xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 2546665afcaf0d53dc2c7058fee96354b3680f5a)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/endian.h>
40 #include <sys/mbuf.h>
41 		/* #include <sys/mutex.h> */
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sysctl.h>
46 
47 #include <net/if.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 
51 #include <net/bpf.h>
52 #include <sys/sockio.h>
53 #include <sys/bus.h>
54 #include <machine/bus.h>
55 #include <sys/rman.h>
56 #include <machine/resource.h>
57 
58 #include <net/ethernet.h>
59 #include <net/if_arp.h>
60 
61 #include <machine/clock.h>	/* for DELAY */
62 
63 #include <net/if_types.h>
64 #include <net/if_vlan_var.h>
65 
66 #ifdef FXP_IP_CSUM_WAR
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <machine/in_cksum.h>
71 #endif
72 
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75 
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 
79 #include <dev/fxp/if_fxpreg.h>
80 #include <dev/fxp/if_fxpvar.h>
81 #include <dev/fxp/rcvbundl.h>
82 
83 MODULE_DEPEND(fxp, pci, 1, 1, 1);
84 MODULE_DEPEND(fxp, ether, 1, 1, 1);
85 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
86 #include "miibus_if.h"
87 
88 /*
89  * NOTE!  On the Alpha, we have an alignment constraint.  The
90  * card DMAs the packet immediately following the RFA.  However,
91  * the first thing in the packet is a 14-byte Ethernet header.
92  * This means that the packet is misaligned.  To compensate,
93  * we actually offset the RFA 2 bytes into the cluster.  This
94  * alignes the packet after the Ethernet header at a 32-bit
95  * boundary.  HOWEVER!  This means that the RFA is misaligned!
96  */
97 #define	RFA_ALIGNMENT_FUDGE	2
98 
99 /*
100  * Set initial transmit threshold at 64 (512 bytes). This is
101  * increased by 64 (512 bytes) at a time, to maximum of 192
102  * (1536 bytes), if an underrun occurs.
103  */
104 static int tx_threshold = 64;
105 
106 /*
107  * The configuration byte map has several undefined fields which
108  * must be one or must be zero.  Set up a template for these bits
109  * only, (assuming a 82557 chip) leaving the actual configuration
110  * to fxp_init.
111  *
112  * See struct fxp_cb_config for the bit definitions.
113  */
114 static u_char fxp_cb_config_template[] = {
115 	0x0, 0x0,		/* cb_status */
116 	0x0, 0x0,		/* cb_command */
117 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118 	0x0,	/*  0 */
119 	0x0,	/*  1 */
120 	0x0,	/*  2 */
121 	0x0,	/*  3 */
122 	0x0,	/*  4 */
123 	0x0,	/*  5 */
124 	0x32,	/*  6 */
125 	0x0,	/*  7 */
126 	0x0,	/*  8 */
127 	0x0,	/*  9 */
128 	0x6,	/* 10 */
129 	0x0,	/* 11 */
130 	0x0,	/* 12 */
131 	0x0,	/* 13 */
132 	0xf2,	/* 14 */
133 	0x48,	/* 15 */
134 	0x0,	/* 16 */
135 	0x40,	/* 17 */
136 	0xf0,	/* 18 */
137 	0x0,	/* 19 */
138 	0x3f,	/* 20 */
139 	0x5	/* 21 */
140 };
141 
142 struct fxp_ident {
143 	u_int16_t	devid;
144 	int16_t		revid;		/* -1 matches anything */
145 	char 		*name;
146 };
147 
148 /*
149  * Claim various Intel PCI device identifiers for this driver.  The
150  * sub-vendor and sub-device field are extensively used to identify
151  * particular variants, but we don't currently differentiate between
152  * them.
153  */
154 static struct fxp_ident fxp_ident_table[] = {
155     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
156     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
157     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
159     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
161     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
164     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
166     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
167     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
169     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
171     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
172     { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
173     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
174     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
175     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
176     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
177     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
178     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
179     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
180     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
181     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
182     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
183     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
184     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
185     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
186     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
187     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
188     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
189     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
190     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
191     { 0,	-1,	NULL },
192 };
193 
194 #ifdef FXP_IP_CSUM_WAR
195 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
196 #else
197 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
198 #endif
199 
200 static int		fxp_probe(device_t dev);
201 static int		fxp_attach(device_t dev);
202 static int		fxp_detach(device_t dev);
203 static int		fxp_shutdown(device_t dev);
204 static int		fxp_suspend(device_t dev);
205 static int		fxp_resume(device_t dev);
206 
207 static void		fxp_intr(void *xsc);
208 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
209 			    u_int8_t statack, int count);
210 static void 		fxp_init(void *xsc);
211 static void 		fxp_init_body(struct fxp_softc *sc);
212 static void 		fxp_tick(void *xsc);
213 static void 		fxp_start(struct ifnet *ifp);
214 static void 		fxp_start_body(struct ifnet *ifp);
215 static void		fxp_stop(struct fxp_softc *sc);
216 static void 		fxp_release(struct fxp_softc *sc);
217 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
218 			    caddr_t data);
219 static void 		fxp_watchdog(struct ifnet *ifp);
220 static int		fxp_add_rfabuf(struct fxp_softc *sc,
221     			    struct fxp_rx *rxp);
222 static int		fxp_mc_addrs(struct fxp_softc *sc);
223 static void		fxp_mc_setup(struct fxp_softc *sc);
224 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
225 			    int autosize);
226 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
227 			    u_int16_t data);
228 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
229 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
230 			    int offset, int words);
231 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
232 			    int offset, int words);
233 static int		fxp_ifmedia_upd(struct ifnet *ifp);
234 static void		fxp_ifmedia_sts(struct ifnet *ifp,
235 			    struct ifmediareq *ifmr);
236 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
237 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
238 			    struct ifmediareq *ifmr);
239 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
240 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
241 			    int value);
242 static void		fxp_load_ucode(struct fxp_softc *sc);
243 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
244 			    int low, int high);
245 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
246 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
247 static void 		fxp_scb_wait(struct fxp_softc *sc);
248 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
249 static void		fxp_dma_wait(struct fxp_softc *sc,
250     			    volatile u_int16_t *status, bus_dma_tag_t dmat,
251 			    bus_dmamap_t map);
252 
253 static device_method_t fxp_methods[] = {
254 	/* Device interface */
255 	DEVMETHOD(device_probe,		fxp_probe),
256 	DEVMETHOD(device_attach,	fxp_attach),
257 	DEVMETHOD(device_detach,	fxp_detach),
258 	DEVMETHOD(device_shutdown,	fxp_shutdown),
259 	DEVMETHOD(device_suspend,	fxp_suspend),
260 	DEVMETHOD(device_resume,	fxp_resume),
261 
262 	/* MII interface */
263 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
264 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
265 
266 	{ 0, 0 }
267 };
268 
269 static driver_t fxp_driver = {
270 	"fxp",
271 	fxp_methods,
272 	sizeof(struct fxp_softc),
273 };
274 
275 static devclass_t fxp_devclass;
276 
277 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
278 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
279 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
280 
281 /*
282  * Wait for the previous command to be accepted (but not necessarily
283  * completed).
284  */
285 static void
286 fxp_scb_wait(struct fxp_softc *sc)
287 {
288 	int i = 10000;
289 
290 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
291 		DELAY(2);
292 	if (i == 0)
293 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
294 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
295 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
296 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
297 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
298 }
299 
300 static void
301 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
302 {
303 
304 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
305 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
306 		fxp_scb_wait(sc);
307 	}
308 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
309 }
310 
311 static void
312 fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
313     bus_dma_tag_t dmat, bus_dmamap_t map)
314 {
315 	int i = 10000;
316 
317 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
318 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
319 		DELAY(2);
320 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
321 	}
322 	if (i == 0)
323 		device_printf(sc->dev, "DMA timeout\n");
324 }
325 
326 /*
327  * Return identification string if this device is ours.
328  */
329 static int
330 fxp_probe(device_t dev)
331 {
332 	u_int16_t devid;
333 	u_int8_t revid;
334 	struct fxp_ident *ident;
335 
336 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
337 		devid = pci_get_device(dev);
338 		revid = pci_get_revid(dev);
339 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
340 			if (ident->devid == devid &&
341 			    (ident->revid == revid || ident->revid == -1)) {
342 				device_set_desc(dev, ident->name);
343 				return (0);
344 			}
345 		}
346 	}
347 	return (ENXIO);
348 }
349 
350 static void
351 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
352 {
353 	u_int32_t *addr;
354 
355 	if (error)
356 		return;
357 
358 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
359 	addr = arg;
360 	*addr = segs->ds_addr;
361 }
362 
363 static int
364 fxp_attach(device_t dev)
365 {
366 	int error = 0;
367 	struct fxp_softc *sc = device_get_softc(dev);
368 	struct ifnet *ifp;
369 	struct fxp_rx *rxp;
370 	u_int32_t val;
371 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
372 	int i, rid, m1, m2, prefer_iomap, maxtxseg;
373 	int s, ipcbxmit_disable;
374 
375 	sc->dev = dev;
376 	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
377 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
378 	    MTX_DEF);
379 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
380 	    fxp_serial_ifmedia_sts);
381 
382 	s = splimp();
383 
384 	/*
385 	 * Enable bus mastering.
386 	 */
387 	pci_enable_busmaster(dev);
388 	val = pci_read_config(dev, PCIR_COMMAND, 2);
389 
390 	/*
391 	 * Figure out which we should try first - memory mapping or i/o mapping?
392 	 * We default to memory mapping. Then we accept an override from the
393 	 * command line. Then we check to see which one is enabled.
394 	 */
395 	m1 = PCIM_CMD_MEMEN;
396 	m2 = PCIM_CMD_PORTEN;
397 	prefer_iomap = 0;
398 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
399 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
400 		m1 = PCIM_CMD_PORTEN;
401 		m2 = PCIM_CMD_MEMEN;
402 	}
403 
404 	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
405 	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
406 	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
407 	if (sc->mem == NULL) {
408 		sc->rtp =
409 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
410 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
411 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
412                                             RF_ACTIVE);
413 	}
414 
415 	if (!sc->mem) {
416 		error = ENXIO;
417 		goto fail;
418         }
419 	if (bootverbose) {
420 		device_printf(dev, "using %s space register mapping\n",
421 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
422 	}
423 
424 	sc->sc_st = rman_get_bustag(sc->mem);
425 	sc->sc_sh = rman_get_bushandle(sc->mem);
426 
427 	/*
428 	 * Allocate our interrupt.
429 	 */
430 	rid = 0;
431 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
432 				 RF_SHAREABLE | RF_ACTIVE);
433 	if (sc->irq == NULL) {
434 		device_printf(dev, "could not map interrupt\n");
435 		error = ENXIO;
436 		goto fail;
437 	}
438 
439 	/*
440 	 * Reset to a stable state.
441 	 */
442 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
443 	DELAY(10);
444 
445 	/*
446 	 * Find out how large of an SEEPROM we have.
447 	 */
448 	fxp_autosize_eeprom(sc);
449 
450 	/*
451 	 * Determine whether we must use the 503 serial interface.
452 	 */
453 	fxp_read_eeprom(sc, &data, 6, 1);
454 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
455 	    (data & FXP_PHY_SERIAL_ONLY))
456 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
457 
458 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
459 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
460 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
461 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
462 	    "FXP driver receive interrupt microcode bundling delay");
463 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
464 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
465 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
466 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
467 	    "FXP driver receive interrupt microcode bundle size limit");
468 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
469 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
470 	    OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
471 	    "FXP RNR events");
472 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
473 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
474 	    OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
475 	    "FXP flow control disabled");
476 
477 	/*
478 	 * Pull in device tunables.
479 	 */
480 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
481 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
482 	sc->tunable_noflow = 0;
483 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
484 	    "int_delay", &sc->tunable_int_delay);
485 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
486 	    "bundle_max", &sc->tunable_bundle_max);
487 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
488 	    "noflow", &sc->tunable_noflow);
489 	sc->rnr = 0;
490 
491 	/*
492 	 * Find out the chip revision; lump all 82557 revs together.
493 	 */
494 	fxp_read_eeprom(sc, &data, 5, 1);
495 	if ((data >> 8) == 1)
496 		sc->revision = FXP_REV_82557;
497 	else
498 		sc->revision = pci_get_revid(dev);
499 
500 	/*
501 	 * Enable workarounds for certain chip revision deficiencies.
502 	 *
503 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
504 	 * some systems based a normal 82559 design, have a defect where
505 	 * the chip can cause a PCI protocol violation if it receives
506 	 * a CU_RESUME command when it is entering the IDLE state.  The
507 	 * workaround is to disable Dynamic Standby Mode, so the chip never
508 	 * deasserts CLKRUN#, and always remains in an active state.
509 	 *
510 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
511 	 */
512 	i = pci_get_device(dev);
513 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
514 	    sc->revision >= FXP_REV_82559_A0) {
515 		fxp_read_eeprom(sc, &data, 10, 1);
516 		if (data & 0x02) {			/* STB enable */
517 			u_int16_t cksum;
518 			int i;
519 
520 			device_printf(dev,
521 			    "Disabling dynamic standby mode in EEPROM\n");
522 			data &= ~0x02;
523 			fxp_write_eeprom(sc, &data, 10, 1);
524 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
525 			cksum = 0;
526 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
527 				fxp_read_eeprom(sc, &data, i, 1);
528 				cksum += data;
529 			}
530 			i = (1 << sc->eeprom_size) - 1;
531 			cksum = 0xBABA - cksum;
532 			fxp_read_eeprom(sc, &data, i, 1);
533 			fxp_write_eeprom(sc, &cksum, i, 1);
534 			device_printf(dev,
535 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
536 			    i, data, cksum);
537 #if 1
538 			/*
539 			 * If the user elects to continue, try the software
540 			 * workaround, as it is better than nothing.
541 			 */
542 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
543 #endif
544 		}
545 	}
546 
547 	/*
548 	 * If we are not a 82557 chip, we can enable extended features.
549 	 */
550 	if (sc->revision != FXP_REV_82557) {
551 		/*
552 		 * If MWI is enabled in the PCI configuration, and there
553 		 * is a valid cacheline size (8 or 16 dwords), then tell
554 		 * the board to turn on MWI.
555 		 */
556 		if (val & PCIM_CMD_MWRICEN &&
557 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
558 			sc->flags |= FXP_FLAG_MWI_ENABLE;
559 
560 		/* turn on the extended TxCB feature */
561 		sc->flags |= FXP_FLAG_EXT_TXCB;
562 
563 		/* enable reception of long frames for VLAN */
564 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
565 	} else {
566 		/* a hack to get long VLAN frames on a 82557 */
567 		sc->flags |= FXP_FLAG_SAVE_BAD;
568 	}
569 
570 	/*
571 	 * Enable use of extended RFDs and TCBs for 82550
572 	 * and later chips. Note: we need extended TXCB support
573 	 * too, but that's already enabled by the code above.
574 	 * Be careful to do this only on the right devices.
575 	 *
576 	 * At least some 82550 cards probed as "chip=0x12298086 rev=0x0d"
577 	 * truncate packets that end with an mbuf containing 1 to 3 bytes
578 	 * when used with this feature enabled in the previous version of the
579 	 * driver.  This problem appears to be fixed now that the driver
580 	 * always sets the hardware parse bit in the IPCB structure, which
581 	 * the "Intel 8255x 10/100 Mbps Ethernet Controller Family Open
582 	 * Source Software Developer Manual" says is necessary in the
583 	 * cases where packet truncation was observed.
584 	 *
585 	 * The device hint "hint.fxp.UNIT_NUMBER.ipcbxmit_disable"
586 	 * allows this feature to be disabled at boot time.
587 	 *
588 	 * If fxp is not compiled into the kernel, this feature may also
589 	 * be disabled at run time:
590 	 *    # kldunload fxp
591 	 *    # kenv hint.fxp.0.ipcbxmit_disable=1
592 	 *    # kldload fxp
593 	 */
594 
595 	if (resource_int_value("fxp", device_get_unit(dev), "ipcbxmit_disable",
596 	    &ipcbxmit_disable) != 0)
597 		ipcbxmit_disable = 0;
598 	if (ipcbxmit_disable == 0 && (sc->revision == FXP_REV_82550 ||
599 	    sc->revision == FXP_REV_82550_C)) {
600 		sc->rfa_size = sizeof (struct fxp_rfa);
601 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
602 		sc->flags |= FXP_FLAG_EXT_RFA;
603 	} else {
604 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
605 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
606 	}
607 
608 	/*
609 	 * Allocate DMA tags and DMA safe memory.
610 	 */
611 	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
612 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
613 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
614 	    maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->fxp_mtag);
615 	if (error) {
616 		device_printf(dev, "could not allocate dma tag\n");
617 		goto fail;
618 	}
619 
620 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
621 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
622 	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
623 	    &sc->fxp_stag);
624 	if (error) {
625 		device_printf(dev, "could not allocate dma tag\n");
626 		goto fail;
627 	}
628 
629 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
630 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
631 	if (error)
632 		goto fail;
633 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
634 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
635 	if (error) {
636 		device_printf(dev, "could not map the stats buffer\n");
637 		goto fail;
638 	}
639 
640 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
641 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
642 	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
643 	if (error) {
644 		device_printf(dev, "could not allocate dma tag\n");
645 		goto fail;
646 	}
647 
648 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
649 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
650 	if (error)
651 		goto fail;
652 
653 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
654 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
655 	    &sc->fxp_desc.cbl_addr, 0);
656 	if (error) {
657 		device_printf(dev, "could not map DMA memory\n");
658 		goto fail;
659 	}
660 
661 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
662 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
663 	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
664 	    &sc->mcs_tag);
665 	if (error) {
666 		device_printf(dev, "could not allocate dma tag\n");
667 		goto fail;
668 	}
669 
670 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
671 	    BUS_DMA_NOWAIT, &sc->mcs_map);
672 	if (error)
673 		goto fail;
674 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
675 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
676 	if (error) {
677 		device_printf(dev, "can't map the multicast setup command\n");
678 		goto fail;
679 	}
680 
681 	/*
682 	 * Pre-allocate the TX DMA maps.
683 	 */
684 	for (i = 0; i < FXP_NTXCB; i++) {
685 		error = bus_dmamap_create(sc->fxp_mtag, 0,
686 		    &sc->fxp_desc.tx_list[i].tx_map);
687 		if (error) {
688 			device_printf(dev, "can't create DMA map for TX\n");
689 			goto fail;
690 		}
691 	}
692 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
693 	if (error) {
694 		device_printf(dev, "can't create spare DMA map\n");
695 		goto fail;
696 	}
697 
698 	/*
699 	 * Pre-allocate our receive buffers.
700 	 */
701 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
702 	for (i = 0; i < FXP_NRFABUFS; i++) {
703 		rxp = &sc->fxp_desc.rx_list[i];
704 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
705 		if (error) {
706 			device_printf(dev, "can't create DMA map for RX\n");
707 			goto fail;
708 		}
709 		if (fxp_add_rfabuf(sc, rxp) != 0) {
710 			error = ENOMEM;
711 			goto fail;
712 		}
713 	}
714 
715 	/*
716 	 * Read MAC address.
717 	 */
718 	fxp_read_eeprom(sc, myea, 0, 3);
719 	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
720 	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
721 	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
722 	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
723 	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
724 	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
725 	if (bootverbose) {
726 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
727 		    pci_get_vendor(dev), pci_get_device(dev),
728 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
729 		    pci_get_revid(dev));
730 		fxp_read_eeprom(sc, &data, 10, 1);
731 		device_printf(dev, "Dynamic Standby mode is %s\n",
732 		    data & 0x02 ? "enabled" : "disabled");
733 	}
734 
735 	/*
736 	 * If this is only a 10Mbps device, then there is no MII, and
737 	 * the PHY will use a serial interface instead.
738 	 *
739 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
740 	 * doesn't have a programming interface of any sort.  The
741 	 * media is sensed automatically based on how the link partner
742 	 * is configured.  This is, in essence, manual configuration.
743 	 */
744 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
745 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
746 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
747 	} else {
748 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
749 		    fxp_ifmedia_sts)) {
750 	                device_printf(dev, "MII without any PHY!\n");
751 			error = ENXIO;
752 			goto fail;
753 		}
754 	}
755 
756 	ifp = &sc->arpcom.ac_if;
757 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
758 	ifp->if_baudrate = 100000000;
759 	ifp->if_init = fxp_init;
760 	ifp->if_softc = sc;
761 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
762 	ifp->if_ioctl = fxp_ioctl;
763 	ifp->if_start = fxp_start;
764 	ifp->if_watchdog = fxp_watchdog;
765 
766 	ifp->if_capabilities = ifp->if_capenable = 0;
767 
768 	/* Enable checksum offload for 82550 or better chips */
769 	if (sc->flags & FXP_FLAG_EXT_RFA) {
770 		ifp->if_hwassist = FXP_CSUM_FEATURES;
771 		ifp->if_capabilities |= IFCAP_HWCSUM;
772 		ifp->if_capenable |= IFCAP_HWCSUM;
773 	}
774 
775 #ifdef DEVICE_POLLING
776 	/* Inform the world we support polling. */
777 	ifp->if_capabilities |= IFCAP_POLLING;
778 	ifp->if_capenable |= IFCAP_POLLING;
779 #endif
780 
781 	/*
782 	 * Attach the interface.
783 	 */
784 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
785 
786 	/*
787 	 * Tell the upper layer(s) we support long frames.
788 	 * Must appear after the call to ether_ifattach() because
789 	 * ether_ifattach() sets ifi_hdrlen to the default value.
790 	 */
791 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
792 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
793 	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
794 
795 	/*
796 	 * Let the system queue as many packets as we have available
797 	 * TX descriptors.
798 	 */
799 	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
800 	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
801 	IFQ_SET_READY(&ifp->if_snd);
802 
803 	/*
804 	 * Hook our interrupt after all initialization is complete.
805 	 * XXX This driver has been tested with the INTR_MPSAFFE flag set
806 	 * however, ifp and its functions are not fully locked so MPSAFE
807 	 * should not be used unless you can handle potential data loss.
808 	 */
809 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
810 			       fxp_intr, sc, &sc->ih);
811 	if (error) {
812 		device_printf(dev, "could not setup irq\n");
813 		ether_ifdetach(&sc->arpcom.ac_if);
814 		goto fail;
815 	}
816 
817 fail:
818 	splx(s);
819 	if (error)
820 		fxp_release(sc);
821 	return (error);
822 }
823 
824 /*
825  * Release all resources.  The softc lock should not be held and the
826  * interrupt should already be torn down.
827  */
828 static void
829 fxp_release(struct fxp_softc *sc)
830 {
831 	struct fxp_rx *rxp;
832 	struct fxp_tx *txp;
833 	int i;
834 
835 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
836 	KASSERT(sc->ih == NULL,
837 	    ("fxp_release() called with intr handle still active"));
838 	if (sc->miibus)
839 		device_delete_child(sc->dev, sc->miibus);
840 	bus_generic_detach(sc->dev);
841 	ifmedia_removeall(&sc->sc_media);
842 	if (sc->fxp_desc.cbl_list) {
843 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
844 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
845 		    sc->cbl_map);
846 	}
847 	if (sc->fxp_stats) {
848 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
849 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
850 	}
851 	if (sc->mcsp) {
852 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
853 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
854 	}
855 	if (sc->irq)
856 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
857 	if (sc->mem)
858 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
859 	if (sc->fxp_mtag) {
860 		for (i = 0; i < FXP_NRFABUFS; i++) {
861 			rxp = &sc->fxp_desc.rx_list[i];
862 			if (rxp->rx_mbuf != NULL) {
863 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
864 				    BUS_DMASYNC_POSTREAD);
865 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
866 				m_freem(rxp->rx_mbuf);
867 			}
868 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
869 		}
870 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
871 		bus_dma_tag_destroy(sc->fxp_mtag);
872 	}
873 	if (sc->fxp_stag) {
874 		for (i = 0; i < FXP_NTXCB; i++) {
875 			txp = &sc->fxp_desc.tx_list[i];
876 			if (txp->tx_mbuf != NULL) {
877 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
878 				    BUS_DMASYNC_POSTWRITE);
879 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
880 				m_freem(txp->tx_mbuf);
881 			}
882 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
883 		}
884 		bus_dma_tag_destroy(sc->fxp_stag);
885 	}
886 	if (sc->cbl_tag)
887 		bus_dma_tag_destroy(sc->cbl_tag);
888 	if (sc->mcs_tag)
889 		bus_dma_tag_destroy(sc->mcs_tag);
890 
891 	mtx_destroy(&sc->sc_mtx);
892 }
893 
894 /*
895  * Detach interface.
896  */
897 static int
898 fxp_detach(device_t dev)
899 {
900 	struct fxp_softc *sc = device_get_softc(dev);
901 	int s;
902 
903 	FXP_LOCK(sc);
904 	s = splimp();
905 
906 	sc->suspended = 1;	/* Do same thing as we do for suspend */
907 	/*
908 	 * Close down routes etc.
909 	 */
910 	ether_ifdetach(&sc->arpcom.ac_if);
911 
912 	/*
913 	 * Stop DMA and drop transmit queue, but disable interrupts first.
914 	 */
915 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
916 	fxp_stop(sc);
917 	FXP_UNLOCK(sc);
918 
919 	/*
920 	 * Unhook interrupt before dropping lock. This is to prevent
921 	 * races with fxp_intr().
922 	 */
923 	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
924 	sc->ih = NULL;
925 
926 	splx(s);
927 
928 	/* Release our allocated resources. */
929 	fxp_release(sc);
930 	return (0);
931 }
932 
933 /*
934  * Device shutdown routine. Called at system shutdown after sync. The
935  * main purpose of this routine is to shut off receiver DMA so that
936  * kernel memory doesn't get clobbered during warmboot.
937  */
938 static int
939 fxp_shutdown(device_t dev)
940 {
941 	/*
942 	 * Make sure that DMA is disabled prior to reboot. Not doing
943 	 * do could allow DMA to corrupt kernel memory during the
944 	 * reboot before the driver initializes.
945 	 */
946 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
947 	return (0);
948 }
949 
950 /*
951  * Device suspend routine.  Stop the interface and save some PCI
952  * settings in case the BIOS doesn't restore them properly on
953  * resume.
954  */
955 static int
956 fxp_suspend(device_t dev)
957 {
958 	struct fxp_softc *sc = device_get_softc(dev);
959 	int i, s;
960 
961 	FXP_LOCK(sc);
962 	s = splimp();
963 
964 	fxp_stop(sc);
965 
966 	for (i = 0; i < 5; i++)
967 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
968 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
969 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
970 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
971 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
972 
973 	sc->suspended = 1;
974 
975 	FXP_UNLOCK(sc);
976 	splx(s);
977 	return (0);
978 }
979 
980 /*
981  * Device resume routine.  Restore some PCI settings in case the BIOS
982  * doesn't, re-enable busmastering, and restart the interface if
983  * appropriate.
984  */
985 static int
986 fxp_resume(device_t dev)
987 {
988 	struct fxp_softc *sc = device_get_softc(dev);
989 	struct ifnet *ifp = &sc->sc_if;
990 	u_int16_t pci_command;
991 	int i, s;
992 
993 	FXP_LOCK(sc);
994 	s = splimp();
995 
996 	/* better way to do this? */
997 	for (i = 0; i < 5; i++)
998 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
999 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1000 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1001 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1002 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1003 
1004 	/* reenable busmastering */
1005 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
1006 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1007 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
1008 
1009 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1010 	DELAY(10);
1011 
1012 	/* reinitialize interface if necessary */
1013 	if (ifp->if_flags & IFF_UP)
1014 		fxp_init_body(sc);
1015 
1016 	sc->suspended = 0;
1017 
1018 	FXP_UNLOCK(sc);
1019 	splx(s);
1020 	return (0);
1021 }
1022 
1023 static void
1024 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1025 {
1026 	u_int16_t reg;
1027 	int x;
1028 
1029 	/*
1030 	 * Shift in data.
1031 	 */
1032 	for (x = 1 << (length - 1); x; x >>= 1) {
1033 		if (data & x)
1034 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1035 		else
1036 			reg = FXP_EEPROM_EECS;
1037 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1038 		DELAY(1);
1039 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1040 		DELAY(1);
1041 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1042 		DELAY(1);
1043 	}
1044 }
1045 
1046 /*
1047  * Read from the serial EEPROM. Basically, you manually shift in
1048  * the read opcode (one bit at a time) and then shift in the address,
1049  * and then you shift out the data (all of this one bit at a time).
1050  * The word size is 16 bits, so you have to provide the address for
1051  * every 16 bits of data.
1052  */
1053 static u_int16_t
1054 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1055 {
1056 	u_int16_t reg, data;
1057 	int x;
1058 
1059 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1060 	/*
1061 	 * Shift in read opcode.
1062 	 */
1063 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1064 	/*
1065 	 * Shift in address.
1066 	 */
1067 	data = 0;
1068 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1069 		if (offset & x)
1070 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1071 		else
1072 			reg = FXP_EEPROM_EECS;
1073 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1074 		DELAY(1);
1075 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1076 		DELAY(1);
1077 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1078 		DELAY(1);
1079 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1080 		data++;
1081 		if (autosize && reg == 0) {
1082 			sc->eeprom_size = data;
1083 			break;
1084 		}
1085 	}
1086 	/*
1087 	 * Shift out data.
1088 	 */
1089 	data = 0;
1090 	reg = FXP_EEPROM_EECS;
1091 	for (x = 1 << 15; x; x >>= 1) {
1092 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1093 		DELAY(1);
1094 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1095 			data |= x;
1096 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1097 		DELAY(1);
1098 	}
1099 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1100 	DELAY(1);
1101 
1102 	return (data);
1103 }
1104 
1105 static void
1106 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1107 {
1108 	int i;
1109 
1110 	/*
1111 	 * Erase/write enable.
1112 	 */
1113 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1114 	fxp_eeprom_shiftin(sc, 0x4, 3);
1115 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1116 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1117 	DELAY(1);
1118 	/*
1119 	 * Shift in write opcode, address, data.
1120 	 */
1121 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1122 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1123 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1124 	fxp_eeprom_shiftin(sc, data, 16);
1125 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1126 	DELAY(1);
1127 	/*
1128 	 * Wait for EEPROM to finish up.
1129 	 */
1130 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1131 	DELAY(1);
1132 	for (i = 0; i < 1000; i++) {
1133 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1134 			break;
1135 		DELAY(50);
1136 	}
1137 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1138 	DELAY(1);
1139 	/*
1140 	 * Erase/write disable.
1141 	 */
1142 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1143 	fxp_eeprom_shiftin(sc, 0x4, 3);
1144 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1145 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1146 	DELAY(1);
1147 }
1148 
1149 /*
1150  * From NetBSD:
1151  *
1152  * Figure out EEPROM size.
1153  *
1154  * 559's can have either 64-word or 256-word EEPROMs, the 558
1155  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1156  * talks about the existance of 16 to 256 word EEPROMs.
1157  *
1158  * The only known sizes are 64 and 256, where the 256 version is used
1159  * by CardBus cards to store CIS information.
1160  *
1161  * The address is shifted in msb-to-lsb, and after the last
1162  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1163  * after which follows the actual data. We try to detect this zero, by
1164  * probing the data-out bit in the EEPROM control register just after
1165  * having shifted in a bit. If the bit is zero, we assume we've
1166  * shifted enough address bits. The data-out should be tri-state,
1167  * before this, which should translate to a logical one.
1168  */
1169 static void
1170 fxp_autosize_eeprom(struct fxp_softc *sc)
1171 {
1172 
1173 	/* guess maximum size of 256 words */
1174 	sc->eeprom_size = 8;
1175 
1176 	/* autosize */
1177 	(void) fxp_eeprom_getword(sc, 0, 1);
1178 }
1179 
1180 static void
1181 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1182 {
1183 	int i;
1184 
1185 	for (i = 0; i < words; i++)
1186 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1187 }
1188 
1189 static void
1190 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1191 {
1192 	int i;
1193 
1194 	for (i = 0; i < words; i++)
1195 		fxp_eeprom_putword(sc, offset + i, data[i]);
1196 }
1197 
1198 static void
1199 fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1200     bus_size_t mapsize, int error)
1201 {
1202 	struct fxp_softc *sc;
1203 	struct fxp_cb_tx *txp;
1204 	int i;
1205 
1206 	if (error)
1207 		return;
1208 
1209 	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1210 
1211 	sc = arg;
1212 	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1213 	for (i = 0; i < nseg; i++) {
1214 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1215 		/*
1216 		 * If this is an 82550/82551, then we're using extended
1217 		 * TxCBs _and_ we're using checksum offload. This means
1218 		 * that the TxCB is really an IPCB. One major difference
1219 		 * between the two is that with plain extended TxCBs,
1220 		 * the bottom half of the TxCB contains two entries from
1221 		 * the TBD array, whereas IPCBs contain just one entry:
1222 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1223 		 * checksum offload control bits. So to make things work
1224 		 * right, we have to start filling in the TBD array
1225 		 * starting from a different place depending on whether
1226 		 * the chip is an 82550/82551 or not.
1227 		 */
1228 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1229 			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1230 			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1231 		} else {
1232 			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1233 			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1234 		}
1235 	}
1236 	txp->tbd_number = nseg;
1237 }
1238 
1239 /*
1240  * Grab the softc lock and call the real fxp_start_body() routine
1241  */
1242 static void
1243 fxp_start(struct ifnet *ifp)
1244 {
1245 	struct fxp_softc *sc = ifp->if_softc;
1246 
1247 	FXP_LOCK(sc);
1248 	fxp_start_body(ifp);
1249 	FXP_UNLOCK(sc);
1250 }
1251 
1252 /*
1253  * Start packet transmission on the interface.
1254  * This routine must be called with the softc lock held, and is an
1255  * internal entry point only.
1256  */
1257 static void
1258 fxp_start_body(struct ifnet *ifp)
1259 {
1260 	struct fxp_softc *sc = ifp->if_softc;
1261 	struct fxp_tx *txp;
1262 	struct mbuf *mb_head;
1263 	int error;
1264 
1265 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1266 	/*
1267 	 * See if we need to suspend xmit until the multicast filter
1268 	 * has been reprogrammed (which can only be done at the head
1269 	 * of the command chain).
1270 	 */
1271 	if (sc->need_mcsetup) {
1272 		return;
1273 	}
1274 
1275 	txp = NULL;
1276 
1277 	/*
1278 	 * We're finished if there is nothing more to add to the list or if
1279 	 * we're all filled up with buffers to transmit.
1280 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1281 	 *       a NOP command when needed.
1282 	 */
1283 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1284 	    sc->tx_queued < FXP_NTXCB - 1) {
1285 
1286 		/*
1287 		 * Grab a packet to transmit.
1288 		 */
1289 		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1290 		if (mb_head == NULL)
1291 			break;
1292 
1293 		/*
1294 		 * Get pointer to next available tx desc.
1295 		 */
1296 		txp = sc->fxp_desc.tx_last->tx_next;
1297 
1298 		/*
1299 		 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1300 		 * Ethernet Controller Family Open Source Software
1301 		 * Developer Manual says:
1302 		 *   Using software parsing is only allowed with legal
1303 		 *   TCP/IP or UDP/IP packets.
1304 		 *   ...
1305 		 *   For all other datagrams, hardware parsing must
1306 		 *   be used.
1307 		 * Software parsing appears to truncate ICMP and
1308 		 * fragmented UDP packets that contain one to three
1309 		 * bytes in the second (and final) mbuf of the packet.
1310 		 */
1311 		if (sc->flags & FXP_FLAG_EXT_RFA)
1312 			txp->tx_cb->ipcb_ip_activation_high =
1313 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1314 
1315 		/*
1316 		 * Deal with TCP/IP checksum offload. Note that
1317 		 * in order for TCP checksum offload to work,
1318 		 * the pseudo header checksum must have already
1319 		 * been computed and stored in the checksum field
1320 		 * in the TCP header. The stack should have
1321 		 * already done this for us.
1322 		 */
1323 
1324 		if (mb_head->m_pkthdr.csum_flags) {
1325 			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1326 				txp->tx_cb->ipcb_ip_schedule =
1327 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1328 				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1329 					txp->tx_cb->ipcb_ip_schedule |=
1330 					    FXP_IPCB_TCP_PACKET;
1331 			}
1332 #ifdef FXP_IP_CSUM_WAR
1333 		/*
1334 		 * XXX The 82550 chip appears to have trouble
1335 		 * dealing with IP header checksums in very small
1336 		 * datagrams, namely fragments from 1 to 3 bytes
1337 		 * in size. For example, say you want to transmit
1338 		 * a UDP packet of 1473 bytes. The packet will be
1339 		 * fragmented over two IP datagrams, the latter
1340 		 * containing only one byte of data. The 82550 will
1341 		 * botch the header checksum on the 1-byte fragment.
1342 		 * As long as the datagram contains 4 or more bytes
1343 		 * of data, you're ok.
1344 		 *
1345                  * The following code attempts to work around this
1346 		 * problem: if the datagram is less than 38 bytes
1347 		 * in size (14 bytes ether header, 20 bytes IP header,
1348 		 * plus 4 bytes of data), we punt and compute the IP
1349 		 * header checksum by hand. This workaround doesn't
1350 		 * work very well, however, since it can be fooled
1351 		 * by things like VLAN tags and IP options that make
1352 		 * the header sizes/offsets vary.
1353 		 */
1354 
1355 			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1356 				if (mb_head->m_pkthdr.len < 38) {
1357 					struct ip *ip;
1358 					mb_head->m_data += ETHER_HDR_LEN;
1359 					ip = mtod(mb_head, struct ip *);
1360 					ip->ip_sum = in_cksum(mb_head,
1361 					    ip->ip_hl << 2);
1362 					mb_head->m_data -= ETHER_HDR_LEN;
1363 				} else {
1364 					txp->tx_cb->ipcb_ip_activation_high =
1365 					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1366 					txp->tx_cb->ipcb_ip_schedule |=
1367 					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1368 				}
1369 			}
1370 #endif
1371 		}
1372 
1373 		/*
1374 		 * Go through each of the mbufs in the chain and initialize
1375 		 * the transmit buffer descriptors with the physical address
1376 		 * and size of the mbuf.
1377 		 */
1378 		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1379 		    mb_head, fxp_dma_map_txbuf, sc, 0);
1380 
1381 		if (error && error != EFBIG) {
1382 			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1383 			    error);
1384 			m_freem(mb_head);
1385 			break;
1386 		}
1387 
1388 		if (error) {
1389 			struct mbuf *mn;
1390 
1391 			/*
1392 			 * We ran out of segments. We have to recopy this
1393 			 * mbuf chain first. Bail out if we can't get the
1394 			 * new buffers.
1395 			 */
1396 			mn = m_defrag(mb_head, M_DONTWAIT);
1397 			if (mn == NULL) {
1398 				m_freem(mb_head);
1399 				break;
1400 			} else {
1401 				mb_head = mn;
1402 			}
1403 			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1404 			    mb_head, fxp_dma_map_txbuf, sc, 0);
1405 			if (error) {
1406 				device_printf(sc->dev,
1407 				    "can't map mbuf (error %d)\n", error);
1408 				m_freem(mb_head);
1409 				break;
1410 			}
1411 		}
1412 
1413 		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1414 		    BUS_DMASYNC_PREWRITE);
1415 
1416 		txp->tx_mbuf = mb_head;
1417 		txp->tx_cb->cb_status = 0;
1418 		txp->tx_cb->byte_count = 0;
1419 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1420 			txp->tx_cb->cb_command =
1421 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1422 			    FXP_CB_COMMAND_S);
1423 		} else {
1424 			txp->tx_cb->cb_command =
1425 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1426 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1427 			/*
1428 			 * Set a 5 second timer just in case we don't hear
1429 			 * from the card again.
1430 			 */
1431 			ifp->if_timer = 5;
1432 		}
1433 		txp->tx_cb->tx_threshold = tx_threshold;
1434 
1435 		/*
1436 		 * Advance the end of list forward.
1437 		 */
1438 
1439 #ifdef __alpha__
1440 		/*
1441 		 * On platforms which can't access memory in 16-bit
1442 		 * granularities, we must prevent the card from DMA'ing
1443 		 * up the status while we update the command field.
1444 		 * This could cause us to overwrite the completion status.
1445 		 * XXX This is probably bogus and we're _not_ looking
1446 		 * for atomicity here.
1447 		 */
1448 		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1449 		    htole16(FXP_CB_COMMAND_S));
1450 #else
1451 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1452 		    htole16(~FXP_CB_COMMAND_S);
1453 #endif /*__alpha__*/
1454 		sc->fxp_desc.tx_last = txp;
1455 
1456 		/*
1457 		 * Advance the beginning of the list forward if there are
1458 		 * no other packets queued (when nothing is queued, tx_first
1459 		 * sits on the last TxCB that was sent out).
1460 		 */
1461 		if (sc->tx_queued == 0)
1462 			sc->fxp_desc.tx_first = txp;
1463 
1464 		sc->tx_queued++;
1465 
1466 		/*
1467 		 * Pass packet to bpf if there is a listener.
1468 		 */
1469 		BPF_MTAP(ifp, mb_head);
1470 	}
1471 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1472 
1473 	/*
1474 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1475 	 * going again if suspended.
1476 	 */
1477 	if (txp != NULL) {
1478 		fxp_scb_wait(sc);
1479 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1480 	}
1481 }
1482 
1483 #ifdef DEVICE_POLLING
1484 static poll_handler_t fxp_poll;
1485 
1486 static void
1487 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1488 {
1489 	struct fxp_softc *sc = ifp->if_softc;
1490 	u_int8_t statack;
1491 
1492 	FXP_LOCK(sc);
1493 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1494 		ether_poll_deregister(ifp);
1495 		cmd = POLL_DEREGISTER;
1496 	}
1497 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1498 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1499 		FXP_UNLOCK(sc);
1500 		return;
1501 	}
1502 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1503 	    FXP_SCB_STATACK_FR;
1504 	if (cmd == POLL_AND_CHECK_STATUS) {
1505 		u_int8_t tmp;
1506 
1507 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1508 		if (tmp == 0xff || tmp == 0) {
1509 			FXP_UNLOCK(sc);
1510 			return; /* nothing to do */
1511 		}
1512 		tmp &= ~statack;
1513 		/* ack what we can */
1514 		if (tmp != 0)
1515 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1516 		statack |= tmp;
1517 	}
1518 	fxp_intr_body(sc, ifp, statack, count);
1519 	FXP_UNLOCK(sc);
1520 }
1521 #endif /* DEVICE_POLLING */
1522 
1523 /*
1524  * Process interface interrupts.
1525  */
1526 static void
1527 fxp_intr(void *xsc)
1528 {
1529 	struct fxp_softc *sc = xsc;
1530 	struct ifnet *ifp = &sc->sc_if;
1531 	u_int8_t statack;
1532 
1533 	FXP_LOCK(sc);
1534 	if (sc->suspended) {
1535 		FXP_UNLOCK(sc);
1536 		return;
1537 	}
1538 
1539 #ifdef DEVICE_POLLING
1540 	if (ifp->if_flags & IFF_POLLING) {
1541 		FXP_UNLOCK(sc);
1542 		return;
1543 	}
1544 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1545 	    ether_poll_register(fxp_poll, ifp)) {
1546 		/* disable interrupts */
1547 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1548 		FXP_UNLOCK(sc);
1549 		fxp_poll(ifp, 0, 1);
1550 		return;
1551 	}
1552 #endif
1553 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1554 		/*
1555 		 * It should not be possible to have all bits set; the
1556 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1557 		 * all bits are set, this may indicate that the card has
1558 		 * been physically ejected, so ignore it.
1559 		 */
1560 		if (statack == 0xff) {
1561 			FXP_UNLOCK(sc);
1562 			return;
1563 		}
1564 
1565 		/*
1566 		 * First ACK all the interrupts in this pass.
1567 		 */
1568 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1569 		fxp_intr_body(sc, ifp, statack, -1);
1570 	}
1571 	FXP_UNLOCK(sc);
1572 }
1573 
1574 static void
1575 fxp_txeof(struct fxp_softc *sc)
1576 {
1577 	struct fxp_tx *txp;
1578 
1579 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1580 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1581 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1582 	    txp = txp->tx_next) {
1583 		if (txp->tx_mbuf != NULL) {
1584 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1585 			    BUS_DMASYNC_POSTWRITE);
1586 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1587 			m_freem(txp->tx_mbuf);
1588 			txp->tx_mbuf = NULL;
1589 			/* clear this to reset csum offload bits */
1590 			txp->tx_cb->tbd[0].tb_addr = 0;
1591 		}
1592 		sc->tx_queued--;
1593 	}
1594 	sc->fxp_desc.tx_first = txp;
1595 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1596 }
1597 
1598 static void
1599 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1600     int count)
1601 {
1602 	struct mbuf *m;
1603 	struct fxp_rx *rxp;
1604 	struct fxp_rfa *rfa;
1605 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1606 
1607 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1608 	if (rnr)
1609 		sc->rnr++;
1610 #ifdef DEVICE_POLLING
1611 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1612 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1613 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1614 		rnr = 1;
1615 	}
1616 #endif
1617 
1618 	/*
1619 	 * Free any finished transmit mbuf chains.
1620 	 *
1621 	 * Handle the CNA event likt a CXTNO event. It used to
1622 	 * be that this event (control unit not ready) was not
1623 	 * encountered, but it is now with the SMPng modifications.
1624 	 * The exact sequence of events that occur when the interface
1625 	 * is brought up are different now, and if this event
1626 	 * goes unhandled, the configuration/rxfilter setup sequence
1627 	 * can stall for several seconds. The result is that no
1628 	 * packets go out onto the wire for about 5 to 10 seconds
1629 	 * after the interface is ifconfig'ed for the first time.
1630 	 */
1631 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1632 		fxp_txeof(sc);
1633 
1634 		ifp->if_timer = 0;
1635 		if (sc->tx_queued == 0) {
1636 			if (sc->need_mcsetup)
1637 				fxp_mc_setup(sc);
1638 		}
1639 		/*
1640 		 * Try to start more packets transmitting.
1641 		 */
1642 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1643 			fxp_start_body(ifp);
1644 	}
1645 
1646 	/*
1647 	 * Just return if nothing happened on the receive side.
1648 	 */
1649 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1650 		return;
1651 
1652 	/*
1653 	 * Process receiver interrupts. If a no-resource (RNR)
1654 	 * condition exists, get whatever packets we can and
1655 	 * re-start the receiver.
1656 	 *
1657 	 * When using polling, we do not process the list to completion,
1658 	 * so when we get an RNR interrupt we must defer the restart
1659 	 * until we hit the last buffer with the C bit set.
1660 	 * If we run out of cycles and rfa_headm has the C bit set,
1661 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1662 	 * that the info will be used in the subsequent polling cycle.
1663 	 */
1664 	for (;;) {
1665 		rxp = sc->fxp_desc.rx_head;
1666 		m = rxp->rx_mbuf;
1667 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1668 		    RFA_ALIGNMENT_FUDGE);
1669 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1670 		    BUS_DMASYNC_POSTREAD);
1671 
1672 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1673 		if (count >= 0 && count-- == 0) {
1674 			if (rnr) {
1675 				/* Defer RNR processing until the next time. */
1676 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1677 				rnr = 0;
1678 			}
1679 			break;
1680 		}
1681 #endif /* DEVICE_POLLING */
1682 
1683 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1684 			break;
1685 
1686 		/*
1687 		 * Advance head forward.
1688 		 */
1689 		sc->fxp_desc.rx_head = rxp->rx_next;
1690 
1691 		/*
1692 		 * Add a new buffer to the receive chain.
1693 		 * If this fails, the old buffer is recycled
1694 		 * instead.
1695 		 */
1696 		if (fxp_add_rfabuf(sc, rxp) == 0) {
1697 			int total_len;
1698 
1699 			/*
1700 			 * Fetch packet length (the top 2 bits of
1701 			 * actual_size are flags set by the controller
1702 			 * upon completion), and drop the packet in case
1703 			 * of bogus length or CRC errors.
1704 			 */
1705 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1706 			if (total_len < sizeof(struct ether_header) ||
1707 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1708 				sc->rfa_size ||
1709 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1710 				m_freem(m);
1711 				continue;
1712 			}
1713 
1714                         /* Do IP checksum checking. */
1715 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1716 				if (rfa->rfax_csum_sts &
1717 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1718 					m->m_pkthdr.csum_flags |=
1719 					    CSUM_IP_CHECKED;
1720 				if (rfa->rfax_csum_sts &
1721 				    FXP_RFDX_CS_IP_CSUM_VALID)
1722 					m->m_pkthdr.csum_flags |=
1723 					    CSUM_IP_VALID;
1724 				if ((rfa->rfax_csum_sts &
1725 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1726 				    (rfa->rfax_csum_sts &
1727 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1728 					m->m_pkthdr.csum_flags |=
1729 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1730 					m->m_pkthdr.csum_data = 0xffff;
1731 				}
1732 			}
1733 
1734 			m->m_pkthdr.len = m->m_len = total_len;
1735 			m->m_pkthdr.rcvif = ifp;
1736 
1737 			/*
1738 			 * Drop locks before calling if_input() since it
1739 			 * may re-enter fxp_start() in the netisr case.
1740 			 * This would result in a lock reversal.  Better
1741 			 * performance might be obtained by chaining all
1742 			 * packets received, dropping the lock, and then
1743 			 * calling if_input() on each one.
1744 			 */
1745 			FXP_UNLOCK(sc);
1746 			(*ifp->if_input)(ifp, m);
1747 			FXP_LOCK(sc);
1748 		}
1749 	}
1750 	if (rnr) {
1751 		fxp_scb_wait(sc);
1752 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1753 		    sc->fxp_desc.rx_head->rx_addr);
1754 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1755 	}
1756 }
1757 
1758 /*
1759  * Update packet in/out/collision statistics. The i82557 doesn't
1760  * allow you to access these counters without doing a fairly
1761  * expensive DMA to get _all_ of the statistics it maintains, so
1762  * we do this operation here only once per second. The statistics
1763  * counters in the kernel are updated from the previous dump-stats
1764  * DMA and then a new dump-stats DMA is started. The on-chip
1765  * counters are zeroed when the DMA completes. If we can't start
1766  * the DMA immediately, we don't wait - we just prepare to read
1767  * them again next time.
1768  */
1769 static void
1770 fxp_tick(void *xsc)
1771 {
1772 	struct fxp_softc *sc = xsc;
1773 	struct ifnet *ifp = &sc->sc_if;
1774 	struct fxp_stats *sp = sc->fxp_stats;
1775 	int s;
1776 
1777 	FXP_LOCK(sc);
1778 	s = splimp();
1779 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1780 	ifp->if_opackets += le32toh(sp->tx_good);
1781 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1782 	if (sp->rx_good) {
1783 		ifp->if_ipackets += le32toh(sp->rx_good);
1784 		sc->rx_idle_secs = 0;
1785 	} else {
1786 		/*
1787 		 * Receiver's been idle for another second.
1788 		 */
1789 		sc->rx_idle_secs++;
1790 	}
1791 	ifp->if_ierrors +=
1792 	    le32toh(sp->rx_crc_errors) +
1793 	    le32toh(sp->rx_alignment_errors) +
1794 	    le32toh(sp->rx_rnr_errors) +
1795 	    le32toh(sp->rx_overrun_errors);
1796 	/*
1797 	 * If any transmit underruns occured, bump up the transmit
1798 	 * threshold by another 512 bytes (64 * 8).
1799 	 */
1800 	if (sp->tx_underruns) {
1801 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1802 		if (tx_threshold < 192)
1803 			tx_threshold += 64;
1804 	}
1805 
1806 	/*
1807 	 * Release any xmit buffers that have completed DMA. This isn't
1808 	 * strictly necessary to do here, but it's advantagous for mbufs
1809 	 * with external storage to be released in a timely manner rather
1810 	 * than being defered for a potentially long time. This limits
1811 	 * the delay to a maximum of one second.
1812 	 */
1813 	fxp_txeof(sc);
1814 
1815 	/*
1816 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1817 	 * then assume the receiver has locked up and attempt to clear
1818 	 * the condition by reprogramming the multicast filter. This is
1819 	 * a work-around for a bug in the 82557 where the receiver locks
1820 	 * up if it gets certain types of garbage in the syncronization
1821 	 * bits prior to the packet header. This bug is supposed to only
1822 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1823 	 * mode as well (perhaps due to a 10/100 speed transition).
1824 	 */
1825 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1826 		sc->rx_idle_secs = 0;
1827 		fxp_mc_setup(sc);
1828 	}
1829 	/*
1830 	 * If there is no pending command, start another stats
1831 	 * dump. Otherwise punt for now.
1832 	 */
1833 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1834 		/*
1835 		 * Start another stats dump.
1836 		 */
1837 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1838 		    BUS_DMASYNC_PREREAD);
1839 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1840 	} else {
1841 		/*
1842 		 * A previous command is still waiting to be accepted.
1843 		 * Just zero our copy of the stats and wait for the
1844 		 * next timer event to update them.
1845 		 */
1846 		sp->tx_good = 0;
1847 		sp->tx_underruns = 0;
1848 		sp->tx_total_collisions = 0;
1849 
1850 		sp->rx_good = 0;
1851 		sp->rx_crc_errors = 0;
1852 		sp->rx_alignment_errors = 0;
1853 		sp->rx_rnr_errors = 0;
1854 		sp->rx_overrun_errors = 0;
1855 	}
1856 	if (sc->miibus != NULL)
1857 		mii_tick(device_get_softc(sc->miibus));
1858 
1859 	/*
1860 	 * Schedule another timeout one second from now.
1861 	 */
1862 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1863 	FXP_UNLOCK(sc);
1864 	splx(s);
1865 }
1866 
1867 /*
1868  * Stop the interface. Cancels the statistics updater and resets
1869  * the interface.
1870  */
1871 static void
1872 fxp_stop(struct fxp_softc *sc)
1873 {
1874 	struct ifnet *ifp = &sc->sc_if;
1875 	struct fxp_tx *txp;
1876 	int i;
1877 
1878 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1879 	ifp->if_timer = 0;
1880 
1881 #ifdef DEVICE_POLLING
1882 	ether_poll_deregister(ifp);
1883 #endif
1884 	/*
1885 	 * Cancel stats updater.
1886 	 */
1887 	callout_stop(&sc->stat_ch);
1888 
1889 	/*
1890 	 * Issue software reset, which also unloads the microcode.
1891 	 */
1892 	sc->flags &= ~FXP_FLAG_UCODE;
1893 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1894 	DELAY(50);
1895 
1896 	/*
1897 	 * Release any xmit buffers.
1898 	 */
1899 	txp = sc->fxp_desc.tx_list;
1900 	if (txp != NULL) {
1901 		for (i = 0; i < FXP_NTXCB; i++) {
1902  			if (txp[i].tx_mbuf != NULL) {
1903 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1904 				    BUS_DMASYNC_POSTWRITE);
1905 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1906 				m_freem(txp[i].tx_mbuf);
1907 				txp[i].tx_mbuf = NULL;
1908 				/* clear this to reset csum offload bits */
1909 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1910 			}
1911 		}
1912 	}
1913 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1914 	sc->tx_queued = 0;
1915 }
1916 
1917 /*
1918  * Watchdog/transmission transmit timeout handler. Called when a
1919  * transmission is started on the interface, but no interrupt is
1920  * received before the timeout. This usually indicates that the
1921  * card has wedged for some reason.
1922  */
1923 static void
1924 fxp_watchdog(struct ifnet *ifp)
1925 {
1926 	struct fxp_softc *sc = ifp->if_softc;
1927 
1928 	FXP_LOCK(sc);
1929 	device_printf(sc->dev, "device timeout\n");
1930 	ifp->if_oerrors++;
1931 
1932 	fxp_init_body(sc);
1933 	FXP_UNLOCK(sc);
1934 }
1935 
1936 /*
1937  * Acquire locks and then call the real initialization function.  This
1938  * is necessary because ether_ioctl() calls if_init() and this would
1939  * result in mutex recursion if the mutex was held.
1940  */
1941 static void
1942 fxp_init(void *xsc)
1943 {
1944 	struct fxp_softc *sc = xsc;
1945 
1946 	FXP_LOCK(sc);
1947 	fxp_init_body(sc);
1948 	FXP_UNLOCK(sc);
1949 }
1950 
1951 /*
1952  * Perform device initialization. This routine must be called with the
1953  * softc lock held.
1954  */
1955 static void
1956 fxp_init_body(struct fxp_softc *sc)
1957 {
1958 	struct ifnet *ifp = &sc->sc_if;
1959 	struct fxp_cb_config *cbp;
1960 	struct fxp_cb_ias *cb_ias;
1961 	struct fxp_cb_tx *tcbp;
1962 	struct fxp_tx *txp;
1963 	struct fxp_cb_mcs *mcsp;
1964 	int i, prm, s;
1965 
1966 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1967 	s = splimp();
1968 	/*
1969 	 * Cancel any pending I/O
1970 	 */
1971 	fxp_stop(sc);
1972 
1973 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1974 
1975 	/*
1976 	 * Initialize base of CBL and RFA memory. Loading with zero
1977 	 * sets it up for regular linear addressing.
1978 	 */
1979 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1980 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1981 
1982 	fxp_scb_wait(sc);
1983 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1984 
1985 	/*
1986 	 * Initialize base of dump-stats buffer.
1987 	 */
1988 	fxp_scb_wait(sc);
1989 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
1990 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
1991 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1992 
1993 	/*
1994 	 * Attempt to load microcode if requested.
1995 	 */
1996 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1997 		fxp_load_ucode(sc);
1998 
1999 	/*
2000 	 * Initialize the multicast address list.
2001 	 */
2002 	if (fxp_mc_addrs(sc)) {
2003 		mcsp = sc->mcsp;
2004 		mcsp->cb_status = 0;
2005 		mcsp->cb_command =
2006 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2007 		mcsp->link_addr = 0xffffffff;
2008 		/*
2009 	 	 * Start the multicast setup command.
2010 		 */
2011 		fxp_scb_wait(sc);
2012 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2013 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2014 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2015 		/* ...and wait for it to complete. */
2016 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2017 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2018 		    BUS_DMASYNC_POSTWRITE);
2019 	}
2020 
2021 	/*
2022 	 * We temporarily use memory that contains the TxCB list to
2023 	 * construct the config CB. The TxCB list memory is rebuilt
2024 	 * later.
2025 	 */
2026 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2027 
2028 	/*
2029 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2030 	 * zero and must be one bits in this structure and this is the easiest
2031 	 * way to initialize them all to proper values.
2032 	 */
2033 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2034 
2035 	cbp->cb_status =	0;
2036 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2037 	    FXP_CB_COMMAND_EL);
2038 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2039 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2040 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2041 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2042 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2043 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2044 	cbp->type_enable =	0;	/* actually reserved */
2045 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2046 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2047 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2048 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2049 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2050 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2051 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2052 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2053 	cbp->ci_int =		1;	/* interrupt on CU idle */
2054 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2055 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2056 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2057 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2058 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2059 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2060 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2061 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2062 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2063 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2064 	cbp->csma_dis =		0;	/* (don't) disable link */
2065 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2066 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2067 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2068 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2069 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2070 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2071 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2072 	cbp->loopback =		0;	/* (don't) loopback */
2073 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2074 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2075 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2076 	cbp->promiscuous =	prm;	/* promiscuous mode */
2077 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2078 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2079 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2080 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2081 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2082 
2083 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2084 	cbp->padding =		1;	/* (do) pad short tx packets */
2085 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2086 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2087 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2088 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2089 					/* must set wake_en in PMCSR also */
2090 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2091 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2092 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2093 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2094 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2095 
2096 	if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
2097 		/*
2098 		 * The 82557 has no hardware flow control, the values
2099 		 * below are the defaults for the chip.
2100 		 */
2101 		cbp->fc_delay_lsb =	0;
2102 		cbp->fc_delay_msb =	0x40;
2103 		cbp->pri_fc_thresh =	3;
2104 		cbp->tx_fc_dis =	0;
2105 		cbp->rx_fc_restop =	0;
2106 		cbp->rx_fc_restart =	0;
2107 		cbp->fc_filter =	0;
2108 		cbp->pri_fc_loc =	1;
2109 	} else {
2110 		cbp->fc_delay_lsb =	0x1f;
2111 		cbp->fc_delay_msb =	0x01;
2112 		cbp->pri_fc_thresh =	3;
2113 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2114 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2115 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2116 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2117 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2118 	}
2119 
2120 	/*
2121 	 * Start the config command/DMA.
2122 	 */
2123 	fxp_scb_wait(sc);
2124 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2125 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2126 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2127 	/* ...and wait for it to complete. */
2128 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2129 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2130 
2131 	/*
2132 	 * Now initialize the station address. Temporarily use the TxCB
2133 	 * memory area like we did above for the config CB.
2134 	 */
2135 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2136 	cb_ias->cb_status = 0;
2137 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2138 	cb_ias->link_addr = 0xffffffff;
2139 	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2140 	    sizeof(sc->arpcom.ac_enaddr));
2141 
2142 	/*
2143 	 * Start the IAS (Individual Address Setup) command/DMA.
2144 	 */
2145 	fxp_scb_wait(sc);
2146 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2147 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2148 	/* ...and wait for it to complete. */
2149 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2150 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2151 
2152 	/*
2153 	 * Initialize transmit control block (TxCB) list.
2154 	 */
2155 	txp = sc->fxp_desc.tx_list;
2156 	tcbp = sc->fxp_desc.cbl_list;
2157 	bzero(tcbp, FXP_TXCB_SZ);
2158 	for (i = 0; i < FXP_NTXCB; i++) {
2159 		txp[i].tx_cb = tcbp + i;
2160 		txp[i].tx_mbuf = NULL;
2161 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2162 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2163 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2164 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2165 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2166 			tcbp[i].tbd_array_addr =
2167 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2168 		else
2169 			tcbp[i].tbd_array_addr =
2170 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2171 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2172 	}
2173 	/*
2174 	 * Set the suspend flag on the first TxCB and start the control
2175 	 * unit. It will execute the NOP and then suspend.
2176 	 */
2177 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2178 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2179 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2180 	sc->tx_queued = 1;
2181 
2182 	fxp_scb_wait(sc);
2183 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2184 
2185 	/*
2186 	 * Initialize receiver buffer area - RFA.
2187 	 */
2188 	fxp_scb_wait(sc);
2189 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2190 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2191 
2192 	/*
2193 	 * Set current media.
2194 	 */
2195 	if (sc->miibus != NULL)
2196 		mii_mediachg(device_get_softc(sc->miibus));
2197 
2198 	ifp->if_flags |= IFF_RUNNING;
2199 	ifp->if_flags &= ~IFF_OACTIVE;
2200 
2201 	/*
2202 	 * Enable interrupts.
2203 	 */
2204 #ifdef DEVICE_POLLING
2205 	/*
2206 	 * ... but only do that if we are not polling. And because (presumably)
2207 	 * the default is interrupts on, we need to disable them explicitly!
2208 	 */
2209 	if ( ifp->if_flags & IFF_POLLING )
2210 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2211 	else
2212 #endif /* DEVICE_POLLING */
2213 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2214 
2215 	/*
2216 	 * Start stats updater.
2217 	 */
2218 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2219 	splx(s);
2220 }
2221 
2222 static int
2223 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2224 {
2225 
2226 	return (0);
2227 }
2228 
2229 static void
2230 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2231 {
2232 
2233 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2234 }
2235 
2236 /*
2237  * Change media according to request.
2238  */
2239 static int
2240 fxp_ifmedia_upd(struct ifnet *ifp)
2241 {
2242 	struct fxp_softc *sc = ifp->if_softc;
2243 	struct mii_data *mii;
2244 
2245 	mii = device_get_softc(sc->miibus);
2246 	mii_mediachg(mii);
2247 	return (0);
2248 }
2249 
2250 /*
2251  * Notify the world which media we're using.
2252  */
2253 static void
2254 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2255 {
2256 	struct fxp_softc *sc = ifp->if_softc;
2257 	struct mii_data *mii;
2258 
2259 	mii = device_get_softc(sc->miibus);
2260 	mii_pollstat(mii);
2261 	ifmr->ifm_active = mii->mii_media_active;
2262 	ifmr->ifm_status = mii->mii_media_status;
2263 
2264 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2265 		sc->cu_resume_bug = 1;
2266 	else
2267 		sc->cu_resume_bug = 0;
2268 }
2269 
2270 /*
2271  * Add a buffer to the end of the RFA buffer list.
2272  * Return 0 if successful, 1 for failure. A failure results in
2273  * adding the 'oldm' (if non-NULL) on to the end of the list -
2274  * tossing out its old contents and recycling it.
2275  * The RFA struct is stuck at the beginning of mbuf cluster and the
2276  * data pointer is fixed up to point just past it.
2277  */
2278 static int
2279 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2280 {
2281 	struct mbuf *m;
2282 	struct fxp_rfa *rfa, *p_rfa;
2283 	struct fxp_rx *p_rx;
2284 	bus_dmamap_t tmp_map;
2285 	int error;
2286 
2287 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2288 	if (m == NULL)
2289 		return (ENOBUFS);
2290 
2291 	/*
2292 	 * Move the data pointer up so that the incoming data packet
2293 	 * will be 32-bit aligned.
2294 	 */
2295 	m->m_data += RFA_ALIGNMENT_FUDGE;
2296 
2297 	/*
2298 	 * Get a pointer to the base of the mbuf cluster and move
2299 	 * data start past it.
2300 	 */
2301 	rfa = mtod(m, struct fxp_rfa *);
2302 	m->m_data += sc->rfa_size;
2303 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2304 
2305 	rfa->rfa_status = 0;
2306 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2307 	rfa->actual_size = 0;
2308 
2309 	/*
2310 	 * Initialize the rest of the RFA.  Note that since the RFA
2311 	 * is misaligned, we cannot store values directly.  We're thus
2312 	 * using the le32enc() function which handles endianness and
2313 	 * is also alignment-safe.
2314 	 */
2315 	le32enc(&rfa->link_addr, 0xffffffff);
2316 	le32enc(&rfa->rbd_addr, 0xffffffff);
2317 
2318 	/* Map the RFA into DMA memory. */
2319 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2320 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2321 	    &rxp->rx_addr, 0);
2322 	if (error) {
2323 		m_freem(m);
2324 		return (error);
2325 	}
2326 
2327 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2328 	tmp_map = sc->spare_map;
2329 	sc->spare_map = rxp->rx_map;
2330 	rxp->rx_map = tmp_map;
2331 	rxp->rx_mbuf = m;
2332 
2333 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2334 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2335 
2336 	/*
2337 	 * If there are other buffers already on the list, attach this
2338 	 * one to the end by fixing up the tail to point to this one.
2339 	 */
2340 	if (sc->fxp_desc.rx_head != NULL) {
2341 		p_rx = sc->fxp_desc.rx_tail;
2342 		p_rfa = (struct fxp_rfa *)
2343 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2344 		p_rx->rx_next = rxp;
2345 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2346 		p_rfa->rfa_control = 0;
2347 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2348 		    BUS_DMASYNC_PREWRITE);
2349 	} else {
2350 		rxp->rx_next = NULL;
2351 		sc->fxp_desc.rx_head = rxp;
2352 	}
2353 	sc->fxp_desc.rx_tail = rxp;
2354 	return (0);
2355 }
2356 
2357 static volatile int
2358 fxp_miibus_readreg(device_t dev, int phy, int reg)
2359 {
2360 	struct fxp_softc *sc = device_get_softc(dev);
2361 	int count = 10000;
2362 	int value;
2363 
2364 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2365 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2366 
2367 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2368 	    && count--)
2369 		DELAY(10);
2370 
2371 	if (count <= 0)
2372 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2373 
2374 	return (value & 0xffff);
2375 }
2376 
2377 static void
2378 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2379 {
2380 	struct fxp_softc *sc = device_get_softc(dev);
2381 	int count = 10000;
2382 
2383 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2384 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2385 	    (value & 0xffff));
2386 
2387 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2388 	    count--)
2389 		DELAY(10);
2390 
2391 	if (count <= 0)
2392 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2393 }
2394 
2395 static int
2396 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2397 {
2398 	struct fxp_softc *sc = ifp->if_softc;
2399 	struct ifreq *ifr = (struct ifreq *)data;
2400 	struct mii_data *mii;
2401 	int flag, mask, s, error = 0;
2402 
2403 	/*
2404 	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2405 	 * that by saying we're busy if the lock is already held.
2406 	 */
2407 	if (FXP_LOCKED(sc))
2408 		return (EBUSY);
2409 
2410 	FXP_LOCK(sc);
2411 	s = splimp();
2412 
2413 	switch (command) {
2414 	case SIOCSIFFLAGS:
2415 		if (ifp->if_flags & IFF_ALLMULTI)
2416 			sc->flags |= FXP_FLAG_ALL_MCAST;
2417 		else
2418 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2419 
2420 		/*
2421 		 * If interface is marked up and not running, then start it.
2422 		 * If it is marked down and running, stop it.
2423 		 * XXX If it's up then re-initialize it. This is so flags
2424 		 * such as IFF_PROMISC are handled.
2425 		 */
2426 		if (ifp->if_flags & IFF_UP) {
2427 			fxp_init_body(sc);
2428 		} else {
2429 			if (ifp->if_flags & IFF_RUNNING)
2430 				fxp_stop(sc);
2431 		}
2432 		break;
2433 
2434 	case SIOCADDMULTI:
2435 	case SIOCDELMULTI:
2436 		if (ifp->if_flags & IFF_ALLMULTI)
2437 			sc->flags |= FXP_FLAG_ALL_MCAST;
2438 		else
2439 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2440 		/*
2441 		 * Multicast list has changed; set the hardware filter
2442 		 * accordingly.
2443 		 */
2444 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2445 			fxp_mc_setup(sc);
2446 		/*
2447 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2448 		 * again rather than else {}.
2449 		 */
2450 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2451 			fxp_init_body(sc);
2452 		error = 0;
2453 		break;
2454 
2455 	case SIOCSIFMEDIA:
2456 	case SIOCGIFMEDIA:
2457 		if (sc->miibus != NULL) {
2458 			mii = device_get_softc(sc->miibus);
2459                         error = ifmedia_ioctl(ifp, ifr,
2460                             &mii->mii_media, command);
2461 		} else {
2462                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2463 		}
2464 		break;
2465 
2466 	case SIOCSIFCAP:
2467 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2468 		if (mask & IFCAP_POLLING)
2469 			ifp->if_capenable ^= IFCAP_POLLING;
2470 		if (mask & IFCAP_VLAN_MTU) {
2471 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2472 			if (sc->revision != FXP_REV_82557)
2473 				flag = FXP_FLAG_LONG_PKT_EN;
2474 			else /* a hack to get long frames on the old chip */
2475 				flag = FXP_FLAG_SAVE_BAD;
2476 			sc->flags ^= flag;
2477 			if (ifp->if_flags & IFF_UP)
2478 				fxp_init_body(sc);
2479 		}
2480 		break;
2481 
2482 	default:
2483 		/*
2484 		 * ether_ioctl() will eventually call fxp_start() which
2485 		 * will result in mutex recursion so drop it first.
2486 		 */
2487 		FXP_UNLOCK(sc);
2488 		error = ether_ioctl(ifp, command, data);
2489 	}
2490 	if (FXP_LOCKED(sc))
2491 		FXP_UNLOCK(sc);
2492 	splx(s);
2493 	return (error);
2494 }
2495 
2496 /*
2497  * Fill in the multicast address list and return number of entries.
2498  */
2499 static int
2500 fxp_mc_addrs(struct fxp_softc *sc)
2501 {
2502 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2503 	struct ifnet *ifp = &sc->sc_if;
2504 	struct ifmultiaddr *ifma;
2505 	int nmcasts;
2506 
2507 	nmcasts = 0;
2508 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2509 #if __FreeBSD_version < 500000
2510 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2511 #else
2512 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2513 #endif
2514 			if (ifma->ifma_addr->sa_family != AF_LINK)
2515 				continue;
2516 			if (nmcasts >= MAXMCADDR) {
2517 				sc->flags |= FXP_FLAG_ALL_MCAST;
2518 				nmcasts = 0;
2519 				break;
2520 			}
2521 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2522 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2523 			nmcasts++;
2524 		}
2525 	}
2526 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2527 	return (nmcasts);
2528 }
2529 
2530 /*
2531  * Program the multicast filter.
2532  *
2533  * We have an artificial restriction that the multicast setup command
2534  * must be the first command in the chain, so we take steps to ensure
2535  * this. By requiring this, it allows us to keep up the performance of
2536  * the pre-initialized command ring (esp. link pointers) by not actually
2537  * inserting the mcsetup command in the ring - i.e. its link pointer
2538  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2539  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2540  * lead into the regular TxCB ring when it completes.
2541  *
2542  * This function must be called at splimp.
2543  */
2544 static void
2545 fxp_mc_setup(struct fxp_softc *sc)
2546 {
2547 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2548 	struct ifnet *ifp = &sc->sc_if;
2549 	struct fxp_tx *txp;
2550 	int count;
2551 
2552 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2553 	/*
2554 	 * If there are queued commands, we must wait until they are all
2555 	 * completed. If we are already waiting, then add a NOP command
2556 	 * with interrupt option so that we're notified when all commands
2557 	 * have been completed - fxp_start() ensures that no additional
2558 	 * TX commands will be added when need_mcsetup is true.
2559 	 */
2560 	if (sc->tx_queued) {
2561 		/*
2562 		 * need_mcsetup will be true if we are already waiting for the
2563 		 * NOP command to be completed (see below). In this case, bail.
2564 		 */
2565 		if (sc->need_mcsetup)
2566 			return;
2567 		sc->need_mcsetup = 1;
2568 
2569 		/*
2570 		 * Add a NOP command with interrupt so that we are notified
2571 		 * when all TX commands have been processed.
2572 		 */
2573 		txp = sc->fxp_desc.tx_last->tx_next;
2574 		txp->tx_mbuf = NULL;
2575 		txp->tx_cb->cb_status = 0;
2576 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2577 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2578 		/*
2579 		 * Advance the end of list forward.
2580 		 */
2581 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2582 		    htole16(~FXP_CB_COMMAND_S);
2583 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2584 		sc->fxp_desc.tx_last = txp;
2585 		sc->tx_queued++;
2586 		/*
2587 		 * Issue a resume in case the CU has just suspended.
2588 		 */
2589 		fxp_scb_wait(sc);
2590 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2591 		/*
2592 		 * Set a 5 second timer just in case we don't hear from the
2593 		 * card again.
2594 		 */
2595 		ifp->if_timer = 5;
2596 
2597 		return;
2598 	}
2599 	sc->need_mcsetup = 0;
2600 
2601 	/*
2602 	 * Initialize multicast setup descriptor.
2603 	 */
2604 	mcsp->cb_status = 0;
2605 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2606 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2607 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2608 	txp = &sc->fxp_desc.mcs_tx;
2609 	txp->tx_mbuf = NULL;
2610 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2611 	txp->tx_next = sc->fxp_desc.tx_list;
2612 	(void) fxp_mc_addrs(sc);
2613 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2614 	sc->tx_queued = 1;
2615 
2616 	/*
2617 	 * Wait until command unit is not active. This should never
2618 	 * be the case when nothing is queued, but make sure anyway.
2619 	 */
2620 	count = 100;
2621 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2622 	    FXP_SCB_CUS_ACTIVE && --count)
2623 		DELAY(10);
2624 	if (count == 0) {
2625 		device_printf(sc->dev, "command queue timeout\n");
2626 		return;
2627 	}
2628 
2629 	/*
2630 	 * Start the multicast setup command.
2631 	 */
2632 	fxp_scb_wait(sc);
2633 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2634 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2635 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2636 
2637 	ifp->if_timer = 2;
2638 	return;
2639 }
2640 
2641 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2642 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2643 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2644 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2645 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2646 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2647 
2648 #define UCODE(x)	x, sizeof(x)
2649 
2650 struct ucode {
2651 	u_int32_t	revision;
2652 	u_int32_t	*ucode;
2653 	int		length;
2654 	u_short		int_delay_offset;
2655 	u_short		bundle_max_offset;
2656 } ucode_table[] = {
2657 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2658 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2659 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2660 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2661 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2662 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2663 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2664 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2665 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2666 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2667 	{ 0, NULL, 0, 0, 0 }
2668 };
2669 
2670 static void
2671 fxp_load_ucode(struct fxp_softc *sc)
2672 {
2673 	struct ucode *uc;
2674 	struct fxp_cb_ucode *cbp;
2675 
2676 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2677 		if (sc->revision == uc->revision)
2678 			break;
2679 	if (uc->ucode == NULL)
2680 		return;
2681 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2682 	cbp->cb_status = 0;
2683 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2684 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2685 	memcpy(cbp->ucode, uc->ucode, uc->length);
2686 	if (uc->int_delay_offset)
2687 		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2688 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2689 	if (uc->bundle_max_offset)
2690 		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2691 		    htole16(sc->tunable_bundle_max);
2692 	/*
2693 	 * Download the ucode to the chip.
2694 	 */
2695 	fxp_scb_wait(sc);
2696 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2697 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2698 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2699 	/* ...and wait for it to complete. */
2700 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2701 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2702 	device_printf(sc->dev,
2703 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2704 	    sc->tunable_int_delay,
2705 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2706 	sc->flags |= FXP_FLAG_UCODE;
2707 }
2708 
2709 static int
2710 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2711 {
2712 	int error, value;
2713 
2714 	value = *(int *)arg1;
2715 	error = sysctl_handle_int(oidp, &value, 0, req);
2716 	if (error || !req->newptr)
2717 		return (error);
2718 	if (value < low || value > high)
2719 		return (EINVAL);
2720 	*(int *)arg1 = value;
2721 	return (0);
2722 }
2723 
2724 /*
2725  * Interrupt delay is expressed in microseconds, a multiplier is used
2726  * to convert this to the appropriate clock ticks before using.
2727  */
2728 static int
2729 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2730 {
2731 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2732 }
2733 
2734 static int
2735 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2736 {
2737 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2738 }
2739