1 /*- 2 * Copyright (c) 1995, David Greenman 3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice unmodified, this list of conditions, and the following 11 * disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver 35 */ 36 37 #ifdef HAVE_KERNEL_OPTION_HEADERS 38 #include "opt_device_polling.h" 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/endian.h> 44 #include <sys/mbuf.h> 45 /* #include <sys/mutex.h> */ 46 #include <sys/kernel.h> 47 #include <sys/module.h> 48 #include <sys/socket.h> 49 #include <sys/sysctl.h> 50 51 #include <net/if.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 55 #include <net/bpf.h> 56 #include <sys/sockio.h> 57 #include <sys/bus.h> 58 #include <machine/bus.h> 59 #include <sys/rman.h> 60 #include <machine/resource.h> 61 62 #include <net/ethernet.h> 63 #include <net/if_arp.h> 64 65 #include <machine/clock.h> /* for DELAY */ 66 67 #include <net/if_types.h> 68 #include <net/if_vlan_var.h> 69 70 #ifdef FXP_IP_CSUM_WAR 71 #include <netinet/in.h> 72 #include <netinet/in_systm.h> 73 #include <netinet/ip.h> 74 #include <machine/in_cksum.h> 75 #endif 76 77 #include <dev/pci/pcivar.h> 78 #include <dev/pci/pcireg.h> /* for PCIM_CMD_xxx */ 79 80 #include <dev/mii/mii.h> 81 #include <dev/mii/miivar.h> 82 83 #include <dev/fxp/if_fxpreg.h> 84 #include <dev/fxp/if_fxpvar.h> 85 #include <dev/fxp/rcvbundl.h> 86 87 MODULE_DEPEND(fxp, pci, 1, 1, 1); 88 MODULE_DEPEND(fxp, ether, 1, 1, 1); 89 MODULE_DEPEND(fxp, miibus, 1, 1, 1); 90 #include "miibus_if.h" 91 92 /* 93 * NOTE! On the Alpha, we have an alignment constraint. The 94 * card DMAs the packet immediately following the RFA. However, 95 * the first thing in the packet is a 14-byte Ethernet header. 96 * This means that the packet is misaligned. To compensate, 97 * we actually offset the RFA 2 bytes into the cluster. This 98 * alignes the packet after the Ethernet header at a 32-bit 99 * boundary. HOWEVER! This means that the RFA is misaligned! 100 */ 101 #define RFA_ALIGNMENT_FUDGE 2 102 103 /* 104 * Set initial transmit threshold at 64 (512 bytes). This is 105 * increased by 64 (512 bytes) at a time, to maximum of 192 106 * (1536 bytes), if an underrun occurs. 107 */ 108 static int tx_threshold = 64; 109 110 /* 111 * The configuration byte map has several undefined fields which 112 * must be one or must be zero. Set up a template for these bits 113 * only, (assuming a 82557 chip) leaving the actual configuration 114 * to fxp_init. 115 * 116 * See struct fxp_cb_config for the bit definitions. 117 */ 118 static u_char fxp_cb_config_template[] = { 119 0x0, 0x0, /* cb_status */ 120 0x0, 0x0, /* cb_command */ 121 0x0, 0x0, 0x0, 0x0, /* link_addr */ 122 0x0, /* 0 */ 123 0x0, /* 1 */ 124 0x0, /* 2 */ 125 0x0, /* 3 */ 126 0x0, /* 4 */ 127 0x0, /* 5 */ 128 0x32, /* 6 */ 129 0x0, /* 7 */ 130 0x0, /* 8 */ 131 0x0, /* 9 */ 132 0x6, /* 10 */ 133 0x0, /* 11 */ 134 0x0, /* 12 */ 135 0x0, /* 13 */ 136 0xf2, /* 14 */ 137 0x48, /* 15 */ 138 0x0, /* 16 */ 139 0x40, /* 17 */ 140 0xf0, /* 18 */ 141 0x0, /* 19 */ 142 0x3f, /* 20 */ 143 0x5 /* 21 */ 144 }; 145 146 struct fxp_ident { 147 uint16_t devid; 148 int16_t revid; /* -1 matches anything */ 149 char *name; 150 }; 151 152 /* 153 * Claim various Intel PCI device identifiers for this driver. The 154 * sub-vendor and sub-device field are extensively used to identify 155 * particular variants, but we don't currently differentiate between 156 * them. 157 */ 158 static struct fxp_ident fxp_ident_table[] = { 159 { 0x1029, -1, "Intel 82559 PCI/CardBus Pro/100" }, 160 { 0x1030, -1, "Intel 82559 Pro/100 Ethernet" }, 161 { 0x1031, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 162 { 0x1032, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 163 { 0x1033, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 164 { 0x1034, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 165 { 0x1035, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 166 { 0x1036, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 167 { 0x1037, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 168 { 0x1038, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 169 { 0x1039, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 170 { 0x103A, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 171 { 0x103B, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 172 { 0x103C, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 173 { 0x103D, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 174 { 0x103E, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 175 { 0x1050, -1, "Intel 82801BA (D865) Pro/100 VE Ethernet" }, 176 { 0x1051, -1, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" }, 177 { 0x1059, -1, "Intel 82551QM Pro/100 M Mobile Connection" }, 178 { 0x1064, -1, "Intel 82562EZ (ICH6)" }, 179 { 0x1068, -1, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" }, 180 { 0x1209, -1, "Intel 82559ER Embedded 10/100 Ethernet" }, 181 { 0x1229, 0x01, "Intel 82557 Pro/100 Ethernet" }, 182 { 0x1229, 0x02, "Intel 82557 Pro/100 Ethernet" }, 183 { 0x1229, 0x03, "Intel 82557 Pro/100 Ethernet" }, 184 { 0x1229, 0x04, "Intel 82558 Pro/100 Ethernet" }, 185 { 0x1229, 0x05, "Intel 82558 Pro/100 Ethernet" }, 186 { 0x1229, 0x06, "Intel 82559 Pro/100 Ethernet" }, 187 { 0x1229, 0x07, "Intel 82559 Pro/100 Ethernet" }, 188 { 0x1229, 0x08, "Intel 82559 Pro/100 Ethernet" }, 189 { 0x1229, 0x09, "Intel 82559ER Pro/100 Ethernet" }, 190 { 0x1229, 0x0c, "Intel 82550 Pro/100 Ethernet" }, 191 { 0x1229, 0x0d, "Intel 82550 Pro/100 Ethernet" }, 192 { 0x1229, 0x0e, "Intel 82550 Pro/100 Ethernet" }, 193 { 0x1229, 0x0f, "Intel 82551 Pro/100 Ethernet" }, 194 { 0x1229, 0x10, "Intel 82551 Pro/100 Ethernet" }, 195 { 0x1229, -1, "Intel 82557/8/9 Pro/100 Ethernet" }, 196 { 0x2449, -1, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" }, 197 { 0x27dc, -1, "Intel 82801GB (ICH7) 10/100 Ethernet" }, 198 { 0, -1, NULL }, 199 }; 200 201 #ifdef FXP_IP_CSUM_WAR 202 #define FXP_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 203 #else 204 #define FXP_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 205 #endif 206 207 static int fxp_probe(device_t dev); 208 static int fxp_attach(device_t dev); 209 static int fxp_detach(device_t dev); 210 static int fxp_shutdown(device_t dev); 211 static int fxp_suspend(device_t dev); 212 static int fxp_resume(device_t dev); 213 214 static void fxp_intr(void *xsc); 215 static void fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, 216 uint8_t statack, int count); 217 static void fxp_init(void *xsc); 218 static void fxp_init_body(struct fxp_softc *sc); 219 static void fxp_tick(void *xsc); 220 static void fxp_start(struct ifnet *ifp); 221 static void fxp_start_body(struct ifnet *ifp); 222 static int fxp_encap(struct fxp_softc *sc, struct mbuf *m_head); 223 static void fxp_stop(struct fxp_softc *sc); 224 static void fxp_release(struct fxp_softc *sc); 225 static int fxp_ioctl(struct ifnet *ifp, u_long command, 226 caddr_t data); 227 static void fxp_watchdog(struct ifnet *ifp); 228 static int fxp_add_rfabuf(struct fxp_softc *sc, 229 struct fxp_rx *rxp); 230 static int fxp_mc_addrs(struct fxp_softc *sc); 231 static void fxp_mc_setup(struct fxp_softc *sc); 232 static uint16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, 233 int autosize); 234 static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, 235 uint16_t data); 236 static void fxp_autosize_eeprom(struct fxp_softc *sc); 237 static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, 238 int offset, int words); 239 static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, 240 int offset, int words); 241 static int fxp_ifmedia_upd(struct ifnet *ifp); 242 static void fxp_ifmedia_sts(struct ifnet *ifp, 243 struct ifmediareq *ifmr); 244 static int fxp_serial_ifmedia_upd(struct ifnet *ifp); 245 static void fxp_serial_ifmedia_sts(struct ifnet *ifp, 246 struct ifmediareq *ifmr); 247 static volatile int fxp_miibus_readreg(device_t dev, int phy, int reg); 248 static void fxp_miibus_writereg(device_t dev, int phy, int reg, 249 int value); 250 static void fxp_load_ucode(struct fxp_softc *sc); 251 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, 252 int low, int high); 253 static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS); 254 static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS); 255 static void fxp_scb_wait(struct fxp_softc *sc); 256 static void fxp_scb_cmd(struct fxp_softc *sc, int cmd); 257 static void fxp_dma_wait(struct fxp_softc *sc, 258 volatile uint16_t *status, bus_dma_tag_t dmat, 259 bus_dmamap_t map); 260 261 static device_method_t fxp_methods[] = { 262 /* Device interface */ 263 DEVMETHOD(device_probe, fxp_probe), 264 DEVMETHOD(device_attach, fxp_attach), 265 DEVMETHOD(device_detach, fxp_detach), 266 DEVMETHOD(device_shutdown, fxp_shutdown), 267 DEVMETHOD(device_suspend, fxp_suspend), 268 DEVMETHOD(device_resume, fxp_resume), 269 270 /* MII interface */ 271 DEVMETHOD(miibus_readreg, fxp_miibus_readreg), 272 DEVMETHOD(miibus_writereg, fxp_miibus_writereg), 273 274 { 0, 0 } 275 }; 276 277 static driver_t fxp_driver = { 278 "fxp", 279 fxp_methods, 280 sizeof(struct fxp_softc), 281 }; 282 283 static devclass_t fxp_devclass; 284 285 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0); 286 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0); 287 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0); 288 289 static struct resource_spec fxp_res_spec_mem[] = { 290 { SYS_RES_MEMORY, FXP_PCI_MMBA, RF_ACTIVE }, 291 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 292 { -1, 0 } 293 }; 294 295 static struct resource_spec fxp_res_spec_io[] = { 296 { SYS_RES_IOPORT, FXP_PCI_IOBA, RF_ACTIVE }, 297 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 298 { -1, 0 } 299 }; 300 301 /* 302 * Wait for the previous command to be accepted (but not necessarily 303 * completed). 304 */ 305 static void 306 fxp_scb_wait(struct fxp_softc *sc) 307 { 308 union { 309 uint16_t w; 310 uint8_t b[2]; 311 } flowctl; 312 int i = 10000; 313 314 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) 315 DELAY(2); 316 if (i == 0) { 317 flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL); 318 flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1); 319 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n", 320 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND), 321 CSR_READ_1(sc, FXP_CSR_SCB_STATACK), 322 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w); 323 } 324 } 325 326 static void 327 fxp_scb_cmd(struct fxp_softc *sc, int cmd) 328 { 329 330 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) { 331 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP); 332 fxp_scb_wait(sc); 333 } 334 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); 335 } 336 337 static void 338 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status, 339 bus_dma_tag_t dmat, bus_dmamap_t map) 340 { 341 int i = 10000; 342 343 bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD); 344 while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) { 345 DELAY(2); 346 bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD); 347 } 348 if (i == 0) 349 device_printf(sc->dev, "DMA timeout\n"); 350 } 351 352 /* 353 * Return identification string if this device is ours. 354 */ 355 static int 356 fxp_probe(device_t dev) 357 { 358 uint16_t devid; 359 uint8_t revid; 360 struct fxp_ident *ident; 361 362 if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) { 363 devid = pci_get_device(dev); 364 revid = pci_get_revid(dev); 365 for (ident = fxp_ident_table; ident->name != NULL; ident++) { 366 if (ident->devid == devid && 367 (ident->revid == revid || ident->revid == -1)) { 368 device_set_desc(dev, ident->name); 369 return (BUS_PROBE_DEFAULT); 370 } 371 } 372 } 373 return (ENXIO); 374 } 375 376 static void 377 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 378 { 379 uint32_t *addr; 380 381 if (error) 382 return; 383 384 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 385 addr = arg; 386 *addr = segs->ds_addr; 387 } 388 389 static int 390 fxp_attach(device_t dev) 391 { 392 struct fxp_softc *sc; 393 struct fxp_cb_tx *tcbp; 394 struct fxp_tx *txp; 395 struct fxp_rx *rxp; 396 struct ifnet *ifp; 397 uint32_t val; 398 uint16_t data, myea[ETHER_ADDR_LEN / 2]; 399 u_char eaddr[ETHER_ADDR_LEN]; 400 int i, prefer_iomap; 401 int error; 402 403 error = 0; 404 sc = device_get_softc(dev); 405 sc->dev = dev; 406 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 407 MTX_DEF); 408 callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0); 409 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd, 410 fxp_serial_ifmedia_sts); 411 412 ifp = sc->ifp = if_alloc(IFT_ETHER); 413 if (ifp == NULL) { 414 device_printf(dev, "can not if_alloc()\n"); 415 error = ENOSPC; 416 goto fail; 417 } 418 419 /* 420 * Enable bus mastering. 421 */ 422 pci_enable_busmaster(dev); 423 val = pci_read_config(dev, PCIR_COMMAND, 2); 424 425 /* 426 * Figure out which we should try first - memory mapping or i/o mapping? 427 * We default to memory mapping. Then we accept an override from the 428 * command line. Then we check to see which one is enabled. 429 */ 430 prefer_iomap = 0; 431 resource_int_value(device_get_name(dev), device_get_unit(dev), 432 "prefer_iomap", &prefer_iomap); 433 if (prefer_iomap) 434 sc->fxp_spec = fxp_res_spec_io; 435 else 436 sc->fxp_spec = fxp_res_spec_mem; 437 438 error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res); 439 if (error) { 440 if (sc->fxp_spec == fxp_res_spec_mem) 441 sc->fxp_spec = fxp_res_spec_io; 442 else 443 sc->fxp_spec = fxp_res_spec_mem; 444 error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res); 445 } 446 if (error) { 447 device_printf(dev, "could not allocate resources\n"); 448 error = ENXIO; 449 goto fail; 450 } 451 452 if (bootverbose) { 453 device_printf(dev, "using %s space register mapping\n", 454 sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O"); 455 } 456 457 /* 458 * Reset to a stable state. 459 */ 460 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 461 DELAY(10); 462 463 /* 464 * Find out how large of an SEEPROM we have. 465 */ 466 fxp_autosize_eeprom(sc); 467 468 /* 469 * Find out the chip revision; lump all 82557 revs together. 470 */ 471 fxp_read_eeprom(sc, &data, 5, 1); 472 if ((data >> 8) == 1) 473 sc->revision = FXP_REV_82557; 474 else 475 sc->revision = pci_get_revid(dev); 476 477 /* 478 * Determine whether we must use the 503 serial interface. 479 */ 480 fxp_read_eeprom(sc, &data, 6, 1); 481 if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0 482 && (data & FXP_PHY_SERIAL_ONLY)) 483 sc->flags |= FXP_FLAG_SERIAL_MEDIA; 484 485 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 486 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 487 OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW, 488 &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I", 489 "FXP driver receive interrupt microcode bundling delay"); 490 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 491 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 492 OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW, 493 &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I", 494 "FXP driver receive interrupt microcode bundle size limit"); 495 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 496 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 497 OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0, 498 "FXP RNR events"); 499 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 500 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 501 OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0, 502 "FXP flow control disabled"); 503 504 /* 505 * Pull in device tunables. 506 */ 507 sc->tunable_int_delay = TUNABLE_INT_DELAY; 508 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX; 509 sc->tunable_noflow = 1; 510 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 511 "int_delay", &sc->tunable_int_delay); 512 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 513 "bundle_max", &sc->tunable_bundle_max); 514 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 515 "noflow", &sc->tunable_noflow); 516 sc->rnr = 0; 517 518 /* 519 * Enable workarounds for certain chip revision deficiencies. 520 * 521 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly 522 * some systems based a normal 82559 design, have a defect where 523 * the chip can cause a PCI protocol violation if it receives 524 * a CU_RESUME command when it is entering the IDLE state. The 525 * workaround is to disable Dynamic Standby Mode, so the chip never 526 * deasserts CLKRUN#, and always remains in an active state. 527 * 528 * See Intel 82801BA/82801BAM Specification Update, Errata #30. 529 */ 530 i = pci_get_device(dev); 531 if (i == 0x2449 || (i > 0x1030 && i < 0x1039) || 532 sc->revision >= FXP_REV_82559_A0) { 533 fxp_read_eeprom(sc, &data, 10, 1); 534 if (data & 0x02) { /* STB enable */ 535 uint16_t cksum; 536 int i; 537 538 device_printf(dev, 539 "Disabling dynamic standby mode in EEPROM\n"); 540 data &= ~0x02; 541 fxp_write_eeprom(sc, &data, 10, 1); 542 device_printf(dev, "New EEPROM ID: 0x%x\n", data); 543 cksum = 0; 544 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) { 545 fxp_read_eeprom(sc, &data, i, 1); 546 cksum += data; 547 } 548 i = (1 << sc->eeprom_size) - 1; 549 cksum = 0xBABA - cksum; 550 fxp_read_eeprom(sc, &data, i, 1); 551 fxp_write_eeprom(sc, &cksum, i, 1); 552 device_printf(dev, 553 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n", 554 i, data, cksum); 555 #if 1 556 /* 557 * If the user elects to continue, try the software 558 * workaround, as it is better than nothing. 559 */ 560 sc->flags |= FXP_FLAG_CU_RESUME_BUG; 561 #endif 562 } 563 } 564 565 /* 566 * If we are not a 82557 chip, we can enable extended features. 567 */ 568 if (sc->revision != FXP_REV_82557) { 569 /* 570 * If MWI is enabled in the PCI configuration, and there 571 * is a valid cacheline size (8 or 16 dwords), then tell 572 * the board to turn on MWI. 573 */ 574 if (val & PCIM_CMD_MWRICEN && 575 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0) 576 sc->flags |= FXP_FLAG_MWI_ENABLE; 577 578 /* turn on the extended TxCB feature */ 579 sc->flags |= FXP_FLAG_EXT_TXCB; 580 581 /* enable reception of long frames for VLAN */ 582 sc->flags |= FXP_FLAG_LONG_PKT_EN; 583 } else { 584 /* a hack to get long VLAN frames on a 82557 */ 585 sc->flags |= FXP_FLAG_SAVE_BAD; 586 } 587 588 /* 589 * Enable use of extended RFDs and TCBs for 82550 590 * and later chips. Note: we need extended TXCB support 591 * too, but that's already enabled by the code above. 592 * Be careful to do this only on the right devices. 593 */ 594 if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C || 595 sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F 596 || sc->revision == FXP_REV_82551_10) { 597 sc->rfa_size = sizeof (struct fxp_rfa); 598 sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT; 599 sc->flags |= FXP_FLAG_EXT_RFA; 600 } else { 601 sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN; 602 sc->tx_cmd = FXP_CB_COMMAND_XMIT; 603 } 604 605 /* 606 * Allocate DMA tags and DMA safe memory. 607 */ 608 sc->maxtxseg = FXP_NTXSEG; 609 if (sc->flags & FXP_FLAG_EXT_RFA) 610 sc->maxtxseg--; 611 error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT, 612 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg, 613 sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, 614 &sc->fxp_mtag); 615 if (error) { 616 device_printf(dev, "could not allocate dma tag\n"); 617 goto fail; 618 } 619 620 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 621 BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1, 622 sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant, 623 &sc->fxp_stag); 624 if (error) { 625 device_printf(dev, "could not allocate dma tag\n"); 626 goto fail; 627 } 628 629 error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats, 630 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap); 631 if (error) 632 goto fail; 633 error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats, 634 sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0); 635 if (error) { 636 device_printf(dev, "could not map the stats buffer\n"); 637 goto fail; 638 } 639 640 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 641 BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1, 642 FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag); 643 if (error) { 644 device_printf(dev, "could not allocate dma tag\n"); 645 goto fail; 646 } 647 648 error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list, 649 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map); 650 if (error) 651 goto fail; 652 653 error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map, 654 sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr, 655 &sc->fxp_desc.cbl_addr, 0); 656 if (error) { 657 device_printf(dev, "could not map DMA memory\n"); 658 goto fail; 659 } 660 661 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 662 BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1, 663 sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant, 664 &sc->mcs_tag); 665 if (error) { 666 device_printf(dev, "could not allocate dma tag\n"); 667 goto fail; 668 } 669 670 error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp, 671 BUS_DMA_NOWAIT, &sc->mcs_map); 672 if (error) 673 goto fail; 674 error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp, 675 sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0); 676 if (error) { 677 device_printf(dev, "can't map the multicast setup command\n"); 678 goto fail; 679 } 680 681 /* 682 * Pre-allocate the TX DMA maps and setup the pointers to 683 * the TX command blocks. 684 */ 685 txp = sc->fxp_desc.tx_list; 686 tcbp = sc->fxp_desc.cbl_list; 687 for (i = 0; i < FXP_NTXCB; i++) { 688 txp[i].tx_cb = tcbp + i; 689 error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map); 690 if (error) { 691 device_printf(dev, "can't create DMA map for TX\n"); 692 goto fail; 693 } 694 } 695 error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map); 696 if (error) { 697 device_printf(dev, "can't create spare DMA map\n"); 698 goto fail; 699 } 700 701 /* 702 * Pre-allocate our receive buffers. 703 */ 704 sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL; 705 for (i = 0; i < FXP_NRFABUFS; i++) { 706 rxp = &sc->fxp_desc.rx_list[i]; 707 error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map); 708 if (error) { 709 device_printf(dev, "can't create DMA map for RX\n"); 710 goto fail; 711 } 712 if (fxp_add_rfabuf(sc, rxp) != 0) { 713 error = ENOMEM; 714 goto fail; 715 } 716 } 717 718 /* 719 * Read MAC address. 720 */ 721 fxp_read_eeprom(sc, myea, 0, 3); 722 eaddr[0] = myea[0] & 0xff; 723 eaddr[1] = myea[0] >> 8; 724 eaddr[2] = myea[1] & 0xff; 725 eaddr[3] = myea[1] >> 8; 726 eaddr[4] = myea[2] & 0xff; 727 eaddr[5] = myea[2] >> 8; 728 if (bootverbose) { 729 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n", 730 pci_get_vendor(dev), pci_get_device(dev), 731 pci_get_subvendor(dev), pci_get_subdevice(dev), 732 pci_get_revid(dev)); 733 fxp_read_eeprom(sc, &data, 10, 1); 734 device_printf(dev, "Dynamic Standby mode is %s\n", 735 data & 0x02 ? "enabled" : "disabled"); 736 } 737 738 /* 739 * If this is only a 10Mbps device, then there is no MII, and 740 * the PHY will use a serial interface instead. 741 * 742 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 743 * doesn't have a programming interface of any sort. The 744 * media is sensed automatically based on how the link partner 745 * is configured. This is, in essence, manual configuration. 746 */ 747 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) { 748 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 749 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); 750 } else { 751 if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd, 752 fxp_ifmedia_sts)) { 753 device_printf(dev, "MII without any PHY!\n"); 754 error = ENXIO; 755 goto fail; 756 } 757 } 758 759 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 760 ifp->if_baudrate = 100000000; 761 ifp->if_init = fxp_init; 762 ifp->if_softc = sc; 763 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 764 ifp->if_ioctl = fxp_ioctl; 765 ifp->if_start = fxp_start; 766 ifp->if_watchdog = fxp_watchdog; 767 768 ifp->if_capabilities = ifp->if_capenable = 0; 769 770 /* Enable checksum offload for 82550 or better chips */ 771 if (sc->flags & FXP_FLAG_EXT_RFA) { 772 ifp->if_hwassist = FXP_CSUM_FEATURES; 773 ifp->if_capabilities |= IFCAP_HWCSUM; 774 ifp->if_capenable |= IFCAP_HWCSUM; 775 } 776 777 #ifdef DEVICE_POLLING 778 /* Inform the world we support polling. */ 779 ifp->if_capabilities |= IFCAP_POLLING; 780 #endif 781 782 /* 783 * Attach the interface. 784 */ 785 ether_ifattach(ifp, eaddr); 786 787 /* 788 * Tell the upper layer(s) we support long frames. 789 * Must appear after the call to ether_ifattach() because 790 * ether_ifattach() sets ifi_hdrlen to the default value. 791 */ 792 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 793 ifp->if_capabilities |= IFCAP_VLAN_MTU; 794 ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */ 795 796 /* 797 * Let the system queue as many packets as we have available 798 * TX descriptors. 799 */ 800 IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1); 801 ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1; 802 IFQ_SET_READY(&ifp->if_snd); 803 804 /* 805 * Hook our interrupt after all initialization is complete. 806 */ 807 error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE, 808 fxp_intr, sc, &sc->ih); 809 if (error) { 810 device_printf(dev, "could not setup irq\n"); 811 ether_ifdetach(sc->ifp); 812 goto fail; 813 } 814 815 fail: 816 if (error) 817 fxp_release(sc); 818 return (error); 819 } 820 821 /* 822 * Release all resources. The softc lock should not be held and the 823 * interrupt should already be torn down. 824 */ 825 static void 826 fxp_release(struct fxp_softc *sc) 827 { 828 struct fxp_rx *rxp; 829 struct fxp_tx *txp; 830 int i; 831 832 FXP_LOCK_ASSERT(sc, MA_NOTOWNED); 833 KASSERT(sc->ih == NULL, 834 ("fxp_release() called with intr handle still active")); 835 if (sc->miibus) 836 device_delete_child(sc->dev, sc->miibus); 837 bus_generic_detach(sc->dev); 838 ifmedia_removeall(&sc->sc_media); 839 if (sc->fxp_desc.cbl_list) { 840 bus_dmamap_unload(sc->cbl_tag, sc->cbl_map); 841 bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list, 842 sc->cbl_map); 843 } 844 if (sc->fxp_stats) { 845 bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap); 846 bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap); 847 } 848 if (sc->mcsp) { 849 bus_dmamap_unload(sc->mcs_tag, sc->mcs_map); 850 bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map); 851 } 852 bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res); 853 if (sc->fxp_mtag) { 854 for (i = 0; i < FXP_NRFABUFS; i++) { 855 rxp = &sc->fxp_desc.rx_list[i]; 856 if (rxp->rx_mbuf != NULL) { 857 bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map, 858 BUS_DMASYNC_POSTREAD); 859 bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map); 860 m_freem(rxp->rx_mbuf); 861 } 862 bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map); 863 } 864 bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map); 865 for (i = 0; i < FXP_NTXCB; i++) { 866 txp = &sc->fxp_desc.tx_list[i]; 867 if (txp->tx_mbuf != NULL) { 868 bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, 869 BUS_DMASYNC_POSTWRITE); 870 bus_dmamap_unload(sc->fxp_mtag, txp->tx_map); 871 m_freem(txp->tx_mbuf); 872 } 873 bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map); 874 } 875 bus_dma_tag_destroy(sc->fxp_mtag); 876 } 877 if (sc->fxp_stag) 878 bus_dma_tag_destroy(sc->fxp_stag); 879 if (sc->cbl_tag) 880 bus_dma_tag_destroy(sc->cbl_tag); 881 if (sc->mcs_tag) 882 bus_dma_tag_destroy(sc->mcs_tag); 883 if (sc->ifp) 884 if_free(sc->ifp); 885 886 mtx_destroy(&sc->sc_mtx); 887 } 888 889 /* 890 * Detach interface. 891 */ 892 static int 893 fxp_detach(device_t dev) 894 { 895 struct fxp_softc *sc = device_get_softc(dev); 896 897 #ifdef DEVICE_POLLING 898 if (sc->ifp->if_capenable & IFCAP_POLLING) 899 ether_poll_deregister(sc->ifp); 900 #endif 901 902 FXP_LOCK(sc); 903 sc->suspended = 1; /* Do same thing as we do for suspend */ 904 /* 905 * Stop DMA and drop transmit queue, but disable interrupts first. 906 */ 907 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 908 fxp_stop(sc); 909 FXP_UNLOCK(sc); 910 callout_drain(&sc->stat_ch); 911 912 /* 913 * Close down routes etc. 914 */ 915 ether_ifdetach(sc->ifp); 916 917 /* 918 * Unhook interrupt before dropping lock. This is to prevent 919 * races with fxp_intr(). 920 */ 921 bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih); 922 sc->ih = NULL; 923 924 /* Release our allocated resources. */ 925 fxp_release(sc); 926 return (0); 927 } 928 929 /* 930 * Device shutdown routine. Called at system shutdown after sync. The 931 * main purpose of this routine is to shut off receiver DMA so that 932 * kernel memory doesn't get clobbered during warmboot. 933 */ 934 static int 935 fxp_shutdown(device_t dev) 936 { 937 struct fxp_softc *sc = device_get_softc(dev); 938 939 /* 940 * Make sure that DMA is disabled prior to reboot. Not doing 941 * do could allow DMA to corrupt kernel memory during the 942 * reboot before the driver initializes. 943 */ 944 FXP_LOCK(sc); 945 fxp_stop(sc); 946 FXP_UNLOCK(sc); 947 return (0); 948 } 949 950 /* 951 * Device suspend routine. Stop the interface and save some PCI 952 * settings in case the BIOS doesn't restore them properly on 953 * resume. 954 */ 955 static int 956 fxp_suspend(device_t dev) 957 { 958 struct fxp_softc *sc = device_get_softc(dev); 959 960 FXP_LOCK(sc); 961 962 fxp_stop(sc); 963 964 sc->suspended = 1; 965 966 FXP_UNLOCK(sc); 967 return (0); 968 } 969 970 /* 971 * Device resume routine. re-enable busmastering, and restart the interface if 972 * appropriate. 973 */ 974 static int 975 fxp_resume(device_t dev) 976 { 977 struct fxp_softc *sc = device_get_softc(dev); 978 struct ifnet *ifp = sc->ifp; 979 980 FXP_LOCK(sc); 981 982 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 983 DELAY(10); 984 985 /* reinitialize interface if necessary */ 986 if (ifp->if_flags & IFF_UP) 987 fxp_init_body(sc); 988 989 sc->suspended = 0; 990 991 FXP_UNLOCK(sc); 992 return (0); 993 } 994 995 static void 996 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) 997 { 998 uint16_t reg; 999 int x; 1000 1001 /* 1002 * Shift in data. 1003 */ 1004 for (x = 1 << (length - 1); x; x >>= 1) { 1005 if (data & x) 1006 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1007 else 1008 reg = FXP_EEPROM_EECS; 1009 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1010 DELAY(1); 1011 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1012 DELAY(1); 1013 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1014 DELAY(1); 1015 } 1016 } 1017 1018 /* 1019 * Read from the serial EEPROM. Basically, you manually shift in 1020 * the read opcode (one bit at a time) and then shift in the address, 1021 * and then you shift out the data (all of this one bit at a time). 1022 * The word size is 16 bits, so you have to provide the address for 1023 * every 16 bits of data. 1024 */ 1025 static uint16_t 1026 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize) 1027 { 1028 uint16_t reg, data; 1029 int x; 1030 1031 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1032 /* 1033 * Shift in read opcode. 1034 */ 1035 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); 1036 /* 1037 * Shift in address. 1038 */ 1039 data = 0; 1040 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) { 1041 if (offset & x) 1042 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1043 else 1044 reg = FXP_EEPROM_EECS; 1045 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1046 DELAY(1); 1047 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1048 DELAY(1); 1049 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1050 DELAY(1); 1051 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO; 1052 data++; 1053 if (autosize && reg == 0) { 1054 sc->eeprom_size = data; 1055 break; 1056 } 1057 } 1058 /* 1059 * Shift out data. 1060 */ 1061 data = 0; 1062 reg = FXP_EEPROM_EECS; 1063 for (x = 1 << 15; x; x >>= 1) { 1064 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1065 DELAY(1); 1066 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1067 data |= x; 1068 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1069 DELAY(1); 1070 } 1071 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1072 DELAY(1); 1073 1074 return (data); 1075 } 1076 1077 static void 1078 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data) 1079 { 1080 int i; 1081 1082 /* 1083 * Erase/write enable. 1084 */ 1085 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1086 fxp_eeprom_shiftin(sc, 0x4, 3); 1087 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); 1088 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1089 DELAY(1); 1090 /* 1091 * Shift in write opcode, address, data. 1092 */ 1093 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1094 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); 1095 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); 1096 fxp_eeprom_shiftin(sc, data, 16); 1097 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1098 DELAY(1); 1099 /* 1100 * Wait for EEPROM to finish up. 1101 */ 1102 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1103 DELAY(1); 1104 for (i = 0; i < 1000; i++) { 1105 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1106 break; 1107 DELAY(50); 1108 } 1109 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1110 DELAY(1); 1111 /* 1112 * Erase/write disable. 1113 */ 1114 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1115 fxp_eeprom_shiftin(sc, 0x4, 3); 1116 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); 1117 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1118 DELAY(1); 1119 } 1120 1121 /* 1122 * From NetBSD: 1123 * 1124 * Figure out EEPROM size. 1125 * 1126 * 559's can have either 64-word or 256-word EEPROMs, the 558 1127 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet 1128 * talks about the existance of 16 to 256 word EEPROMs. 1129 * 1130 * The only known sizes are 64 and 256, where the 256 version is used 1131 * by CardBus cards to store CIS information. 1132 * 1133 * The address is shifted in msb-to-lsb, and after the last 1134 * address-bit the EEPROM is supposed to output a `dummy zero' bit, 1135 * after which follows the actual data. We try to detect this zero, by 1136 * probing the data-out bit in the EEPROM control register just after 1137 * having shifted in a bit. If the bit is zero, we assume we've 1138 * shifted enough address bits. The data-out should be tri-state, 1139 * before this, which should translate to a logical one. 1140 */ 1141 static void 1142 fxp_autosize_eeprom(struct fxp_softc *sc) 1143 { 1144 1145 /* guess maximum size of 256 words */ 1146 sc->eeprom_size = 8; 1147 1148 /* autosize */ 1149 (void) fxp_eeprom_getword(sc, 0, 1); 1150 } 1151 1152 static void 1153 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1154 { 1155 int i; 1156 1157 for (i = 0; i < words; i++) 1158 data[i] = fxp_eeprom_getword(sc, offset + i, 0); 1159 } 1160 1161 static void 1162 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1163 { 1164 int i; 1165 1166 for (i = 0; i < words; i++) 1167 fxp_eeprom_putword(sc, offset + i, data[i]); 1168 } 1169 1170 /* 1171 * Grab the softc lock and call the real fxp_start_body() routine 1172 */ 1173 static void 1174 fxp_start(struct ifnet *ifp) 1175 { 1176 struct fxp_softc *sc = ifp->if_softc; 1177 1178 FXP_LOCK(sc); 1179 fxp_start_body(ifp); 1180 FXP_UNLOCK(sc); 1181 } 1182 1183 /* 1184 * Start packet transmission on the interface. 1185 * This routine must be called with the softc lock held, and is an 1186 * internal entry point only. 1187 */ 1188 static void 1189 fxp_start_body(struct ifnet *ifp) 1190 { 1191 struct fxp_softc *sc = ifp->if_softc; 1192 struct mbuf *mb_head; 1193 int error, txqueued; 1194 1195 FXP_LOCK_ASSERT(sc, MA_OWNED); 1196 1197 /* 1198 * See if we need to suspend xmit until the multicast filter 1199 * has been reprogrammed (which can only be done at the head 1200 * of the command chain). 1201 */ 1202 if (sc->need_mcsetup) 1203 return; 1204 1205 /* 1206 * We're finished if there is nothing more to add to the list or if 1207 * we're all filled up with buffers to transmit. 1208 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add 1209 * a NOP command when needed. 1210 */ 1211 txqueued = 0; 1212 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 1213 sc->tx_queued < FXP_NTXCB - 1) { 1214 1215 /* 1216 * Grab a packet to transmit. 1217 */ 1218 IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head); 1219 if (mb_head == NULL) 1220 break; 1221 1222 error = fxp_encap(sc, mb_head); 1223 if (error) 1224 break; 1225 txqueued = 1; 1226 } 1227 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 1228 1229 /* 1230 * We're finished. If we added to the list, issue a RESUME to get DMA 1231 * going again if suspended. 1232 */ 1233 if (txqueued) { 1234 fxp_scb_wait(sc); 1235 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 1236 } 1237 } 1238 1239 static int 1240 fxp_encap(struct fxp_softc *sc, struct mbuf *m_head) 1241 { 1242 struct ifnet *ifp; 1243 struct mbuf *m; 1244 struct fxp_tx *txp; 1245 struct fxp_cb_tx *cbp; 1246 bus_dma_segment_t segs[FXP_NTXSEG]; 1247 int chainlen, error, i, nseg; 1248 1249 FXP_LOCK_ASSERT(sc, MA_OWNED); 1250 ifp = sc->ifp; 1251 1252 /* 1253 * Get pointer to next available tx desc. 1254 */ 1255 txp = sc->fxp_desc.tx_last->tx_next; 1256 1257 /* 1258 * A note in Appendix B of the Intel 8255x 10/100 Mbps 1259 * Ethernet Controller Family Open Source Software 1260 * Developer Manual says: 1261 * Using software parsing is only allowed with legal 1262 * TCP/IP or UDP/IP packets. 1263 * ... 1264 * For all other datagrams, hardware parsing must 1265 * be used. 1266 * Software parsing appears to truncate ICMP and 1267 * fragmented UDP packets that contain one to three 1268 * bytes in the second (and final) mbuf of the packet. 1269 */ 1270 if (sc->flags & FXP_FLAG_EXT_RFA) 1271 txp->tx_cb->ipcb_ip_activation_high = 1272 FXP_IPCB_HARDWAREPARSING_ENABLE; 1273 1274 /* 1275 * Deal with TCP/IP checksum offload. Note that 1276 * in order for TCP checksum offload to work, 1277 * the pseudo header checksum must have already 1278 * been computed and stored in the checksum field 1279 * in the TCP header. The stack should have 1280 * already done this for us. 1281 */ 1282 if (m_head->m_pkthdr.csum_flags) { 1283 if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 1284 txp->tx_cb->ipcb_ip_schedule = 1285 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; 1286 if (m_head->m_pkthdr.csum_flags & CSUM_TCP) 1287 txp->tx_cb->ipcb_ip_schedule |= 1288 FXP_IPCB_TCP_PACKET; 1289 } 1290 1291 #ifdef FXP_IP_CSUM_WAR 1292 /* 1293 * XXX The 82550 chip appears to have trouble 1294 * dealing with IP header checksums in very small 1295 * datagrams, namely fragments from 1 to 3 bytes 1296 * in size. For example, say you want to transmit 1297 * a UDP packet of 1473 bytes. The packet will be 1298 * fragmented over two IP datagrams, the latter 1299 * containing only one byte of data. The 82550 will 1300 * botch the header checksum on the 1-byte fragment. 1301 * As long as the datagram contains 4 or more bytes 1302 * of data, you're ok. 1303 * 1304 * The following code attempts to work around this 1305 * problem: if the datagram is less than 38 bytes 1306 * in size (14 bytes ether header, 20 bytes IP header, 1307 * plus 4 bytes of data), we punt and compute the IP 1308 * header checksum by hand. This workaround doesn't 1309 * work very well, however, since it can be fooled 1310 * by things like VLAN tags and IP options that make 1311 * the header sizes/offsets vary. 1312 */ 1313 1314 if (m_head->m_pkthdr.csum_flags & CSUM_IP) { 1315 if (m_head->m_pkthdr.len < 38) { 1316 struct ip *ip; 1317 m_head->m_data += ETHER_HDR_LEN; 1318 ip = mtod(mb_head, struct ip *); 1319 ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2); 1320 m_head->m_data -= ETHER_HDR_LEN; 1321 } else { 1322 txp->tx_cb->ipcb_ip_activation_high = 1323 FXP_IPCB_HARDWAREPARSING_ENABLE; 1324 txp->tx_cb->ipcb_ip_schedule |= 1325 FXP_IPCB_IP_CHECKSUM_ENABLE; 1326 } 1327 } 1328 #endif 1329 } 1330 1331 chainlen = 0; 1332 for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next) 1333 chainlen++; 1334 if (chainlen > sc->maxtxseg) { 1335 struct mbuf *mn; 1336 1337 /* 1338 * We ran out of segments. We have to recopy this 1339 * mbuf chain first. Bail out if we can't get the 1340 * new buffers. 1341 */ 1342 mn = m_defrag(m_head, M_DONTWAIT); 1343 if (mn == NULL) { 1344 m_freem(m_head); 1345 return (-1); 1346 } else { 1347 m_head = mn; 1348 } 1349 } 1350 1351 /* 1352 * Go through each of the mbufs in the chain and initialize 1353 * the transmit buffer descriptors with the physical address 1354 * and size of the mbuf. 1355 */ 1356 error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map, 1357 m_head, segs, &nseg, 0); 1358 if (error) { 1359 device_printf(sc->dev, "can't map mbuf (error %d)\n", error); 1360 m_freem(m_head); 1361 return (-1); 1362 } 1363 1364 KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments")); 1365 1366 cbp = txp->tx_cb; 1367 for (i = 0; i < nseg; i++) { 1368 KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large")); 1369 /* 1370 * If this is an 82550/82551, then we're using extended 1371 * TxCBs _and_ we're using checksum offload. This means 1372 * that the TxCB is really an IPCB. One major difference 1373 * between the two is that with plain extended TxCBs, 1374 * the bottom half of the TxCB contains two entries from 1375 * the TBD array, whereas IPCBs contain just one entry: 1376 * one entry (8 bytes) has been sacrificed for the TCP/IP 1377 * checksum offload control bits. So to make things work 1378 * right, we have to start filling in the TBD array 1379 * starting from a different place depending on whether 1380 * the chip is an 82550/82551 or not. 1381 */ 1382 if (sc->flags & FXP_FLAG_EXT_RFA) { 1383 cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr); 1384 cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len); 1385 } else { 1386 cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr); 1387 cbp->tbd[i].tb_size = htole32(segs[i].ds_len); 1388 } 1389 } 1390 cbp->tbd_number = nseg; 1391 1392 bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE); 1393 txp->tx_mbuf = m_head; 1394 txp->tx_cb->cb_status = 0; 1395 txp->tx_cb->byte_count = 0; 1396 if (sc->tx_queued != FXP_CXINT_THRESH - 1) { 1397 txp->tx_cb->cb_command = 1398 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1399 FXP_CB_COMMAND_S); 1400 } else { 1401 txp->tx_cb->cb_command = 1402 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1403 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); 1404 /* 1405 * Set a 5 second timer just in case we don't hear 1406 * from the card again. 1407 */ 1408 ifp->if_timer = 5; 1409 } 1410 txp->tx_cb->tx_threshold = tx_threshold; 1411 1412 /* 1413 * Advance the end of list forward. 1414 */ 1415 1416 #ifdef __alpha__ 1417 /* 1418 * On platforms which can't access memory in 16-bit 1419 * granularities, we must prevent the card from DMA'ing 1420 * up the status while we update the command field. 1421 * This could cause us to overwrite the completion status. 1422 * XXX This is probably bogus and we're _not_ looking 1423 * for atomicity here. 1424 */ 1425 atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command, 1426 htole16(FXP_CB_COMMAND_S)); 1427 #else 1428 sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S); 1429 #endif /*__alpha__*/ 1430 sc->fxp_desc.tx_last = txp; 1431 1432 /* 1433 * Advance the beginning of the list forward if there are 1434 * no other packets queued (when nothing is queued, tx_first 1435 * sits on the last TxCB that was sent out). 1436 */ 1437 if (sc->tx_queued == 0) 1438 sc->fxp_desc.tx_first = txp; 1439 1440 sc->tx_queued++; 1441 1442 /* 1443 * Pass packet to bpf if there is a listener. 1444 */ 1445 BPF_MTAP(ifp, m_head); 1446 return (0); 1447 } 1448 1449 #ifdef DEVICE_POLLING 1450 static poll_handler_t fxp_poll; 1451 1452 static void 1453 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1454 { 1455 struct fxp_softc *sc = ifp->if_softc; 1456 uint8_t statack; 1457 1458 FXP_LOCK(sc); 1459 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1460 FXP_UNLOCK(sc); 1461 return; 1462 } 1463 1464 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA | 1465 FXP_SCB_STATACK_FR; 1466 if (cmd == POLL_AND_CHECK_STATUS) { 1467 uint8_t tmp; 1468 1469 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK); 1470 if (tmp == 0xff || tmp == 0) { 1471 FXP_UNLOCK(sc); 1472 return; /* nothing to do */ 1473 } 1474 tmp &= ~statack; 1475 /* ack what we can */ 1476 if (tmp != 0) 1477 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp); 1478 statack |= tmp; 1479 } 1480 fxp_intr_body(sc, ifp, statack, count); 1481 FXP_UNLOCK(sc); 1482 } 1483 #endif /* DEVICE_POLLING */ 1484 1485 /* 1486 * Process interface interrupts. 1487 */ 1488 static void 1489 fxp_intr(void *xsc) 1490 { 1491 struct fxp_softc *sc = xsc; 1492 struct ifnet *ifp = sc->ifp; 1493 uint8_t statack; 1494 1495 FXP_LOCK(sc); 1496 if (sc->suspended) { 1497 FXP_UNLOCK(sc); 1498 return; 1499 } 1500 1501 #ifdef DEVICE_POLLING 1502 if (ifp->if_capenable & IFCAP_POLLING) { 1503 FXP_UNLOCK(sc); 1504 return; 1505 } 1506 #endif 1507 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { 1508 /* 1509 * It should not be possible to have all bits set; the 1510 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If 1511 * all bits are set, this may indicate that the card has 1512 * been physically ejected, so ignore it. 1513 */ 1514 if (statack == 0xff) { 1515 FXP_UNLOCK(sc); 1516 return; 1517 } 1518 1519 /* 1520 * First ACK all the interrupts in this pass. 1521 */ 1522 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); 1523 fxp_intr_body(sc, ifp, statack, -1); 1524 } 1525 FXP_UNLOCK(sc); 1526 } 1527 1528 static void 1529 fxp_txeof(struct fxp_softc *sc) 1530 { 1531 struct fxp_tx *txp; 1532 1533 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD); 1534 for (txp = sc->fxp_desc.tx_first; sc->tx_queued && 1535 (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0; 1536 txp = txp->tx_next) { 1537 if (txp->tx_mbuf != NULL) { 1538 bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, 1539 BUS_DMASYNC_POSTWRITE); 1540 bus_dmamap_unload(sc->fxp_mtag, txp->tx_map); 1541 m_freem(txp->tx_mbuf); 1542 txp->tx_mbuf = NULL; 1543 /* clear this to reset csum offload bits */ 1544 txp->tx_cb->tbd[0].tb_addr = 0; 1545 } 1546 sc->tx_queued--; 1547 } 1548 sc->fxp_desc.tx_first = txp; 1549 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 1550 } 1551 1552 static void 1553 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack, 1554 int count) 1555 { 1556 struct mbuf *m; 1557 struct fxp_rx *rxp; 1558 struct fxp_rfa *rfa; 1559 int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0; 1560 int fxp_rc = 0; 1561 1562 FXP_LOCK_ASSERT(sc, MA_OWNED); 1563 if (rnr) 1564 sc->rnr++; 1565 #ifdef DEVICE_POLLING 1566 /* Pick up a deferred RNR condition if `count' ran out last time. */ 1567 if (sc->flags & FXP_FLAG_DEFERRED_RNR) { 1568 sc->flags &= ~FXP_FLAG_DEFERRED_RNR; 1569 rnr = 1; 1570 } 1571 #endif 1572 1573 /* 1574 * Free any finished transmit mbuf chains. 1575 * 1576 * Handle the CNA event likt a CXTNO event. It used to 1577 * be that this event (control unit not ready) was not 1578 * encountered, but it is now with the SMPng modifications. 1579 * The exact sequence of events that occur when the interface 1580 * is brought up are different now, and if this event 1581 * goes unhandled, the configuration/rxfilter setup sequence 1582 * can stall for several seconds. The result is that no 1583 * packets go out onto the wire for about 5 to 10 seconds 1584 * after the interface is ifconfig'ed for the first time. 1585 */ 1586 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) { 1587 fxp_txeof(sc); 1588 1589 ifp->if_timer = 0; 1590 if (sc->tx_queued == 0) { 1591 if (sc->need_mcsetup) 1592 fxp_mc_setup(sc); 1593 } 1594 /* 1595 * Try to start more packets transmitting. 1596 */ 1597 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1598 fxp_start_body(ifp); 1599 } 1600 1601 /* 1602 * Just return if nothing happened on the receive side. 1603 */ 1604 if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0) 1605 return; 1606 1607 /* 1608 * Process receiver interrupts. If a no-resource (RNR) 1609 * condition exists, get whatever packets we can and 1610 * re-start the receiver. 1611 * 1612 * When using polling, we do not process the list to completion, 1613 * so when we get an RNR interrupt we must defer the restart 1614 * until we hit the last buffer with the C bit set. 1615 * If we run out of cycles and rfa_headm has the C bit set, 1616 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so 1617 * that the info will be used in the subsequent polling cycle. 1618 */ 1619 for (;;) { 1620 rxp = sc->fxp_desc.rx_head; 1621 m = rxp->rx_mbuf; 1622 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + 1623 RFA_ALIGNMENT_FUDGE); 1624 bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map, 1625 BUS_DMASYNC_POSTREAD); 1626 1627 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */ 1628 if (count >= 0 && count-- == 0) { 1629 if (rnr) { 1630 /* Defer RNR processing until the next time. */ 1631 sc->flags |= FXP_FLAG_DEFERRED_RNR; 1632 rnr = 0; 1633 } 1634 break; 1635 } 1636 #endif /* DEVICE_POLLING */ 1637 1638 if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0) 1639 break; 1640 1641 /* 1642 * Advance head forward. 1643 */ 1644 sc->fxp_desc.rx_head = rxp->rx_next; 1645 1646 /* 1647 * Add a new buffer to the receive chain. 1648 * If this fails, the old buffer is recycled 1649 * instead. 1650 */ 1651 fxp_rc = fxp_add_rfabuf(sc, rxp); 1652 if (fxp_rc == 0) { 1653 int total_len; 1654 1655 /* 1656 * Fetch packet length (the top 2 bits of 1657 * actual_size are flags set by the controller 1658 * upon completion), and drop the packet in case 1659 * of bogus length or CRC errors. 1660 */ 1661 total_len = le16toh(rfa->actual_size) & 0x3fff; 1662 if (total_len < sizeof(struct ether_header) || 1663 total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE - 1664 sc->rfa_size || 1665 le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) { 1666 m_freem(m); 1667 continue; 1668 } 1669 1670 /* Do IP checksum checking. */ 1671 if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) { 1672 if (rfa->rfax_csum_sts & 1673 FXP_RFDX_CS_IP_CSUM_BIT_VALID) 1674 m->m_pkthdr.csum_flags |= 1675 CSUM_IP_CHECKED; 1676 if (rfa->rfax_csum_sts & 1677 FXP_RFDX_CS_IP_CSUM_VALID) 1678 m->m_pkthdr.csum_flags |= 1679 CSUM_IP_VALID; 1680 if ((rfa->rfax_csum_sts & 1681 FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) && 1682 (rfa->rfax_csum_sts & 1683 FXP_RFDX_CS_TCPUDP_CSUM_VALID)) { 1684 m->m_pkthdr.csum_flags |= 1685 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 1686 m->m_pkthdr.csum_data = 0xffff; 1687 } 1688 } 1689 1690 m->m_pkthdr.len = m->m_len = total_len; 1691 m->m_pkthdr.rcvif = ifp; 1692 1693 /* 1694 * Drop locks before calling if_input() since it 1695 * may re-enter fxp_start() in the netisr case. 1696 * This would result in a lock reversal. Better 1697 * performance might be obtained by chaining all 1698 * packets received, dropping the lock, and then 1699 * calling if_input() on each one. 1700 */ 1701 FXP_UNLOCK(sc); 1702 (*ifp->if_input)(ifp, m); 1703 FXP_LOCK(sc); 1704 } else if (fxp_rc == ENOBUFS) { 1705 rnr = 0; 1706 break; 1707 } 1708 } 1709 if (rnr) { 1710 fxp_scb_wait(sc); 1711 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 1712 sc->fxp_desc.rx_head->rx_addr); 1713 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 1714 } 1715 } 1716 1717 /* 1718 * Update packet in/out/collision statistics. The i82557 doesn't 1719 * allow you to access these counters without doing a fairly 1720 * expensive DMA to get _all_ of the statistics it maintains, so 1721 * we do this operation here only once per second. The statistics 1722 * counters in the kernel are updated from the previous dump-stats 1723 * DMA and then a new dump-stats DMA is started. The on-chip 1724 * counters are zeroed when the DMA completes. If we can't start 1725 * the DMA immediately, we don't wait - we just prepare to read 1726 * them again next time. 1727 */ 1728 static void 1729 fxp_tick(void *xsc) 1730 { 1731 struct fxp_softc *sc = xsc; 1732 struct ifnet *ifp = sc->ifp; 1733 struct fxp_stats *sp = sc->fxp_stats; 1734 1735 FXP_LOCK_ASSERT(sc, MA_OWNED); 1736 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD); 1737 ifp->if_opackets += le32toh(sp->tx_good); 1738 ifp->if_collisions += le32toh(sp->tx_total_collisions); 1739 if (sp->rx_good) { 1740 ifp->if_ipackets += le32toh(sp->rx_good); 1741 sc->rx_idle_secs = 0; 1742 } else { 1743 /* 1744 * Receiver's been idle for another second. 1745 */ 1746 sc->rx_idle_secs++; 1747 } 1748 ifp->if_ierrors += 1749 le32toh(sp->rx_crc_errors) + 1750 le32toh(sp->rx_alignment_errors) + 1751 le32toh(sp->rx_rnr_errors) + 1752 le32toh(sp->rx_overrun_errors); 1753 /* 1754 * If any transmit underruns occured, bump up the transmit 1755 * threshold by another 512 bytes (64 * 8). 1756 */ 1757 if (sp->tx_underruns) { 1758 ifp->if_oerrors += le32toh(sp->tx_underruns); 1759 if (tx_threshold < 192) 1760 tx_threshold += 64; 1761 } 1762 1763 /* 1764 * Release any xmit buffers that have completed DMA. This isn't 1765 * strictly necessary to do here, but it's advantagous for mbufs 1766 * with external storage to be released in a timely manner rather 1767 * than being defered for a potentially long time. This limits 1768 * the delay to a maximum of one second. 1769 */ 1770 fxp_txeof(sc); 1771 1772 /* 1773 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, 1774 * then assume the receiver has locked up and attempt to clear 1775 * the condition by reprogramming the multicast filter. This is 1776 * a work-around for a bug in the 82557 where the receiver locks 1777 * up if it gets certain types of garbage in the syncronization 1778 * bits prior to the packet header. This bug is supposed to only 1779 * occur in 10Mbps mode, but has been seen to occur in 100Mbps 1780 * mode as well (perhaps due to a 10/100 speed transition). 1781 */ 1782 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { 1783 sc->rx_idle_secs = 0; 1784 fxp_mc_setup(sc); 1785 } 1786 /* 1787 * If there is no pending command, start another stats 1788 * dump. Otherwise punt for now. 1789 */ 1790 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { 1791 /* 1792 * Start another stats dump. 1793 */ 1794 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 1795 BUS_DMASYNC_PREREAD); 1796 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); 1797 } else { 1798 /* 1799 * A previous command is still waiting to be accepted. 1800 * Just zero our copy of the stats and wait for the 1801 * next timer event to update them. 1802 */ 1803 sp->tx_good = 0; 1804 sp->tx_underruns = 0; 1805 sp->tx_total_collisions = 0; 1806 1807 sp->rx_good = 0; 1808 sp->rx_crc_errors = 0; 1809 sp->rx_alignment_errors = 0; 1810 sp->rx_rnr_errors = 0; 1811 sp->rx_overrun_errors = 0; 1812 } 1813 if (sc->miibus != NULL) 1814 mii_tick(device_get_softc(sc->miibus)); 1815 1816 /* 1817 * Schedule another timeout one second from now. 1818 */ 1819 callout_reset(&sc->stat_ch, hz, fxp_tick, sc); 1820 } 1821 1822 /* 1823 * Stop the interface. Cancels the statistics updater and resets 1824 * the interface. 1825 */ 1826 static void 1827 fxp_stop(struct fxp_softc *sc) 1828 { 1829 struct ifnet *ifp = sc->ifp; 1830 struct fxp_tx *txp; 1831 int i; 1832 1833 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1834 ifp->if_timer = 0; 1835 1836 /* 1837 * Cancel stats updater. 1838 */ 1839 callout_stop(&sc->stat_ch); 1840 1841 /* 1842 * Issue software reset, which also unloads the microcode. 1843 */ 1844 sc->flags &= ~FXP_FLAG_UCODE; 1845 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 1846 DELAY(50); 1847 1848 /* 1849 * Release any xmit buffers. 1850 */ 1851 txp = sc->fxp_desc.tx_list; 1852 if (txp != NULL) { 1853 for (i = 0; i < FXP_NTXCB; i++) { 1854 if (txp[i].tx_mbuf != NULL) { 1855 bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map, 1856 BUS_DMASYNC_POSTWRITE); 1857 bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map); 1858 m_freem(txp[i].tx_mbuf); 1859 txp[i].tx_mbuf = NULL; 1860 /* clear this to reset csum offload bits */ 1861 txp[i].tx_cb->tbd[0].tb_addr = 0; 1862 } 1863 } 1864 } 1865 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 1866 sc->tx_queued = 0; 1867 } 1868 1869 /* 1870 * Watchdog/transmission transmit timeout handler. Called when a 1871 * transmission is started on the interface, but no interrupt is 1872 * received before the timeout. This usually indicates that the 1873 * card has wedged for some reason. 1874 */ 1875 static void 1876 fxp_watchdog(struct ifnet *ifp) 1877 { 1878 struct fxp_softc *sc = ifp->if_softc; 1879 1880 FXP_LOCK(sc); 1881 device_printf(sc->dev, "device timeout\n"); 1882 ifp->if_oerrors++; 1883 1884 fxp_init_body(sc); 1885 FXP_UNLOCK(sc); 1886 } 1887 1888 /* 1889 * Acquire locks and then call the real initialization function. This 1890 * is necessary because ether_ioctl() calls if_init() and this would 1891 * result in mutex recursion if the mutex was held. 1892 */ 1893 static void 1894 fxp_init(void *xsc) 1895 { 1896 struct fxp_softc *sc = xsc; 1897 1898 FXP_LOCK(sc); 1899 fxp_init_body(sc); 1900 FXP_UNLOCK(sc); 1901 } 1902 1903 /* 1904 * Perform device initialization. This routine must be called with the 1905 * softc lock held. 1906 */ 1907 static void 1908 fxp_init_body(struct fxp_softc *sc) 1909 { 1910 struct ifnet *ifp = sc->ifp; 1911 struct fxp_cb_config *cbp; 1912 struct fxp_cb_ias *cb_ias; 1913 struct fxp_cb_tx *tcbp; 1914 struct fxp_tx *txp; 1915 struct fxp_cb_mcs *mcsp; 1916 int i, prm; 1917 1918 FXP_LOCK_ASSERT(sc, MA_OWNED); 1919 /* 1920 * Cancel any pending I/O 1921 */ 1922 fxp_stop(sc); 1923 1924 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; 1925 1926 /* 1927 * Initialize base of CBL and RFA memory. Loading with zero 1928 * sets it up for regular linear addressing. 1929 */ 1930 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); 1931 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); 1932 1933 fxp_scb_wait(sc); 1934 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); 1935 1936 /* 1937 * Initialize base of dump-stats buffer. 1938 */ 1939 fxp_scb_wait(sc); 1940 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD); 1941 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr); 1942 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); 1943 1944 /* 1945 * Attempt to load microcode if requested. 1946 */ 1947 if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0) 1948 fxp_load_ucode(sc); 1949 1950 /* 1951 * Initialize the multicast address list. 1952 */ 1953 if (fxp_mc_addrs(sc)) { 1954 mcsp = sc->mcsp; 1955 mcsp->cb_status = 0; 1956 mcsp->cb_command = 1957 htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL); 1958 mcsp->link_addr = 0xffffffff; 1959 /* 1960 * Start the multicast setup command. 1961 */ 1962 fxp_scb_wait(sc); 1963 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE); 1964 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr); 1965 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1966 /* ...and wait for it to complete. */ 1967 fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map); 1968 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, 1969 BUS_DMASYNC_POSTWRITE); 1970 } 1971 1972 /* 1973 * We temporarily use memory that contains the TxCB list to 1974 * construct the config CB. The TxCB list memory is rebuilt 1975 * later. 1976 */ 1977 cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list; 1978 1979 /* 1980 * This bcopy is kind of disgusting, but there are a bunch of must be 1981 * zero and must be one bits in this structure and this is the easiest 1982 * way to initialize them all to proper values. 1983 */ 1984 bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template)); 1985 1986 cbp->cb_status = 0; 1987 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG | 1988 FXP_CB_COMMAND_EL); 1989 cbp->link_addr = 0xffffffff; /* (no) next command */ 1990 cbp->byte_count = sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22; 1991 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ 1992 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ 1993 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ 1994 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0; 1995 cbp->type_enable = 0; /* actually reserved */ 1996 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0; 1997 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0; 1998 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ 1999 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ 2000 cbp->dma_mbce = 0; /* (disable) dma max counters */ 2001 cbp->late_scb = 0; /* (don't) defer SCB update */ 2002 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */ 2003 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */ 2004 cbp->ci_int = 1; /* interrupt on CU idle */ 2005 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1; 2006 cbp->ext_stats_dis = 1; /* disable extended counters */ 2007 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */ 2008 cbp->save_bf = sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm; 2009 cbp->disc_short_rx = !prm; /* discard short packets */ 2010 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */ 2011 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */ 2012 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */ 2013 cbp->ext_rfa = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2014 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1; 2015 cbp->csma_dis = 0; /* (don't) disable link */ 2016 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */ 2017 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */ 2018 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */ 2019 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */ 2020 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */ 2021 cbp->nsai = 1; /* (don't) disable source addr insert */ 2022 cbp->preamble_length = 2; /* (7 byte) preamble */ 2023 cbp->loopback = 0; /* (don't) loopback */ 2024 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ 2025 cbp->linear_pri_mode = 0; /* (wait after xmit only) */ 2026 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ 2027 cbp->promiscuous = prm; /* promiscuous mode */ 2028 cbp->bcast_disable = 0; /* (don't) disable broadcasts */ 2029 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/ 2030 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */ 2031 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */ 2032 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0; 2033 2034 cbp->stripping = !prm; /* truncate rx packet to byte count */ 2035 cbp->padding = 1; /* (do) pad short tx packets */ 2036 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ 2037 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0; 2038 cbp->ia_wake_en = 0; /* (don't) wake up on address match */ 2039 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */ 2040 /* must set wake_en in PMCSR also */ 2041 cbp->force_fdx = 0; /* (don't) force full duplex */ 2042 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ 2043 cbp->multi_ia = 0; /* (don't) accept multiple IAs */ 2044 cbp->mc_all = sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0; 2045 cbp->gamla_rx = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2046 2047 if (sc->tunable_noflow || sc->revision == FXP_REV_82557) { 2048 /* 2049 * The 82557 has no hardware flow control, the values 2050 * below are the defaults for the chip. 2051 */ 2052 cbp->fc_delay_lsb = 0; 2053 cbp->fc_delay_msb = 0x40; 2054 cbp->pri_fc_thresh = 3; 2055 cbp->tx_fc_dis = 0; 2056 cbp->rx_fc_restop = 0; 2057 cbp->rx_fc_restart = 0; 2058 cbp->fc_filter = 0; 2059 cbp->pri_fc_loc = 1; 2060 } else { 2061 cbp->fc_delay_lsb = 0x1f; 2062 cbp->fc_delay_msb = 0x01; 2063 cbp->pri_fc_thresh = 3; 2064 cbp->tx_fc_dis = 0; /* enable transmit FC */ 2065 cbp->rx_fc_restop = 1; /* enable FC restop frames */ 2066 cbp->rx_fc_restart = 1; /* enable FC restart frames */ 2067 cbp->fc_filter = !prm; /* drop FC frames to host */ 2068 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */ 2069 } 2070 2071 /* 2072 * Start the config command/DMA. 2073 */ 2074 fxp_scb_wait(sc); 2075 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 2076 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2077 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2078 /* ...and wait for it to complete. */ 2079 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 2080 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE); 2081 2082 /* 2083 * Now initialize the station address. Temporarily use the TxCB 2084 * memory area like we did above for the config CB. 2085 */ 2086 cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list; 2087 cb_ias->cb_status = 0; 2088 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL); 2089 cb_ias->link_addr = 0xffffffff; 2090 bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN); 2091 2092 /* 2093 * Start the IAS (Individual Address Setup) command/DMA. 2094 */ 2095 fxp_scb_wait(sc); 2096 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 2097 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2098 /* ...and wait for it to complete. */ 2099 fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map); 2100 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE); 2101 2102 /* 2103 * Initialize transmit control block (TxCB) list. 2104 */ 2105 txp = sc->fxp_desc.tx_list; 2106 tcbp = sc->fxp_desc.cbl_list; 2107 bzero(tcbp, FXP_TXCB_SZ); 2108 for (i = 0; i < FXP_NTXCB; i++) { 2109 txp[i].tx_mbuf = NULL; 2110 tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK); 2111 tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP); 2112 tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr + 2113 (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx))); 2114 if (sc->flags & FXP_FLAG_EXT_TXCB) 2115 tcbp[i].tbd_array_addr = 2116 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2])); 2117 else 2118 tcbp[i].tbd_array_addr = 2119 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0])); 2120 txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK]; 2121 } 2122 /* 2123 * Set the suspend flag on the first TxCB and start the control 2124 * unit. It will execute the NOP and then suspend. 2125 */ 2126 tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S); 2127 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 2128 sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp; 2129 sc->tx_queued = 1; 2130 2131 fxp_scb_wait(sc); 2132 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2133 2134 /* 2135 * Initialize receiver buffer area - RFA. 2136 */ 2137 fxp_scb_wait(sc); 2138 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr); 2139 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 2140 2141 /* 2142 * Set current media. 2143 */ 2144 if (sc->miibus != NULL) 2145 mii_mediachg(device_get_softc(sc->miibus)); 2146 2147 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2148 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2149 2150 /* 2151 * Enable interrupts. 2152 */ 2153 #ifdef DEVICE_POLLING 2154 /* 2155 * ... but only do that if we are not polling. And because (presumably) 2156 * the default is interrupts on, we need to disable them explicitly! 2157 */ 2158 if (ifp->if_capenable & IFCAP_POLLING ) 2159 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 2160 else 2161 #endif /* DEVICE_POLLING */ 2162 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 2163 2164 /* 2165 * Start stats updater. 2166 */ 2167 callout_reset(&sc->stat_ch, hz, fxp_tick, sc); 2168 } 2169 2170 static int 2171 fxp_serial_ifmedia_upd(struct ifnet *ifp) 2172 { 2173 2174 return (0); 2175 } 2176 2177 static void 2178 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2179 { 2180 2181 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2182 } 2183 2184 /* 2185 * Change media according to request. 2186 */ 2187 static int 2188 fxp_ifmedia_upd(struct ifnet *ifp) 2189 { 2190 struct fxp_softc *sc = ifp->if_softc; 2191 struct mii_data *mii; 2192 2193 mii = device_get_softc(sc->miibus); 2194 FXP_LOCK(sc); 2195 mii_mediachg(mii); 2196 FXP_UNLOCK(sc); 2197 return (0); 2198 } 2199 2200 /* 2201 * Notify the world which media we're using. 2202 */ 2203 static void 2204 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2205 { 2206 struct fxp_softc *sc = ifp->if_softc; 2207 struct mii_data *mii; 2208 2209 mii = device_get_softc(sc->miibus); 2210 FXP_LOCK(sc); 2211 mii_pollstat(mii); 2212 ifmr->ifm_active = mii->mii_media_active; 2213 ifmr->ifm_status = mii->mii_media_status; 2214 2215 if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG) 2216 sc->cu_resume_bug = 1; 2217 else 2218 sc->cu_resume_bug = 0; 2219 FXP_UNLOCK(sc); 2220 } 2221 2222 /* 2223 * Add a buffer to the end of the RFA buffer list. 2224 * Return 0 if successful, 1 for failure. A failure results in 2225 * adding the 'oldm' (if non-NULL) on to the end of the list - 2226 * tossing out its old contents and recycling it. 2227 * The RFA struct is stuck at the beginning of mbuf cluster and the 2228 * data pointer is fixed up to point just past it. 2229 */ 2230 static int 2231 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2232 { 2233 struct mbuf *m; 2234 struct fxp_rfa *rfa, *p_rfa; 2235 struct fxp_rx *p_rx; 2236 bus_dmamap_t tmp_map; 2237 int error; 2238 2239 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2240 if (m == NULL) 2241 return (ENOBUFS); 2242 2243 /* 2244 * Move the data pointer up so that the incoming data packet 2245 * will be 32-bit aligned. 2246 */ 2247 m->m_data += RFA_ALIGNMENT_FUDGE; 2248 2249 /* 2250 * Get a pointer to the base of the mbuf cluster and move 2251 * data start past it. 2252 */ 2253 rfa = mtod(m, struct fxp_rfa *); 2254 m->m_data += sc->rfa_size; 2255 rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE); 2256 2257 rfa->rfa_status = 0; 2258 rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL); 2259 rfa->actual_size = 0; 2260 2261 /* 2262 * Initialize the rest of the RFA. Note that since the RFA 2263 * is misaligned, we cannot store values directly. We're thus 2264 * using the le32enc() function which handles endianness and 2265 * is also alignment-safe. 2266 */ 2267 le32enc(&rfa->link_addr, 0xffffffff); 2268 le32enc(&rfa->rbd_addr, 0xffffffff); 2269 2270 /* Map the RFA into DMA memory. */ 2271 error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa, 2272 MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr, 2273 &rxp->rx_addr, 0); 2274 if (error) { 2275 m_freem(m); 2276 return (error); 2277 } 2278 2279 bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map); 2280 tmp_map = sc->spare_map; 2281 sc->spare_map = rxp->rx_map; 2282 rxp->rx_map = tmp_map; 2283 rxp->rx_mbuf = m; 2284 2285 bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map, 2286 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2287 2288 /* 2289 * If there are other buffers already on the list, attach this 2290 * one to the end by fixing up the tail to point to this one. 2291 */ 2292 if (sc->fxp_desc.rx_head != NULL) { 2293 p_rx = sc->fxp_desc.rx_tail; 2294 p_rfa = (struct fxp_rfa *) 2295 (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE); 2296 p_rx->rx_next = rxp; 2297 le32enc(&p_rfa->link_addr, rxp->rx_addr); 2298 p_rfa->rfa_control = 0; 2299 bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map, 2300 BUS_DMASYNC_PREWRITE); 2301 } else { 2302 rxp->rx_next = NULL; 2303 sc->fxp_desc.rx_head = rxp; 2304 } 2305 sc->fxp_desc.rx_tail = rxp; 2306 return (0); 2307 } 2308 2309 static volatile int 2310 fxp_miibus_readreg(device_t dev, int phy, int reg) 2311 { 2312 struct fxp_softc *sc = device_get_softc(dev); 2313 int count = 10000; 2314 int value; 2315 2316 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2317 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); 2318 2319 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 2320 && count--) 2321 DELAY(10); 2322 2323 if (count <= 0) 2324 device_printf(dev, "fxp_miibus_readreg: timed out\n"); 2325 2326 return (value & 0xffff); 2327 } 2328 2329 static void 2330 fxp_miibus_writereg(device_t dev, int phy, int reg, int value) 2331 { 2332 struct fxp_softc *sc = device_get_softc(dev); 2333 int count = 10000; 2334 2335 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2336 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | 2337 (value & 0xffff)); 2338 2339 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && 2340 count--) 2341 DELAY(10); 2342 2343 if (count <= 0) 2344 device_printf(dev, "fxp_miibus_writereg: timed out\n"); 2345 } 2346 2347 static int 2348 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 2349 { 2350 struct fxp_softc *sc = ifp->if_softc; 2351 struct ifreq *ifr = (struct ifreq *)data; 2352 struct mii_data *mii; 2353 int flag, mask, error = 0; 2354 2355 switch (command) { 2356 case SIOCSIFFLAGS: 2357 FXP_LOCK(sc); 2358 if (ifp->if_flags & IFF_ALLMULTI) 2359 sc->flags |= FXP_FLAG_ALL_MCAST; 2360 else 2361 sc->flags &= ~FXP_FLAG_ALL_MCAST; 2362 2363 /* 2364 * If interface is marked up and not running, then start it. 2365 * If it is marked down and running, stop it. 2366 * XXX If it's up then re-initialize it. This is so flags 2367 * such as IFF_PROMISC are handled. 2368 */ 2369 if (ifp->if_flags & IFF_UP) { 2370 fxp_init_body(sc); 2371 } else { 2372 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2373 fxp_stop(sc); 2374 } 2375 FXP_UNLOCK(sc); 2376 break; 2377 2378 case SIOCADDMULTI: 2379 case SIOCDELMULTI: 2380 FXP_LOCK(sc); 2381 if (ifp->if_flags & IFF_ALLMULTI) 2382 sc->flags |= FXP_FLAG_ALL_MCAST; 2383 else 2384 sc->flags &= ~FXP_FLAG_ALL_MCAST; 2385 /* 2386 * Multicast list has changed; set the hardware filter 2387 * accordingly. 2388 */ 2389 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) 2390 fxp_mc_setup(sc); 2391 /* 2392 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it 2393 * again rather than else {}. 2394 */ 2395 if (sc->flags & FXP_FLAG_ALL_MCAST) 2396 fxp_init_body(sc); 2397 FXP_UNLOCK(sc); 2398 error = 0; 2399 break; 2400 2401 case SIOCSIFMEDIA: 2402 case SIOCGIFMEDIA: 2403 if (sc->miibus != NULL) { 2404 mii = device_get_softc(sc->miibus); 2405 error = ifmedia_ioctl(ifp, ifr, 2406 &mii->mii_media, command); 2407 } else { 2408 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); 2409 } 2410 break; 2411 2412 case SIOCSIFCAP: 2413 mask = ifp->if_capenable ^ ifr->ifr_reqcap; 2414 #ifdef DEVICE_POLLING 2415 if (mask & IFCAP_POLLING) { 2416 if (ifr->ifr_reqcap & IFCAP_POLLING) { 2417 error = ether_poll_register(fxp_poll, ifp); 2418 if (error) 2419 return(error); 2420 FXP_LOCK(sc); 2421 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 2422 FXP_SCB_INTR_DISABLE); 2423 ifp->if_capenable |= IFCAP_POLLING; 2424 FXP_UNLOCK(sc); 2425 } else { 2426 error = ether_poll_deregister(ifp); 2427 /* Enable interrupts in any case */ 2428 FXP_LOCK(sc); 2429 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 2430 ifp->if_capenable &= ~IFCAP_POLLING; 2431 FXP_UNLOCK(sc); 2432 } 2433 } 2434 #endif 2435 if (mask & IFCAP_VLAN_MTU) { 2436 FXP_LOCK(sc); 2437 ifp->if_capenable ^= IFCAP_VLAN_MTU; 2438 if (sc->revision != FXP_REV_82557) 2439 flag = FXP_FLAG_LONG_PKT_EN; 2440 else /* a hack to get long frames on the old chip */ 2441 flag = FXP_FLAG_SAVE_BAD; 2442 sc->flags ^= flag; 2443 if (ifp->if_flags & IFF_UP) 2444 fxp_init_body(sc); 2445 FXP_UNLOCK(sc); 2446 } 2447 break; 2448 2449 default: 2450 error = ether_ioctl(ifp, command, data); 2451 } 2452 return (error); 2453 } 2454 2455 /* 2456 * Fill in the multicast address list and return number of entries. 2457 */ 2458 static int 2459 fxp_mc_addrs(struct fxp_softc *sc) 2460 { 2461 struct fxp_cb_mcs *mcsp = sc->mcsp; 2462 struct ifnet *ifp = sc->ifp; 2463 struct ifmultiaddr *ifma; 2464 int nmcasts; 2465 2466 nmcasts = 0; 2467 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) { 2468 IF_ADDR_LOCK(ifp); 2469 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2470 if (ifma->ifma_addr->sa_family != AF_LINK) 2471 continue; 2472 if (nmcasts >= MAXMCADDR) { 2473 sc->flags |= FXP_FLAG_ALL_MCAST; 2474 nmcasts = 0; 2475 break; 2476 } 2477 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 2478 &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN); 2479 nmcasts++; 2480 } 2481 IF_ADDR_UNLOCK(ifp); 2482 } 2483 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN); 2484 return (nmcasts); 2485 } 2486 2487 /* 2488 * Program the multicast filter. 2489 * 2490 * We have an artificial restriction that the multicast setup command 2491 * must be the first command in the chain, so we take steps to ensure 2492 * this. By requiring this, it allows us to keep up the performance of 2493 * the pre-initialized command ring (esp. link pointers) by not actually 2494 * inserting the mcsetup command in the ring - i.e. its link pointer 2495 * points to the TxCB ring, but the mcsetup descriptor itself is not part 2496 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it 2497 * lead into the regular TxCB ring when it completes. 2498 * 2499 * This function must be called at splimp. 2500 */ 2501 static void 2502 fxp_mc_setup(struct fxp_softc *sc) 2503 { 2504 struct fxp_cb_mcs *mcsp = sc->mcsp; 2505 struct ifnet *ifp = sc->ifp; 2506 struct fxp_tx *txp; 2507 int count; 2508 2509 FXP_LOCK_ASSERT(sc, MA_OWNED); 2510 /* 2511 * If there are queued commands, we must wait until they are all 2512 * completed. If we are already waiting, then add a NOP command 2513 * with interrupt option so that we're notified when all commands 2514 * have been completed - fxp_start() ensures that no additional 2515 * TX commands will be added when need_mcsetup is true. 2516 */ 2517 if (sc->tx_queued) { 2518 /* 2519 * need_mcsetup will be true if we are already waiting for the 2520 * NOP command to be completed (see below). In this case, bail. 2521 */ 2522 if (sc->need_mcsetup) 2523 return; 2524 sc->need_mcsetup = 1; 2525 2526 /* 2527 * Add a NOP command with interrupt so that we are notified 2528 * when all TX commands have been processed. 2529 */ 2530 txp = sc->fxp_desc.tx_last->tx_next; 2531 txp->tx_mbuf = NULL; 2532 txp->tx_cb->cb_status = 0; 2533 txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP | 2534 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); 2535 /* 2536 * Advance the end of list forward. 2537 */ 2538 sc->fxp_desc.tx_last->tx_cb->cb_command &= 2539 htole16(~FXP_CB_COMMAND_S); 2540 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 2541 sc->fxp_desc.tx_last = txp; 2542 sc->tx_queued++; 2543 /* 2544 * Issue a resume in case the CU has just suspended. 2545 */ 2546 fxp_scb_wait(sc); 2547 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 2548 /* 2549 * Set a 5 second timer just in case we don't hear from the 2550 * card again. 2551 */ 2552 ifp->if_timer = 5; 2553 2554 return; 2555 } 2556 sc->need_mcsetup = 0; 2557 2558 /* 2559 * Initialize multicast setup descriptor. 2560 */ 2561 mcsp->cb_status = 0; 2562 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | 2563 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); 2564 mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr); 2565 txp = &sc->fxp_desc.mcs_tx; 2566 txp->tx_mbuf = NULL; 2567 txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp; 2568 txp->tx_next = sc->fxp_desc.tx_list; 2569 (void) fxp_mc_addrs(sc); 2570 sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp; 2571 sc->tx_queued = 1; 2572 2573 /* 2574 * Wait until command unit is not active. This should never 2575 * be the case when nothing is queued, but make sure anyway. 2576 */ 2577 count = 100; 2578 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) == 2579 FXP_SCB_CUS_ACTIVE && --count) 2580 DELAY(10); 2581 if (count == 0) { 2582 device_printf(sc->dev, "command queue timeout\n"); 2583 return; 2584 } 2585 2586 /* 2587 * Start the multicast setup command. 2588 */ 2589 fxp_scb_wait(sc); 2590 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE); 2591 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr); 2592 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2593 2594 ifp->if_timer = 2; 2595 return; 2596 } 2597 2598 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE; 2599 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE; 2600 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE; 2601 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE; 2602 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE; 2603 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE; 2604 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE; 2605 2606 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t) 2607 2608 struct ucode { 2609 uint32_t revision; 2610 uint32_t *ucode; 2611 int length; 2612 u_short int_delay_offset; 2613 u_short bundle_max_offset; 2614 } ucode_table[] = { 2615 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 }, 2616 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 }, 2617 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma), 2618 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD }, 2619 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s), 2620 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD }, 2621 { FXP_REV_82550, UCODE(fxp_ucode_d102), 2622 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD }, 2623 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c), 2624 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD }, 2625 { FXP_REV_82551_F, UCODE(fxp_ucode_d102e), 2626 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD }, 2627 { 0, NULL, 0, 0, 0 } 2628 }; 2629 2630 static void 2631 fxp_load_ucode(struct fxp_softc *sc) 2632 { 2633 struct ucode *uc; 2634 struct fxp_cb_ucode *cbp; 2635 int i; 2636 2637 for (uc = ucode_table; uc->ucode != NULL; uc++) 2638 if (sc->revision == uc->revision) 2639 break; 2640 if (uc->ucode == NULL) 2641 return; 2642 cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list; 2643 cbp->cb_status = 0; 2644 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL); 2645 cbp->link_addr = 0xffffffff; /* (no) next command */ 2646 for (i = 0; i < uc->length; i++) 2647 cbp->ucode[i] = htole32(uc->ucode[i]); 2648 if (uc->int_delay_offset) 2649 *(uint16_t *)&cbp->ucode[uc->int_delay_offset] = 2650 htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2); 2651 if (uc->bundle_max_offset) 2652 *(uint16_t *)&cbp->ucode[uc->bundle_max_offset] = 2653 htole16(sc->tunable_bundle_max); 2654 /* 2655 * Download the ucode to the chip. 2656 */ 2657 fxp_scb_wait(sc); 2658 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE); 2659 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2660 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2661 /* ...and wait for it to complete. */ 2662 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 2663 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE); 2664 device_printf(sc->dev, 2665 "Microcode loaded, int_delay: %d usec bundle_max: %d\n", 2666 sc->tunable_int_delay, 2667 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max); 2668 sc->flags |= FXP_FLAG_UCODE; 2669 } 2670 2671 static int 2672 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 2673 { 2674 int error, value; 2675 2676 value = *(int *)arg1; 2677 error = sysctl_handle_int(oidp, &value, 0, req); 2678 if (error || !req->newptr) 2679 return (error); 2680 if (value < low || value > high) 2681 return (EINVAL); 2682 *(int *)arg1 = value; 2683 return (0); 2684 } 2685 2686 /* 2687 * Interrupt delay is expressed in microseconds, a multiplier is used 2688 * to convert this to the appropriate clock ticks before using. 2689 */ 2690 static int 2691 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS) 2692 { 2693 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000)); 2694 } 2695 2696 static int 2697 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS) 2698 { 2699 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff)); 2700 } 2701