up the tail to point to this one.
2301 	 */
2302 	if (sc->fxp_desc.rx_head != NULL) {
2303 		p_rx = sc->fxp_desc.rx_tail;
2304 		p_rfa = (struct fxp_rfa *)
2305 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2306 		p_rx->rx_next = rxp;
2307 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2308 		p_rfa->rfa_control = 0;
2309 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2310 		    BUS_DMASYNC_PREWRITE);
2311 	} else {
2312 		rxp->rx_next = NULL;
2313 		sc->fxp_desc.rx_head = rxp;
2314 	}
2315 	sc->fxp_desc.rx_tail = rxp;
2316 	return (0);
2317 }
2318 
2319 static volatile int
2320 fxp_miibus_readreg(device_t dev, int phy, int reg)
2321 {
2322 	struct fxp_softc *sc = device_get_softc(dev);
2323 	int count = 10000;
2324 	int value;
2325 
2326 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2327 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2328 
2329 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2330 	    && count--)
2331 		DELAY(10);
2332 
2333 	if (count <= 0)
2334 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2335 
2336 	return (value & 0xffff);
2337 }
2338 
2339 static void
2340 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2341 {
2342 	struct fxp_softc *sc = device_get_softc(dev);
2343 	int count = 10000;
2344 
2345 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2346 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2347 	    (value & 0xffff));
2348 
2349 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2350 	    count--)
2351 		DELAY(10);
2352 
2353 	if (count <= 0)
2354 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2355 }
2356 
2357 static int
2358 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2359 {
2360 	struct fxp_softc *sc = ifp->if_softc;
2361 	struct ifreq *ifr = (struct ifreq *)data;
2362 	struct mii_data *mii;
2363 	int flag, mask, error = 0;
2364 
2365 	switch (command) {
2366 	case SIOCSIFFLAGS:
2367 		FXP_LOCK(sc);
2368 		if (ifp->if_flags & IFF_ALLMULTI)
2369 			sc->flags |= FXP_FLAG_ALL_MCAST;
2370 		else
2371 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2372 
2373 		/*
2374 		 * If interface is marked up and not running, then start it.
2375 		 * If it is marked down and running, stop it.
2376 		 * XXX If it's up then re-initialize it. This is so flags
2377 		 * such as IFF_PROMISC are handled.
2378 		 */
2379 		if (ifp->if_flags & IFF_UP) {
2380 			fxp_init_body(sc);
2381 		} else {
2382 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2383 				fxp_stop(sc);
2384 		}
2385 		FXP_UNLOCK(sc);
2386 		break;
2387 
2388 	case SIOCADDMULTI:
2389 	case SIOCDELMULTI:
2390 		FXP_LOCK(sc);
2391 		if (ifp->if_flags & IFF_ALLMULTI)
2392 			sc->flags |= FXP_FLAG_ALL_MCAST;
2393 		else
2394 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2395 		/*
2396 		 * Multicast list has changed; set the hardware filter
2397 		 * accordingly.
2398 		 */
2399 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2400 			fxp_mc_setup(sc);
2401 		/*
2402 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2403 		 * again rather than else {}.
2404 		 */
2405 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2406 			fxp_init_body(sc);
2407 		FXP_UNLOCK(sc);
2408 		error = 0;
2409 		break;
2410 
2411 	case SIOCSIFMEDIA:
2412 	case SIOCGIFMEDIA:
2413 		if (sc->miibus != NULL) {
2414 			mii = device_get_softc(sc->miibus);
2415                         error = ifmedia_ioctl(ifp, ifr,
2416                             &mii->mii_media, command);
2417 		} else {
2418                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2419 		}
2420 		break;
2421 
2422 	case SIOCSIFCAP:
2423 		FXP_LOCK(sc);
2424 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2425 		if (mask & IFCAP_POLLING)
2426 			ifp->if_capenable ^= IFCAP_POLLING;
2427 		if (mask & IFCAP_VLAN_MTU) {
2428 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2429 			if (sc->revision != FXP_REV_82557)
2430 				flag = FXP_FLAG_LONG_PKT_EN;
2431 			else /* a hack to get long frames on the old chip */
2432 				flag = FXP_FLAG_SAVE_BAD;
2433 			sc->flags ^= flag;
2434 			if (ifp->if_flags & IFF_UP)
2435 				fxp_init_body(sc);
2436 		}
2437 		FXP_UNLOCK(sc);
2438 		break;
2439 
2440 	default:
2441 		error = ether_ioctl(ifp, command, data);
2442 	}
2443 	return (error);
2444 }
2445 
2446 /*
2447  * Fill in the multicast address list and return number of entries.
2448  */
2449 static int
2450 fxp_mc_addrs(struct fxp_softc *sc)
2451 {
2452 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2453 	struct ifnet *ifp = sc->ifp;
2454 	struct ifmultiaddr *ifma;
2455 	int nmcasts;
2456 
2457 	nmcasts = 0;
2458 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2459 		IF_ADDR_LOCK(ifp);
2460 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2461 			if (ifma->ifma_addr->sa_family != AF_LINK)
2462 				continue;
2463 			if (nmcasts >= MAXMCADDR) {
2464 				sc->flags |= FXP_FLAG_ALL_MCAST;
2465 				nmcasts = 0;
2466 				break;
2467 			}
2468 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2469 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2470 			nmcasts++;
2471 		}
2472 		IF_ADDR_UNLOCK(ifp);
2473 	}
2474 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2475 	return (nmcasts);
2476 }
2477 
2478 /*
2479  * Program the multicast filter.
2480  *
2481  * We have an artificial restriction that the multicast setup command
2482  * must be the first command in the chain, so we take steps to ensure
2483  * this. By requiring this, it allows us to keep up the performance of
2484  * the pre-initialized command ring (esp. link pointers) by not actually
2485  * inserting the mcsetup command in the ring - i.e. its link pointer
2486  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2487  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2488  * lead into the regular TxCB ring when it completes.
2489  *
2490  * This function must be called at splimp.
2491  */
2492 static void
2493 fxp_mc_setup(struct fxp_softc *sc)
2494 {
2495 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2496 	struct ifnet *ifp = sc->ifp;
2497 	struct fxp_tx *txp;
2498 	int count;
2499 
2500 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2501 	/*
2502 	 * If there are queued commands, we must wait until they are all
2503 	 * completed. If we are already waiting, then add a NOP command
2504 	 * with interrupt option so that we're notified when all commands
2505 	 * have been completed - fxp_start() ensures that no additional
2506 	 * TX commands will be added when need_mcsetup is true.
2507 	 */
2508 	if (sc->tx_queued) {
2509 		/*
2510 		 * need_mcsetup will be true if we are already waiting for the
2511 		 * NOP command to be completed (see below). In this case, bail.
2512 		 */
2513 		if (sc->need_mcsetup)
2514 			return;
2515 		sc->need_mcsetup = 1;
2516 
2517 		/*
2518 		 * Add a NOP command with interrupt so that we are notified
2519 		 * when all TX commands have been processed.
2520 		 */
2521 		txp = sc->fxp_desc.tx_last->tx_next;
2522 		txp->tx_mbuf = NULL;
2523 		txp->tx_cb->cb_status = 0;
2524 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2525 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2526 		/*
2527 		 * Advance the end of list forward.
2528 		 */
2529 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2530 		    htole16(~FXP_CB_COMMAND_S);
2531 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2532 		sc->fxp_desc.tx_last = txp;
2533 		sc->tx_queued++;
2534 		/*
2535 		 * Issue a resume in case the CU has just suspended.
2536 		 */
2537 		fxp_scb_wait(sc);
2538 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2539 		/*
2540 		 * Set a 5 second timer just in case we don't hear from the
2541 		 * card again.
2542 		 */
2543 		ifp->if_timer = 5;
2544 
2545 		return;
2546 	}
2547 	sc->need_mcsetup = 0;
2548 
2549 	/*
2550 	 * Initialize multicast setup descriptor.
2551 	 */
2552 	mcsp->cb_status = 0;
2553 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2554 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2555 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2556 	txp = &sc->fxp_desc.mcs_tx;
2557 	txp->tx_mbuf = NULL;
2558 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2559 	txp->tx_next = sc->fxp_desc.tx_list;
2560 	(void) fxp_mc_addrs(sc);
2561 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2562 	sc->tx_queued = 1;
2563 
2564 	/*
2565 	 * Wait until command unit is not active. This should never
2566 	 * be the case when nothing is queued, but make sure anyway.
2567 	 */
2568 	count = 100;
2569 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2570 	    FXP_SCB_CUS_ACTIVE && --count)
2571 		DELAY(10);
2572 	if (count == 0) {
2573 		device_printf(sc->dev, "command queue timeout\n");
2574 		return;
2575 	}
2576 
2577 	/*
2578 	 * Start the multicast setup command.
2579 	 */
2580 	fxp_scb_wait(sc);
2581 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2582 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2583 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2584 
2585 	ifp->if_timer = 2;
2586 	return;
2587 }
2588 
2589 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2590 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2591 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2592 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2593 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2594 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2595 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2596 
2597 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2598 
2599 struct ucode {
2600 	uint32_t	revision;
2601 	uint32_t	*ucode;
2602 	int		length;
2603 	u_short		int_delay_offset;
2604 	u_short		bundle_max_offset;
2605 } ucode_table[] = {
2606 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2607 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2608 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2609 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2610 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2611 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2612 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2613 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2614 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2615 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2616 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2617 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2618 	{ 0, NULL, 0, 0, 0 }
2619 };
2620 
2621 static void
2622 fxp_load_ucode(struct fxp_softc *sc)
2623 {
2624 	struct ucode *uc;
2625 	struct fxp_cb_ucode *cbp;
2626 	int i;
2627 
2628 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2629 		if (sc->revision == uc->revision)
2630 			break;
2631 	if (uc->ucode == NULL)
2632 		return;
2633 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2634 	cbp->cb_status = 0;
2635 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2636 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2637 	for (i = 0; i < uc->length; i++)
2638 		cbp->ucode[i] = htole32(uc->ucode[i]);
2639 	if (uc->int_delay_offset)
2640 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
2641 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2642 	if (uc->bundle_max_offset)
2643 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
2644 		    htole16(sc->tunable_bundle_max);
2645 	/*
2646 	 * Download the ucode to the chip.
2647 	 */
2648 	fxp_scb_wait(sc);
2649 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2650 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2651 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2652 	/* ...and wait for it to complete. */
2653 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2654 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2655 	device_printf(sc->dev,
2656 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2657 	    sc->tunable_int_delay,
2658 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2659 	sc->flags |= FXP_FLAG_UCODE;
2660 }
2661 
2662 static int
2663 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2664 {
2665 	int error, value;
2666 
2667 	value = *(int *)arg1;
2668 	error = sysctl_handle_int(oidp, &value, 0, req);
2669 	if (error || !req->newptr)
2670 		return (error);
2671 	if (value < low || value > high)
2672 		return (EINVAL);
2673 	*(int *)arg1 = value;
2674 	return (0);
2675 }
2676 
2677 /*
2678  * Interrupt delay is expressed in microseconds, a multiplier is used
2679  * to convert this to the appropriate clock ticks before using.
2680  */
2681 static int
2682 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2683 {
2684 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2685 }
2686 
2687 static int
2688 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2689 {
2690 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2691 }
2692