1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-NetBSD 3 * 4 * Copyright (c) 1995, David Greenman 5 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice unmodified, this list of conditions, and the following 13 * disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /* 36 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver 37 */ 38 39 #ifdef HAVE_KERNEL_OPTION_HEADERS 40 #include "opt_device_polling.h" 41 #endif 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/bus.h> 46 #include <sys/endian.h> 47 #include <sys/kernel.h> 48 #include <sys/mbuf.h> 49 #include <sys/lock.h> 50 #include <sys/malloc.h> 51 #include <sys/module.h> 52 #include <sys/mutex.h> 53 #include <sys/rman.h> 54 #include <sys/socket.h> 55 #include <sys/sockio.h> 56 #include <sys/sysctl.h> 57 58 #include <net/bpf.h> 59 #include <net/ethernet.h> 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_arp.h> 63 #include <net/if_dl.h> 64 #include <net/if_media.h> 65 #include <net/if_types.h> 66 #include <net/if_vlan_var.h> 67 68 #include <netinet/in.h> 69 #include <netinet/in_systm.h> 70 #include <netinet/ip.h> 71 #include <netinet/tcp.h> 72 #include <netinet/udp.h> 73 74 #include <machine/bus.h> 75 #include <machine/in_cksum.h> 76 #include <machine/resource.h> 77 78 #include <dev/pci/pcivar.h> 79 #include <dev/pci/pcireg.h> /* for PCIM_CMD_xxx */ 80 81 #include <dev/mii/mii.h> 82 #include <dev/mii/miivar.h> 83 84 #include <dev/fxp/if_fxpreg.h> 85 #include <dev/fxp/if_fxpvar.h> 86 #include <dev/fxp/rcvbundl.h> 87 88 MODULE_DEPEND(fxp, pci, 1, 1, 1); 89 MODULE_DEPEND(fxp, ether, 1, 1, 1); 90 MODULE_DEPEND(fxp, miibus, 1, 1, 1); 91 #include "miibus_if.h" 92 93 /* 94 * NOTE! On !x86 we typically have an alignment constraint. The 95 * card DMAs the packet immediately following the RFA. However, 96 * the first thing in the packet is a 14-byte Ethernet header. 97 * This means that the packet is misaligned. To compensate, 98 * we actually offset the RFA 2 bytes into the cluster. This 99 * alignes the packet after the Ethernet header at a 32-bit 100 * boundary. HOWEVER! This means that the RFA is misaligned! 101 */ 102 #define RFA_ALIGNMENT_FUDGE 2 103 104 /* 105 * Set initial transmit threshold at 64 (512 bytes). This is 106 * increased by 64 (512 bytes) at a time, to maximum of 192 107 * (1536 bytes), if an underrun occurs. 108 */ 109 static int tx_threshold = 64; 110 111 /* 112 * The configuration byte map has several undefined fields which 113 * must be one or must be zero. Set up a template for these bits. 114 * The actual configuration is performed in fxp_init_body. 115 * 116 * See struct fxp_cb_config for the bit definitions. 117 */ 118 static const u_char fxp_cb_config_template[] = { 119 0x0, 0x0, /* cb_status */ 120 0x0, 0x0, /* cb_command */ 121 0x0, 0x0, 0x0, 0x0, /* link_addr */ 122 0x0, /* 0 */ 123 0x0, /* 1 */ 124 0x0, /* 2 */ 125 0x0, /* 3 */ 126 0x0, /* 4 */ 127 0x0, /* 5 */ 128 0x32, /* 6 */ 129 0x0, /* 7 */ 130 0x0, /* 8 */ 131 0x0, /* 9 */ 132 0x6, /* 10 */ 133 0x0, /* 11 */ 134 0x0, /* 12 */ 135 0x0, /* 13 */ 136 0xf2, /* 14 */ 137 0x48, /* 15 */ 138 0x0, /* 16 */ 139 0x40, /* 17 */ 140 0xf0, /* 18 */ 141 0x0, /* 19 */ 142 0x3f, /* 20 */ 143 0x5, /* 21 */ 144 0x0, /* 22 */ 145 0x0, /* 23 */ 146 0x0, /* 24 */ 147 0x0, /* 25 */ 148 0x0, /* 26 */ 149 0x0, /* 27 */ 150 0x0, /* 28 */ 151 0x0, /* 29 */ 152 0x0, /* 30 */ 153 0x0 /* 31 */ 154 }; 155 156 /* 157 * Claim various Intel PCI device identifiers for this driver. The 158 * sub-vendor and sub-device field are extensively used to identify 159 * particular variants, but we don't currently differentiate between 160 * them. 161 */ 162 static const struct fxp_ident fxp_ident_table[] = { 163 { 0x8086, 0x1029, -1, 0, "Intel 82559 PCI/CardBus Pro/100" }, 164 { 0x8086, 0x1030, -1, 0, "Intel 82559 Pro/100 Ethernet" }, 165 { 0x8086, 0x1031, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 166 { 0x8086, 0x1032, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 167 { 0x8086, 0x1033, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 168 { 0x8086, 0x1034, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 169 { 0x8086, 0x1035, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 170 { 0x8086, 0x1036, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 171 { 0x8086, 0x1037, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 172 { 0x8086, 0x1038, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 173 { 0x8086, 0x1039, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 174 { 0x8086, 0x103A, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 175 { 0x8086, 0x103B, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 176 { 0x8086, 0x103C, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 177 { 0x8086, 0x103D, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 178 { 0x8086, 0x103E, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 179 { 0x8086, 0x1050, -1, 5, "Intel 82801BA (D865) Pro/100 VE Ethernet" }, 180 { 0x8086, 0x1051, -1, 5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" }, 181 { 0x8086, 0x1059, -1, 0, "Intel 82551QM Pro/100 M Mobile Connection" }, 182 { 0x8086, 0x1064, -1, 6, "Intel 82562EZ (ICH6)" }, 183 { 0x8086, 0x1065, -1, 6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" }, 184 { 0x8086, 0x1068, -1, 6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" }, 185 { 0x8086, 0x1069, -1, 6, "Intel 82562EM/EX/GX Pro/100 Ethernet" }, 186 { 0x8086, 0x1091, -1, 7, "Intel 82562GX Pro/100 Ethernet" }, 187 { 0x8086, 0x1092, -1, 7, "Intel Pro/100 VE Network Connection" }, 188 { 0x8086, 0x1093, -1, 7, "Intel Pro/100 VM Network Connection" }, 189 { 0x8086, 0x1094, -1, 7, "Intel Pro/100 946GZ (ICH7) Network Connection" }, 190 { 0x8086, 0x1209, -1, 0, "Intel 82559ER Embedded 10/100 Ethernet" }, 191 { 0x8086, 0x1229, 0x01, 0, "Intel 82557 Pro/100 Ethernet" }, 192 { 0x8086, 0x1229, 0x02, 0, "Intel 82557 Pro/100 Ethernet" }, 193 { 0x8086, 0x1229, 0x03, 0, "Intel 82557 Pro/100 Ethernet" }, 194 { 0x8086, 0x1229, 0x04, 0, "Intel 82558 Pro/100 Ethernet" }, 195 { 0x8086, 0x1229, 0x05, 0, "Intel 82558 Pro/100 Ethernet" }, 196 { 0x8086, 0x1229, 0x06, 0, "Intel 82559 Pro/100 Ethernet" }, 197 { 0x8086, 0x1229, 0x07, 0, "Intel 82559 Pro/100 Ethernet" }, 198 { 0x8086, 0x1229, 0x08, 0, "Intel 82559 Pro/100 Ethernet" }, 199 { 0x8086, 0x1229, 0x09, 0, "Intel 82559ER Pro/100 Ethernet" }, 200 { 0x8086, 0x1229, 0x0c, 0, "Intel 82550 Pro/100 Ethernet" }, 201 { 0x8086, 0x1229, 0x0d, 0, "Intel 82550C Pro/100 Ethernet" }, 202 { 0x8086, 0x1229, 0x0e, 0, "Intel 82550 Pro/100 Ethernet" }, 203 { 0x8086, 0x1229, 0x0f, 0, "Intel 82551 Pro/100 Ethernet" }, 204 { 0x8086, 0x1229, 0x10, 0, "Intel 82551 Pro/100 Ethernet" }, 205 { 0x8086, 0x1229, -1, 0, "Intel 82557/8/9 Pro/100 Ethernet" }, 206 { 0x8086, 0x2449, -1, 2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" }, 207 { 0x8086, 0x27dc, -1, 7, "Intel 82801GB (ICH7) 10/100 Ethernet" }, 208 { 0, 0, -1, 0, NULL }, 209 }; 210 211 #ifdef FXP_IP_CSUM_WAR 212 #define FXP_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 213 #else 214 #define FXP_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 215 #endif 216 217 static int fxp_probe(device_t dev); 218 static int fxp_attach(device_t dev); 219 static int fxp_detach(device_t dev); 220 static int fxp_shutdown(device_t dev); 221 static int fxp_suspend(device_t dev); 222 static int fxp_resume(device_t dev); 223 224 static const struct fxp_ident *fxp_find_ident(device_t dev); 225 static void fxp_intr(void *xsc); 226 static void fxp_rxcsum(struct fxp_softc *sc, if_t ifp, 227 struct mbuf *m, uint16_t status, int pos); 228 static int fxp_intr_body(struct fxp_softc *sc, if_t ifp, 229 uint8_t statack, int count); 230 static void fxp_init(void *xsc); 231 static void fxp_init_body(struct fxp_softc *sc, int); 232 static void fxp_tick(void *xsc); 233 static void fxp_start(if_t ifp); 234 static void fxp_start_body(if_t ifp); 235 static int fxp_encap(struct fxp_softc *sc, struct mbuf **m_head); 236 static void fxp_txeof(struct fxp_softc *sc); 237 static void fxp_stop(struct fxp_softc *sc); 238 static void fxp_release(struct fxp_softc *sc); 239 static int fxp_ioctl(if_t ifp, u_long command, 240 caddr_t data); 241 static void fxp_watchdog(struct fxp_softc *sc); 242 static void fxp_add_rfabuf(struct fxp_softc *sc, 243 struct fxp_rx *rxp); 244 static void fxp_discard_rfabuf(struct fxp_softc *sc, 245 struct fxp_rx *rxp); 246 static int fxp_new_rfabuf(struct fxp_softc *sc, 247 struct fxp_rx *rxp); 248 static void fxp_mc_addrs(struct fxp_softc *sc); 249 static void fxp_mc_setup(struct fxp_softc *sc); 250 static uint16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, 251 int autosize); 252 static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, 253 uint16_t data); 254 static void fxp_autosize_eeprom(struct fxp_softc *sc); 255 static void fxp_load_eeprom(struct fxp_softc *sc); 256 static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, 257 int offset, int words); 258 static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, 259 int offset, int words); 260 static int fxp_ifmedia_upd(if_t ifp); 261 static void fxp_ifmedia_sts(if_t ifp, 262 struct ifmediareq *ifmr); 263 static int fxp_serial_ifmedia_upd(if_t ifp); 264 static void fxp_serial_ifmedia_sts(if_t ifp, 265 struct ifmediareq *ifmr); 266 static int fxp_miibus_readreg(device_t dev, int phy, int reg); 267 static int fxp_miibus_writereg(device_t dev, int phy, int reg, 268 int value); 269 static void fxp_miibus_statchg(device_t dev); 270 static void fxp_load_ucode(struct fxp_softc *sc); 271 static void fxp_update_stats(struct fxp_softc *sc); 272 static void fxp_sysctl_node(struct fxp_softc *sc); 273 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, 274 int low, int high); 275 static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS); 276 static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS); 277 static void fxp_scb_wait(struct fxp_softc *sc); 278 static void fxp_scb_cmd(struct fxp_softc *sc, int cmd); 279 static void fxp_dma_wait(struct fxp_softc *sc, 280 volatile uint16_t *status, bus_dma_tag_t dmat, 281 bus_dmamap_t map); 282 283 static device_method_t fxp_methods[] = { 284 /* Device interface */ 285 DEVMETHOD(device_probe, fxp_probe), 286 DEVMETHOD(device_attach, fxp_attach), 287 DEVMETHOD(device_detach, fxp_detach), 288 DEVMETHOD(device_shutdown, fxp_shutdown), 289 DEVMETHOD(device_suspend, fxp_suspend), 290 DEVMETHOD(device_resume, fxp_resume), 291 292 /* MII interface */ 293 DEVMETHOD(miibus_readreg, fxp_miibus_readreg), 294 DEVMETHOD(miibus_writereg, fxp_miibus_writereg), 295 DEVMETHOD(miibus_statchg, fxp_miibus_statchg), 296 297 DEVMETHOD_END 298 }; 299 300 static driver_t fxp_driver = { 301 "fxp", 302 fxp_methods, 303 sizeof(struct fxp_softc), 304 }; 305 306 static devclass_t fxp_devclass; 307 308 DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, fxp_devclass, NULL, NULL, 309 SI_ORDER_ANY); 310 MODULE_PNP_INFO("U16:vendor;U16:device", pci, fxp, fxp_ident_table, 311 nitems(fxp_ident_table) - 1); 312 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL); 313 314 static struct resource_spec fxp_res_spec_mem[] = { 315 { SYS_RES_MEMORY, FXP_PCI_MMBA, RF_ACTIVE }, 316 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 317 { -1, 0 } 318 }; 319 320 static struct resource_spec fxp_res_spec_io[] = { 321 { SYS_RES_IOPORT, FXP_PCI_IOBA, RF_ACTIVE }, 322 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 323 { -1, 0 } 324 }; 325 326 /* 327 * Wait for the previous command to be accepted (but not necessarily 328 * completed). 329 */ 330 static void 331 fxp_scb_wait(struct fxp_softc *sc) 332 { 333 union { 334 uint16_t w; 335 uint8_t b[2]; 336 } flowctl; 337 int i = 10000; 338 339 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) 340 DELAY(2); 341 if (i == 0) { 342 flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH); 343 flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS); 344 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n", 345 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND), 346 CSR_READ_1(sc, FXP_CSR_SCB_STATACK), 347 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w); 348 } 349 } 350 351 static void 352 fxp_scb_cmd(struct fxp_softc *sc, int cmd) 353 { 354 355 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) { 356 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP); 357 fxp_scb_wait(sc); 358 } 359 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); 360 } 361 362 static void 363 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status, 364 bus_dma_tag_t dmat, bus_dmamap_t map) 365 { 366 int i; 367 368 for (i = 10000; i > 0; i--) { 369 DELAY(2); 370 bus_dmamap_sync(dmat, map, 371 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 372 if ((le16toh(*status) & FXP_CB_STATUS_C) != 0) 373 break; 374 } 375 if (i == 0) 376 device_printf(sc->dev, "DMA timeout\n"); 377 } 378 379 static const struct fxp_ident * 380 fxp_find_ident(device_t dev) 381 { 382 uint16_t vendor; 383 uint16_t device; 384 uint8_t revid; 385 const struct fxp_ident *ident; 386 387 vendor = pci_get_vendor(dev); 388 device = pci_get_device(dev); 389 revid = pci_get_revid(dev); 390 for (ident = fxp_ident_table; ident->name != NULL; ident++) { 391 if (ident->vendor == vendor && ident->device == device && 392 (ident->revid == revid || ident->revid == -1)) { 393 return (ident); 394 } 395 } 396 return (NULL); 397 } 398 399 /* 400 * Return identification string if this device is ours. 401 */ 402 static int 403 fxp_probe(device_t dev) 404 { 405 const struct fxp_ident *ident; 406 407 ident = fxp_find_ident(dev); 408 if (ident != NULL) { 409 device_set_desc(dev, ident->name); 410 return (BUS_PROBE_DEFAULT); 411 } 412 return (ENXIO); 413 } 414 415 static void 416 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 417 { 418 uint32_t *addr; 419 420 if (error) 421 return; 422 423 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 424 addr = arg; 425 *addr = segs->ds_addr; 426 } 427 428 static int 429 fxp_attach(device_t dev) 430 { 431 struct fxp_softc *sc; 432 struct fxp_cb_tx *tcbp; 433 struct fxp_tx *txp; 434 struct fxp_rx *rxp; 435 if_t ifp; 436 uint32_t val; 437 uint16_t data; 438 u_char eaddr[ETHER_ADDR_LEN]; 439 int error, flags, i, pmc, prefer_iomap; 440 441 error = 0; 442 sc = device_get_softc(dev); 443 sc->dev = dev; 444 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 445 MTX_DEF); 446 callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0); 447 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd, 448 fxp_serial_ifmedia_sts); 449 450 ifp = sc->ifp = if_gethandle(IFT_ETHER); 451 if (ifp == (void *)NULL) { 452 device_printf(dev, "can not if_alloc()\n"); 453 error = ENOSPC; 454 goto fail; 455 } 456 457 /* 458 * Enable bus mastering. 459 */ 460 pci_enable_busmaster(dev); 461 462 /* 463 * Figure out which we should try first - memory mapping or i/o mapping? 464 * We default to memory mapping. Then we accept an override from the 465 * command line. Then we check to see which one is enabled. 466 */ 467 prefer_iomap = 0; 468 resource_int_value(device_get_name(dev), device_get_unit(dev), 469 "prefer_iomap", &prefer_iomap); 470 if (prefer_iomap) 471 sc->fxp_spec = fxp_res_spec_io; 472 else 473 sc->fxp_spec = fxp_res_spec_mem; 474 475 error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res); 476 if (error) { 477 if (sc->fxp_spec == fxp_res_spec_mem) 478 sc->fxp_spec = fxp_res_spec_io; 479 else 480 sc->fxp_spec = fxp_res_spec_mem; 481 error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res); 482 } 483 if (error) { 484 device_printf(dev, "could not allocate resources\n"); 485 error = ENXIO; 486 goto fail; 487 } 488 489 if (bootverbose) { 490 device_printf(dev, "using %s space register mapping\n", 491 sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O"); 492 } 493 494 /* 495 * Put CU/RU idle state and prepare full reset. 496 */ 497 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 498 DELAY(10); 499 /* Full reset and disable interrupts. */ 500 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 501 DELAY(10); 502 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 503 504 /* 505 * Find out how large of an SEEPROM we have. 506 */ 507 fxp_autosize_eeprom(sc); 508 fxp_load_eeprom(sc); 509 510 /* 511 * Find out the chip revision; lump all 82557 revs together. 512 */ 513 sc->ident = fxp_find_ident(dev); 514 if (sc->ident->ich > 0) { 515 /* Assume ICH controllers are 82559. */ 516 sc->revision = FXP_REV_82559_A0; 517 } else { 518 data = sc->eeprom[FXP_EEPROM_MAP_CNTR]; 519 if ((data >> 8) == 1) 520 sc->revision = FXP_REV_82557; 521 else 522 sc->revision = pci_get_revid(dev); 523 } 524 525 /* 526 * Check availability of WOL. 82559ER does not support WOL. 527 */ 528 if (sc->revision >= FXP_REV_82558_A4 && 529 sc->revision != FXP_REV_82559S_A) { 530 data = sc->eeprom[FXP_EEPROM_MAP_ID]; 531 if ((data & 0x20) != 0 && 532 pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) 533 sc->flags |= FXP_FLAG_WOLCAP; 534 } 535 536 if (sc->revision == FXP_REV_82550_C) { 537 /* 538 * 82550C with server extension requires microcode to 539 * receive fragmented UDP datagrams. However if the 540 * microcode is used for client-only featured 82550C 541 * it locks up controller. 542 */ 543 data = sc->eeprom[FXP_EEPROM_MAP_COMPAT]; 544 if ((data & 0x0400) == 0) 545 sc->flags |= FXP_FLAG_NO_UCODE; 546 } 547 548 /* Receiver lock-up workaround detection. */ 549 if (sc->revision < FXP_REV_82558_A4) { 550 data = sc->eeprom[FXP_EEPROM_MAP_COMPAT]; 551 if ((data & 0x03) != 0x03) { 552 sc->flags |= FXP_FLAG_RXBUG; 553 device_printf(dev, "Enabling Rx lock-up workaround\n"); 554 } 555 } 556 557 /* 558 * Determine whether we must use the 503 serial interface. 559 */ 560 data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY]; 561 if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0 562 && (data & FXP_PHY_SERIAL_ONLY)) 563 sc->flags |= FXP_FLAG_SERIAL_MEDIA; 564 565 fxp_sysctl_node(sc); 566 /* 567 * Enable workarounds for certain chip revision deficiencies. 568 * 569 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly 570 * some systems based a normal 82559 design, have a defect where 571 * the chip can cause a PCI protocol violation if it receives 572 * a CU_RESUME command when it is entering the IDLE state. The 573 * workaround is to disable Dynamic Standby Mode, so the chip never 574 * deasserts CLKRUN#, and always remains in an active state. 575 * 576 * See Intel 82801BA/82801BAM Specification Update, Errata #30. 577 */ 578 if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) || 579 (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) { 580 data = sc->eeprom[FXP_EEPROM_MAP_ID]; 581 if (data & 0x02) { /* STB enable */ 582 uint16_t cksum; 583 int i; 584 585 device_printf(dev, 586 "Disabling dynamic standby mode in EEPROM\n"); 587 data &= ~0x02; 588 sc->eeprom[FXP_EEPROM_MAP_ID] = data; 589 fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1); 590 device_printf(dev, "New EEPROM ID: 0x%x\n", data); 591 cksum = 0; 592 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) 593 cksum += sc->eeprom[i]; 594 i = (1 << sc->eeprom_size) - 1; 595 cksum = 0xBABA - cksum; 596 fxp_write_eeprom(sc, &cksum, i, 1); 597 device_printf(dev, 598 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n", 599 i, sc->eeprom[i], cksum); 600 sc->eeprom[i] = cksum; 601 /* 602 * If the user elects to continue, try the software 603 * workaround, as it is better than nothing. 604 */ 605 sc->flags |= FXP_FLAG_CU_RESUME_BUG; 606 } 607 } 608 609 /* 610 * If we are not a 82557 chip, we can enable extended features. 611 */ 612 if (sc->revision != FXP_REV_82557) { 613 /* 614 * If MWI is enabled in the PCI configuration, and there 615 * is a valid cacheline size (8 or 16 dwords), then tell 616 * the board to turn on MWI. 617 */ 618 val = pci_read_config(dev, PCIR_COMMAND, 2); 619 if (val & PCIM_CMD_MWRICEN && 620 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0) 621 sc->flags |= FXP_FLAG_MWI_ENABLE; 622 623 /* turn on the extended TxCB feature */ 624 sc->flags |= FXP_FLAG_EXT_TXCB; 625 626 /* enable reception of long frames for VLAN */ 627 sc->flags |= FXP_FLAG_LONG_PKT_EN; 628 } else { 629 /* a hack to get long VLAN frames on a 82557 */ 630 sc->flags |= FXP_FLAG_SAVE_BAD; 631 } 632 633 /* For 82559 or later chips, Rx checksum offload is supported. */ 634 if (sc->revision >= FXP_REV_82559_A0) { 635 /* 82559ER does not support Rx checksum offloading. */ 636 if (sc->ident->device != 0x1209) 637 sc->flags |= FXP_FLAG_82559_RXCSUM; 638 } 639 /* 640 * Enable use of extended RFDs and TCBs for 82550 641 * and later chips. Note: we need extended TXCB support 642 * too, but that's already enabled by the code above. 643 * Be careful to do this only on the right devices. 644 */ 645 if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C || 646 sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F 647 || sc->revision == FXP_REV_82551_10) { 648 sc->rfa_size = sizeof (struct fxp_rfa); 649 sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT; 650 sc->flags |= FXP_FLAG_EXT_RFA; 651 /* Use extended RFA instead of 82559 checksum mode. */ 652 sc->flags &= ~FXP_FLAG_82559_RXCSUM; 653 } else { 654 sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN; 655 sc->tx_cmd = FXP_CB_COMMAND_XMIT; 656 } 657 658 /* 659 * Allocate DMA tags and DMA safe memory. 660 */ 661 sc->maxtxseg = FXP_NTXSEG; 662 sc->maxsegsize = MCLBYTES; 663 if (sc->flags & FXP_FLAG_EXT_RFA) { 664 sc->maxtxseg--; 665 sc->maxsegsize = FXP_TSO_SEGSIZE; 666 } 667 error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0, 668 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 669 sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header), 670 sc->maxtxseg, sc->maxsegsize, 0, 671 busdma_lock_mutex, &Giant, &sc->fxp_txmtag); 672 if (error) { 673 device_printf(dev, "could not create TX DMA tag\n"); 674 goto fail; 675 } 676 677 error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0, 678 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 679 MCLBYTES, 1, MCLBYTES, 0, 680 busdma_lock_mutex, &Giant, &sc->fxp_rxmtag); 681 if (error) { 682 device_printf(dev, "could not create RX DMA tag\n"); 683 goto fail; 684 } 685 686 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 687 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 688 sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0, 689 busdma_lock_mutex, &Giant, &sc->fxp_stag); 690 if (error) { 691 device_printf(dev, "could not create stats DMA tag\n"); 692 goto fail; 693 } 694 695 error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats, 696 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap); 697 if (error) { 698 device_printf(dev, "could not allocate stats DMA memory\n"); 699 goto fail; 700 } 701 error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats, 702 sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 703 BUS_DMA_NOWAIT); 704 if (error) { 705 device_printf(dev, "could not load the stats DMA buffer\n"); 706 goto fail; 707 } 708 709 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 710 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 711 FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0, 712 busdma_lock_mutex, &Giant, &sc->cbl_tag); 713 if (error) { 714 device_printf(dev, "could not create TxCB DMA tag\n"); 715 goto fail; 716 } 717 718 error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list, 719 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map); 720 if (error) { 721 device_printf(dev, "could not allocate TxCB DMA memory\n"); 722 goto fail; 723 } 724 725 error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map, 726 sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr, 727 &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT); 728 if (error) { 729 device_printf(dev, "could not load TxCB DMA buffer\n"); 730 goto fail; 731 } 732 733 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 734 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 735 sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0, 736 busdma_lock_mutex, &Giant, &sc->mcs_tag); 737 if (error) { 738 device_printf(dev, 739 "could not create multicast setup DMA tag\n"); 740 goto fail; 741 } 742 743 error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp, 744 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map); 745 if (error) { 746 device_printf(dev, 747 "could not allocate multicast setup DMA memory\n"); 748 goto fail; 749 } 750 error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp, 751 sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 752 BUS_DMA_NOWAIT); 753 if (error) { 754 device_printf(dev, 755 "can't load the multicast setup DMA buffer\n"); 756 goto fail; 757 } 758 759 /* 760 * Pre-allocate the TX DMA maps and setup the pointers to 761 * the TX command blocks. 762 */ 763 txp = sc->fxp_desc.tx_list; 764 tcbp = sc->fxp_desc.cbl_list; 765 for (i = 0; i < FXP_NTXCB; i++) { 766 txp[i].tx_cb = tcbp + i; 767 error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map); 768 if (error) { 769 device_printf(dev, "can't create DMA map for TX\n"); 770 goto fail; 771 } 772 } 773 error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map); 774 if (error) { 775 device_printf(dev, "can't create spare DMA map\n"); 776 goto fail; 777 } 778 779 /* 780 * Pre-allocate our receive buffers. 781 */ 782 sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL; 783 for (i = 0; i < FXP_NRFABUFS; i++) { 784 rxp = &sc->fxp_desc.rx_list[i]; 785 error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map); 786 if (error) { 787 device_printf(dev, "can't create DMA map for RX\n"); 788 goto fail; 789 } 790 if (fxp_new_rfabuf(sc, rxp) != 0) { 791 error = ENOMEM; 792 goto fail; 793 } 794 fxp_add_rfabuf(sc, rxp); 795 } 796 797 /* 798 * Read MAC address. 799 */ 800 eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff; 801 eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8; 802 eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff; 803 eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8; 804 eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff; 805 eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8; 806 if (bootverbose) { 807 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n", 808 pci_get_vendor(dev), pci_get_device(dev), 809 pci_get_subvendor(dev), pci_get_subdevice(dev), 810 pci_get_revid(dev)); 811 device_printf(dev, "Dynamic Standby mode is %s\n", 812 sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" : 813 "disabled"); 814 } 815 816 /* 817 * If this is only a 10Mbps device, then there is no MII, and 818 * the PHY will use a serial interface instead. 819 * 820 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 821 * doesn't have a programming interface of any sort. The 822 * media is sensed automatically based on how the link partner 823 * is configured. This is, in essence, manual configuration. 824 */ 825 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) { 826 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 827 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); 828 } else { 829 /* 830 * i82557 wedge when isolating all of their PHYs. 831 */ 832 flags = MIIF_NOISOLATE; 833 if (sc->revision >= FXP_REV_82558_A4) 834 flags |= MIIF_DOPAUSE; 835 error = mii_attach(dev, &sc->miibus, ifp, 836 (ifm_change_cb_t)fxp_ifmedia_upd, 837 (ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK, 838 MII_PHY_ANY, MII_OFFSET_ANY, flags); 839 if (error != 0) { 840 device_printf(dev, "attaching PHYs failed\n"); 841 goto fail; 842 } 843 } 844 845 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 846 if_setdev(ifp, dev); 847 if_setinitfn(ifp, fxp_init); 848 if_setsoftc(ifp, sc); 849 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 850 if_setioctlfn(ifp, fxp_ioctl); 851 if_setstartfn(ifp, fxp_start); 852 853 if_setcapabilities(ifp, 0); 854 if_setcapenable(ifp, 0); 855 856 /* Enable checksum offload/TSO for 82550 or better chips */ 857 if (sc->flags & FXP_FLAG_EXT_RFA) { 858 if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO); 859 if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0); 860 if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0); 861 } 862 863 if (sc->flags & FXP_FLAG_82559_RXCSUM) { 864 if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0); 865 if_setcapenablebit(ifp, IFCAP_RXCSUM, 0); 866 } 867 868 if (sc->flags & FXP_FLAG_WOLCAP) { 869 if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0); 870 if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0); 871 } 872 873 #ifdef DEVICE_POLLING 874 /* Inform the world we support polling. */ 875 if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0); 876 #endif 877 878 /* 879 * Attach the interface. 880 */ 881 ether_ifattach(ifp, eaddr); 882 883 /* 884 * Tell the upper layer(s) we support long frames. 885 * Must appear after the call to ether_ifattach() because 886 * ether_ifattach() sets ifi_hdrlen to the default value. 887 */ 888 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 889 if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0); 890 if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0); 891 if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) { 892 if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING | 893 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0); 894 if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING | 895 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0); 896 } 897 898 /* 899 * Let the system queue as many packets as we have available 900 * TX descriptors. 901 */ 902 if_setsendqlen(ifp, FXP_NTXCB - 1); 903 if_setsendqready(ifp); 904 905 /* 906 * Hook our interrupt after all initialization is complete. 907 */ 908 error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE, 909 NULL, fxp_intr, sc, &sc->ih); 910 if (error) { 911 device_printf(dev, "could not setup irq\n"); 912 ether_ifdetach(sc->ifp); 913 goto fail; 914 } 915 916 /* 917 * Configure hardware to reject magic frames otherwise 918 * system will hang on recipt of magic frames. 919 */ 920 if ((sc->flags & FXP_FLAG_WOLCAP) != 0) { 921 FXP_LOCK(sc); 922 /* Clear wakeup events. */ 923 CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR)); 924 fxp_init_body(sc, 0); 925 fxp_stop(sc); 926 FXP_UNLOCK(sc); 927 } 928 929 fail: 930 if (error) 931 fxp_release(sc); 932 return (error); 933 } 934 935 /* 936 * Release all resources. The softc lock should not be held and the 937 * interrupt should already be torn down. 938 */ 939 static void 940 fxp_release(struct fxp_softc *sc) 941 { 942 struct fxp_rx *rxp; 943 struct fxp_tx *txp; 944 int i; 945 946 FXP_LOCK_ASSERT(sc, MA_NOTOWNED); 947 KASSERT(sc->ih == NULL, 948 ("fxp_release() called with intr handle still active")); 949 if (sc->miibus) 950 device_delete_child(sc->dev, sc->miibus); 951 bus_generic_detach(sc->dev); 952 ifmedia_removeall(&sc->sc_media); 953 if (sc->fxp_desc.cbl_list) { 954 bus_dmamap_unload(sc->cbl_tag, sc->cbl_map); 955 bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list, 956 sc->cbl_map); 957 } 958 if (sc->fxp_stats) { 959 bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap); 960 bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap); 961 } 962 if (sc->mcsp) { 963 bus_dmamap_unload(sc->mcs_tag, sc->mcs_map); 964 bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map); 965 } 966 bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res); 967 if (sc->fxp_rxmtag) { 968 for (i = 0; i < FXP_NRFABUFS; i++) { 969 rxp = &sc->fxp_desc.rx_list[i]; 970 if (rxp->rx_mbuf != NULL) { 971 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 972 BUS_DMASYNC_POSTREAD); 973 bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map); 974 m_freem(rxp->rx_mbuf); 975 } 976 bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map); 977 } 978 bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map); 979 bus_dma_tag_destroy(sc->fxp_rxmtag); 980 } 981 if (sc->fxp_txmtag) { 982 for (i = 0; i < FXP_NTXCB; i++) { 983 txp = &sc->fxp_desc.tx_list[i]; 984 if (txp->tx_mbuf != NULL) { 985 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, 986 BUS_DMASYNC_POSTWRITE); 987 bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map); 988 m_freem(txp->tx_mbuf); 989 } 990 bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map); 991 } 992 bus_dma_tag_destroy(sc->fxp_txmtag); 993 } 994 if (sc->fxp_stag) 995 bus_dma_tag_destroy(sc->fxp_stag); 996 if (sc->cbl_tag) 997 bus_dma_tag_destroy(sc->cbl_tag); 998 if (sc->mcs_tag) 999 bus_dma_tag_destroy(sc->mcs_tag); 1000 if (sc->ifp) 1001 if_free(sc->ifp); 1002 1003 mtx_destroy(&sc->sc_mtx); 1004 } 1005 1006 /* 1007 * Detach interface. 1008 */ 1009 static int 1010 fxp_detach(device_t dev) 1011 { 1012 struct fxp_softc *sc = device_get_softc(dev); 1013 1014 #ifdef DEVICE_POLLING 1015 if (if_getcapenable(sc->ifp) & IFCAP_POLLING) 1016 ether_poll_deregister(sc->ifp); 1017 #endif 1018 1019 FXP_LOCK(sc); 1020 /* 1021 * Stop DMA and drop transmit queue, but disable interrupts first. 1022 */ 1023 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 1024 fxp_stop(sc); 1025 FXP_UNLOCK(sc); 1026 callout_drain(&sc->stat_ch); 1027 1028 /* 1029 * Close down routes etc. 1030 */ 1031 ether_ifdetach(sc->ifp); 1032 1033 /* 1034 * Unhook interrupt before dropping lock. This is to prevent 1035 * races with fxp_intr(). 1036 */ 1037 bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih); 1038 sc->ih = NULL; 1039 1040 /* Release our allocated resources. */ 1041 fxp_release(sc); 1042 return (0); 1043 } 1044 1045 /* 1046 * Device shutdown routine. Called at system shutdown after sync. The 1047 * main purpose of this routine is to shut off receiver DMA so that 1048 * kernel memory doesn't get clobbered during warmboot. 1049 */ 1050 static int 1051 fxp_shutdown(device_t dev) 1052 { 1053 1054 /* 1055 * Make sure that DMA is disabled prior to reboot. Not doing 1056 * do could allow DMA to corrupt kernel memory during the 1057 * reboot before the driver initializes. 1058 */ 1059 return (fxp_suspend(dev)); 1060 } 1061 1062 /* 1063 * Device suspend routine. Stop the interface and save some PCI 1064 * settings in case the BIOS doesn't restore them properly on 1065 * resume. 1066 */ 1067 static int 1068 fxp_suspend(device_t dev) 1069 { 1070 struct fxp_softc *sc = device_get_softc(dev); 1071 if_t ifp; 1072 int pmc; 1073 uint16_t pmstat; 1074 1075 FXP_LOCK(sc); 1076 1077 ifp = sc->ifp; 1078 if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) { 1079 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2); 1080 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1081 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) { 1082 /* Request PME. */ 1083 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1084 sc->flags |= FXP_FLAG_WOL; 1085 /* Reconfigure hardware to accept magic frames. */ 1086 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 1087 fxp_init_body(sc, 0); 1088 } 1089 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1090 } 1091 fxp_stop(sc); 1092 1093 sc->suspended = 1; 1094 1095 FXP_UNLOCK(sc); 1096 return (0); 1097 } 1098 1099 /* 1100 * Device resume routine. re-enable busmastering, and restart the interface if 1101 * appropriate. 1102 */ 1103 static int 1104 fxp_resume(device_t dev) 1105 { 1106 struct fxp_softc *sc = device_get_softc(dev); 1107 if_t ifp = sc->ifp; 1108 int pmc; 1109 uint16_t pmstat; 1110 1111 FXP_LOCK(sc); 1112 1113 if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) { 1114 sc->flags &= ~FXP_FLAG_WOL; 1115 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2); 1116 /* Disable PME and clear PME status. */ 1117 pmstat &= ~PCIM_PSTAT_PMEENABLE; 1118 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1119 if ((sc->flags & FXP_FLAG_WOLCAP) != 0) 1120 CSR_WRITE_1(sc, FXP_CSR_PMDR, 1121 CSR_READ_1(sc, FXP_CSR_PMDR)); 1122 } 1123 1124 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 1125 DELAY(10); 1126 1127 /* reinitialize interface if necessary */ 1128 if (if_getflags(ifp) & IFF_UP) 1129 fxp_init_body(sc, 1); 1130 1131 sc->suspended = 0; 1132 1133 FXP_UNLOCK(sc); 1134 return (0); 1135 } 1136 1137 static void 1138 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) 1139 { 1140 uint16_t reg; 1141 int x; 1142 1143 /* 1144 * Shift in data. 1145 */ 1146 for (x = 1 << (length - 1); x; x >>= 1) { 1147 if (data & x) 1148 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1149 else 1150 reg = FXP_EEPROM_EECS; 1151 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1152 DELAY(1); 1153 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1154 DELAY(1); 1155 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1156 DELAY(1); 1157 } 1158 } 1159 1160 /* 1161 * Read from the serial EEPROM. Basically, you manually shift in 1162 * the read opcode (one bit at a time) and then shift in the address, 1163 * and then you shift out the data (all of this one bit at a time). 1164 * The word size is 16 bits, so you have to provide the address for 1165 * every 16 bits of data. 1166 */ 1167 static uint16_t 1168 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize) 1169 { 1170 uint16_t reg, data; 1171 int x; 1172 1173 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1174 /* 1175 * Shift in read opcode. 1176 */ 1177 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); 1178 /* 1179 * Shift in address. 1180 */ 1181 data = 0; 1182 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) { 1183 if (offset & x) 1184 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1185 else 1186 reg = FXP_EEPROM_EECS; 1187 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1188 DELAY(1); 1189 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1190 DELAY(1); 1191 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1192 DELAY(1); 1193 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO; 1194 data++; 1195 if (autosize && reg == 0) { 1196 sc->eeprom_size = data; 1197 break; 1198 } 1199 } 1200 /* 1201 * Shift out data. 1202 */ 1203 data = 0; 1204 reg = FXP_EEPROM_EECS; 1205 for (x = 1 << 15; x; x >>= 1) { 1206 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1207 DELAY(1); 1208 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1209 data |= x; 1210 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1211 DELAY(1); 1212 } 1213 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1214 DELAY(1); 1215 1216 return (data); 1217 } 1218 1219 static void 1220 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data) 1221 { 1222 int i; 1223 1224 /* 1225 * Erase/write enable. 1226 */ 1227 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1228 fxp_eeprom_shiftin(sc, 0x4, 3); 1229 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); 1230 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1231 DELAY(1); 1232 /* 1233 * Shift in write opcode, address, data. 1234 */ 1235 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1236 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); 1237 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); 1238 fxp_eeprom_shiftin(sc, data, 16); 1239 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1240 DELAY(1); 1241 /* 1242 * Wait for EEPROM to finish up. 1243 */ 1244 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1245 DELAY(1); 1246 for (i = 0; i < 1000; i++) { 1247 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1248 break; 1249 DELAY(50); 1250 } 1251 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1252 DELAY(1); 1253 /* 1254 * Erase/write disable. 1255 */ 1256 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1257 fxp_eeprom_shiftin(sc, 0x4, 3); 1258 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); 1259 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1260 DELAY(1); 1261 } 1262 1263 /* 1264 * From NetBSD: 1265 * 1266 * Figure out EEPROM size. 1267 * 1268 * 559's can have either 64-word or 256-word EEPROMs, the 558 1269 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet 1270 * talks about the existence of 16 to 256 word EEPROMs. 1271 * 1272 * The only known sizes are 64 and 256, where the 256 version is used 1273 * by CardBus cards to store CIS information. 1274 * 1275 * The address is shifted in msb-to-lsb, and after the last 1276 * address-bit the EEPROM is supposed to output a `dummy zero' bit, 1277 * after which follows the actual data. We try to detect this zero, by 1278 * probing the data-out bit in the EEPROM control register just after 1279 * having shifted in a bit. If the bit is zero, we assume we've 1280 * shifted enough address bits. The data-out should be tri-state, 1281 * before this, which should translate to a logical one. 1282 */ 1283 static void 1284 fxp_autosize_eeprom(struct fxp_softc *sc) 1285 { 1286 1287 /* guess maximum size of 256 words */ 1288 sc->eeprom_size = 8; 1289 1290 /* autosize */ 1291 (void) fxp_eeprom_getword(sc, 0, 1); 1292 } 1293 1294 static void 1295 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1296 { 1297 int i; 1298 1299 for (i = 0; i < words; i++) 1300 data[i] = fxp_eeprom_getword(sc, offset + i, 0); 1301 } 1302 1303 static void 1304 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1305 { 1306 int i; 1307 1308 for (i = 0; i < words; i++) 1309 fxp_eeprom_putword(sc, offset + i, data[i]); 1310 } 1311 1312 static void 1313 fxp_load_eeprom(struct fxp_softc *sc) 1314 { 1315 int i; 1316 uint16_t cksum; 1317 1318 fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size); 1319 cksum = 0; 1320 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) 1321 cksum += sc->eeprom[i]; 1322 cksum = 0xBABA - cksum; 1323 if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1]) 1324 device_printf(sc->dev, 1325 "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n", 1326 cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]); 1327 } 1328 1329 /* 1330 * Grab the softc lock and call the real fxp_start_body() routine 1331 */ 1332 static void 1333 fxp_start(if_t ifp) 1334 { 1335 struct fxp_softc *sc = if_getsoftc(ifp); 1336 1337 FXP_LOCK(sc); 1338 fxp_start_body(ifp); 1339 FXP_UNLOCK(sc); 1340 } 1341 1342 /* 1343 * Start packet transmission on the interface. 1344 * This routine must be called with the softc lock held, and is an 1345 * internal entry point only. 1346 */ 1347 static void 1348 fxp_start_body(if_t ifp) 1349 { 1350 struct fxp_softc *sc = if_getsoftc(ifp); 1351 struct mbuf *mb_head; 1352 int txqueued; 1353 1354 FXP_LOCK_ASSERT(sc, MA_OWNED); 1355 1356 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1357 IFF_DRV_RUNNING) 1358 return; 1359 1360 if (sc->tx_queued > FXP_NTXCB_HIWAT) 1361 fxp_txeof(sc); 1362 /* 1363 * We're finished if there is nothing more to add to the list or if 1364 * we're all filled up with buffers to transmit. 1365 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add 1366 * a NOP command when needed. 1367 */ 1368 txqueued = 0; 1369 while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) { 1370 1371 /* 1372 * Grab a packet to transmit. 1373 */ 1374 mb_head = if_dequeue(ifp); 1375 if (mb_head == NULL) 1376 break; 1377 1378 if (fxp_encap(sc, &mb_head)) { 1379 if (mb_head == NULL) 1380 break; 1381 if_sendq_prepend(ifp, mb_head); 1382 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 1383 } 1384 txqueued++; 1385 /* 1386 * Pass packet to bpf if there is a listener. 1387 */ 1388 if_bpfmtap(ifp, mb_head); 1389 } 1390 1391 /* 1392 * We're finished. If we added to the list, issue a RESUME to get DMA 1393 * going again if suspended. 1394 */ 1395 if (txqueued > 0) { 1396 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1397 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1398 fxp_scb_wait(sc); 1399 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 1400 /* 1401 * Set a 5 second timer just in case we don't hear 1402 * from the card again. 1403 */ 1404 sc->watchdog_timer = 5; 1405 } 1406 } 1407 1408 static int 1409 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head) 1410 { 1411 if_t ifp; 1412 struct mbuf *m; 1413 struct fxp_tx *txp; 1414 struct fxp_cb_tx *cbp; 1415 struct tcphdr *tcp; 1416 bus_dma_segment_t segs[FXP_NTXSEG]; 1417 int error, i, nseg, tcp_payload; 1418 1419 FXP_LOCK_ASSERT(sc, MA_OWNED); 1420 ifp = sc->ifp; 1421 1422 tcp_payload = 0; 1423 tcp = NULL; 1424 /* 1425 * Get pointer to next available tx desc. 1426 */ 1427 txp = sc->fxp_desc.tx_last->tx_next; 1428 1429 /* 1430 * A note in Appendix B of the Intel 8255x 10/100 Mbps 1431 * Ethernet Controller Family Open Source Software 1432 * Developer Manual says: 1433 * Using software parsing is only allowed with legal 1434 * TCP/IP or UDP/IP packets. 1435 * ... 1436 * For all other datagrams, hardware parsing must 1437 * be used. 1438 * Software parsing appears to truncate ICMP and 1439 * fragmented UDP packets that contain one to three 1440 * bytes in the second (and final) mbuf of the packet. 1441 */ 1442 if (sc->flags & FXP_FLAG_EXT_RFA) 1443 txp->tx_cb->ipcb_ip_activation_high = 1444 FXP_IPCB_HARDWAREPARSING_ENABLE; 1445 1446 m = *m_head; 1447 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1448 /* 1449 * 82550/82551 requires ethernet/IP/TCP headers must be 1450 * contained in the first active transmit buffer. 1451 */ 1452 struct ether_header *eh; 1453 struct ip *ip; 1454 uint32_t ip_off, poff; 1455 1456 if (M_WRITABLE(*m_head) == 0) { 1457 /* Get a writable copy. */ 1458 m = m_dup(*m_head, M_NOWAIT); 1459 m_freem(*m_head); 1460 if (m == NULL) { 1461 *m_head = NULL; 1462 return (ENOBUFS); 1463 } 1464 *m_head = m; 1465 } 1466 ip_off = sizeof(struct ether_header); 1467 m = m_pullup(*m_head, ip_off); 1468 if (m == NULL) { 1469 *m_head = NULL; 1470 return (ENOBUFS); 1471 } 1472 eh = mtod(m, struct ether_header *); 1473 /* Check the existence of VLAN tag. */ 1474 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1475 ip_off = sizeof(struct ether_vlan_header); 1476 m = m_pullup(m, ip_off); 1477 if (m == NULL) { 1478 *m_head = NULL; 1479 return (ENOBUFS); 1480 } 1481 } 1482 m = m_pullup(m, ip_off + sizeof(struct ip)); 1483 if (m == NULL) { 1484 *m_head = NULL; 1485 return (ENOBUFS); 1486 } 1487 ip = (struct ip *)(mtod(m, char *) + ip_off); 1488 poff = ip_off + (ip->ip_hl << 2); 1489 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1490 if (m == NULL) { 1491 *m_head = NULL; 1492 return (ENOBUFS); 1493 } 1494 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1495 m = m_pullup(m, poff + (tcp->th_off << 2)); 1496 if (m == NULL) { 1497 *m_head = NULL; 1498 return (ENOBUFS); 1499 } 1500 1501 /* 1502 * Since 82550/82551 doesn't modify IP length and pseudo 1503 * checksum in the first frame driver should compute it. 1504 */ 1505 ip = (struct ip *)(mtod(m, char *) + ip_off); 1506 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1507 ip->ip_sum = 0; 1508 ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) + 1509 (tcp->th_off << 2)); 1510 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 1511 htons(IPPROTO_TCP + (tcp->th_off << 2) + 1512 m->m_pkthdr.tso_segsz)); 1513 /* Compute total TCP payload. */ 1514 tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2); 1515 tcp_payload -= tcp->th_off << 2; 1516 *m_head = m; 1517 } else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) { 1518 /* 1519 * Deal with TCP/IP checksum offload. Note that 1520 * in order for TCP checksum offload to work, 1521 * the pseudo header checksum must have already 1522 * been computed and stored in the checksum field 1523 * in the TCP header. The stack should have 1524 * already done this for us. 1525 */ 1526 txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; 1527 if (m->m_pkthdr.csum_flags & CSUM_TCP) 1528 txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET; 1529 1530 #ifdef FXP_IP_CSUM_WAR 1531 /* 1532 * XXX The 82550 chip appears to have trouble 1533 * dealing with IP header checksums in very small 1534 * datagrams, namely fragments from 1 to 3 bytes 1535 * in size. For example, say you want to transmit 1536 * a UDP packet of 1473 bytes. The packet will be 1537 * fragmented over two IP datagrams, the latter 1538 * containing only one byte of data. The 82550 will 1539 * botch the header checksum on the 1-byte fragment. 1540 * As long as the datagram contains 4 or more bytes 1541 * of data, you're ok. 1542 * 1543 * The following code attempts to work around this 1544 * problem: if the datagram is less than 38 bytes 1545 * in size (14 bytes ether header, 20 bytes IP header, 1546 * plus 4 bytes of data), we punt and compute the IP 1547 * header checksum by hand. This workaround doesn't 1548 * work very well, however, since it can be fooled 1549 * by things like VLAN tags and IP options that make 1550 * the header sizes/offsets vary. 1551 */ 1552 1553 if (m->m_pkthdr.csum_flags & CSUM_IP) { 1554 if (m->m_pkthdr.len < 38) { 1555 struct ip *ip; 1556 m->m_data += ETHER_HDR_LEN; 1557 ip = mtod(m, struct ip *); 1558 ip->ip_sum = in_cksum(m, ip->ip_hl << 2); 1559 m->m_data -= ETHER_HDR_LEN; 1560 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1561 } else { 1562 txp->tx_cb->ipcb_ip_activation_high = 1563 FXP_IPCB_HARDWAREPARSING_ENABLE; 1564 txp->tx_cb->ipcb_ip_schedule |= 1565 FXP_IPCB_IP_CHECKSUM_ENABLE; 1566 } 1567 } 1568 #endif 1569 } 1570 1571 error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head, 1572 segs, &nseg, 0); 1573 if (error == EFBIG) { 1574 m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg); 1575 if (m == NULL) { 1576 m_freem(*m_head); 1577 *m_head = NULL; 1578 return (ENOMEM); 1579 } 1580 *m_head = m; 1581 error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, 1582 *m_head, segs, &nseg, 0); 1583 if (error != 0) { 1584 m_freem(*m_head); 1585 *m_head = NULL; 1586 return (ENOMEM); 1587 } 1588 } else if (error != 0) 1589 return (error); 1590 if (nseg == 0) { 1591 m_freem(*m_head); 1592 *m_head = NULL; 1593 return (EIO); 1594 } 1595 1596 KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments")); 1597 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE); 1598 1599 cbp = txp->tx_cb; 1600 for (i = 0; i < nseg; i++) { 1601 /* 1602 * If this is an 82550/82551, then we're using extended 1603 * TxCBs _and_ we're using checksum offload. This means 1604 * that the TxCB is really an IPCB. One major difference 1605 * between the two is that with plain extended TxCBs, 1606 * the bottom half of the TxCB contains two entries from 1607 * the TBD array, whereas IPCBs contain just one entry: 1608 * one entry (8 bytes) has been sacrificed for the TCP/IP 1609 * checksum offload control bits. So to make things work 1610 * right, we have to start filling in the TBD array 1611 * starting from a different place depending on whether 1612 * the chip is an 82550/82551 or not. 1613 */ 1614 if (sc->flags & FXP_FLAG_EXT_RFA) { 1615 cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr); 1616 cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len); 1617 } else { 1618 cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr); 1619 cbp->tbd[i].tb_size = htole32(segs[i].ds_len); 1620 } 1621 } 1622 if (sc->flags & FXP_FLAG_EXT_RFA) { 1623 /* Configure dynamic TBD for 82550/82551. */ 1624 cbp->tbd_number = 0xFF; 1625 cbp->tbd[nseg].tb_size |= htole32(0x8000); 1626 } else 1627 cbp->tbd_number = nseg; 1628 /* Configure TSO. */ 1629 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1630 cbp->tbdtso.tb_size = htole32(m->m_pkthdr.tso_segsz << 16); 1631 cbp->tbd[1].tb_size |= htole32(tcp_payload << 16); 1632 cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE | 1633 FXP_IPCB_IP_CHECKSUM_ENABLE | 1634 FXP_IPCB_TCP_PACKET | 1635 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; 1636 } 1637 /* Configure VLAN hardware tag insertion. */ 1638 if ((m->m_flags & M_VLANTAG) != 0) { 1639 cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag); 1640 txp->tx_cb->ipcb_ip_activation_high |= 1641 FXP_IPCB_INSERTVLAN_ENABLE; 1642 } 1643 1644 txp->tx_mbuf = m; 1645 txp->tx_cb->cb_status = 0; 1646 txp->tx_cb->byte_count = 0; 1647 if (sc->tx_queued != FXP_CXINT_THRESH - 1) 1648 txp->tx_cb->cb_command = 1649 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1650 FXP_CB_COMMAND_S); 1651 else 1652 txp->tx_cb->cb_command = 1653 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1654 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); 1655 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) 1656 txp->tx_cb->tx_threshold = tx_threshold; 1657 1658 /* 1659 * Advance the end of list forward. 1660 */ 1661 sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S); 1662 sc->fxp_desc.tx_last = txp; 1663 1664 /* 1665 * Advance the beginning of the list forward if there are 1666 * no other packets queued (when nothing is queued, tx_first 1667 * sits on the last TxCB that was sent out). 1668 */ 1669 if (sc->tx_queued == 0) 1670 sc->fxp_desc.tx_first = txp; 1671 1672 sc->tx_queued++; 1673 1674 return (0); 1675 } 1676 1677 #ifdef DEVICE_POLLING 1678 static poll_handler_t fxp_poll; 1679 1680 static int 1681 fxp_poll(if_t ifp, enum poll_cmd cmd, int count) 1682 { 1683 struct fxp_softc *sc = if_getsoftc(ifp); 1684 uint8_t statack; 1685 int rx_npkts = 0; 1686 1687 FXP_LOCK(sc); 1688 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 1689 FXP_UNLOCK(sc); 1690 return (rx_npkts); 1691 } 1692 1693 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA | 1694 FXP_SCB_STATACK_FR; 1695 if (cmd == POLL_AND_CHECK_STATUS) { 1696 uint8_t tmp; 1697 1698 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK); 1699 if (tmp == 0xff || tmp == 0) { 1700 FXP_UNLOCK(sc); 1701 return (rx_npkts); /* nothing to do */ 1702 } 1703 tmp &= ~statack; 1704 /* ack what we can */ 1705 if (tmp != 0) 1706 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp); 1707 statack |= tmp; 1708 } 1709 rx_npkts = fxp_intr_body(sc, ifp, statack, count); 1710 FXP_UNLOCK(sc); 1711 return (rx_npkts); 1712 } 1713 #endif /* DEVICE_POLLING */ 1714 1715 /* 1716 * Process interface interrupts. 1717 */ 1718 static void 1719 fxp_intr(void *xsc) 1720 { 1721 struct fxp_softc *sc = xsc; 1722 if_t ifp = sc->ifp; 1723 uint8_t statack; 1724 1725 FXP_LOCK(sc); 1726 if (sc->suspended) { 1727 FXP_UNLOCK(sc); 1728 return; 1729 } 1730 1731 #ifdef DEVICE_POLLING 1732 if (if_getcapenable(ifp) & IFCAP_POLLING) { 1733 FXP_UNLOCK(sc); 1734 return; 1735 } 1736 #endif 1737 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { 1738 /* 1739 * It should not be possible to have all bits set; the 1740 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If 1741 * all bits are set, this may indicate that the card has 1742 * been physically ejected, so ignore it. 1743 */ 1744 if (statack == 0xff) { 1745 FXP_UNLOCK(sc); 1746 return; 1747 } 1748 1749 /* 1750 * First ACK all the interrupts in this pass. 1751 */ 1752 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); 1753 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) 1754 fxp_intr_body(sc, ifp, statack, -1); 1755 } 1756 FXP_UNLOCK(sc); 1757 } 1758 1759 static void 1760 fxp_txeof(struct fxp_softc *sc) 1761 { 1762 if_t ifp; 1763 struct fxp_tx *txp; 1764 1765 ifp = sc->ifp; 1766 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1767 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1768 for (txp = sc->fxp_desc.tx_first; sc->tx_queued && 1769 (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0; 1770 txp = txp->tx_next) { 1771 if (txp->tx_mbuf != NULL) { 1772 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, 1773 BUS_DMASYNC_POSTWRITE); 1774 bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map); 1775 m_freem(txp->tx_mbuf); 1776 txp->tx_mbuf = NULL; 1777 /* clear this to reset csum offload bits */ 1778 txp->tx_cb->tbd[0].tb_addr = 0; 1779 } 1780 sc->tx_queued--; 1781 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 1782 } 1783 sc->fxp_desc.tx_first = txp; 1784 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1785 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1786 if (sc->tx_queued == 0) 1787 sc->watchdog_timer = 0; 1788 } 1789 1790 static void 1791 fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m, 1792 uint16_t status, int pos) 1793 { 1794 struct ether_header *eh; 1795 struct ip *ip; 1796 struct udphdr *uh; 1797 int32_t hlen, len, pktlen, temp32; 1798 uint16_t csum, *opts; 1799 1800 if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) { 1801 if ((status & FXP_RFA_STATUS_PARSE) != 0) { 1802 if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID) 1803 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1804 if (status & FXP_RFDX_CS_IP_CSUM_VALID) 1805 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1806 if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) && 1807 (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) { 1808 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 1809 CSUM_PSEUDO_HDR; 1810 m->m_pkthdr.csum_data = 0xffff; 1811 } 1812 } 1813 return; 1814 } 1815 1816 pktlen = m->m_pkthdr.len; 1817 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) 1818 return; 1819 eh = mtod(m, struct ether_header *); 1820 if (eh->ether_type != htons(ETHERTYPE_IP)) 1821 return; 1822 ip = (struct ip *)(eh + 1); 1823 if (ip->ip_v != IPVERSION) 1824 return; 1825 1826 hlen = ip->ip_hl << 2; 1827 pktlen -= sizeof(struct ether_header); 1828 if (hlen < sizeof(struct ip)) 1829 return; 1830 if (ntohs(ip->ip_len) < hlen) 1831 return; 1832 if (ntohs(ip->ip_len) != pktlen) 1833 return; 1834 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) 1835 return; /* can't handle fragmented packet */ 1836 1837 switch (ip->ip_p) { 1838 case IPPROTO_TCP: 1839 if (pktlen < (hlen + sizeof(struct tcphdr))) 1840 return; 1841 break; 1842 case IPPROTO_UDP: 1843 if (pktlen < (hlen + sizeof(struct udphdr))) 1844 return; 1845 uh = (struct udphdr *)((caddr_t)ip + hlen); 1846 if (uh->uh_sum == 0) 1847 return; /* no checksum */ 1848 break; 1849 default: 1850 return; 1851 } 1852 /* Extract computed checksum. */ 1853 csum = be16dec(mtod(m, char *) + pos); 1854 /* checksum fixup for IP options */ 1855 len = hlen - sizeof(struct ip); 1856 if (len > 0) { 1857 opts = (uint16_t *)(ip + 1); 1858 for (; len > 0; len -= sizeof(uint16_t), opts++) { 1859 temp32 = csum - *opts; 1860 temp32 = (temp32 >> 16) + (temp32 & 65535); 1861 csum = temp32 & 65535; 1862 } 1863 } 1864 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 1865 m->m_pkthdr.csum_data = csum; 1866 } 1867 1868 static int 1869 fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack, 1870 int count) 1871 { 1872 struct mbuf *m; 1873 struct fxp_rx *rxp; 1874 struct fxp_rfa *rfa; 1875 int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0; 1876 int rx_npkts; 1877 uint16_t status; 1878 1879 rx_npkts = 0; 1880 FXP_LOCK_ASSERT(sc, MA_OWNED); 1881 1882 if (rnr) 1883 sc->rnr++; 1884 #ifdef DEVICE_POLLING 1885 /* Pick up a deferred RNR condition if `count' ran out last time. */ 1886 if (sc->flags & FXP_FLAG_DEFERRED_RNR) { 1887 sc->flags &= ~FXP_FLAG_DEFERRED_RNR; 1888 rnr = 1; 1889 } 1890 #endif 1891 1892 /* 1893 * Free any finished transmit mbuf chains. 1894 * 1895 * Handle the CNA event likt a CXTNO event. It used to 1896 * be that this event (control unit not ready) was not 1897 * encountered, but it is now with the SMPng modifications. 1898 * The exact sequence of events that occur when the interface 1899 * is brought up are different now, and if this event 1900 * goes unhandled, the configuration/rxfilter setup sequence 1901 * can stall for several seconds. The result is that no 1902 * packets go out onto the wire for about 5 to 10 seconds 1903 * after the interface is ifconfig'ed for the first time. 1904 */ 1905 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) 1906 fxp_txeof(sc); 1907 1908 /* 1909 * Try to start more packets transmitting. 1910 */ 1911 if (!if_sendq_empty(ifp)) 1912 fxp_start_body(ifp); 1913 1914 /* 1915 * Just return if nothing happened on the receive side. 1916 */ 1917 if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0) 1918 return (rx_npkts); 1919 1920 /* 1921 * Process receiver interrupts. If a no-resource (RNR) 1922 * condition exists, get whatever packets we can and 1923 * re-start the receiver. 1924 * 1925 * When using polling, we do not process the list to completion, 1926 * so when we get an RNR interrupt we must defer the restart 1927 * until we hit the last buffer with the C bit set. 1928 * If we run out of cycles and rfa_headm has the C bit set, 1929 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so 1930 * that the info will be used in the subsequent polling cycle. 1931 */ 1932 for (;;) { 1933 rxp = sc->fxp_desc.rx_head; 1934 m = rxp->rx_mbuf; 1935 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + 1936 RFA_ALIGNMENT_FUDGE); 1937 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 1938 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1939 1940 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */ 1941 if (count >= 0 && count-- == 0) { 1942 if (rnr) { 1943 /* Defer RNR processing until the next time. */ 1944 sc->flags |= FXP_FLAG_DEFERRED_RNR; 1945 rnr = 0; 1946 } 1947 break; 1948 } 1949 #endif /* DEVICE_POLLING */ 1950 1951 status = le16toh(rfa->rfa_status); 1952 if ((status & FXP_RFA_STATUS_C) == 0) 1953 break; 1954 1955 if ((status & FXP_RFA_STATUS_RNR) != 0) 1956 rnr++; 1957 /* 1958 * Advance head forward. 1959 */ 1960 sc->fxp_desc.rx_head = rxp->rx_next; 1961 1962 /* 1963 * Add a new buffer to the receive chain. 1964 * If this fails, the old buffer is recycled 1965 * instead. 1966 */ 1967 if (fxp_new_rfabuf(sc, rxp) == 0) { 1968 int total_len; 1969 1970 /* 1971 * Fetch packet length (the top 2 bits of 1972 * actual_size are flags set by the controller 1973 * upon completion), and drop the packet in case 1974 * of bogus length or CRC errors. 1975 */ 1976 total_len = le16toh(rfa->actual_size) & 0x3fff; 1977 if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 && 1978 (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) { 1979 /* Adjust for appended checksum bytes. */ 1980 total_len -= 2; 1981 } 1982 if (total_len < (int)sizeof(struct ether_header) || 1983 total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE - 1984 sc->rfa_size) || 1985 status & (FXP_RFA_STATUS_CRC | 1986 FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) { 1987 m_freem(m); 1988 fxp_add_rfabuf(sc, rxp); 1989 continue; 1990 } 1991 1992 m->m_pkthdr.len = m->m_len = total_len; 1993 if_setrcvif(m, ifp); 1994 1995 /* Do IP checksum checking. */ 1996 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) 1997 fxp_rxcsum(sc, ifp, m, status, total_len); 1998 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 && 1999 (status & FXP_RFA_STATUS_VLAN) != 0) { 2000 m->m_pkthdr.ether_vtag = 2001 ntohs(rfa->rfax_vlan_id); 2002 m->m_flags |= M_VLANTAG; 2003 } 2004 /* 2005 * Drop locks before calling if_input() since it 2006 * may re-enter fxp_start() in the netisr case. 2007 * This would result in a lock reversal. Better 2008 * performance might be obtained by chaining all 2009 * packets received, dropping the lock, and then 2010 * calling if_input() on each one. 2011 */ 2012 FXP_UNLOCK(sc); 2013 if_input(ifp, m); 2014 FXP_LOCK(sc); 2015 rx_npkts++; 2016 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) 2017 return (rx_npkts); 2018 } else { 2019 /* Reuse RFA and loaded DMA map. */ 2020 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2021 fxp_discard_rfabuf(sc, rxp); 2022 } 2023 fxp_add_rfabuf(sc, rxp); 2024 } 2025 if (rnr) { 2026 fxp_scb_wait(sc); 2027 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 2028 sc->fxp_desc.rx_head->rx_addr); 2029 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 2030 } 2031 return (rx_npkts); 2032 } 2033 2034 static void 2035 fxp_update_stats(struct fxp_softc *sc) 2036 { 2037 if_t ifp = sc->ifp; 2038 struct fxp_stats *sp = sc->fxp_stats; 2039 struct fxp_hwstats *hsp; 2040 uint32_t *status; 2041 2042 FXP_LOCK_ASSERT(sc, MA_OWNED); 2043 2044 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 2045 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2046 /* Update statistical counters. */ 2047 if (sc->revision >= FXP_REV_82559_A0) 2048 status = &sp->completion_status; 2049 else if (sc->revision >= FXP_REV_82558_A4) 2050 status = (uint32_t *)&sp->tx_tco; 2051 else 2052 status = &sp->tx_pause; 2053 if (*status == htole32(FXP_STATS_DR_COMPLETE)) { 2054 hsp = &sc->fxp_hwstats; 2055 hsp->tx_good += le32toh(sp->tx_good); 2056 hsp->tx_maxcols += le32toh(sp->tx_maxcols); 2057 hsp->tx_latecols += le32toh(sp->tx_latecols); 2058 hsp->tx_underruns += le32toh(sp->tx_underruns); 2059 hsp->tx_lostcrs += le32toh(sp->tx_lostcrs); 2060 hsp->tx_deffered += le32toh(sp->tx_deffered); 2061 hsp->tx_single_collisions += le32toh(sp->tx_single_collisions); 2062 hsp->tx_multiple_collisions += 2063 le32toh(sp->tx_multiple_collisions); 2064 hsp->tx_total_collisions += le32toh(sp->tx_total_collisions); 2065 hsp->rx_good += le32toh(sp->rx_good); 2066 hsp->rx_crc_errors += le32toh(sp->rx_crc_errors); 2067 hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors); 2068 hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors); 2069 hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors); 2070 hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors); 2071 hsp->rx_shortframes += le32toh(sp->rx_shortframes); 2072 hsp->tx_pause += le32toh(sp->tx_pause); 2073 hsp->rx_pause += le32toh(sp->rx_pause); 2074 hsp->rx_controls += le32toh(sp->rx_controls); 2075 hsp->tx_tco += le16toh(sp->tx_tco); 2076 hsp->rx_tco += le16toh(sp->rx_tco); 2077 2078 if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good)); 2079 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 2080 le32toh(sp->tx_total_collisions)); 2081 if (sp->rx_good) { 2082 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 2083 le32toh(sp->rx_good)); 2084 sc->rx_idle_secs = 0; 2085 } else if (sc->flags & FXP_FLAG_RXBUG) { 2086 /* 2087 * Receiver's been idle for another second. 2088 */ 2089 sc->rx_idle_secs++; 2090 } 2091 if_inc_counter(ifp, IFCOUNTER_IERRORS, 2092 le32toh(sp->rx_crc_errors) + 2093 le32toh(sp->rx_alignment_errors) + 2094 le32toh(sp->rx_rnr_errors) + 2095 le32toh(sp->rx_overrun_errors)); 2096 /* 2097 * If any transmit underruns occurred, bump up the transmit 2098 * threshold by another 512 bytes (64 * 8). 2099 */ 2100 if (sp->tx_underruns) { 2101 if_inc_counter(ifp, IFCOUNTER_OERRORS, 2102 le32toh(sp->tx_underruns)); 2103 if (tx_threshold < 192) 2104 tx_threshold += 64; 2105 } 2106 *status = 0; 2107 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 2108 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2109 } 2110 } 2111 2112 /* 2113 * Update packet in/out/collision statistics. The i82557 doesn't 2114 * allow you to access these counters without doing a fairly 2115 * expensive DMA to get _all_ of the statistics it maintains, so 2116 * we do this operation here only once per second. The statistics 2117 * counters in the kernel are updated from the previous dump-stats 2118 * DMA and then a new dump-stats DMA is started. The on-chip 2119 * counters are zeroed when the DMA completes. If we can't start 2120 * the DMA immediately, we don't wait - we just prepare to read 2121 * them again next time. 2122 */ 2123 static void 2124 fxp_tick(void *xsc) 2125 { 2126 struct fxp_softc *sc = xsc; 2127 if_t ifp = sc->ifp; 2128 2129 FXP_LOCK_ASSERT(sc, MA_OWNED); 2130 2131 /* Update statistical counters. */ 2132 fxp_update_stats(sc); 2133 2134 /* 2135 * Release any xmit buffers that have completed DMA. This isn't 2136 * strictly necessary to do here, but it's advantagous for mbufs 2137 * with external storage to be released in a timely manner rather 2138 * than being defered for a potentially long time. This limits 2139 * the delay to a maximum of one second. 2140 */ 2141 fxp_txeof(sc); 2142 2143 /* 2144 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, 2145 * then assume the receiver has locked up and attempt to clear 2146 * the condition by reprogramming the multicast filter. This is 2147 * a work-around for a bug in the 82557 where the receiver locks 2148 * up if it gets certain types of garbage in the synchronization 2149 * bits prior to the packet header. This bug is supposed to only 2150 * occur in 10Mbps mode, but has been seen to occur in 100Mbps 2151 * mode as well (perhaps due to a 10/100 speed transition). 2152 */ 2153 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { 2154 sc->rx_idle_secs = 0; 2155 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2156 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2157 fxp_init_body(sc, 1); 2158 } 2159 return; 2160 } 2161 /* 2162 * If there is no pending command, start another stats 2163 * dump. Otherwise punt for now. 2164 */ 2165 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { 2166 /* 2167 * Start another stats dump. 2168 */ 2169 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); 2170 } 2171 if (sc->miibus != NULL) 2172 mii_tick(device_get_softc(sc->miibus)); 2173 2174 /* 2175 * Check that chip hasn't hung. 2176 */ 2177 fxp_watchdog(sc); 2178 2179 /* 2180 * Schedule another timeout one second from now. 2181 */ 2182 callout_reset(&sc->stat_ch, hz, fxp_tick, sc); 2183 } 2184 2185 /* 2186 * Stop the interface. Cancels the statistics updater and resets 2187 * the interface. 2188 */ 2189 static void 2190 fxp_stop(struct fxp_softc *sc) 2191 { 2192 if_t ifp = sc->ifp; 2193 struct fxp_tx *txp; 2194 int i; 2195 2196 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); 2197 sc->watchdog_timer = 0; 2198 2199 /* 2200 * Cancel stats updater. 2201 */ 2202 callout_stop(&sc->stat_ch); 2203 2204 /* 2205 * Preserve PCI configuration, configure, IA/multicast 2206 * setup and put RU and CU into idle state. 2207 */ 2208 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 2209 DELAY(50); 2210 /* Disable interrupts. */ 2211 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 2212 2213 fxp_update_stats(sc); 2214 2215 /* 2216 * Release any xmit buffers. 2217 */ 2218 txp = sc->fxp_desc.tx_list; 2219 for (i = 0; i < FXP_NTXCB; i++) { 2220 if (txp[i].tx_mbuf != NULL) { 2221 bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map, 2222 BUS_DMASYNC_POSTWRITE); 2223 bus_dmamap_unload(sc->fxp_txmtag, txp[i].tx_map); 2224 m_freem(txp[i].tx_mbuf); 2225 txp[i].tx_mbuf = NULL; 2226 /* clear this to reset csum offload bits */ 2227 txp[i].tx_cb->tbd[0].tb_addr = 0; 2228 } 2229 } 2230 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2231 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2232 sc->tx_queued = 0; 2233 } 2234 2235 /* 2236 * Watchdog/transmission transmit timeout handler. Called when a 2237 * transmission is started on the interface, but no interrupt is 2238 * received before the timeout. This usually indicates that the 2239 * card has wedged for some reason. 2240 */ 2241 static void 2242 fxp_watchdog(struct fxp_softc *sc) 2243 { 2244 if_t ifp = sc->ifp; 2245 2246 FXP_LOCK_ASSERT(sc, MA_OWNED); 2247 2248 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 2249 return; 2250 2251 device_printf(sc->dev, "device timeout\n"); 2252 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2253 2254 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2255 fxp_init_body(sc, 1); 2256 } 2257 2258 /* 2259 * Acquire locks and then call the real initialization function. This 2260 * is necessary because ether_ioctl() calls if_init() and this would 2261 * result in mutex recursion if the mutex was held. 2262 */ 2263 static void 2264 fxp_init(void *xsc) 2265 { 2266 struct fxp_softc *sc = xsc; 2267 2268 FXP_LOCK(sc); 2269 fxp_init_body(sc, 1); 2270 FXP_UNLOCK(sc); 2271 } 2272 2273 /* 2274 * Perform device initialization. This routine must be called with the 2275 * softc lock held. 2276 */ 2277 static void 2278 fxp_init_body(struct fxp_softc *sc, int setmedia) 2279 { 2280 if_t ifp = sc->ifp; 2281 struct mii_data *mii; 2282 struct fxp_cb_config *cbp; 2283 struct fxp_cb_ias *cb_ias; 2284 struct fxp_cb_tx *tcbp; 2285 struct fxp_tx *txp; 2286 int i, prm; 2287 2288 FXP_LOCK_ASSERT(sc, MA_OWNED); 2289 2290 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2291 return; 2292 2293 /* 2294 * Cancel any pending I/O 2295 */ 2296 fxp_stop(sc); 2297 2298 /* 2299 * Issue software reset, which also unloads the microcode. 2300 */ 2301 sc->flags &= ~FXP_FLAG_UCODE; 2302 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 2303 DELAY(50); 2304 2305 prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0; 2306 2307 /* 2308 * Initialize base of CBL and RFA memory. Loading with zero 2309 * sets it up for regular linear addressing. 2310 */ 2311 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); 2312 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); 2313 2314 fxp_scb_wait(sc); 2315 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); 2316 2317 /* 2318 * Initialize base of dump-stats buffer. 2319 */ 2320 fxp_scb_wait(sc); 2321 bzero(sc->fxp_stats, sizeof(struct fxp_stats)); 2322 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 2323 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2324 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr); 2325 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); 2326 2327 /* 2328 * Attempt to load microcode if requested. 2329 * For ICH based controllers do not load microcode. 2330 */ 2331 if (sc->ident->ich == 0) { 2332 if (if_getflags(ifp) & IFF_LINK0 && 2333 (sc->flags & FXP_FLAG_UCODE) == 0) 2334 fxp_load_ucode(sc); 2335 } 2336 2337 /* 2338 * Set IFF_ALLMULTI status. It's needed in configure action 2339 * command. 2340 */ 2341 fxp_mc_addrs(sc); 2342 2343 /* 2344 * We temporarily use memory that contains the TxCB list to 2345 * construct the config CB. The TxCB list memory is rebuilt 2346 * later. 2347 */ 2348 cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list; 2349 2350 /* 2351 * This bcopy is kind of disgusting, but there are a bunch of must be 2352 * zero and must be one bits in this structure and this is the easiest 2353 * way to initialize them all to proper values. 2354 */ 2355 bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template)); 2356 2357 cbp->cb_status = 0; 2358 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG | 2359 FXP_CB_COMMAND_EL); 2360 cbp->link_addr = 0xffffffff; /* (no) next command */ 2361 cbp->byte_count = sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22; 2362 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ 2363 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ 2364 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ 2365 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0; 2366 cbp->type_enable = 0; /* actually reserved */ 2367 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0; 2368 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0; 2369 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ 2370 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ 2371 cbp->dma_mbce = 0; /* (disable) dma max counters */ 2372 cbp->late_scb = 0; /* (don't) defer SCB update */ 2373 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */ 2374 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */ 2375 cbp->ci_int = 1; /* interrupt on CU idle */ 2376 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1; 2377 cbp->ext_stats_dis = 1; /* disable extended counters */ 2378 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */ 2379 cbp->save_bf = sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm; 2380 cbp->disc_short_rx = !prm; /* discard short packets */ 2381 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */ 2382 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */ 2383 cbp->dyn_tbd = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2384 cbp->ext_rfa = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2385 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1; 2386 cbp->csma_dis = 0; /* (don't) disable link */ 2387 cbp->tcp_udp_cksum = ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 && 2388 (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0; 2389 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */ 2390 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */ 2391 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */ 2392 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */ 2393 cbp->nsai = 1; /* (don't) disable source addr insert */ 2394 cbp->preamble_length = 2; /* (7 byte) preamble */ 2395 cbp->loopback = 0; /* (don't) loopback */ 2396 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ 2397 cbp->linear_pri_mode = 0; /* (wait after xmit only) */ 2398 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ 2399 cbp->promiscuous = prm; /* promiscuous mode */ 2400 cbp->bcast_disable = 0; /* (don't) disable broadcasts */ 2401 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/ 2402 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */ 2403 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */ 2404 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0; 2405 2406 cbp->stripping = !prm; /* truncate rx packet to byte count */ 2407 cbp->padding = 1; /* (do) pad short tx packets */ 2408 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ 2409 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0; 2410 cbp->ia_wake_en = 0; /* (don't) wake up on address match */ 2411 cbp->magic_pkt_dis = sc->flags & FXP_FLAG_WOL ? 0 : 1; 2412 cbp->force_fdx = 0; /* (don't) force full duplex */ 2413 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ 2414 cbp->multi_ia = 0; /* (don't) accept multiple IAs */ 2415 cbp->mc_all = if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm; 2416 cbp->gamla_rx = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2417 cbp->vlan_strip_en = ((sc->flags & FXP_FLAG_EXT_RFA) != 0 && 2418 (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0; 2419 2420 if (sc->revision == FXP_REV_82557) { 2421 /* 2422 * The 82557 has no hardware flow control, the values 2423 * below are the defaults for the chip. 2424 */ 2425 cbp->fc_delay_lsb = 0; 2426 cbp->fc_delay_msb = 0x40; 2427 cbp->pri_fc_thresh = 3; 2428 cbp->tx_fc_dis = 0; 2429 cbp->rx_fc_restop = 0; 2430 cbp->rx_fc_restart = 0; 2431 cbp->fc_filter = 0; 2432 cbp->pri_fc_loc = 1; 2433 } else { 2434 /* Set pause RX FIFO threshold to 1KB. */ 2435 CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1); 2436 /* Set pause time. */ 2437 cbp->fc_delay_lsb = 0xff; 2438 cbp->fc_delay_msb = 0xff; 2439 cbp->pri_fc_thresh = 3; 2440 mii = device_get_softc(sc->miibus); 2441 if ((IFM_OPTIONS(mii->mii_media_active) & 2442 IFM_ETH_TXPAUSE) != 0) 2443 /* enable transmit FC */ 2444 cbp->tx_fc_dis = 0; 2445 else 2446 /* disable transmit FC */ 2447 cbp->tx_fc_dis = 1; 2448 if ((IFM_OPTIONS(mii->mii_media_active) & 2449 IFM_ETH_RXPAUSE) != 0) { 2450 /* enable FC restart/restop frames */ 2451 cbp->rx_fc_restart = 1; 2452 cbp->rx_fc_restop = 1; 2453 } else { 2454 /* disable FC restart/restop frames */ 2455 cbp->rx_fc_restart = 0; 2456 cbp->rx_fc_restop = 0; 2457 } 2458 cbp->fc_filter = !prm; /* drop FC frames to host */ 2459 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */ 2460 } 2461 2462 /* Enable 82558 and 82559 extended statistics functionality. */ 2463 if (sc->revision >= FXP_REV_82558_A4) { 2464 if (sc->revision >= FXP_REV_82559_A0) { 2465 /* 2466 * Extend configuration table size to 32 2467 * to include TCO configuration. 2468 */ 2469 cbp->byte_count = 32; 2470 cbp->ext_stats_dis = 1; 2471 /* Enable TCO stats. */ 2472 cbp->tno_int_or_tco_en = 1; 2473 cbp->gamla_rx = 1; 2474 } else 2475 cbp->ext_stats_dis = 0; 2476 } 2477 2478 /* 2479 * Start the config command/DMA. 2480 */ 2481 fxp_scb_wait(sc); 2482 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2483 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2484 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2485 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2486 /* ...and wait for it to complete. */ 2487 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 2488 2489 /* 2490 * Now initialize the station address. Temporarily use the TxCB 2491 * memory area like we did above for the config CB. 2492 */ 2493 cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list; 2494 cb_ias->cb_status = 0; 2495 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL); 2496 cb_ias->link_addr = 0xffffffff; 2497 bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN); 2498 2499 /* 2500 * Start the IAS (Individual Address Setup) command/DMA. 2501 */ 2502 fxp_scb_wait(sc); 2503 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2504 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2505 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2506 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2507 /* ...and wait for it to complete. */ 2508 fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map); 2509 2510 /* 2511 * Initialize the multicast address list. 2512 */ 2513 fxp_mc_setup(sc); 2514 2515 /* 2516 * Initialize transmit control block (TxCB) list. 2517 */ 2518 txp = sc->fxp_desc.tx_list; 2519 tcbp = sc->fxp_desc.cbl_list; 2520 bzero(tcbp, FXP_TXCB_SZ); 2521 for (i = 0; i < FXP_NTXCB; i++) { 2522 txp[i].tx_mbuf = NULL; 2523 tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK); 2524 tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP); 2525 tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr + 2526 (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx))); 2527 if (sc->flags & FXP_FLAG_EXT_TXCB) 2528 tcbp[i].tbd_array_addr = 2529 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2])); 2530 else 2531 tcbp[i].tbd_array_addr = 2532 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0])); 2533 txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK]; 2534 } 2535 /* 2536 * Set the suspend flag on the first TxCB and start the control 2537 * unit. It will execute the NOP and then suspend. 2538 */ 2539 tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S); 2540 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2541 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2542 sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp; 2543 sc->tx_queued = 1; 2544 2545 fxp_scb_wait(sc); 2546 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2547 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2548 2549 /* 2550 * Initialize receiver buffer area - RFA. 2551 */ 2552 fxp_scb_wait(sc); 2553 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr); 2554 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 2555 2556 if (sc->miibus != NULL && setmedia != 0) 2557 mii_mediachg(device_get_softc(sc->miibus)); 2558 2559 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE); 2560 2561 /* 2562 * Enable interrupts. 2563 */ 2564 #ifdef DEVICE_POLLING 2565 /* 2566 * ... but only do that if we are not polling. And because (presumably) 2567 * the default is interrupts on, we need to disable them explicitly! 2568 */ 2569 if (if_getcapenable(ifp) & IFCAP_POLLING ) 2570 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 2571 else 2572 #endif /* DEVICE_POLLING */ 2573 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 2574 2575 /* 2576 * Start stats updater. 2577 */ 2578 callout_reset(&sc->stat_ch, hz, fxp_tick, sc); 2579 } 2580 2581 static int 2582 fxp_serial_ifmedia_upd(if_t ifp) 2583 { 2584 2585 return (0); 2586 } 2587 2588 static void 2589 fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 2590 { 2591 2592 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2593 } 2594 2595 /* 2596 * Change media according to request. 2597 */ 2598 static int 2599 fxp_ifmedia_upd(if_t ifp) 2600 { 2601 struct fxp_softc *sc = if_getsoftc(ifp); 2602 struct mii_data *mii; 2603 struct mii_softc *miisc; 2604 2605 mii = device_get_softc(sc->miibus); 2606 FXP_LOCK(sc); 2607 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 2608 PHY_RESET(miisc); 2609 mii_mediachg(mii); 2610 FXP_UNLOCK(sc); 2611 return (0); 2612 } 2613 2614 /* 2615 * Notify the world which media we're using. 2616 */ 2617 static void 2618 fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 2619 { 2620 struct fxp_softc *sc = if_getsoftc(ifp); 2621 struct mii_data *mii; 2622 2623 mii = device_get_softc(sc->miibus); 2624 FXP_LOCK(sc); 2625 mii_pollstat(mii); 2626 ifmr->ifm_active = mii->mii_media_active; 2627 ifmr->ifm_status = mii->mii_media_status; 2628 FXP_UNLOCK(sc); 2629 } 2630 2631 /* 2632 * Add a buffer to the end of the RFA buffer list. 2633 * Return 0 if successful, 1 for failure. A failure results in 2634 * reusing the RFA buffer. 2635 * The RFA struct is stuck at the beginning of mbuf cluster and the 2636 * data pointer is fixed up to point just past it. 2637 */ 2638 static int 2639 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2640 { 2641 struct mbuf *m; 2642 struct fxp_rfa *rfa; 2643 bus_dmamap_t tmp_map; 2644 int error; 2645 2646 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2647 if (m == NULL) 2648 return (ENOBUFS); 2649 2650 /* 2651 * Move the data pointer up so that the incoming data packet 2652 * will be 32-bit aligned. 2653 */ 2654 m->m_data += RFA_ALIGNMENT_FUDGE; 2655 2656 /* 2657 * Get a pointer to the base of the mbuf cluster and move 2658 * data start past it. 2659 */ 2660 rfa = mtod(m, struct fxp_rfa *); 2661 m->m_data += sc->rfa_size; 2662 rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE); 2663 2664 rfa->rfa_status = 0; 2665 rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL); 2666 rfa->actual_size = 0; 2667 m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE - 2668 sc->rfa_size; 2669 2670 /* 2671 * Initialize the rest of the RFA. Note that since the RFA 2672 * is misaligned, we cannot store values directly. We're thus 2673 * using the le32enc() function which handles endianness and 2674 * is also alignment-safe. 2675 */ 2676 le32enc(&rfa->link_addr, 0xffffffff); 2677 le32enc(&rfa->rbd_addr, 0xffffffff); 2678 2679 /* Map the RFA into DMA memory. */ 2680 error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa, 2681 MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr, 2682 &rxp->rx_addr, BUS_DMA_NOWAIT); 2683 if (error) { 2684 m_freem(m); 2685 return (error); 2686 } 2687 2688 if (rxp->rx_mbuf != NULL) 2689 bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map); 2690 tmp_map = sc->spare_map; 2691 sc->spare_map = rxp->rx_map; 2692 rxp->rx_map = tmp_map; 2693 rxp->rx_mbuf = m; 2694 2695 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 2696 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2697 return (0); 2698 } 2699 2700 static void 2701 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2702 { 2703 struct fxp_rfa *p_rfa; 2704 struct fxp_rx *p_rx; 2705 2706 /* 2707 * If there are other buffers already on the list, attach this 2708 * one to the end by fixing up the tail to point to this one. 2709 */ 2710 if (sc->fxp_desc.rx_head != NULL) { 2711 p_rx = sc->fxp_desc.rx_tail; 2712 p_rfa = (struct fxp_rfa *) 2713 (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE); 2714 p_rx->rx_next = rxp; 2715 le32enc(&p_rfa->link_addr, rxp->rx_addr); 2716 p_rfa->rfa_control = 0; 2717 bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map, 2718 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2719 } else { 2720 rxp->rx_next = NULL; 2721 sc->fxp_desc.rx_head = rxp; 2722 } 2723 sc->fxp_desc.rx_tail = rxp; 2724 } 2725 2726 static void 2727 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2728 { 2729 struct mbuf *m; 2730 struct fxp_rfa *rfa; 2731 2732 m = rxp->rx_mbuf; 2733 m->m_data = m->m_ext.ext_buf; 2734 /* 2735 * Move the data pointer up so that the incoming data packet 2736 * will be 32-bit aligned. 2737 */ 2738 m->m_data += RFA_ALIGNMENT_FUDGE; 2739 2740 /* 2741 * Get a pointer to the base of the mbuf cluster and move 2742 * data start past it. 2743 */ 2744 rfa = mtod(m, struct fxp_rfa *); 2745 m->m_data += sc->rfa_size; 2746 rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE); 2747 2748 rfa->rfa_status = 0; 2749 rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL); 2750 rfa->actual_size = 0; 2751 2752 /* 2753 * Initialize the rest of the RFA. Note that since the RFA 2754 * is misaligned, we cannot store values directly. We're thus 2755 * using the le32enc() function which handles endianness and 2756 * is also alignment-safe. 2757 */ 2758 le32enc(&rfa->link_addr, 0xffffffff); 2759 le32enc(&rfa->rbd_addr, 0xffffffff); 2760 2761 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 2762 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2763 } 2764 2765 static int 2766 fxp_miibus_readreg(device_t dev, int phy, int reg) 2767 { 2768 struct fxp_softc *sc = device_get_softc(dev); 2769 int count = 10000; 2770 int value; 2771 2772 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2773 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); 2774 2775 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 2776 && count--) 2777 DELAY(10); 2778 2779 if (count <= 0) 2780 device_printf(dev, "fxp_miibus_readreg: timed out\n"); 2781 2782 return (value & 0xffff); 2783 } 2784 2785 static int 2786 fxp_miibus_writereg(device_t dev, int phy, int reg, int value) 2787 { 2788 struct fxp_softc *sc = device_get_softc(dev); 2789 int count = 10000; 2790 2791 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2792 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | 2793 (value & 0xffff)); 2794 2795 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && 2796 count--) 2797 DELAY(10); 2798 2799 if (count <= 0) 2800 device_printf(dev, "fxp_miibus_writereg: timed out\n"); 2801 return (0); 2802 } 2803 2804 static void 2805 fxp_miibus_statchg(device_t dev) 2806 { 2807 struct fxp_softc *sc; 2808 struct mii_data *mii; 2809 if_t ifp; 2810 2811 sc = device_get_softc(dev); 2812 mii = device_get_softc(sc->miibus); 2813 ifp = sc->ifp; 2814 if (mii == NULL || ifp == (void *)NULL || 2815 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || 2816 (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) != 2817 (IFM_AVALID | IFM_ACTIVE)) 2818 return; 2819 2820 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T && 2821 sc->flags & FXP_FLAG_CU_RESUME_BUG) 2822 sc->cu_resume_bug = 1; 2823 else 2824 sc->cu_resume_bug = 0; 2825 /* 2826 * Call fxp_init_body in order to adjust the flow control settings. 2827 * Note that the 82557 doesn't support hardware flow control. 2828 */ 2829 if (sc->revision == FXP_REV_82557) 2830 return; 2831 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2832 fxp_init_body(sc, 0); 2833 } 2834 2835 static int 2836 fxp_ioctl(if_t ifp, u_long command, caddr_t data) 2837 { 2838 struct fxp_softc *sc = if_getsoftc(ifp); 2839 struct ifreq *ifr = (struct ifreq *)data; 2840 struct mii_data *mii; 2841 int flag, mask, error = 0, reinit; 2842 2843 switch (command) { 2844 case SIOCSIFFLAGS: 2845 FXP_LOCK(sc); 2846 /* 2847 * If interface is marked up and not running, then start it. 2848 * If it is marked down and running, stop it. 2849 * XXX If it's up then re-initialize it. This is so flags 2850 * such as IFF_PROMISC are handled. 2851 */ 2852 if (if_getflags(ifp) & IFF_UP) { 2853 if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) && 2854 ((if_getflags(ifp) ^ sc->if_flags) & 2855 (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) { 2856 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2857 fxp_init_body(sc, 0); 2858 } else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) 2859 fxp_init_body(sc, 1); 2860 } else { 2861 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) 2862 fxp_stop(sc); 2863 } 2864 sc->if_flags = if_getflags(ifp); 2865 FXP_UNLOCK(sc); 2866 break; 2867 2868 case SIOCADDMULTI: 2869 case SIOCDELMULTI: 2870 FXP_LOCK(sc); 2871 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2872 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2873 fxp_init_body(sc, 0); 2874 } 2875 FXP_UNLOCK(sc); 2876 break; 2877 2878 case SIOCSIFMEDIA: 2879 case SIOCGIFMEDIA: 2880 if (sc->miibus != NULL) { 2881 mii = device_get_softc(sc->miibus); 2882 error = ifmedia_ioctl(ifp, ifr, 2883 &mii->mii_media, command); 2884 } else { 2885 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); 2886 } 2887 break; 2888 2889 case SIOCSIFCAP: 2890 reinit = 0; 2891 mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap; 2892 #ifdef DEVICE_POLLING 2893 if (mask & IFCAP_POLLING) { 2894 if (ifr->ifr_reqcap & IFCAP_POLLING) { 2895 error = ether_poll_register(fxp_poll, ifp); 2896 if (error) 2897 return(error); 2898 FXP_LOCK(sc); 2899 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 2900 FXP_SCB_INTR_DISABLE); 2901 if_setcapenablebit(ifp, IFCAP_POLLING, 0); 2902 FXP_UNLOCK(sc); 2903 } else { 2904 error = ether_poll_deregister(ifp); 2905 /* Enable interrupts in any case */ 2906 FXP_LOCK(sc); 2907 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 2908 if_setcapenablebit(ifp, 0, IFCAP_POLLING); 2909 FXP_UNLOCK(sc); 2910 } 2911 } 2912 #endif 2913 FXP_LOCK(sc); 2914 if ((mask & IFCAP_TXCSUM) != 0 && 2915 (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) { 2916 if_togglecapenable(ifp, IFCAP_TXCSUM); 2917 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0) 2918 if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0); 2919 else 2920 if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES); 2921 } 2922 if ((mask & IFCAP_RXCSUM) != 0 && 2923 (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) { 2924 if_togglecapenable(ifp, IFCAP_RXCSUM); 2925 if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0) 2926 reinit++; 2927 } 2928 if ((mask & IFCAP_TSO4) != 0 && 2929 (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) { 2930 if_togglecapenable(ifp, IFCAP_TSO4); 2931 if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0) 2932 if_sethwassistbits(ifp, CSUM_TSO, 0); 2933 else 2934 if_sethwassistbits(ifp, 0, CSUM_TSO); 2935 } 2936 if ((mask & IFCAP_WOL_MAGIC) != 0 && 2937 (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0) 2938 if_togglecapenable(ifp, IFCAP_WOL_MAGIC); 2939 if ((mask & IFCAP_VLAN_MTU) != 0 && 2940 (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) { 2941 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 2942 if (sc->revision != FXP_REV_82557) 2943 flag = FXP_FLAG_LONG_PKT_EN; 2944 else /* a hack to get long frames on the old chip */ 2945 flag = FXP_FLAG_SAVE_BAD; 2946 sc->flags ^= flag; 2947 if (if_getflags(ifp) & IFF_UP) 2948 reinit++; 2949 } 2950 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 2951 (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0) 2952 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 2953 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 2954 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0) 2955 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 2956 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2957 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { 2958 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 2959 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0) 2960 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO | 2961 IFCAP_VLAN_HWCSUM); 2962 reinit++; 2963 } 2964 if (reinit > 0 && 2965 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2966 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2967 fxp_init_body(sc, 0); 2968 } 2969 FXP_UNLOCK(sc); 2970 if_vlancap(ifp); 2971 break; 2972 2973 default: 2974 error = ether_ioctl(ifp, command, data); 2975 } 2976 return (error); 2977 } 2978 2979 static u_int 2980 fxp_setup_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 2981 { 2982 struct fxp_softc *sc = arg; 2983 struct fxp_cb_mcs *mcsp = sc->mcsp; 2984 2985 if (mcsp->mc_cnt < MAXMCADDR) 2986 bcopy(LLADDR(sdl), mcsp->mc_addr[mcsp->mc_cnt * ETHER_ADDR_LEN], 2987 ETHER_ADDR_LEN); 2988 mcsp->mc_cnt++; 2989 return (1); 2990 } 2991 2992 /* 2993 * Fill in the multicast address list and return number of entries. 2994 */ 2995 static void 2996 fxp_mc_addrs(struct fxp_softc *sc) 2997 { 2998 struct fxp_cb_mcs *mcsp = sc->mcsp; 2999 if_t ifp = sc->ifp; 3000 3001 if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) { 3002 mcsp->mc_cnt = 0; 3003 if_foreach_llmaddr(sc->ifp, fxp_setup_maddr, sc); 3004 if (mcsp->mc_cnt >= MAXMCADDR) { 3005 if_setflagbits(ifp, IFF_ALLMULTI, 0); 3006 mcsp->mc_cnt = 0; 3007 } 3008 } 3009 mcsp->mc_cnt = htole16(mcsp->mc_cnt * ETHER_ADDR_LEN); 3010 } 3011 3012 /* 3013 * Program the multicast filter. 3014 * 3015 * We have an artificial restriction that the multicast setup command 3016 * must be the first command in the chain, so we take steps to ensure 3017 * this. By requiring this, it allows us to keep up the performance of 3018 * the pre-initialized command ring (esp. link pointers) by not actually 3019 * inserting the mcsetup command in the ring - i.e. its link pointer 3020 * points to the TxCB ring, but the mcsetup descriptor itself is not part 3021 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it 3022 * lead into the regular TxCB ring when it completes. 3023 */ 3024 static void 3025 fxp_mc_setup(struct fxp_softc *sc) 3026 { 3027 struct fxp_cb_mcs *mcsp; 3028 int count; 3029 3030 FXP_LOCK_ASSERT(sc, MA_OWNED); 3031 3032 mcsp = sc->mcsp; 3033 mcsp->cb_status = 0; 3034 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL); 3035 mcsp->link_addr = 0xffffffff; 3036 fxp_mc_addrs(sc); 3037 3038 /* 3039 * Wait until command unit is idle. This should never be the 3040 * case when nothing is queued, but make sure anyway. 3041 */ 3042 count = 100; 3043 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) != 3044 FXP_SCB_CUS_IDLE && --count) 3045 DELAY(10); 3046 if (count == 0) { 3047 device_printf(sc->dev, "command queue timeout\n"); 3048 return; 3049 } 3050 3051 /* 3052 * Start the multicast setup command. 3053 */ 3054 fxp_scb_wait(sc); 3055 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, 3056 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3057 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr); 3058 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 3059 /* ...and wait for it to complete. */ 3060 fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map); 3061 } 3062 3063 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE; 3064 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE; 3065 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE; 3066 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE; 3067 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE; 3068 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE; 3069 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE; 3070 3071 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t) 3072 3073 static const struct ucode { 3074 uint32_t revision; 3075 uint32_t *ucode; 3076 int length; 3077 u_short int_delay_offset; 3078 u_short bundle_max_offset; 3079 } ucode_table[] = { 3080 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 }, 3081 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 }, 3082 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma), 3083 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD }, 3084 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s), 3085 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD }, 3086 { FXP_REV_82550, UCODE(fxp_ucode_d102), 3087 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD }, 3088 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c), 3089 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD }, 3090 { FXP_REV_82551_F, UCODE(fxp_ucode_d102e), 3091 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD }, 3092 { FXP_REV_82551_10, UCODE(fxp_ucode_d102e), 3093 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD }, 3094 { 0, NULL, 0, 0, 0 } 3095 }; 3096 3097 static void 3098 fxp_load_ucode(struct fxp_softc *sc) 3099 { 3100 const struct ucode *uc; 3101 struct fxp_cb_ucode *cbp; 3102 int i; 3103 3104 if (sc->flags & FXP_FLAG_NO_UCODE) 3105 return; 3106 3107 for (uc = ucode_table; uc->ucode != NULL; uc++) 3108 if (sc->revision == uc->revision) 3109 break; 3110 if (uc->ucode == NULL) 3111 return; 3112 cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list; 3113 cbp->cb_status = 0; 3114 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL); 3115 cbp->link_addr = 0xffffffff; /* (no) next command */ 3116 for (i = 0; i < uc->length; i++) 3117 cbp->ucode[i] = htole32(uc->ucode[i]); 3118 if (uc->int_delay_offset) 3119 *(uint16_t *)&cbp->ucode[uc->int_delay_offset] = 3120 htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2); 3121 if (uc->bundle_max_offset) 3122 *(uint16_t *)&cbp->ucode[uc->bundle_max_offset] = 3123 htole16(sc->tunable_bundle_max); 3124 /* 3125 * Download the ucode to the chip. 3126 */ 3127 fxp_scb_wait(sc); 3128 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 3129 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3130 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 3131 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 3132 /* ...and wait for it to complete. */ 3133 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 3134 device_printf(sc->dev, 3135 "Microcode loaded, int_delay: %d usec bundle_max: %d\n", 3136 sc->tunable_int_delay, 3137 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max); 3138 sc->flags |= FXP_FLAG_UCODE; 3139 bzero(cbp, FXP_TXCB_SZ); 3140 } 3141 3142 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d) \ 3143 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 3144 3145 static void 3146 fxp_sysctl_node(struct fxp_softc *sc) 3147 { 3148 struct sysctl_ctx_list *ctx; 3149 struct sysctl_oid_list *child, *parent; 3150 struct sysctl_oid *tree; 3151 struct fxp_hwstats *hsp; 3152 3153 ctx = device_get_sysctl_ctx(sc->dev); 3154 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 3155 3156 SYSCTL_ADD_PROC(ctx, child, 3157 OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW, 3158 &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I", 3159 "FXP driver receive interrupt microcode bundling delay"); 3160 SYSCTL_ADD_PROC(ctx, child, 3161 OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW, 3162 &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I", 3163 "FXP driver receive interrupt microcode bundle size limit"); 3164 SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0, 3165 "FXP RNR events"); 3166 3167 /* 3168 * Pull in device tunables. 3169 */ 3170 sc->tunable_int_delay = TUNABLE_INT_DELAY; 3171 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX; 3172 (void) resource_int_value(device_get_name(sc->dev), 3173 device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay); 3174 (void) resource_int_value(device_get_name(sc->dev), 3175 device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max); 3176 sc->rnr = 0; 3177 3178 hsp = &sc->fxp_hwstats; 3179 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 3180 NULL, "FXP statistics"); 3181 parent = SYSCTL_CHILDREN(tree); 3182 3183 /* Rx MAC statistics. */ 3184 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, 3185 NULL, "Rx MAC statistics"); 3186 child = SYSCTL_CHILDREN(tree); 3187 FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames", 3188 &hsp->rx_good, "Good frames"); 3189 FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors", 3190 &hsp->rx_crc_errors, "CRC errors"); 3191 FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors", 3192 &hsp->rx_alignment_errors, "Alignment errors"); 3193 FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors", 3194 &hsp->rx_rnr_errors, "RNR errors"); 3195 FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors", 3196 &hsp->rx_overrun_errors, "Overrun errors"); 3197 FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors", 3198 &hsp->rx_cdt_errors, "Collision detect errors"); 3199 FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes", 3200 &hsp->rx_shortframes, "Short frame errors"); 3201 if (sc->revision >= FXP_REV_82558_A4) { 3202 FXP_SYSCTL_STAT_ADD(ctx, child, "pause", 3203 &hsp->rx_pause, "Pause frames"); 3204 FXP_SYSCTL_STAT_ADD(ctx, child, "controls", 3205 &hsp->rx_controls, "Unsupported control frames"); 3206 } 3207 if (sc->revision >= FXP_REV_82559_A0) 3208 FXP_SYSCTL_STAT_ADD(ctx, child, "tco", 3209 &hsp->rx_tco, "TCO frames"); 3210 3211 /* Tx MAC statistics. */ 3212 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, 3213 NULL, "Tx MAC statistics"); 3214 child = SYSCTL_CHILDREN(tree); 3215 FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames", 3216 &hsp->tx_good, "Good frames"); 3217 FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols", 3218 &hsp->tx_maxcols, "Maximum collisions errors"); 3219 FXP_SYSCTL_STAT_ADD(ctx, child, "latecols", 3220 &hsp->tx_latecols, "Late collisions errors"); 3221 FXP_SYSCTL_STAT_ADD(ctx, child, "underruns", 3222 &hsp->tx_underruns, "Underrun errors"); 3223 FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs", 3224 &hsp->tx_lostcrs, "Lost carrier sense"); 3225 FXP_SYSCTL_STAT_ADD(ctx, child, "deffered", 3226 &hsp->tx_deffered, "Deferred"); 3227 FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions", 3228 &hsp->tx_single_collisions, "Single collisions"); 3229 FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions", 3230 &hsp->tx_multiple_collisions, "Multiple collisions"); 3231 FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions", 3232 &hsp->tx_total_collisions, "Total collisions"); 3233 if (sc->revision >= FXP_REV_82558_A4) 3234 FXP_SYSCTL_STAT_ADD(ctx, child, "pause", 3235 &hsp->tx_pause, "Pause frames"); 3236 if (sc->revision >= FXP_REV_82559_A0) 3237 FXP_SYSCTL_STAT_ADD(ctx, child, "tco", 3238 &hsp->tx_tco, "TCO frames"); 3239 } 3240 3241 #undef FXP_SYSCTL_STAT_ADD 3242 3243 static int 3244 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3245 { 3246 int error, value; 3247 3248 value = *(int *)arg1; 3249 error = sysctl_handle_int(oidp, &value, 0, req); 3250 if (error || !req->newptr) 3251 return (error); 3252 if (value < low || value > high) 3253 return (EINVAL); 3254 *(int *)arg1 = value; 3255 return (0); 3256 } 3257 3258 /* 3259 * Interrupt delay is expressed in microseconds, a multiplier is used 3260 * to convert this to the appropriate clock ticks before using. 3261 */ 3262 static int 3263 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS) 3264 { 3265 3266 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000)); 3267 } 3268 3269 static int 3270 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS) 3271 { 3272 3273 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff)); 3274 } 3275