xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 2a4a1db342263067035ce69a4017c645da63455d)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/mbuf.h>
38 #include <sys/malloc.h>
39 		/* #include <sys/mutex.h> */
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/sysctl.h>
43 
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 
48 #ifdef NS
49 #include <netns/ns.h>
50 #include <netns/ns_if.h>
51 #endif
52 
53 #include <net/bpf.h>
54 #include <sys/sockio.h>
55 #include <sys/bus.h>
56 #include <machine/bus.h>
57 #include <sys/rman.h>
58 #include <machine/resource.h>
59 
60 #include <net/ethernet.h>
61 #include <net/if_arp.h>
62 
63 #include <vm/vm.h>		/* for vtophys */
64 #include <vm/pmap.h>		/* for vtophys */
65 #include <machine/clock.h>	/* for DELAY */
66 
67 #include <net/if_types.h>
68 #include <net/if_vlan_var.h>
69 
70 #include <pci/pcivar.h>
71 #include <pci/pcireg.h>		/* for PCIM_CMD_xxx */
72 
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/fxp/if_fxpreg.h>
77 #include <dev/fxp/if_fxpvar.h>
78 #include <dev/fxp/rcvbundl.h>
79 
80 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
81 #include "miibus_if.h"
82 
83 /*
84  * NOTE!  On the Alpha, we have an alignment constraint.  The
85  * card DMAs the packet immediately following the RFA.  However,
86  * the first thing in the packet is a 14-byte Ethernet header.
87  * This means that the packet is misaligned.  To compensate,
88  * we actually offset the RFA 2 bytes into the cluster.  This
89  * alignes the packet after the Ethernet header at a 32-bit
90  * boundary.  HOWEVER!  This means that the RFA is misaligned!
91  */
92 #define	RFA_ALIGNMENT_FUDGE	2
93 
94 /*
95  * Set initial transmit threshold at 64 (512 bytes). This is
96  * increased by 64 (512 bytes) at a time, to maximum of 192
97  * (1536 bytes), if an underrun occurs.
98  */
99 static int tx_threshold = 64;
100 
101 /*
102  * The configuration byte map has several undefined fields which
103  * must be one or must be zero.  Set up a template for these bits
104  * only, (assuming a 82557 chip) leaving the actual configuration
105  * to fxp_init.
106  *
107  * See struct fxp_cb_config for the bit definitions.
108  */
109 static u_char fxp_cb_config_template[] = {
110 	0x0, 0x0,		/* cb_status */
111 	0x0, 0x0,		/* cb_command */
112 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
113 	0x0,	/*  0 */
114 	0x0,	/*  1 */
115 	0x0,	/*  2 */
116 	0x0,	/*  3 */
117 	0x0,	/*  4 */
118 	0x0,	/*  5 */
119 	0x32,	/*  6 */
120 	0x0,	/*  7 */
121 	0x0,	/*  8 */
122 	0x0,	/*  9 */
123 	0x6,	/* 10 */
124 	0x0,	/* 11 */
125 	0x0,	/* 12 */
126 	0x0,	/* 13 */
127 	0xf2,	/* 14 */
128 	0x48,	/* 15 */
129 	0x0,	/* 16 */
130 	0x40,	/* 17 */
131 	0xf0,	/* 18 */
132 	0x0,	/* 19 */
133 	0x3f,	/* 20 */
134 	0x5	/* 21 */
135 };
136 
137 struct fxp_ident {
138 	u_int16_t	devid;
139 	char 		*name;
140 };
141 
142 /*
143  * Claim various Intel PCI device identifiers for this driver.  The
144  * sub-vendor and sub-device field are extensively used to identify
145  * particular variants, but we don't currently differentiate between
146  * them.
147  */
148 static struct fxp_ident fxp_ident_table[] = {
149     { 0x1229,		"Intel Pro 10/100B/100+ Ethernet" },
150     { 0x2449,		"Intel Pro/100 Ethernet" },
151     { 0x1209,		"Intel Embedded 10/100 Ethernet" },
152     { 0x1029,		"Intel Pro/100 Ethernet" },
153     { 0x1030,		"Intel Pro/100 Ethernet" },
154     { 0x1031,		"Intel Pro/100 Ethernet" },
155     { 0x1032,		"Intel Pro/100 Ethernet" },
156     { 0x1033,		"Intel Pro/100 Ethernet" },
157     { 0x1034,		"Intel Pro/100 Ethernet" },
158     { 0x1035,		"Intel Pro/100 Ethernet" },
159     { 0x1036,		"Intel Pro/100 Ethernet" },
160     { 0x1037,		"Intel Pro/100 Ethernet" },
161     { 0x1038,		"Intel Pro/100 Ethernet" },
162     { 0,		NULL },
163 };
164 
165 static int		fxp_probe(device_t dev);
166 static int		fxp_attach(device_t dev);
167 static int		fxp_detach(device_t dev);
168 static int		fxp_shutdown(device_t dev);
169 static int		fxp_suspend(device_t dev);
170 static int		fxp_resume(device_t dev);
171 
172 static void		fxp_intr(void *xsc);
173 static void 		fxp_init(void *xsc);
174 static void 		fxp_tick(void *xsc);
175 static void		fxp_powerstate_d0(device_t dev);
176 static void 		fxp_start(struct ifnet *ifp);
177 static void		fxp_stop(struct fxp_softc *sc);
178 static void 		fxp_release(struct fxp_softc *sc);
179 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
180 			    caddr_t data);
181 static void 		fxp_watchdog(struct ifnet *ifp);
182 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
183 static int		fxp_mc_addrs(struct fxp_softc *sc);
184 static void		fxp_mc_setup(struct fxp_softc *sc);
185 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
186 			    int autosize);
187 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
188 			    u_int16_t data);
189 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
190 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
191 			    int offset, int words);
192 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
193 			    int offset, int words);
194 static int		fxp_ifmedia_upd(struct ifnet *ifp);
195 static void		fxp_ifmedia_sts(struct ifnet *ifp,
196 			    struct ifmediareq *ifmr);
197 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
198 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
199 			    struct ifmediareq *ifmr);
200 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
201 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
202 			    int value);
203 static void		fxp_load_ucode(struct fxp_softc *sc);
204 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
205 			    int low, int high);
206 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
207 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
208 static __inline void	fxp_lwcopy(volatile u_int32_t *src,
209 			    volatile u_int32_t *dst);
210 static __inline void 	fxp_scb_wait(struct fxp_softc *sc);
211 static __inline void	fxp_scb_cmd(struct fxp_softc *sc, int cmd);
212 static __inline void	fxp_dma_wait(volatile u_int16_t *status,
213 			    struct fxp_softc *sc);
214 
215 static device_method_t fxp_methods[] = {
216 	/* Device interface */
217 	DEVMETHOD(device_probe,		fxp_probe),
218 	DEVMETHOD(device_attach,	fxp_attach),
219 	DEVMETHOD(device_detach,	fxp_detach),
220 	DEVMETHOD(device_shutdown,	fxp_shutdown),
221 	DEVMETHOD(device_suspend,	fxp_suspend),
222 	DEVMETHOD(device_resume,	fxp_resume),
223 
224 	/* MII interface */
225 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
226 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
227 
228 	{ 0, 0 }
229 };
230 
231 static driver_t fxp_driver = {
232 	"fxp",
233 	fxp_methods,
234 	sizeof(struct fxp_softc),
235 };
236 
237 static devclass_t fxp_devclass;
238 
239 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
240 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
241 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
242 
243 /*
244  * Inline function to copy a 16-bit aligned 32-bit quantity.
245  */
246 static __inline void
247 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
248 {
249 #ifdef __i386__
250 	*dst = *src;
251 #else
252 	volatile u_int16_t *a = (volatile u_int16_t *)src;
253 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
254 
255 	b[0] = a[0];
256 	b[1] = a[1];
257 #endif
258 }
259 
260 /*
261  * Wait for the previous command to be accepted (but not necessarily
262  * completed).
263  */
264 static __inline void
265 fxp_scb_wait(struct fxp_softc *sc)
266 {
267 	int i = 10000;
268 
269 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
270 		DELAY(2);
271 	if (i == 0)
272 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
273 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
274 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
275 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
276 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
277 }
278 
279 static __inline void
280 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
281 {
282 
283 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
284 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
285 		fxp_scb_wait(sc);
286 	}
287 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
288 }
289 
290 static __inline void
291 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
292 {
293 	int i = 10000;
294 
295 	while (!(*status & FXP_CB_STATUS_C) && --i)
296 		DELAY(2);
297 	if (i == 0)
298 		device_printf(sc->dev, "DMA timeout\n");
299 }
300 
301 /*
302  * Return identification string if this is device is ours.
303  */
304 static int
305 fxp_probe(device_t dev)
306 {
307 	u_int16_t devid;
308 	struct fxp_ident *ident;
309 
310 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
311 		devid = pci_get_device(dev);
312 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
313 			if (ident->devid == devid) {
314 				device_set_desc(dev, ident->name);
315 				return (0);
316 			}
317 		}
318 	}
319 	return (ENXIO);
320 }
321 
322 static void
323 fxp_powerstate_d0(device_t dev)
324 {
325 #if __FreeBSD_version >= 430002
326 	u_int32_t iobase, membase, irq;
327 
328 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
329 		/* Save important PCI config data. */
330 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
331 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
332 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
333 
334 		/* Reset the power state. */
335 		device_printf(dev, "chip is in D%d power mode "
336 		    "-- setting to D0\n", pci_get_powerstate(dev));
337 
338 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
339 
340 		/* Restore PCI config data. */
341 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
342 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
343 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
344 	}
345 #endif
346 }
347 
348 static int
349 fxp_attach(device_t dev)
350 {
351 	int error = 0;
352 	struct fxp_softc *sc = device_get_softc(dev);
353 	struct ifnet *ifp;
354 	u_int32_t val;
355 	u_int16_t data;
356 	int i, rid, m1, m2, prefer_iomap;
357 	int s;
358 
359 	bzero(sc, sizeof(*sc));
360 	sc->dev = dev;
361 	callout_handle_init(&sc->stat_ch);
362 	sysctl_ctx_init(&sc->sysctl_ctx);
363 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
364 	    MTX_DEF | MTX_RECURSE);
365 
366 	s = splimp();
367 
368 	/*
369 	 * Enable bus mastering. Enable memory space too, in case
370 	 * BIOS/Prom forgot about it.
371 	 */
372 	val = pci_read_config(dev, PCIR_COMMAND, 2);
373 	val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
374 	pci_write_config(dev, PCIR_COMMAND, val, 2);
375 	val = pci_read_config(dev, PCIR_COMMAND, 2);
376 
377 	fxp_powerstate_d0(dev);
378 
379 	/*
380 	 * Figure out which we should try first - memory mapping or i/o mapping?
381 	 * We default to memory mapping. Then we accept an override from the
382 	 * command line. Then we check to see which one is enabled.
383 	 */
384 	m1 = PCIM_CMD_MEMEN;
385 	m2 = PCIM_CMD_PORTEN;
386 	prefer_iomap = 0;
387 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
388 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
389 		m1 = PCIM_CMD_PORTEN;
390 		m2 = PCIM_CMD_MEMEN;
391 	}
392 
393 	if (val & m1) {
394 		sc->rtp =
395 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
396 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
397 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
398 	                                     0, ~0, 1, RF_ACTIVE);
399 	}
400 	if (sc->mem == NULL && (val & m2)) {
401 		sc->rtp =
402 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
403 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
404 		sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
405                                             0, ~0, 1, RF_ACTIVE);
406 	}
407 
408 	if (!sc->mem) {
409 		device_printf(dev, "could not map device registers\n");
410 		error = ENXIO;
411 		goto fail;
412         }
413 	if (bootverbose) {
414 		device_printf(dev, "using %s space register mapping\n",
415 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
416 	}
417 
418 	sc->sc_st = rman_get_bustag(sc->mem);
419 	sc->sc_sh = rman_get_bushandle(sc->mem);
420 
421 	/*
422 	 * Allocate our interrupt.
423 	 */
424 	rid = 0;
425 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
426 				 RF_SHAREABLE | RF_ACTIVE);
427 	if (sc->irq == NULL) {
428 		device_printf(dev, "could not map interrupt\n");
429 		error = ENXIO;
430 		goto fail;
431 	}
432 
433 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
434 			       fxp_intr, sc, &sc->ih);
435 	if (error) {
436 		device_printf(dev, "could not setup irq\n");
437 		goto fail;
438 	}
439 
440 	/*
441 	 * Reset to a stable state.
442 	 */
443 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
444 	DELAY(10);
445 
446 	sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
447 	    M_DEVBUF, M_NOWAIT | M_ZERO);
448 	if (sc->cbl_base == NULL)
449 		goto failmem;
450 
451 	sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
452 	    M_NOWAIT | M_ZERO);
453 	if (sc->fxp_stats == NULL)
454 		goto failmem;
455 
456 	sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
457 	if (sc->mcsp == NULL)
458 		goto failmem;
459 
460 	/*
461 	 * Pre-allocate our receive buffers.
462 	 */
463 	for (i = 0; i < FXP_NRFABUFS; i++) {
464 		if (fxp_add_rfabuf(sc, NULL) != 0) {
465 			goto failmem;
466 		}
467 	}
468 
469 	/*
470 	 * Find out how large of an SEEPROM we have.
471 	 */
472 	fxp_autosize_eeprom(sc);
473 
474 	/*
475 	 * Determine whether we must use the 503 serial interface.
476 	 */
477 	fxp_read_eeprom(sc, &data, 6, 1);
478 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
479 	    (data & FXP_PHY_SERIAL_ONLY))
480 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
481 
482 	/*
483 	 * Create the sysctl tree
484 	 */
485 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
486 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
487 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
488 	if (sc->sysctl_tree == NULL)
489 		goto fail;
490 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
491 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
492 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
493 	    "FXP driver receive interrupt microcode bundling delay");
494 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
495 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
496 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
497 	    "FXP driver receive interrupt microcode bundle size limit");
498 
499 	/*
500 	 * Pull in device tunables.
501 	 */
502 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
503 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
504 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
505 	    "int_delay", &sc->tunable_int_delay);
506 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
507 	    "bundle_max", &sc->tunable_bundle_max);
508 
509 	/*
510 	 * Find out the chip revision; lump all 82557 revs together.
511 	 */
512 	fxp_read_eeprom(sc, &data, 5, 1);
513 	if ((data >> 8) == 1)
514 		sc->revision = FXP_REV_82557;
515 	else
516 		sc->revision = pci_get_revid(dev);
517 
518 	/*
519 	 * Enable workarounds for certain chip revision deficiencies.
520 	 *
521 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
522 	 * some systems based a normal 82559 design, have a defect where
523 	 * the chip can cause a PCI protocol violation if it receives
524 	 * a CU_RESUME command when it is entering the IDLE state.  The
525 	 * workaround is to disable Dynamic Standby Mode, so the chip never
526 	 * deasserts CLKRUN#, and always remains in an active state.
527 	 *
528 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
529 	 */
530 	i = pci_get_device(dev);
531 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
532 	    sc->revision >= FXP_REV_82559_A0) {
533 		fxp_read_eeprom(sc, &data, 10, 1);
534 		if (data & 0x02) {			/* STB enable */
535 			u_int16_t cksum;
536 			int i;
537 
538 			device_printf(dev,
539 			    "Disabling dynamic standby mode in EEPROM\n");
540 			data &= ~0x02;
541 			fxp_write_eeprom(sc, &data, 10, 1);
542 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
543 			cksum = 0;
544 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
545 				fxp_read_eeprom(sc, &data, i, 1);
546 				cksum += data;
547 			}
548 			i = (1 << sc->eeprom_size) - 1;
549 			cksum = 0xBABA - cksum;
550 			fxp_read_eeprom(sc, &data, i, 1);
551 			fxp_write_eeprom(sc, &cksum, i, 1);
552 			device_printf(dev,
553 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
554 			    i, data, cksum);
555 #if 1
556 			/*
557 			 * If the user elects to continue, try the software
558 			 * workaround, as it is better than nothing.
559 			 */
560 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
561 #endif
562 		}
563 	}
564 
565 	/*
566 	 * If we are not a 82557 chip, we can enable extended features.
567 	 */
568 	if (sc->revision != FXP_REV_82557) {
569 		/*
570 		 * If MWI is enabled in the PCI configuration, and there
571 		 * is a valid cacheline size (8 or 16 dwords), then tell
572 		 * the board to turn on MWI.
573 		 */
574 		if (val & PCIM_CMD_MWRICEN &&
575 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
576 			sc->flags |= FXP_FLAG_MWI_ENABLE;
577 
578 		/* turn on the extended TxCB feature */
579 		sc->flags |= FXP_FLAG_EXT_TXCB;
580 
581 		/* enable reception of long frames for VLAN */
582 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
583 	}
584 
585 	/*
586 	 * Read MAC address.
587 	 */
588 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
589 	device_printf(dev, "Ethernet address %6D%s\n",
590 	    sc->arpcom.ac_enaddr, ":",
591 	    sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
592 	if (bootverbose) {
593 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
594 		    pci_get_vendor(dev), pci_get_device(dev),
595 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
596 		    pci_get_revid(dev));
597 		fxp_read_eeprom(sc, &data, 10, 1);
598 		device_printf(dev, "Dynamic Standby mode is %s\n",
599 		    data & 0x02 ? "enabled" : "disabled");
600 	}
601 
602 	/*
603 	 * If this is only a 10Mbps device, then there is no MII, and
604 	 * the PHY will use a serial interface instead.
605 	 *
606 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
607 	 * doesn't have a programming interface of any sort.  The
608 	 * media is sensed automatically based on how the link partner
609 	 * is configured.  This is, in essence, manual configuration.
610 	 */
611 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
612 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
613 		    fxp_serial_ifmedia_sts);
614 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
615 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
616 	} else {
617 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
618 		    fxp_ifmedia_sts)) {
619 	                device_printf(dev, "MII without any PHY!\n");
620 			error = ENXIO;
621 			goto fail;
622 		}
623 	}
624 
625 	ifp = &sc->arpcom.ac_if;
626 	ifp->if_unit = device_get_unit(dev);
627 	ifp->if_name = "fxp";
628 	ifp->if_output = ether_output;
629 	ifp->if_baudrate = 100000000;
630 	ifp->if_init = fxp_init;
631 	ifp->if_softc = sc;
632 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
633 	ifp->if_ioctl = fxp_ioctl;
634 	ifp->if_start = fxp_start;
635 	ifp->if_watchdog = fxp_watchdog;
636 
637 	/*
638 	 * Attach the interface.
639 	 */
640 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
641 
642 	/*
643 	 * Tell the upper layer(s) we support long frames.
644 	 */
645 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
646 
647 	/*
648 	 * Let the system queue as many packets as we have available
649 	 * TX descriptors.
650 	 */
651 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
652 
653 	splx(s);
654 	return (0);
655 
656 failmem:
657 	device_printf(dev, "Failed to malloc memory\n");
658 	error = ENOMEM;
659 fail:
660 	splx(s);
661 	fxp_release(sc);
662 	return (error);
663 }
664 
665 /*
666  * release all resources
667  */
668 static void
669 fxp_release(struct fxp_softc *sc)
670 {
671 
672 	bus_generic_detach(sc->dev);
673 	if (sc->miibus)
674 		device_delete_child(sc->dev, sc->miibus);
675 
676 	if (sc->cbl_base)
677 		free(sc->cbl_base, M_DEVBUF);
678 	if (sc->fxp_stats)
679 		free(sc->fxp_stats, M_DEVBUF);
680 	if (sc->mcsp)
681 		free(sc->mcsp, M_DEVBUF);
682 	if (sc->rfa_headm)
683 		m_freem(sc->rfa_headm);
684 
685 	if (sc->ih)
686 		bus_teardown_intr(sc->dev, sc->irq, sc->ih);
687 	if (sc->irq)
688 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
689 	if (sc->mem)
690 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
691 
692         sysctl_ctx_free(&sc->sysctl_ctx);
693 
694 	mtx_destroy(&sc->sc_mtx);
695 }
696 
697 /*
698  * Detach interface.
699  */
700 static int
701 fxp_detach(device_t dev)
702 {
703 	struct fxp_softc *sc = device_get_softc(dev);
704 	int s;
705 
706 	/* disable interrupts */
707 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
708 
709 	s = splimp();
710 
711 	/*
712 	 * Stop DMA and drop transmit queue.
713 	 */
714 	fxp_stop(sc);
715 
716 	/*
717 	 * Close down routes etc.
718 	 */
719 	ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
720 
721 	/*
722 	 * Free all media structures.
723 	 */
724 	ifmedia_removeall(&sc->sc_media);
725 
726 	splx(s);
727 
728 	/* Release our allocated resources. */
729 	fxp_release(sc);
730 
731 	return (0);
732 }
733 
734 /*
735  * Device shutdown routine. Called at system shutdown after sync. The
736  * main purpose of this routine is to shut off receiver DMA so that
737  * kernel memory doesn't get clobbered during warmboot.
738  */
739 static int
740 fxp_shutdown(device_t dev)
741 {
742 	/*
743 	 * Make sure that DMA is disabled prior to reboot. Not doing
744 	 * do could allow DMA to corrupt kernel memory during the
745 	 * reboot before the driver initializes.
746 	 */
747 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
748 	return (0);
749 }
750 
751 /*
752  * Device suspend routine.  Stop the interface and save some PCI
753  * settings in case the BIOS doesn't restore them properly on
754  * resume.
755  */
756 static int
757 fxp_suspend(device_t dev)
758 {
759 	struct fxp_softc *sc = device_get_softc(dev);
760 	int i, s;
761 
762 	s = splimp();
763 
764 	fxp_stop(sc);
765 
766 	for (i = 0; i < 5; i++)
767 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
768 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
769 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
770 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
771 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
772 
773 	sc->suspended = 1;
774 
775 	splx(s);
776 	return (0);
777 }
778 
779 /*
780  * Device resume routine.  Restore some PCI settings in case the BIOS
781  * doesn't, re-enable busmastering, and restart the interface if
782  * appropriate.
783  */
784 static int
785 fxp_resume(device_t dev)
786 {
787 	struct fxp_softc *sc = device_get_softc(dev);
788 	struct ifnet *ifp = &sc->sc_if;
789 	u_int16_t pci_command;
790 	int i, s;
791 
792 	s = splimp();
793 
794 	fxp_powerstate_d0(dev);
795 
796 	/* better way to do this? */
797 	for (i = 0; i < 5; i++)
798 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
799 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
800 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
801 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
802 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
803 
804 	/* reenable busmastering */
805 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
806 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
807 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
808 
809 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
810 	DELAY(10);
811 
812 	/* reinitialize interface if necessary */
813 	if (ifp->if_flags & IFF_UP)
814 		fxp_init(sc);
815 
816 	sc->suspended = 0;
817 
818 	splx(s);
819 	return (0);
820 }
821 
822 static void
823 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
824 {
825 	u_int16_t reg;
826 	int x;
827 
828 	/*
829 	 * Shift in data.
830 	 */
831 	for (x = 1 << (length - 1); x; x >>= 1) {
832 		if (data & x)
833 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
834 		else
835 			reg = FXP_EEPROM_EECS;
836 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
837 		DELAY(1);
838 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
839 		DELAY(1);
840 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
841 		DELAY(1);
842 	}
843 }
844 
845 /*
846  * Read from the serial EEPROM. Basically, you manually shift in
847  * the read opcode (one bit at a time) and then shift in the address,
848  * and then you shift out the data (all of this one bit at a time).
849  * The word size is 16 bits, so you have to provide the address for
850  * every 16 bits of data.
851  */
852 static u_int16_t
853 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
854 {
855 	u_int16_t reg, data;
856 	int x;
857 
858 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
859 	/*
860 	 * Shift in read opcode.
861 	 */
862 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
863 	/*
864 	 * Shift in address.
865 	 */
866 	data = 0;
867 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
868 		if (offset & x)
869 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
870 		else
871 			reg = FXP_EEPROM_EECS;
872 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
873 		DELAY(1);
874 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
875 		DELAY(1);
876 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
877 		DELAY(1);
878 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
879 		data++;
880 		if (autosize && reg == 0) {
881 			sc->eeprom_size = data;
882 			break;
883 		}
884 	}
885 	/*
886 	 * Shift out data.
887 	 */
888 	data = 0;
889 	reg = FXP_EEPROM_EECS;
890 	for (x = 1 << 15; x; x >>= 1) {
891 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
892 		DELAY(1);
893 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
894 			data |= x;
895 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
896 		DELAY(1);
897 	}
898 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
899 	DELAY(1);
900 
901 	return (data);
902 }
903 
904 static void
905 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
906 {
907 	int i;
908 
909 	/*
910 	 * Erase/write enable.
911 	 */
912 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
913 	fxp_eeprom_shiftin(sc, 0x4, 3);
914 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
915 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
916 	DELAY(1);
917 	/*
918 	 * Shift in write opcode, address, data.
919 	 */
920 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
921 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
922 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
923 	fxp_eeprom_shiftin(sc, data, 16);
924 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
925 	DELAY(1);
926 	/*
927 	 * Wait for EEPROM to finish up.
928 	 */
929 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
930 	DELAY(1);
931 	for (i = 0; i < 1000; i++) {
932 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
933 			break;
934 		DELAY(50);
935 	}
936 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
937 	DELAY(1);
938 	/*
939 	 * Erase/write disable.
940 	 */
941 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
942 	fxp_eeprom_shiftin(sc, 0x4, 3);
943 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
944 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
945 	DELAY(1);
946 }
947 
948 /*
949  * From NetBSD:
950  *
951  * Figure out EEPROM size.
952  *
953  * 559's can have either 64-word or 256-word EEPROMs, the 558
954  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
955  * talks about the existance of 16 to 256 word EEPROMs.
956  *
957  * The only known sizes are 64 and 256, where the 256 version is used
958  * by CardBus cards to store CIS information.
959  *
960  * The address is shifted in msb-to-lsb, and after the last
961  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
962  * after which follows the actual data. We try to detect this zero, by
963  * probing the data-out bit in the EEPROM control register just after
964  * having shifted in a bit. If the bit is zero, we assume we've
965  * shifted enough address bits. The data-out should be tri-state,
966  * before this, which should translate to a logical one.
967  */
968 static void
969 fxp_autosize_eeprom(struct fxp_softc *sc)
970 {
971 
972 	/* guess maximum size of 256 words */
973 	sc->eeprom_size = 8;
974 
975 	/* autosize */
976 	(void) fxp_eeprom_getword(sc, 0, 1);
977 }
978 
979 static void
980 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
981 {
982 	int i;
983 
984 	for (i = 0; i < words; i++)
985 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
986 }
987 
988 static void
989 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
990 {
991 	int i;
992 
993 	for (i = 0; i < words; i++)
994 		fxp_eeprom_putword(sc, offset + i, data[i]);
995 }
996 
997 /*
998  * Start packet transmission on the interface.
999  */
1000 static void
1001 fxp_start(struct ifnet *ifp)
1002 {
1003 	struct fxp_softc *sc = ifp->if_softc;
1004 	struct fxp_cb_tx *txp;
1005 
1006 	/*
1007 	 * See if we need to suspend xmit until the multicast filter
1008 	 * has been reprogrammed (which can only be done at the head
1009 	 * of the command chain).
1010 	 */
1011 	if (sc->need_mcsetup) {
1012 		return;
1013 	}
1014 
1015 	txp = NULL;
1016 
1017 	/*
1018 	 * We're finished if there is nothing more to add to the list or if
1019 	 * we're all filled up with buffers to transmit.
1020 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1021 	 *       a NOP command when needed.
1022 	 */
1023 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1024 		struct mbuf *m, *mb_head;
1025 		int segment;
1026 
1027 		/*
1028 		 * Grab a packet to transmit.
1029 		 */
1030 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1031 
1032 		/*
1033 		 * Get pointer to next available tx desc.
1034 		 */
1035 		txp = sc->cbl_last->next;
1036 
1037 		/*
1038 		 * Go through each of the mbufs in the chain and initialize
1039 		 * the transmit buffer descriptors with the physical address
1040 		 * and size of the mbuf.
1041 		 */
1042 tbdinit:
1043 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1044 			if (m->m_len != 0) {
1045 				if (segment == FXP_NTXSEG)
1046 					break;
1047 				txp->tbd[segment].tb_addr =
1048 				    vtophys(mtod(m, vm_offset_t));
1049 				txp->tbd[segment].tb_size = m->m_len;
1050 				segment++;
1051 			}
1052 		}
1053 		if (m != NULL) {
1054 			struct mbuf *mn;
1055 
1056 			/*
1057 			 * We ran out of segments. We have to recopy this
1058 			 * mbuf chain first. Bail out if we can't get the
1059 			 * new buffers.
1060 			 */
1061 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1062 			if (mn == NULL) {
1063 				m_freem(mb_head);
1064 				break;
1065 			}
1066 			if (mb_head->m_pkthdr.len > MHLEN) {
1067 				MCLGET(mn, M_DONTWAIT);
1068 				if ((mn->m_flags & M_EXT) == 0) {
1069 					m_freem(mn);
1070 					m_freem(mb_head);
1071 					break;
1072 				}
1073 			}
1074 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1075 			    mtod(mn, caddr_t));
1076 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1077 			m_freem(mb_head);
1078 			mb_head = mn;
1079 			goto tbdinit;
1080 		}
1081 
1082 		txp->tbd_number = segment;
1083 		txp->mb_head = mb_head;
1084 		txp->cb_status = 0;
1085 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1086 			txp->cb_command =
1087 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1088 			    FXP_CB_COMMAND_S;
1089 		} else {
1090 			txp->cb_command =
1091 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1092 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1093 			/*
1094 			 * Set a 5 second timer just in case we don't hear
1095 			 * from the card again.
1096 			 */
1097 			ifp->if_timer = 5;
1098 		}
1099 		txp->tx_threshold = tx_threshold;
1100 
1101 		/*
1102 		 * Advance the end of list forward.
1103 		 */
1104 
1105 #ifdef __alpha__
1106 		/*
1107 		 * On platforms which can't access memory in 16-bit
1108 		 * granularities, we must prevent the card from DMA'ing
1109 		 * up the status while we update the command field.
1110 		 * This could cause us to overwrite the completion status.
1111 		 */
1112 		atomic_clear_short(&sc->cbl_last->cb_command,
1113 		    FXP_CB_COMMAND_S);
1114 #else
1115 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1116 #endif /*__alpha__*/
1117 		sc->cbl_last = txp;
1118 
1119 		/*
1120 		 * Advance the beginning of the list forward if there are
1121 		 * no other packets queued (when nothing is queued, cbl_first
1122 		 * sits on the last TxCB that was sent out).
1123 		 */
1124 		if (sc->tx_queued == 0)
1125 			sc->cbl_first = txp;
1126 
1127 		sc->tx_queued++;
1128 
1129 		/*
1130 		 * Pass packet to bpf if there is a listener.
1131 		 */
1132 		if (ifp->if_bpf)
1133 			bpf_mtap(ifp, mb_head);
1134 	}
1135 
1136 	/*
1137 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1138 	 * going again if suspended.
1139 	 */
1140 	if (txp != NULL) {
1141 		fxp_scb_wait(sc);
1142 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1143 	}
1144 }
1145 
1146 static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count);
1147 
1148 #ifdef DEVICE_POLLING
1149 static poll_handler_t fxp_poll;
1150 
1151 static void
1152 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1153 {
1154 	struct fxp_softc *sc = ifp->if_softc;
1155 	u_int8_t statack;
1156 
1157 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1158 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1159 		return;
1160 	}
1161 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1162 	    FXP_SCB_STATACK_FR;
1163 	if (cmd == POLL_AND_CHECK_STATUS) {
1164 		u_int8_t tmp;
1165 
1166 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1167 		if (tmp == 0xff || tmp == 0)
1168 			return; /* nothing to do */
1169 		tmp &= ~statack;
1170 		/* ack what we can */
1171 		if (tmp != 0)
1172 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1173 		statack |= tmp;
1174 	}
1175 	fxp_intr_body(sc, statack, count);
1176 }
1177 #endif /* DEVICE_POLLING */
1178 
1179 /*
1180  * Process interface interrupts.
1181  */
1182 static void
1183 fxp_intr(void *xsc)
1184 {
1185 	struct fxp_softc *sc = xsc;
1186 	u_int8_t statack;
1187 
1188 #ifdef DEVICE_POLLING
1189 	struct ifnet *ifp = &sc->sc_if;
1190 
1191 	if (ifp->if_ipending & IFF_POLLING)
1192 		return;
1193 	if (ether_poll_register(fxp_poll, ifp)) {
1194 		/* disable interrupts */
1195 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1196 		fxp_poll(ifp, 0, 1);
1197 		return;
1198 	}
1199 #endif
1200 
1201 	if (sc->suspended) {
1202 		return;
1203 	}
1204 
1205 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1206 		/*
1207 		 * It should not be possible to have all bits set; the
1208 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1209 		 * all bits are set, this may indicate that the card has
1210 		 * been physically ejected, so ignore it.
1211 		 */
1212 		if (statack == 0xff)
1213 			return;
1214 
1215 		/*
1216 		 * First ACK all the interrupts in this pass.
1217 		 */
1218 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1219 		fxp_intr_body(sc, statack, -1);
1220 	}
1221 }
1222 
1223 static void
1224 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1225 {
1226 	struct ifnet *ifp = &sc->sc_if;
1227 
1228 		/*
1229 		 * Free any finished transmit mbuf chains.
1230 		 *
1231 		 * Handle the CNA event likt a CXTNO event. It used to
1232 		 * be that this event (control unit not ready) was not
1233 		 * encountered, but it is now with the SMPng modifications.
1234 		 * The exact sequence of events that occur when the interface
1235 		 * is brought up are different now, and if this event
1236 		 * goes unhandled, the configuration/rxfilter setup sequence
1237 		 * can stall for several seconds. The result is that no
1238 		 * packets go out onto the wire for about 5 to 10 seconds
1239 		 * after the interface is ifconfig'ed for the first time.
1240 		 */
1241 		if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1242 			struct fxp_cb_tx *txp;
1243 
1244 			for (txp = sc->cbl_first; sc->tx_queued &&
1245 			    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1246 			    txp = txp->next) {
1247 				if (txp->mb_head != NULL) {
1248 					m_freem(txp->mb_head);
1249 					txp->mb_head = NULL;
1250 				}
1251 				sc->tx_queued--;
1252 			}
1253 			sc->cbl_first = txp;
1254 			ifp->if_timer = 0;
1255 			if (sc->tx_queued == 0) {
1256 				if (sc->need_mcsetup)
1257 					fxp_mc_setup(sc);
1258 			}
1259 			/*
1260 			 * Try to start more packets transmitting.
1261 			 */
1262 			if (ifp->if_snd.ifq_head != NULL)
1263 				fxp_start(ifp);
1264 		}
1265 		/*
1266 		 * Process receiver interrupts. If a no-resource (RNR)
1267 		 * condition exists, get whatever packets we can and
1268 		 * re-start the receiver.
1269 		 */
1270 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1271 			struct mbuf *m;
1272 			struct fxp_rfa *rfa;
1273 rcvloop:
1274 			m = sc->rfa_headm;
1275 			rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1276 			    RFA_ALIGNMENT_FUDGE);
1277 
1278 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1279 			if (count < 0 || count-- > 0)
1280 #endif
1281 			if (rfa->rfa_status & FXP_RFA_STATUS_C) {
1282 				/*
1283 				 * Remove first packet from the chain.
1284 				 */
1285 				sc->rfa_headm = m->m_next;
1286 				m->m_next = NULL;
1287 
1288 				/*
1289 				 * Add a new buffer to the receive chain.
1290 				 * If this fails, the old buffer is recycled
1291 				 * instead.
1292 				 */
1293 				if (fxp_add_rfabuf(sc, m) == 0) {
1294 					struct ether_header *eh;
1295 					int total_len;
1296 
1297 					total_len = rfa->actual_size &
1298 					    (MCLBYTES - 1);
1299 					if (total_len <
1300 					    sizeof(struct ether_header)) {
1301 						m_freem(m);
1302 						goto rcvloop;
1303 					}
1304 
1305 					/*
1306 					 * Drop the packet if it has CRC
1307 					 * errors.  This test is only needed
1308 					 * when doing 802.1q VLAN on the 82557
1309 					 * chip.
1310 					 */
1311 					if (rfa->rfa_status &
1312 					    FXP_RFA_STATUS_CRC) {
1313 						m_freem(m);
1314 						goto rcvloop;
1315 					}
1316 
1317 					m->m_pkthdr.rcvif = ifp;
1318 					m->m_pkthdr.len = m->m_len = total_len;
1319 					eh = mtod(m, struct ether_header *);
1320 					m->m_data +=
1321 					    sizeof(struct ether_header);
1322 					m->m_len -=
1323 					    sizeof(struct ether_header);
1324 					m->m_pkthdr.len = m->m_len;
1325 					ether_input(ifp, eh, m);
1326 				}
1327 				goto rcvloop;
1328 			}
1329 			if (statack & FXP_SCB_STATACK_RNR) {
1330 				fxp_scb_wait(sc);
1331 				CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1332 				    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1333 					RFA_ALIGNMENT_FUDGE);
1334 				fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1335 			}
1336 		}
1337 }
1338 
1339 /*
1340  * Update packet in/out/collision statistics. The i82557 doesn't
1341  * allow you to access these counters without doing a fairly
1342  * expensive DMA to get _all_ of the statistics it maintains, so
1343  * we do this operation here only once per second. The statistics
1344  * counters in the kernel are updated from the previous dump-stats
1345  * DMA and then a new dump-stats DMA is started. The on-chip
1346  * counters are zeroed when the DMA completes. If we can't start
1347  * the DMA immediately, we don't wait - we just prepare to read
1348  * them again next time.
1349  */
1350 static void
1351 fxp_tick(void *xsc)
1352 {
1353 	struct fxp_softc *sc = xsc;
1354 	struct ifnet *ifp = &sc->sc_if;
1355 	struct fxp_stats *sp = sc->fxp_stats;
1356 	struct fxp_cb_tx *txp;
1357 	int s;
1358 
1359 	ifp->if_opackets += sp->tx_good;
1360 	ifp->if_collisions += sp->tx_total_collisions;
1361 	if (sp->rx_good) {
1362 		ifp->if_ipackets += sp->rx_good;
1363 		sc->rx_idle_secs = 0;
1364 	} else {
1365 		/*
1366 		 * Receiver's been idle for another second.
1367 		 */
1368 		sc->rx_idle_secs++;
1369 	}
1370 	ifp->if_ierrors +=
1371 	    sp->rx_crc_errors +
1372 	    sp->rx_alignment_errors +
1373 	    sp->rx_rnr_errors +
1374 	    sp->rx_overrun_errors;
1375 	/*
1376 	 * If any transmit underruns occured, bump up the transmit
1377 	 * threshold by another 512 bytes (64 * 8).
1378 	 */
1379 	if (sp->tx_underruns) {
1380 		ifp->if_oerrors += sp->tx_underruns;
1381 		if (tx_threshold < 192)
1382 			tx_threshold += 64;
1383 	}
1384 	s = splimp();
1385 	/*
1386 	 * Release any xmit buffers that have completed DMA. This isn't
1387 	 * strictly necessary to do here, but it's advantagous for mbufs
1388 	 * with external storage to be released in a timely manner rather
1389 	 * than being defered for a potentially long time. This limits
1390 	 * the delay to a maximum of one second.
1391 	 */
1392 	for (txp = sc->cbl_first; sc->tx_queued &&
1393 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1394 	    txp = txp->next) {
1395 		if (txp->mb_head != NULL) {
1396 			m_freem(txp->mb_head);
1397 			txp->mb_head = NULL;
1398 		}
1399 		sc->tx_queued--;
1400 	}
1401 	sc->cbl_first = txp;
1402 	/*
1403 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1404 	 * then assume the receiver has locked up and attempt to clear
1405 	 * the condition by reprogramming the multicast filter. This is
1406 	 * a work-around for a bug in the 82557 where the receiver locks
1407 	 * up if it gets certain types of garbage in the syncronization
1408 	 * bits prior to the packet header. This bug is supposed to only
1409 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1410 	 * mode as well (perhaps due to a 10/100 speed transition).
1411 	 */
1412 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1413 		sc->rx_idle_secs = 0;
1414 		fxp_mc_setup(sc);
1415 	}
1416 	/*
1417 	 * If there is no pending command, start another stats
1418 	 * dump. Otherwise punt for now.
1419 	 */
1420 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1421 		/*
1422 		 * Start another stats dump.
1423 		 */
1424 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1425 	} else {
1426 		/*
1427 		 * A previous command is still waiting to be accepted.
1428 		 * Just zero our copy of the stats and wait for the
1429 		 * next timer event to update them.
1430 		 */
1431 		sp->tx_good = 0;
1432 		sp->tx_underruns = 0;
1433 		sp->tx_total_collisions = 0;
1434 
1435 		sp->rx_good = 0;
1436 		sp->rx_crc_errors = 0;
1437 		sp->rx_alignment_errors = 0;
1438 		sp->rx_rnr_errors = 0;
1439 		sp->rx_overrun_errors = 0;
1440 	}
1441 	if (sc->miibus != NULL)
1442 		mii_tick(device_get_softc(sc->miibus));
1443 	splx(s);
1444 	/*
1445 	 * Schedule another timeout one second from now.
1446 	 */
1447 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1448 }
1449 
1450 /*
1451  * Stop the interface. Cancels the statistics updater and resets
1452  * the interface.
1453  */
1454 static void
1455 fxp_stop(struct fxp_softc *sc)
1456 {
1457 	struct ifnet *ifp = &sc->sc_if;
1458 	struct fxp_cb_tx *txp;
1459 	int i;
1460 
1461 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1462 	ifp->if_timer = 0;
1463 
1464 #ifdef DEVICE_POLLING
1465 	ether_poll_deregister(ifp);
1466 #endif
1467 	/*
1468 	 * Cancel stats updater.
1469 	 */
1470 	untimeout(fxp_tick, sc, sc->stat_ch);
1471 
1472 	/*
1473 	 * Issue software reset, which also unloads the microcode.
1474 	 */
1475 	sc->flags &= ~FXP_FLAG_UCODE;
1476 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1477 	DELAY(50);
1478 
1479 	/*
1480 	 * Release any xmit buffers.
1481 	 */
1482 	txp = sc->cbl_base;
1483 	if (txp != NULL) {
1484 		for (i = 0; i < FXP_NTXCB; i++) {
1485 			if (txp[i].mb_head != NULL) {
1486 				m_freem(txp[i].mb_head);
1487 				txp[i].mb_head = NULL;
1488 			}
1489 		}
1490 	}
1491 	sc->tx_queued = 0;
1492 
1493 	/*
1494 	 * Free all the receive buffers then reallocate/reinitialize
1495 	 */
1496 	if (sc->rfa_headm != NULL)
1497 		m_freem(sc->rfa_headm);
1498 	sc->rfa_headm = NULL;
1499 	sc->rfa_tailm = NULL;
1500 	for (i = 0; i < FXP_NRFABUFS; i++) {
1501 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1502 			/*
1503 			 * This "can't happen" - we're at splimp()
1504 			 * and we just freed all the buffers we need
1505 			 * above.
1506 			 */
1507 			panic("fxp_stop: no buffers!");
1508 		}
1509 	}
1510 }
1511 
1512 /*
1513  * Watchdog/transmission transmit timeout handler. Called when a
1514  * transmission is started on the interface, but no interrupt is
1515  * received before the timeout. This usually indicates that the
1516  * card has wedged for some reason.
1517  */
1518 static void
1519 fxp_watchdog(struct ifnet *ifp)
1520 {
1521 	struct fxp_softc *sc = ifp->if_softc;
1522 
1523 	device_printf(sc->dev, "device timeout\n");
1524 	ifp->if_oerrors++;
1525 
1526 	fxp_init(sc);
1527 }
1528 
1529 static void
1530 fxp_init(void *xsc)
1531 {
1532 	struct fxp_softc *sc = xsc;
1533 	struct ifnet *ifp = &sc->sc_if;
1534 	struct fxp_cb_config *cbp;
1535 	struct fxp_cb_ias *cb_ias;
1536 	struct fxp_cb_tx *txp;
1537 	struct fxp_cb_mcs *mcsp;
1538 	int i, prm, s;
1539 
1540 	s = splimp();
1541 	/*
1542 	 * Cancel any pending I/O
1543 	 */
1544 	fxp_stop(sc);
1545 
1546 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1547 
1548 	/*
1549 	 * Initialize base of CBL and RFA memory. Loading with zero
1550 	 * sets it up for regular linear addressing.
1551 	 */
1552 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1553 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1554 
1555 	fxp_scb_wait(sc);
1556 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1557 
1558 	/*
1559 	 * Initialize base of dump-stats buffer.
1560 	 */
1561 	fxp_scb_wait(sc);
1562 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1563 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1564 
1565 	/*
1566 	 * Attempt to load microcode if requested.
1567 	 */
1568 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1569 		fxp_load_ucode(sc);
1570 
1571 	/*
1572 	 * Initialize the multicast address list.
1573 	 */
1574 	if (fxp_mc_addrs(sc)) {
1575 		mcsp = sc->mcsp;
1576 		mcsp->cb_status = 0;
1577 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1578 		mcsp->link_addr = -1;
1579 		/*
1580 	 	 * Start the multicast setup command.
1581 		 */
1582 		fxp_scb_wait(sc);
1583 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1584 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1585 		/* ...and wait for it to complete. */
1586 		fxp_dma_wait(&mcsp->cb_status, sc);
1587 	}
1588 
1589 	/*
1590 	 * We temporarily use memory that contains the TxCB list to
1591 	 * construct the config CB. The TxCB list memory is rebuilt
1592 	 * later.
1593 	 */
1594 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1595 
1596 	/*
1597 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1598 	 * zero and must be one bits in this structure and this is the easiest
1599 	 * way to initialize them all to proper values.
1600 	 */
1601 	bcopy(fxp_cb_config_template,
1602 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1603 		sizeof(fxp_cb_config_template));
1604 
1605 	cbp->cb_status =	0;
1606 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1607 	cbp->link_addr =	-1;	/* (no) next command */
1608 	cbp->byte_count =	22;	/* (22) bytes to config */
1609 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1610 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1611 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1612 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1613 	cbp->type_enable =	0;	/* actually reserved */
1614 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1615 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1616 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1617 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1618 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1619 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1620 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1621 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1622 	cbp->ci_int =		1;	/* interrupt on CU idle */
1623 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1624 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1625 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1626 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1627 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1628 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1629 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1630 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1631 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1632 	cbp->csma_dis =		0;	/* (don't) disable link */
1633 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1634 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1635 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1636 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1637 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1638 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1639 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1640 	cbp->loopback =		0;	/* (don't) loopback */
1641 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1642 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1643 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1644 	cbp->promiscuous =	prm;	/* promiscuous mode */
1645 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1646 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1647 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1648 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1649 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1650 
1651 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1652 	cbp->padding =		1;	/* (do) pad short tx packets */
1653 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1654 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1655 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1656 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1657 					/* must set wake_en in PMCSR also */
1658 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1659 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1660 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1661 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1662 
1663 	if (sc->revision == FXP_REV_82557) {
1664 		/*
1665 		 * The 82557 has no hardware flow control, the values
1666 		 * below are the defaults for the chip.
1667 		 */
1668 		cbp->fc_delay_lsb =	0;
1669 		cbp->fc_delay_msb =	0x40;
1670 		cbp->pri_fc_thresh =	3;
1671 		cbp->tx_fc_dis =	0;
1672 		cbp->rx_fc_restop =	0;
1673 		cbp->rx_fc_restart =	0;
1674 		cbp->fc_filter =	0;
1675 		cbp->pri_fc_loc =	1;
1676 	} else {
1677 		cbp->fc_delay_lsb =	0x1f;
1678 		cbp->fc_delay_msb =	0x01;
1679 		cbp->pri_fc_thresh =	3;
1680 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1681 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1682 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1683 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1684 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1685 	}
1686 
1687 	/*
1688 	 * Start the config command/DMA.
1689 	 */
1690 	fxp_scb_wait(sc);
1691 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1692 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1693 	/* ...and wait for it to complete. */
1694 	fxp_dma_wait(&cbp->cb_status, sc);
1695 
1696 	/*
1697 	 * Now initialize the station address. Temporarily use the TxCB
1698 	 * memory area like we did above for the config CB.
1699 	 */
1700 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1701 	cb_ias->cb_status = 0;
1702 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1703 	cb_ias->link_addr = -1;
1704 	bcopy(sc->arpcom.ac_enaddr,
1705 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1706 	    sizeof(sc->arpcom.ac_enaddr));
1707 
1708 	/*
1709 	 * Start the IAS (Individual Address Setup) command/DMA.
1710 	 */
1711 	fxp_scb_wait(sc);
1712 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1713 	/* ...and wait for it to complete. */
1714 	fxp_dma_wait(&cb_ias->cb_status, sc);
1715 
1716 	/*
1717 	 * Initialize transmit control block (TxCB) list.
1718 	 */
1719 
1720 	txp = sc->cbl_base;
1721 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1722 	for (i = 0; i < FXP_NTXCB; i++) {
1723 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1724 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1725 		txp[i].link_addr =
1726 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1727 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1728 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1729 		else
1730 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1731 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1732 	}
1733 	/*
1734 	 * Set the suspend flag on the first TxCB and start the control
1735 	 * unit. It will execute the NOP and then suspend.
1736 	 */
1737 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1738 	sc->cbl_first = sc->cbl_last = txp;
1739 	sc->tx_queued = 1;
1740 
1741 	fxp_scb_wait(sc);
1742 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1743 
1744 	/*
1745 	 * Initialize receiver buffer area - RFA.
1746 	 */
1747 	fxp_scb_wait(sc);
1748 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1749 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1750 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1751 
1752 	/*
1753 	 * Set current media.
1754 	 */
1755 	if (sc->miibus != NULL)
1756 		mii_mediachg(device_get_softc(sc->miibus));
1757 
1758 	ifp->if_flags |= IFF_RUNNING;
1759 	ifp->if_flags &= ~IFF_OACTIVE;
1760 
1761 	/*
1762 	 * Enable interrupts.
1763 	 */
1764 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1765 	splx(s);
1766 
1767 	/*
1768 	 * Start stats updater.
1769 	 */
1770 	sc->stat_ch = timeout(fxp_tick, sc, hz);
1771 }
1772 
1773 static int
1774 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1775 {
1776 
1777 	return (0);
1778 }
1779 
1780 static void
1781 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1782 {
1783 
1784 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1785 }
1786 
1787 /*
1788  * Change media according to request.
1789  */
1790 static int
1791 fxp_ifmedia_upd(struct ifnet *ifp)
1792 {
1793 	struct fxp_softc *sc = ifp->if_softc;
1794 	struct mii_data *mii;
1795 
1796 	mii = device_get_softc(sc->miibus);
1797 	mii_mediachg(mii);
1798 	return (0);
1799 }
1800 
1801 /*
1802  * Notify the world which media we're using.
1803  */
1804 static void
1805 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1806 {
1807 	struct fxp_softc *sc = ifp->if_softc;
1808 	struct mii_data *mii;
1809 
1810 	mii = device_get_softc(sc->miibus);
1811 	mii_pollstat(mii);
1812 	ifmr->ifm_active = mii->mii_media_active;
1813 	ifmr->ifm_status = mii->mii_media_status;
1814 
1815 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1816 		sc->cu_resume_bug = 1;
1817 	else
1818 		sc->cu_resume_bug = 0;
1819 }
1820 
1821 /*
1822  * Add a buffer to the end of the RFA buffer list.
1823  * Return 0 if successful, 1 for failure. A failure results in
1824  * adding the 'oldm' (if non-NULL) on to the end of the list -
1825  * tossing out its old contents and recycling it.
1826  * The RFA struct is stuck at the beginning of mbuf cluster and the
1827  * data pointer is fixed up to point just past it.
1828  */
1829 static int
1830 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1831 {
1832 	u_int32_t v;
1833 	struct mbuf *m;
1834 	struct fxp_rfa *rfa, *p_rfa;
1835 
1836 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1837 	if (m != NULL) {
1838 		MCLGET(m, M_DONTWAIT);
1839 		if ((m->m_flags & M_EXT) == 0) {
1840 			m_freem(m);
1841 			if (oldm == NULL)
1842 				return 1;
1843 			m = oldm;
1844 			m->m_data = m->m_ext.ext_buf;
1845 		}
1846 	} else {
1847 		if (oldm == NULL)
1848 			return 1;
1849 		m = oldm;
1850 		m->m_data = m->m_ext.ext_buf;
1851 	}
1852 
1853 	/*
1854 	 * Move the data pointer up so that the incoming data packet
1855 	 * will be 32-bit aligned.
1856 	 */
1857 	m->m_data += RFA_ALIGNMENT_FUDGE;
1858 
1859 	/*
1860 	 * Get a pointer to the base of the mbuf cluster and move
1861 	 * data start past it.
1862 	 */
1863 	rfa = mtod(m, struct fxp_rfa *);
1864 	m->m_data += sizeof(struct fxp_rfa);
1865 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1866 
1867 	/*
1868 	 * Initialize the rest of the RFA.  Note that since the RFA
1869 	 * is misaligned, we cannot store values directly.  Instead,
1870 	 * we use an optimized, inline copy.
1871 	 */
1872 
1873 	rfa->rfa_status = 0;
1874 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1875 	rfa->actual_size = 0;
1876 
1877 	v = -1;
1878 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1879 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1880 
1881 	/*
1882 	 * If there are other buffers already on the list, attach this
1883 	 * one to the end by fixing up the tail to point to this one.
1884 	 */
1885 	if (sc->rfa_headm != NULL) {
1886 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1887 		    RFA_ALIGNMENT_FUDGE);
1888 		sc->rfa_tailm->m_next = m;
1889 		v = vtophys(rfa);
1890 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1891 		p_rfa->rfa_control = 0;
1892 	} else {
1893 		sc->rfa_headm = m;
1894 	}
1895 	sc->rfa_tailm = m;
1896 
1897 	return (m == oldm);
1898 }
1899 
1900 static volatile int
1901 fxp_miibus_readreg(device_t dev, int phy, int reg)
1902 {
1903 	struct fxp_softc *sc = device_get_softc(dev);
1904 	int count = 10000;
1905 	int value;
1906 
1907 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1908 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1909 
1910 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1911 	    && count--)
1912 		DELAY(10);
1913 
1914 	if (count <= 0)
1915 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
1916 
1917 	return (value & 0xffff);
1918 }
1919 
1920 static void
1921 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1922 {
1923 	struct fxp_softc *sc = device_get_softc(dev);
1924 	int count = 10000;
1925 
1926 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1927 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1928 	    (value & 0xffff));
1929 
1930 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1931 	    count--)
1932 		DELAY(10);
1933 
1934 	if (count <= 0)
1935 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
1936 }
1937 
1938 static int
1939 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1940 {
1941 	struct fxp_softc *sc = ifp->if_softc;
1942 	struct ifreq *ifr = (struct ifreq *)data;
1943 	struct mii_data *mii;
1944 	int s, error = 0;
1945 
1946 	s = splimp();
1947 
1948 	switch (command) {
1949 	case SIOCSIFADDR:
1950 	case SIOCGIFADDR:
1951 	case SIOCSIFMTU:
1952 		error = ether_ioctl(ifp, command, data);
1953 		break;
1954 
1955 	case SIOCSIFFLAGS:
1956 		if (ifp->if_flags & IFF_ALLMULTI)
1957 			sc->flags |= FXP_FLAG_ALL_MCAST;
1958 		else
1959 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1960 
1961 		/*
1962 		 * If interface is marked up and not running, then start it.
1963 		 * If it is marked down and running, stop it.
1964 		 * XXX If it's up then re-initialize it. This is so flags
1965 		 * such as IFF_PROMISC are handled.
1966 		 */
1967 		if (ifp->if_flags & IFF_UP) {
1968 			fxp_init(sc);
1969 		} else {
1970 			if (ifp->if_flags & IFF_RUNNING)
1971 				fxp_stop(sc);
1972 		}
1973 		break;
1974 
1975 	case SIOCADDMULTI:
1976 	case SIOCDELMULTI:
1977 		if (ifp->if_flags & IFF_ALLMULTI)
1978 			sc->flags |= FXP_FLAG_ALL_MCAST;
1979 		else
1980 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
1981 		/*
1982 		 * Multicast list has changed; set the hardware filter
1983 		 * accordingly.
1984 		 */
1985 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
1986 			fxp_mc_setup(sc);
1987 		/*
1988 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
1989 		 * again rather than else {}.
1990 		 */
1991 		if (sc->flags & FXP_FLAG_ALL_MCAST)
1992 			fxp_init(sc);
1993 		error = 0;
1994 		break;
1995 
1996 	case SIOCSIFMEDIA:
1997 	case SIOCGIFMEDIA:
1998 		if (sc->miibus != NULL) {
1999 			mii = device_get_softc(sc->miibus);
2000                         error = ifmedia_ioctl(ifp, ifr,
2001                             &mii->mii_media, command);
2002 		} else {
2003                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2004 		}
2005 		break;
2006 
2007 	default:
2008 		error = EINVAL;
2009 	}
2010 	splx(s);
2011 	return (error);
2012 }
2013 
2014 /*
2015  * Fill in the multicast address list and return number of entries.
2016  */
2017 static int
2018 fxp_mc_addrs(struct fxp_softc *sc)
2019 {
2020 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2021 	struct ifnet *ifp = &sc->sc_if;
2022 	struct ifmultiaddr *ifma;
2023 	int nmcasts;
2024 
2025 	nmcasts = 0;
2026 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2027 #if __FreeBSD_version < 500000
2028 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2029 #else
2030 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2031 #endif
2032 			if (ifma->ifma_addr->sa_family != AF_LINK)
2033 				continue;
2034 			if (nmcasts >= MAXMCADDR) {
2035 				sc->flags |= FXP_FLAG_ALL_MCAST;
2036 				nmcasts = 0;
2037 				break;
2038 			}
2039 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2040 			    (void *)(uintptr_t)(volatile void *)
2041 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2042 			nmcasts++;
2043 		}
2044 	}
2045 	mcsp->mc_cnt = nmcasts * 6;
2046 	return (nmcasts);
2047 }
2048 
2049 /*
2050  * Program the multicast filter.
2051  *
2052  * We have an artificial restriction that the multicast setup command
2053  * must be the first command in the chain, so we take steps to ensure
2054  * this. By requiring this, it allows us to keep up the performance of
2055  * the pre-initialized command ring (esp. link pointers) by not actually
2056  * inserting the mcsetup command in the ring - i.e. its link pointer
2057  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2058  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2059  * lead into the regular TxCB ring when it completes.
2060  *
2061  * This function must be called at splimp.
2062  */
2063 static void
2064 fxp_mc_setup(struct fxp_softc *sc)
2065 {
2066 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2067 	struct ifnet *ifp = &sc->sc_if;
2068 	int count;
2069 
2070 	/*
2071 	 * If there are queued commands, we must wait until they are all
2072 	 * completed. If we are already waiting, then add a NOP command
2073 	 * with interrupt option so that we're notified when all commands
2074 	 * have been completed - fxp_start() ensures that no additional
2075 	 * TX commands will be added when need_mcsetup is true.
2076 	 */
2077 	if (sc->tx_queued) {
2078 		struct fxp_cb_tx *txp;
2079 
2080 		/*
2081 		 * need_mcsetup will be true if we are already waiting for the
2082 		 * NOP command to be completed (see below). In this case, bail.
2083 		 */
2084 		if (sc->need_mcsetup)
2085 			return;
2086 		sc->need_mcsetup = 1;
2087 
2088 		/*
2089 		 * Add a NOP command with interrupt so that we are notified
2090 		 * when all TX commands have been processed.
2091 		 */
2092 		txp = sc->cbl_last->next;
2093 		txp->mb_head = NULL;
2094 		txp->cb_status = 0;
2095 		txp->cb_command = FXP_CB_COMMAND_NOP |
2096 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2097 		/*
2098 		 * Advance the end of list forward.
2099 		 */
2100 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2101 		sc->cbl_last = txp;
2102 		sc->tx_queued++;
2103 		/*
2104 		 * Issue a resume in case the CU has just suspended.
2105 		 */
2106 		fxp_scb_wait(sc);
2107 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2108 		/*
2109 		 * Set a 5 second timer just in case we don't hear from the
2110 		 * card again.
2111 		 */
2112 		ifp->if_timer = 5;
2113 
2114 		return;
2115 	}
2116 	sc->need_mcsetup = 0;
2117 
2118 	/*
2119 	 * Initialize multicast setup descriptor.
2120 	 */
2121 	mcsp->next = sc->cbl_base;
2122 	mcsp->mb_head = NULL;
2123 	mcsp->cb_status = 0;
2124 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2125 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2126 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2127 	(void) fxp_mc_addrs(sc);
2128 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2129 	sc->tx_queued = 1;
2130 
2131 	/*
2132 	 * Wait until command unit is not active. This should never
2133 	 * be the case when nothing is queued, but make sure anyway.
2134 	 */
2135 	count = 100;
2136 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2137 	    FXP_SCB_CUS_ACTIVE && --count)
2138 		DELAY(10);
2139 	if (count == 0) {
2140 		device_printf(sc->dev, "command queue timeout\n");
2141 		return;
2142 	}
2143 
2144 	/*
2145 	 * Start the multicast setup command.
2146 	 */
2147 	fxp_scb_wait(sc);
2148 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2149 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2150 
2151 	ifp->if_timer = 2;
2152 	return;
2153 }
2154 
2155 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2156 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2157 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2158 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2159 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2160 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2161 
2162 #define UCODE(x)	x, sizeof(x)
2163 
2164 struct ucode {
2165 	u_int32_t	revision;
2166 	u_int32_t	*ucode;
2167 	int		length;
2168 	u_short		int_delay_offset;
2169 	u_short		bundle_max_offset;
2170 } ucode_table[] = {
2171 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2172 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2173 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2174 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2175 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2176 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2177 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2178 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2179 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2180 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2181 	{ 0, NULL, 0, 0, 0 }
2182 };
2183 
2184 static void
2185 fxp_load_ucode(struct fxp_softc *sc)
2186 {
2187 	struct ucode *uc;
2188 	struct fxp_cb_ucode *cbp;
2189 
2190 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2191 		if (sc->revision == uc->revision)
2192 			break;
2193 	if (uc->ucode == NULL)
2194 		return;
2195 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2196 	cbp->cb_status = 0;
2197 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2198 	cbp->link_addr = -1;    	/* (no) next command */
2199 	memcpy(cbp->ucode, uc->ucode, uc->length);
2200 	if (uc->int_delay_offset)
2201 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2202 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2203 	if (uc->bundle_max_offset)
2204 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2205 		    sc->tunable_bundle_max;
2206 	/*
2207 	 * Download the ucode to the chip.
2208 	 */
2209 	fxp_scb_wait(sc);
2210 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2211 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2212 	/* ...and wait for it to complete. */
2213 	fxp_dma_wait(&cbp->cb_status, sc);
2214 	device_printf(sc->dev,
2215 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2216 	    sc->tunable_int_delay,
2217 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2218 	sc->flags |= FXP_FLAG_UCODE;
2219 }
2220 
2221 static int
2222 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2223 {
2224 	int error, value;
2225 
2226 	value = *(int *)arg1;
2227 	error = sysctl_handle_int(oidp, &value, 0, req);
2228 	if (error || !req->newptr)
2229 		return (error);
2230 	if (value < low || value > high)
2231 		return (EINVAL);
2232 	*(int *)arg1 = value;
2233 	return (0);
2234 }
2235 
2236 /*
2237  * Interrupt delay is expressed in microseconds, a multiplier is used
2238  * to convert this to the appropriate clock ticks before using.
2239  */
2240 static int
2241 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2242 {
2243 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2244 }
2245 
2246 static int
2247 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2248 {
2249 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2250 }
2251