xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 2357939bc239bd5334a169b62313806178dd8f30)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/endian.h>
40 #include <sys/mbuf.h>
41 		/* #include <sys/mutex.h> */
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/sysctl.h>
45 
46 #include <net/if.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 
50 #include <net/bpf.h>
51 #include <sys/sockio.h>
52 #include <sys/bus.h>
53 #include <machine/bus.h>
54 #include <sys/rman.h>
55 #include <machine/resource.h>
56 
57 #include <net/ethernet.h>
58 #include <net/if_arp.h>
59 
60 #include <machine/clock.h>	/* for DELAY */
61 
62 #include <net/if_types.h>
63 #include <net/if_vlan_var.h>
64 
65 #ifdef FXP_IP_CSUM_WAR
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <machine/in_cksum.h>
70 #endif
71 
72 #include <dev/pci/pcivar.h>
73 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
74 
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 
78 #include <dev/fxp/if_fxpreg.h>
79 #include <dev/fxp/if_fxpvar.h>
80 #include <dev/fxp/rcvbundl.h>
81 
82 MODULE_DEPEND(fxp, pci, 1, 1, 1);
83 MODULE_DEPEND(fxp, ether, 1, 1, 1);
84 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
85 #include "miibus_if.h"
86 
87 /*
88  * NOTE!  On the Alpha, we have an alignment constraint.  The
89  * card DMAs the packet immediately following the RFA.  However,
90  * the first thing in the packet is a 14-byte Ethernet header.
91  * This means that the packet is misaligned.  To compensate,
92  * we actually offset the RFA 2 bytes into the cluster.  This
93  * alignes the packet after the Ethernet header at a 32-bit
94  * boundary.  HOWEVER!  This means that the RFA is misaligned!
95  */
96 #define	RFA_ALIGNMENT_FUDGE	2
97 
98 /*
99  * Set initial transmit threshold at 64 (512 bytes). This is
100  * increased by 64 (512 bytes) at a time, to maximum of 192
101  * (1536 bytes), if an underrun occurs.
102  */
103 static int tx_threshold = 64;
104 
105 /*
106  * The configuration byte map has several undefined fields which
107  * must be one or must be zero.  Set up a template for these bits
108  * only, (assuming a 82557 chip) leaving the actual configuration
109  * to fxp_init.
110  *
111  * See struct fxp_cb_config for the bit definitions.
112  */
113 static u_char fxp_cb_config_template[] = {
114 	0x0, 0x0,		/* cb_status */
115 	0x0, 0x0,		/* cb_command */
116 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
117 	0x0,	/*  0 */
118 	0x0,	/*  1 */
119 	0x0,	/*  2 */
120 	0x0,	/*  3 */
121 	0x0,	/*  4 */
122 	0x0,	/*  5 */
123 	0x32,	/*  6 */
124 	0x0,	/*  7 */
125 	0x0,	/*  8 */
126 	0x0,	/*  9 */
127 	0x6,	/* 10 */
128 	0x0,	/* 11 */
129 	0x0,	/* 12 */
130 	0x0,	/* 13 */
131 	0xf2,	/* 14 */
132 	0x48,	/* 15 */
133 	0x0,	/* 16 */
134 	0x40,	/* 17 */
135 	0xf0,	/* 18 */
136 	0x0,	/* 19 */
137 	0x3f,	/* 20 */
138 	0x5	/* 21 */
139 };
140 
141 struct fxp_ident {
142 	u_int16_t	devid;
143 	int16_t		revid;		/* -1 matches anything */
144 	char 		*name;
145 };
146 
147 /*
148  * Claim various Intel PCI device identifiers for this driver.  The
149  * sub-vendor and sub-device field are extensively used to identify
150  * particular variants, but we don't currently differentiate between
151  * them.
152  */
153 static struct fxp_ident fxp_ident_table[] = {
154     { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
155     { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
156     { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
157     { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
158     { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
159     { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160     { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
161     { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
162     { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
163     { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164     { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
165     { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
166     { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
167     { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
168     { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
169     { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
170     { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
171     { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
172     { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
173     { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
174     { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
175     { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
176     { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
177     { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
178     { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
179     { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
180     { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
181     { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
182     { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
183     { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
184     { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
185     { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
186     { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
187     { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
188     { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
189     { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
190     { 0,	-1,	NULL },
191 };
192 
193 #ifdef FXP_IP_CSUM_WAR
194 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
195 #else
196 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
197 #endif
198 
199 static int		fxp_probe(device_t dev);
200 static int		fxp_attach(device_t dev);
201 static int		fxp_detach(device_t dev);
202 static int		fxp_shutdown(device_t dev);
203 static int		fxp_suspend(device_t dev);
204 static int		fxp_resume(device_t dev);
205 
206 static void		fxp_intr(void *xsc);
207 static void		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
208 			    u_int8_t statack, int count);
209 static void 		fxp_init(void *xsc);
210 static void 		fxp_init_body(struct fxp_softc *sc);
211 static void 		fxp_tick(void *xsc);
212 #ifndef BURN_BRIDGES
213 static void		fxp_powerstate_d0(device_t dev);
214 #endif
215 static void 		fxp_start(struct ifnet *ifp);
216 static void 		fxp_start_body(struct ifnet *ifp);
217 static void		fxp_stop(struct fxp_softc *sc);
218 static void 		fxp_release(struct fxp_softc *sc);
219 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
220 			    caddr_t data);
221 static void 		fxp_watchdog(struct ifnet *ifp);
222 static int		fxp_add_rfabuf(struct fxp_softc *sc,
223     			    struct fxp_rx *rxp);
224 static int		fxp_mc_addrs(struct fxp_softc *sc);
225 static void		fxp_mc_setup(struct fxp_softc *sc);
226 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
227 			    int autosize);
228 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
229 			    u_int16_t data);
230 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
231 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
232 			    int offset, int words);
233 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
234 			    int offset, int words);
235 static int		fxp_ifmedia_upd(struct ifnet *ifp);
236 static void		fxp_ifmedia_sts(struct ifnet *ifp,
237 			    struct ifmediareq *ifmr);
238 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
239 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
240 			    struct ifmediareq *ifmr);
241 static volatile int	fxp_miibus_readreg(device_t dev, int phy, int reg);
242 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
243 			    int value);
244 static void		fxp_load_ucode(struct fxp_softc *sc);
245 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
246 			    int low, int high);
247 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
248 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
249 static void 		fxp_scb_wait(struct fxp_softc *sc);
250 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
251 static void		fxp_dma_wait(struct fxp_softc *sc,
252     			    volatile u_int16_t *status, bus_dma_tag_t dmat,
253 			    bus_dmamap_t map);
254 
255 static device_method_t fxp_methods[] = {
256 	/* Device interface */
257 	DEVMETHOD(device_probe,		fxp_probe),
258 	DEVMETHOD(device_attach,	fxp_attach),
259 	DEVMETHOD(device_detach,	fxp_detach),
260 	DEVMETHOD(device_shutdown,	fxp_shutdown),
261 	DEVMETHOD(device_suspend,	fxp_suspend),
262 	DEVMETHOD(device_resume,	fxp_resume),
263 
264 	/* MII interface */
265 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
266 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
267 
268 	{ 0, 0 }
269 };
270 
271 static driver_t fxp_driver = {
272 	"fxp",
273 	fxp_methods,
274 	sizeof(struct fxp_softc),
275 };
276 
277 static devclass_t fxp_devclass;
278 
279 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
280 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
281 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
282 
283 static int fxp_rnr;
284 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
285 
286 static int fxp_noflow;
287 SYSCTL_INT(_hw, OID_AUTO, fxp_noflow, CTLFLAG_RW, &fxp_noflow, 0, "fxp flow control disabled");
288 TUNABLE_INT("hw.fxp_noflow", &fxp_noflow);
289 
290 /*
291  * Wait for the previous command to be accepted (but not necessarily
292  * completed).
293  */
294 static void
295 fxp_scb_wait(struct fxp_softc *sc)
296 {
297 	int i = 10000;
298 
299 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
300 		DELAY(2);
301 	if (i == 0)
302 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
303 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
304 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
305 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
306 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
307 }
308 
309 static void
310 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
311 {
312 
313 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
314 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
315 		fxp_scb_wait(sc);
316 	}
317 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
318 }
319 
320 static void
321 fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
322     bus_dma_tag_t dmat, bus_dmamap_t map)
323 {
324 	int i = 10000;
325 
326 	bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
327 	while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
328 		DELAY(2);
329 		bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
330 	}
331 	if (i == 0)
332 		device_printf(sc->dev, "DMA timeout\n");
333 }
334 
335 /*
336  * Return identification string if this device is ours.
337  */
338 static int
339 fxp_probe(device_t dev)
340 {
341 	u_int16_t devid;
342 	u_int8_t revid;
343 	struct fxp_ident *ident;
344 
345 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
346 		devid = pci_get_device(dev);
347 		revid = pci_get_revid(dev);
348 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
349 			if (ident->devid == devid &&
350 			    (ident->revid == revid || ident->revid == -1)) {
351 				device_set_desc(dev, ident->name);
352 				return (0);
353 			}
354 		}
355 	}
356 	return (ENXIO);
357 }
358 
359 #ifndef BURN_BRIDGES
360 static void
361 fxp_powerstate_d0(device_t dev)
362 {
363 #if __FreeBSD_version >= 430002
364 	u_int32_t iobase, membase, irq;
365 
366 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
367 		/* Save important PCI config data. */
368 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
369 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
370 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
371 
372 		/* Reset the power state. */
373 		device_printf(dev, "chip is in D%d power mode "
374 		    "-- setting to D0\n", pci_get_powerstate(dev));
375 
376 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
377 
378 		/* Restore PCI config data. */
379 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
380 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
381 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
382 	}
383 #endif
384 }
385 #endif
386 
387 static void
388 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
389 {
390 	u_int32_t *addr;
391 
392 	if (error)
393 		return;
394 
395 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
396 	addr = arg;
397 	*addr = segs->ds_addr;
398 }
399 
400 static int
401 fxp_attach(device_t dev)
402 {
403 	int error = 0;
404 	struct fxp_softc *sc = device_get_softc(dev);
405 	struct ifnet *ifp;
406 	struct fxp_rx *rxp;
407 	u_int32_t val;
408 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
409 	int i, rid, m1, m2, prefer_iomap, maxtxseg;
410 	int s, ipcbxmit_disable;
411 
412 	sc->dev = dev;
413 	callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
414 	sysctl_ctx_init(&sc->sysctl_ctx);
415 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
416 	    MTX_DEF);
417 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
418 	    fxp_serial_ifmedia_sts);
419 
420 	s = splimp();
421 
422 	/*
423 	 * Enable bus mastering.
424 	 */
425 	pci_enable_busmaster(dev);
426 	val = pci_read_config(dev, PCIR_COMMAND, 2);
427 #ifndef BURN_BRIDGES
428 	fxp_powerstate_d0(dev);
429 #endif
430 	/*
431 	 * Figure out which we should try first - memory mapping or i/o mapping?
432 	 * We default to memory mapping. Then we accept an override from the
433 	 * command line. Then we check to see which one is enabled.
434 	 */
435 	m1 = PCIM_CMD_MEMEN;
436 	m2 = PCIM_CMD_PORTEN;
437 	prefer_iomap = 0;
438 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
439 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
440 		m1 = PCIM_CMD_PORTEN;
441 		m2 = PCIM_CMD_MEMEN;
442 	}
443 
444 	sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
445 	sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
446 	sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
447 	if (sc->mem == NULL) {
448 		sc->rtp =
449 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
450 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
451 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
452                                             RF_ACTIVE);
453 	}
454 
455 	if (!sc->mem) {
456 		error = ENXIO;
457 		goto fail;
458         }
459 	if (bootverbose) {
460 		device_printf(dev, "using %s space register mapping\n",
461 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
462 	}
463 
464 	sc->sc_st = rman_get_bustag(sc->mem);
465 	sc->sc_sh = rman_get_bushandle(sc->mem);
466 
467 	/*
468 	 * Allocate our interrupt.
469 	 */
470 	rid = 0;
471 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
472 				 RF_SHAREABLE | RF_ACTIVE);
473 	if (sc->irq == NULL) {
474 		device_printf(dev, "could not map interrupt\n");
475 		error = ENXIO;
476 		goto fail;
477 	}
478 
479 	/*
480 	 * Reset to a stable state.
481 	 */
482 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
483 	DELAY(10);
484 
485 	/*
486 	 * Find out how large of an SEEPROM we have.
487 	 */
488 	fxp_autosize_eeprom(sc);
489 
490 	/*
491 	 * Determine whether we must use the 503 serial interface.
492 	 */
493 	fxp_read_eeprom(sc, &data, 6, 1);
494 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
495 	    (data & FXP_PHY_SERIAL_ONLY))
496 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
497 
498 	/*
499 	 * Create the sysctl tree
500 	 */
501 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
502 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
503 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
504 	if (sc->sysctl_tree == NULL) {
505 		error = ENXIO;
506 		goto fail;
507 	}
508 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
509 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
510 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
511 	    "FXP driver receive interrupt microcode bundling delay");
512 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
513 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
514 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
515 	    "FXP driver receive interrupt microcode bundle size limit");
516 
517 	/*
518 	 * Pull in device tunables.
519 	 */
520 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
521 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
522 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
523 	    "int_delay", &sc->tunable_int_delay);
524 	(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
525 	    "bundle_max", &sc->tunable_bundle_max);
526 
527 	/*
528 	 * Find out the chip revision; lump all 82557 revs together.
529 	 */
530 	fxp_read_eeprom(sc, &data, 5, 1);
531 	if ((data >> 8) == 1)
532 		sc->revision = FXP_REV_82557;
533 	else
534 		sc->revision = pci_get_revid(dev);
535 
536 	/*
537 	 * Enable workarounds for certain chip revision deficiencies.
538 	 *
539 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
540 	 * some systems based a normal 82559 design, have a defect where
541 	 * the chip can cause a PCI protocol violation if it receives
542 	 * a CU_RESUME command when it is entering the IDLE state.  The
543 	 * workaround is to disable Dynamic Standby Mode, so the chip never
544 	 * deasserts CLKRUN#, and always remains in an active state.
545 	 *
546 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
547 	 */
548 	i = pci_get_device(dev);
549 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
550 	    sc->revision >= FXP_REV_82559_A0) {
551 		fxp_read_eeprom(sc, &data, 10, 1);
552 		if (data & 0x02) {			/* STB enable */
553 			u_int16_t cksum;
554 			int i;
555 
556 			device_printf(dev,
557 			    "Disabling dynamic standby mode in EEPROM\n");
558 			data &= ~0x02;
559 			fxp_write_eeprom(sc, &data, 10, 1);
560 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
561 			cksum = 0;
562 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
563 				fxp_read_eeprom(sc, &data, i, 1);
564 				cksum += data;
565 			}
566 			i = (1 << sc->eeprom_size) - 1;
567 			cksum = 0xBABA - cksum;
568 			fxp_read_eeprom(sc, &data, i, 1);
569 			fxp_write_eeprom(sc, &cksum, i, 1);
570 			device_printf(dev,
571 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
572 			    i, data, cksum);
573 #if 1
574 			/*
575 			 * If the user elects to continue, try the software
576 			 * workaround, as it is better than nothing.
577 			 */
578 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
579 #endif
580 		}
581 	}
582 
583 	/*
584 	 * If we are not a 82557 chip, we can enable extended features.
585 	 */
586 	if (sc->revision != FXP_REV_82557) {
587 		/*
588 		 * If MWI is enabled in the PCI configuration, and there
589 		 * is a valid cacheline size (8 or 16 dwords), then tell
590 		 * the board to turn on MWI.
591 		 */
592 		if (val & PCIM_CMD_MWRICEN &&
593 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
594 			sc->flags |= FXP_FLAG_MWI_ENABLE;
595 
596 		/* turn on the extended TxCB feature */
597 		sc->flags |= FXP_FLAG_EXT_TXCB;
598 
599 		/* enable reception of long frames for VLAN */
600 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
601 	}
602 
603 	/*
604 	 * Enable use of extended RFDs and TCBs for 82550
605 	 * and later chips. Note: we need extended TXCB support
606 	 * too, but that's already enabled by the code above.
607 	 * Be careful to do this only on the right devices.
608 	 *
609 	 * At least some 82550 cards probed as "chip=0x12298086 rev=0x0d"
610 	 * truncate packets that end with an mbuf containing 1 to 3 bytes
611 	 * when used with this feature enabled in the previous version of the
612 	 * driver.  This problem appears to be fixed now that the driver
613 	 * always sets the hardware parse bit in the IPCB structure, which
614 	 * the "Intel 8255x 10/100 Mbps Ethernet Controller Family Open
615 	 * Source Software Developer Manual" says is necessary in the
616 	 * cases where packet truncation was observed.
617 	 *
618 	 * The device hint "hint.fxp.UNIT_NUMBER.ipcbxmit_disable"
619 	 * allows this feature to be disabled at boot time.
620 	 *
621 	 * If fxp is not compiled into the kernel, this feature may also
622 	 * be disabled at run time:
623 	 *    # kldunload fxp
624 	 *    # kenv hint.fxp.0.ipcbxmit_disable=1
625 	 *    # kldload fxp
626 	 */
627 
628 	if (resource_int_value("fxp", device_get_unit(dev), "ipcbxmit_disable",
629 	    &ipcbxmit_disable) != 0)
630 		ipcbxmit_disable = 0;
631 	if (ipcbxmit_disable == 0 && (sc->revision == FXP_REV_82550 ||
632 	    sc->revision == FXP_REV_82550_C)) {
633 		sc->rfa_size = sizeof (struct fxp_rfa);
634 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
635 		sc->flags |= FXP_FLAG_EXT_RFA;
636 	} else {
637 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
638 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
639 	}
640 
641 	/*
642 	 * Allocate DMA tags and DMA safe memory.
643 	 */
644 	maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
645 	error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
646 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
647 	    maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->fxp_mtag);
648 	if (error) {
649 		device_printf(dev, "could not allocate dma tag\n");
650 		goto fail;
651 	}
652 
653 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
654 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
655 	    sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
656 	    &sc->fxp_stag);
657 	if (error) {
658 		device_printf(dev, "could not allocate dma tag\n");
659 		goto fail;
660 	}
661 
662 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
663 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
664 	if (error)
665 		goto fail;
666 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
667 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
668 	if (error) {
669 		device_printf(dev, "could not map the stats buffer\n");
670 		goto fail;
671 	}
672 
673 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
674 	    BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
675 	    FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
676 	if (error) {
677 		device_printf(dev, "could not allocate dma tag\n");
678 		goto fail;
679 	}
680 
681 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
682 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
683 	if (error)
684 		goto fail;
685 
686 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
687 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
688 	    &sc->fxp_desc.cbl_addr, 0);
689 	if (error) {
690 		device_printf(dev, "could not map DMA memory\n");
691 		goto fail;
692 	}
693 
694 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
695 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
696 	    sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
697 	    &sc->mcs_tag);
698 	if (error) {
699 		device_printf(dev, "could not allocate dma tag\n");
700 		goto fail;
701 	}
702 
703 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
704 	    BUS_DMA_NOWAIT, &sc->mcs_map);
705 	if (error)
706 		goto fail;
707 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
708 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
709 	if (error) {
710 		device_printf(dev, "can't map the multicast setup command\n");
711 		goto fail;
712 	}
713 
714 	/*
715 	 * Pre-allocate the TX DMA maps.
716 	 */
717 	for (i = 0; i < FXP_NTXCB; i++) {
718 		error = bus_dmamap_create(sc->fxp_mtag, 0,
719 		    &sc->fxp_desc.tx_list[i].tx_map);
720 		if (error) {
721 			device_printf(dev, "can't create DMA map for TX\n");
722 			goto fail;
723 		}
724 	}
725 	error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
726 	if (error) {
727 		device_printf(dev, "can't create spare DMA map\n");
728 		goto fail;
729 	}
730 
731 	/*
732 	 * Pre-allocate our receive buffers.
733 	 */
734 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
735 	for (i = 0; i < FXP_NRFABUFS; i++) {
736 		rxp = &sc->fxp_desc.rx_list[i];
737 		error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
738 		if (error) {
739 			device_printf(dev, "can't create DMA map for RX\n");
740 			goto fail;
741 		}
742 		if (fxp_add_rfabuf(sc, rxp) != 0) {
743 			error = ENOMEM;
744 			goto fail;
745 		}
746 	}
747 
748 	/*
749 	 * Read MAC address.
750 	 */
751 	fxp_read_eeprom(sc, myea, 0, 3);
752 	sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
753 	sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
754 	sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
755 	sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
756 	sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
757 	sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
758 	if (bootverbose) {
759 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
760 		    pci_get_vendor(dev), pci_get_device(dev),
761 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
762 		    pci_get_revid(dev));
763 		fxp_read_eeprom(sc, &data, 10, 1);
764 		device_printf(dev, "Dynamic Standby mode is %s\n",
765 		    data & 0x02 ? "enabled" : "disabled");
766 	}
767 
768 	/*
769 	 * If this is only a 10Mbps device, then there is no MII, and
770 	 * the PHY will use a serial interface instead.
771 	 *
772 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
773 	 * doesn't have a programming interface of any sort.  The
774 	 * media is sensed automatically based on how the link partner
775 	 * is configured.  This is, in essence, manual configuration.
776 	 */
777 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
778 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
779 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
780 	} else {
781 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
782 		    fxp_ifmedia_sts)) {
783 	                device_printf(dev, "MII without any PHY!\n");
784 			error = ENXIO;
785 			goto fail;
786 		}
787 	}
788 
789 	ifp = &sc->arpcom.ac_if;
790 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
791 	ifp->if_output = ether_output;
792 	ifp->if_baudrate = 100000000;
793 	ifp->if_init = fxp_init;
794 	ifp->if_softc = sc;
795 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
796 	ifp->if_ioctl = fxp_ioctl;
797 	ifp->if_start = fxp_start;
798 	ifp->if_watchdog = fxp_watchdog;
799 
800 	/* Enable checksum offload for 82550 or better chips */
801 	if (sc->flags & FXP_FLAG_EXT_RFA) {
802 		ifp->if_hwassist = FXP_CSUM_FEATURES;
803 		ifp->if_capabilities = IFCAP_HWCSUM;
804 		ifp->if_capenable = ifp->if_capabilities;
805 	}
806 
807 #ifdef DEVICE_POLLING
808 	/* Inform the world we support polling. */
809 	ifp->if_capabilities |= IFCAP_POLLING;
810 	ifp->if_capenable |= IFCAP_POLLING;
811 #endif
812 
813 	/*
814 	 * Attach the interface.
815 	 */
816 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
817 
818 	/*
819 	 * Tell the upper layer(s) we support long frames.
820 	 */
821 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
822 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
823 
824 	/*
825 	 * Let the system queue as many packets as we have available
826 	 * TX descriptors.
827 	 */
828 	ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
829 
830 	/*
831 	 * Hook our interrupt after all initialization is complete.
832 	 * XXX This driver has been tested with the INTR_MPSAFFE flag set
833 	 * however, ifp and its functions are not fully locked so MPSAFE
834 	 * should not be used unless you can handle potential data loss.
835 	 */
836 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
837 			       fxp_intr, sc, &sc->ih);
838 	if (error) {
839 		device_printf(dev, "could not setup irq\n");
840 		ether_ifdetach(&sc->arpcom.ac_if);
841 		goto fail;
842 	}
843 
844 fail:
845 	splx(s);
846 	if (error)
847 		fxp_release(sc);
848 	return (error);
849 }
850 
851 /*
852  * Release all resources.  The softc lock should not be held and the
853  * interrupt should already be torn down.
854  */
855 static void
856 fxp_release(struct fxp_softc *sc)
857 {
858 	struct fxp_rx *rxp;
859 	struct fxp_tx *txp;
860 	int i;
861 
862 	mtx_assert(&sc->sc_mtx, MA_NOTOWNED);
863 	if (sc->ih)
864 		panic("fxp_release() called with intr handle still active");
865 	if (sc->miibus)
866 		device_delete_child(sc->dev, sc->miibus);
867 	bus_generic_detach(sc->dev);
868 	ifmedia_removeall(&sc->sc_media);
869 	if (sc->fxp_desc.cbl_list) {
870 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
871 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
872 		    sc->cbl_map);
873 	}
874 	if (sc->fxp_stats) {
875 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
876 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
877 	}
878 	if (sc->mcsp) {
879 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
880 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
881 	}
882 	if (sc->irq)
883 		bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
884 	if (sc->mem)
885 		bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
886 	if (sc->fxp_mtag) {
887 		for (i = 0; i < FXP_NRFABUFS; i++) {
888 			rxp = &sc->fxp_desc.rx_list[i];
889 			if (rxp->rx_mbuf != NULL) {
890 				bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
891 				    BUS_DMASYNC_POSTREAD);
892 				bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
893 				m_freem(rxp->rx_mbuf);
894 			}
895 			bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
896 		}
897 		bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
898 		bus_dma_tag_destroy(sc->fxp_mtag);
899 	}
900 	if (sc->fxp_stag) {
901 		for (i = 0; i < FXP_NTXCB; i++) {
902 			txp = &sc->fxp_desc.tx_list[i];
903 			if (txp->tx_mbuf != NULL) {
904 				bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
905 				    BUS_DMASYNC_POSTWRITE);
906 				bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
907 				m_freem(txp->tx_mbuf);
908 			}
909 			bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
910 		}
911 		bus_dma_tag_destroy(sc->fxp_stag);
912 	}
913 	if (sc->cbl_tag)
914 		bus_dma_tag_destroy(sc->cbl_tag);
915 	if (sc->mcs_tag)
916 		bus_dma_tag_destroy(sc->mcs_tag);
917 
918         sysctl_ctx_free(&sc->sysctl_ctx);
919 
920 	mtx_destroy(&sc->sc_mtx);
921 }
922 
923 /*
924  * Detach interface.
925  */
926 static int
927 fxp_detach(device_t dev)
928 {
929 	struct fxp_softc *sc = device_get_softc(dev);
930 	int s;
931 
932 	FXP_LOCK(sc);
933 	s = splimp();
934 
935 	sc->suspended = 1;	/* Do same thing as we do for suspend */
936 	/*
937 	 * Close down routes etc.
938 	 */
939 	ether_ifdetach(&sc->arpcom.ac_if);
940 
941 	/*
942 	 * Stop DMA and drop transmit queue, but disable interrupts first.
943 	 */
944 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
945 	fxp_stop(sc);
946 	FXP_UNLOCK(sc);
947 
948 	/*
949 	 * Unhook interrupt before dropping lock. This is to prevent
950 	 * races with fxp_intr().
951 	 */
952 	bus_teardown_intr(sc->dev, sc->irq, sc->ih);
953 	sc->ih = NULL;
954 
955 	splx(s);
956 
957 	/* Release our allocated resources. */
958 	fxp_release(sc);
959 	return (0);
960 }
961 
962 /*
963  * Device shutdown routine. Called at system shutdown after sync. The
964  * main purpose of this routine is to shut off receiver DMA so that
965  * kernel memory doesn't get clobbered during warmboot.
966  */
967 static int
968 fxp_shutdown(device_t dev)
969 {
970 	/*
971 	 * Make sure that DMA is disabled prior to reboot. Not doing
972 	 * do could allow DMA to corrupt kernel memory during the
973 	 * reboot before the driver initializes.
974 	 */
975 	fxp_stop((struct fxp_softc *) device_get_softc(dev));
976 	return (0);
977 }
978 
979 /*
980  * Device suspend routine.  Stop the interface and save some PCI
981  * settings in case the BIOS doesn't restore them properly on
982  * resume.
983  */
984 static int
985 fxp_suspend(device_t dev)
986 {
987 	struct fxp_softc *sc = device_get_softc(dev);
988 	int i, s;
989 
990 	FXP_LOCK(sc);
991 	s = splimp();
992 
993 	fxp_stop(sc);
994 
995 	for (i = 0; i < 5; i++)
996 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
997 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
998 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
999 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
1000 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1001 
1002 	sc->suspended = 1;
1003 
1004 	FXP_UNLOCK(sc);
1005 	splx(s);
1006 	return (0);
1007 }
1008 
1009 /*
1010  * Device resume routine.  Restore some PCI settings in case the BIOS
1011  * doesn't, re-enable busmastering, and restart the interface if
1012  * appropriate.
1013  */
1014 static int
1015 fxp_resume(device_t dev)
1016 {
1017 	struct fxp_softc *sc = device_get_softc(dev);
1018 	struct ifnet *ifp = &sc->sc_if;
1019 	u_int16_t pci_command;
1020 	int i, s;
1021 
1022 	FXP_LOCK(sc);
1023 	s = splimp();
1024 #ifndef BURN_BRIDGES
1025 	fxp_powerstate_d0(dev);
1026 #endif
1027 	/* better way to do this? */
1028 	for (i = 0; i < 5; i++)
1029 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
1030 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1031 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1032 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1033 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1034 
1035 	/* reenable busmastering */
1036 	pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
1037 	pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1038 	pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
1039 
1040 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1041 	DELAY(10);
1042 
1043 	/* reinitialize interface if necessary */
1044 	if (ifp->if_flags & IFF_UP)
1045 		fxp_init_body(sc);
1046 
1047 	sc->suspended = 0;
1048 
1049 	FXP_UNLOCK(sc);
1050 	splx(s);
1051 	return (0);
1052 }
1053 
1054 static void
1055 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1056 {
1057 	u_int16_t reg;
1058 	int x;
1059 
1060 	/*
1061 	 * Shift in data.
1062 	 */
1063 	for (x = 1 << (length - 1); x; x >>= 1) {
1064 		if (data & x)
1065 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1066 		else
1067 			reg = FXP_EEPROM_EECS;
1068 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1069 		DELAY(1);
1070 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1071 		DELAY(1);
1072 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1073 		DELAY(1);
1074 	}
1075 }
1076 
1077 /*
1078  * Read from the serial EEPROM. Basically, you manually shift in
1079  * the read opcode (one bit at a time) and then shift in the address,
1080  * and then you shift out the data (all of this one bit at a time).
1081  * The word size is 16 bits, so you have to provide the address for
1082  * every 16 bits of data.
1083  */
1084 static u_int16_t
1085 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1086 {
1087 	u_int16_t reg, data;
1088 	int x;
1089 
1090 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1091 	/*
1092 	 * Shift in read opcode.
1093 	 */
1094 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1095 	/*
1096 	 * Shift in address.
1097 	 */
1098 	data = 0;
1099 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1100 		if (offset & x)
1101 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1102 		else
1103 			reg = FXP_EEPROM_EECS;
1104 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1105 		DELAY(1);
1106 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1107 		DELAY(1);
1108 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1109 		DELAY(1);
1110 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1111 		data++;
1112 		if (autosize && reg == 0) {
1113 			sc->eeprom_size = data;
1114 			break;
1115 		}
1116 	}
1117 	/*
1118 	 * Shift out data.
1119 	 */
1120 	data = 0;
1121 	reg = FXP_EEPROM_EECS;
1122 	for (x = 1 << 15; x; x >>= 1) {
1123 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1124 		DELAY(1);
1125 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1126 			data |= x;
1127 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1128 		DELAY(1);
1129 	}
1130 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1131 	DELAY(1);
1132 
1133 	return (data);
1134 }
1135 
1136 static void
1137 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1138 {
1139 	int i;
1140 
1141 	/*
1142 	 * Erase/write enable.
1143 	 */
1144 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1145 	fxp_eeprom_shiftin(sc, 0x4, 3);
1146 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1147 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1148 	DELAY(1);
1149 	/*
1150 	 * Shift in write opcode, address, data.
1151 	 */
1152 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1153 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1154 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1155 	fxp_eeprom_shiftin(sc, data, 16);
1156 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1157 	DELAY(1);
1158 	/*
1159 	 * Wait for EEPROM to finish up.
1160 	 */
1161 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1162 	DELAY(1);
1163 	for (i = 0; i < 1000; i++) {
1164 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1165 			break;
1166 		DELAY(50);
1167 	}
1168 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1169 	DELAY(1);
1170 	/*
1171 	 * Erase/write disable.
1172 	 */
1173 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1174 	fxp_eeprom_shiftin(sc, 0x4, 3);
1175 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1176 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1177 	DELAY(1);
1178 }
1179 
1180 /*
1181  * From NetBSD:
1182  *
1183  * Figure out EEPROM size.
1184  *
1185  * 559's can have either 64-word or 256-word EEPROMs, the 558
1186  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1187  * talks about the existance of 16 to 256 word EEPROMs.
1188  *
1189  * The only known sizes are 64 and 256, where the 256 version is used
1190  * by CardBus cards to store CIS information.
1191  *
1192  * The address is shifted in msb-to-lsb, and after the last
1193  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1194  * after which follows the actual data. We try to detect this zero, by
1195  * probing the data-out bit in the EEPROM control register just after
1196  * having shifted in a bit. If the bit is zero, we assume we've
1197  * shifted enough address bits. The data-out should be tri-state,
1198  * before this, which should translate to a logical one.
1199  */
1200 static void
1201 fxp_autosize_eeprom(struct fxp_softc *sc)
1202 {
1203 
1204 	/* guess maximum size of 256 words */
1205 	sc->eeprom_size = 8;
1206 
1207 	/* autosize */
1208 	(void) fxp_eeprom_getword(sc, 0, 1);
1209 }
1210 
1211 static void
1212 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1213 {
1214 	int i;
1215 
1216 	for (i = 0; i < words; i++)
1217 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1218 }
1219 
1220 static void
1221 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1222 {
1223 	int i;
1224 
1225 	for (i = 0; i < words; i++)
1226 		fxp_eeprom_putword(sc, offset + i, data[i]);
1227 }
1228 
1229 static void
1230 fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
1231     bus_size_t mapsize, int error)
1232 {
1233 	struct fxp_softc *sc;
1234 	struct fxp_cb_tx *txp;
1235 	int i;
1236 
1237 	if (error)
1238 		return;
1239 
1240 	KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
1241 
1242 	sc = arg;
1243 	txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
1244 	for (i = 0; i < nseg; i++) {
1245 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
1246 		/*
1247 		 * If this is an 82550/82551, then we're using extended
1248 		 * TxCBs _and_ we're using checksum offload. This means
1249 		 * that the TxCB is really an IPCB. One major difference
1250 		 * between the two is that with plain extended TxCBs,
1251 		 * the bottom half of the TxCB contains two entries from
1252 		 * the TBD array, whereas IPCBs contain just one entry:
1253 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1254 		 * checksum offload control bits. So to make things work
1255 		 * right, we have to start filling in the TBD array
1256 		 * starting from a different place depending on whether
1257 		 * the chip is an 82550/82551 or not.
1258 		 */
1259 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1260 			txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1261 			txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1262 		} else {
1263 			txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1264 			txp->tbd[i].tb_size = htole32(segs[i].ds_len);
1265 		}
1266 	}
1267 	txp->tbd_number = nseg;
1268 }
1269 
1270 /*
1271  * Grab the softc lock and call the real fxp_start_body() routine
1272  */
1273 static void
1274 fxp_start(struct ifnet *ifp)
1275 {
1276 	struct fxp_softc *sc = ifp->if_softc;
1277 
1278 	FXP_LOCK(sc);
1279 	fxp_start_body(ifp);
1280 	FXP_UNLOCK(sc);
1281 }
1282 
1283 /*
1284  * Start packet transmission on the interface.
1285  * This routine must be called with the softc lock held, and is an
1286  * internal entry point only.
1287  */
1288 static void
1289 fxp_start_body(struct ifnet *ifp)
1290 {
1291 	struct fxp_softc *sc = ifp->if_softc;
1292 	struct fxp_tx *txp;
1293 	struct mbuf *mb_head;
1294 	int error;
1295 
1296 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1297 	/*
1298 	 * See if we need to suspend xmit until the multicast filter
1299 	 * has been reprogrammed (which can only be done at the head
1300 	 * of the command chain).
1301 	 */
1302 	if (sc->need_mcsetup) {
1303 		return;
1304 	}
1305 
1306 	txp = NULL;
1307 
1308 	/*
1309 	 * We're finished if there is nothing more to add to the list or if
1310 	 * we're all filled up with buffers to transmit.
1311 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1312 	 *       a NOP command when needed.
1313 	 */
1314 	while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1315 
1316 		/*
1317 		 * Grab a packet to transmit.
1318 		 */
1319 		IF_DEQUEUE(&ifp->if_snd, mb_head);
1320 
1321 		/*
1322 		 * Get pointer to next available tx desc.
1323 		 */
1324 		txp = sc->fxp_desc.tx_last->tx_next;
1325 
1326 		/*
1327 		 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1328 		 * Ethernet Controller Family Open Source Software
1329 		 * Developer Manual says:
1330 		 *   Using software parsing is only allowed with legal
1331 		 *   TCP/IP or UDP/IP packets.
1332 		 *   ...
1333 		 *   For all other datagrams, hardware parsing must
1334 		 *   be used.
1335 		 * Software parsing appears to truncate ICMP and
1336 		 * fragmented UDP packets that contain one to three
1337 		 * bytes in the second (and final) mbuf of the packet.
1338 		 */
1339 		if (sc->flags & FXP_FLAG_EXT_RFA)
1340 			txp->tx_cb->ipcb_ip_activation_high =
1341 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1342 
1343 		/*
1344 		 * Deal with TCP/IP checksum offload. Note that
1345 		 * in order for TCP checksum offload to work,
1346 		 * the pseudo header checksum must have already
1347 		 * been computed and stored in the checksum field
1348 		 * in the TCP header. The stack should have
1349 		 * already done this for us.
1350 		 */
1351 
1352 		if (mb_head->m_pkthdr.csum_flags) {
1353 			if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1354 				txp->tx_cb->ipcb_ip_schedule =
1355 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1356 				if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1357 					txp->tx_cb->ipcb_ip_schedule |=
1358 					    FXP_IPCB_TCP_PACKET;
1359 			}
1360 #ifdef FXP_IP_CSUM_WAR
1361 		/*
1362 		 * XXX The 82550 chip appears to have trouble
1363 		 * dealing with IP header checksums in very small
1364 		 * datagrams, namely fragments from 1 to 3 bytes
1365 		 * in size. For example, say you want to transmit
1366 		 * a UDP packet of 1473 bytes. The packet will be
1367 		 * fragmented over two IP datagrams, the latter
1368 		 * containing only one byte of data. The 82550 will
1369 		 * botch the header checksum on the 1-byte fragment.
1370 		 * As long as the datagram contains 4 or more bytes
1371 		 * of data, you're ok.
1372 		 *
1373                  * The following code attempts to work around this
1374 		 * problem: if the datagram is less than 38 bytes
1375 		 * in size (14 bytes ether header, 20 bytes IP header,
1376 		 * plus 4 bytes of data), we punt and compute the IP
1377 		 * header checksum by hand. This workaround doesn't
1378 		 * work very well, however, since it can be fooled
1379 		 * by things like VLAN tags and IP options that make
1380 		 * the header sizes/offsets vary.
1381 		 */
1382 
1383 			if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1384 				if (mb_head->m_pkthdr.len < 38) {
1385 					struct ip *ip;
1386 					mb_head->m_data += ETHER_HDR_LEN;
1387 					ip = mtod(mb_head, struct ip *);
1388 					ip->ip_sum = in_cksum(mb_head,
1389 					    ip->ip_hl << 2);
1390 					mb_head->m_data -= ETHER_HDR_LEN;
1391 				} else {
1392 					txp->tx_cb->ipcb_ip_activation_high =
1393 					    FXP_IPCB_HARDWAREPARSING_ENABLE;
1394 					txp->tx_cb->ipcb_ip_schedule |=
1395 					    FXP_IPCB_IP_CHECKSUM_ENABLE;
1396 				}
1397 			}
1398 #endif
1399 		}
1400 
1401 		/*
1402 		 * Go through each of the mbufs in the chain and initialize
1403 		 * the transmit buffer descriptors with the physical address
1404 		 * and size of the mbuf.
1405 		 */
1406 		error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1407 		    mb_head, fxp_dma_map_txbuf, sc, 0);
1408 
1409 		if (error && error != EFBIG) {
1410 			device_printf(sc->dev, "can't map mbuf (error %d)\n",
1411 			    error);
1412 			m_freem(mb_head);
1413 			break;
1414 		}
1415 
1416 		if (error) {
1417 			struct mbuf *mn;
1418 
1419 			/*
1420 			 * We ran out of segments. We have to recopy this
1421 			 * mbuf chain first. Bail out if we can't get the
1422 			 * new buffers.
1423 			 */
1424 			mn = m_defrag(mb_head, M_DONTWAIT);
1425 			if (mn == NULL) {
1426 				m_freem(mb_head);
1427 				break;
1428 			} else {
1429 				mb_head = mn;
1430 			}
1431 			error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
1432 			    mb_head, fxp_dma_map_txbuf, sc, 0);
1433 			if (error) {
1434 				device_printf(sc->dev,
1435 				    "can't map mbuf (error %d)\n", error);
1436 				m_freem(mb_head);
1437 				break;
1438 			}
1439 		}
1440 
1441 		bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1442 		    BUS_DMASYNC_PREWRITE);
1443 
1444 		txp->tx_mbuf = mb_head;
1445 		txp->tx_cb->cb_status = 0;
1446 		txp->tx_cb->byte_count = 0;
1447 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1448 			txp->tx_cb->cb_command =
1449 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1450 			    FXP_CB_COMMAND_S);
1451 		} else {
1452 			txp->tx_cb->cb_command =
1453 			    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1454 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1455 			/*
1456 			 * Set a 5 second timer just in case we don't hear
1457 			 * from the card again.
1458 			 */
1459 			ifp->if_timer = 5;
1460 		}
1461 		txp->tx_cb->tx_threshold = tx_threshold;
1462 
1463 		/*
1464 		 * Advance the end of list forward.
1465 		 */
1466 
1467 #ifdef __alpha__
1468 		/*
1469 		 * On platforms which can't access memory in 16-bit
1470 		 * granularities, we must prevent the card from DMA'ing
1471 		 * up the status while we update the command field.
1472 		 * This could cause us to overwrite the completion status.
1473 		 * XXX This is probably bogus and we're _not_ looking
1474 		 * for atomicity here.
1475 		 */
1476 		atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
1477 		    htole16(FXP_CB_COMMAND_S));
1478 #else
1479 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
1480 		    htole16(~FXP_CB_COMMAND_S);
1481 #endif /*__alpha__*/
1482 		sc->fxp_desc.tx_last = txp;
1483 
1484 		/*
1485 		 * Advance the beginning of the list forward if there are
1486 		 * no other packets queued (when nothing is queued, tx_first
1487 		 * sits on the last TxCB that was sent out).
1488 		 */
1489 		if (sc->tx_queued == 0)
1490 			sc->fxp_desc.tx_first = txp;
1491 
1492 		sc->tx_queued++;
1493 
1494 		/*
1495 		 * Pass packet to bpf if there is a listener.
1496 		 */
1497 		BPF_MTAP(ifp, mb_head);
1498 	}
1499 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1500 
1501 	/*
1502 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1503 	 * going again if suspended.
1504 	 */
1505 	if (txp != NULL) {
1506 		fxp_scb_wait(sc);
1507 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1508 	}
1509 }
1510 
1511 #ifdef DEVICE_POLLING
1512 static poll_handler_t fxp_poll;
1513 
1514 static void
1515 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1516 {
1517 	struct fxp_softc *sc = ifp->if_softc;
1518 	u_int8_t statack;
1519 
1520 	FXP_LOCK(sc);
1521 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1522 		ether_poll_deregister(ifp);
1523 		cmd = POLL_DEREGISTER;
1524 	}
1525 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1526 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1527 		FXP_UNLOCK(sc);
1528 		return;
1529 	}
1530 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1531 	    FXP_SCB_STATACK_FR;
1532 	if (cmd == POLL_AND_CHECK_STATUS) {
1533 		u_int8_t tmp;
1534 
1535 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1536 		if (tmp == 0xff || tmp == 0) {
1537 			FXP_UNLOCK(sc);
1538 			return; /* nothing to do */
1539 		}
1540 		tmp &= ~statack;
1541 		/* ack what we can */
1542 		if (tmp != 0)
1543 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1544 		statack |= tmp;
1545 	}
1546 	fxp_intr_body(sc, ifp, statack, count);
1547 	FXP_UNLOCK(sc);
1548 }
1549 #endif /* DEVICE_POLLING */
1550 
1551 /*
1552  * Process interface interrupts.
1553  */
1554 static void
1555 fxp_intr(void *xsc)
1556 {
1557 	struct fxp_softc *sc = xsc;
1558 	struct ifnet *ifp = &sc->sc_if;
1559 	u_int8_t statack;
1560 
1561 	FXP_LOCK(sc);
1562 	if (sc->suspended) {
1563 		FXP_UNLOCK(sc);
1564 		return;
1565 	}
1566 
1567 #ifdef DEVICE_POLLING
1568 	if (ifp->if_flags & IFF_POLLING) {
1569 		FXP_UNLOCK(sc);
1570 		return;
1571 	}
1572 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1573 	    ether_poll_register(fxp_poll, ifp)) {
1574 		/* disable interrupts */
1575 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1576 		FXP_UNLOCK(sc);
1577 		fxp_poll(ifp, 0, 1);
1578 		return;
1579 	}
1580 #endif
1581 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1582 		/*
1583 		 * It should not be possible to have all bits set; the
1584 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1585 		 * all bits are set, this may indicate that the card has
1586 		 * been physically ejected, so ignore it.
1587 		 */
1588 		if (statack == 0xff) {
1589 			FXP_UNLOCK(sc);
1590 			return;
1591 		}
1592 
1593 		/*
1594 		 * First ACK all the interrupts in this pass.
1595 		 */
1596 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1597 		fxp_intr_body(sc, ifp, statack, -1);
1598 	}
1599 	FXP_UNLOCK(sc);
1600 }
1601 
1602 static void
1603 fxp_txeof(struct fxp_softc *sc)
1604 {
1605 	struct fxp_tx *txp;
1606 
1607 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
1608 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1609 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1610 	    txp = txp->tx_next) {
1611 		if (txp->tx_mbuf != NULL) {
1612 			bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
1613 			    BUS_DMASYNC_POSTWRITE);
1614 			bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
1615 			m_freem(txp->tx_mbuf);
1616 			txp->tx_mbuf = NULL;
1617 			/* clear this to reset csum offload bits */
1618 			txp->tx_cb->tbd[0].tb_addr = 0;
1619 		}
1620 		sc->tx_queued--;
1621 	}
1622 	sc->fxp_desc.tx_first = txp;
1623 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1624 }
1625 
1626 static void
1627 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
1628     int count)
1629 {
1630 	struct mbuf *m;
1631 	struct fxp_rx *rxp;
1632 	struct fxp_rfa *rfa;
1633 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1634 
1635 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1636 	if (rnr)
1637 		fxp_rnr++;
1638 #ifdef DEVICE_POLLING
1639 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1640 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1641 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1642 		rnr = 1;
1643 	}
1644 #endif
1645 
1646 	/*
1647 	 * Free any finished transmit mbuf chains.
1648 	 *
1649 	 * Handle the CNA event likt a CXTNO event. It used to
1650 	 * be that this event (control unit not ready) was not
1651 	 * encountered, but it is now with the SMPng modifications.
1652 	 * The exact sequence of events that occur when the interface
1653 	 * is brought up are different now, and if this event
1654 	 * goes unhandled, the configuration/rxfilter setup sequence
1655 	 * can stall for several seconds. The result is that no
1656 	 * packets go out onto the wire for about 5 to 10 seconds
1657 	 * after the interface is ifconfig'ed for the first time.
1658 	 */
1659 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1660 		fxp_txeof(sc);
1661 
1662 		ifp->if_timer = 0;
1663 		if (sc->tx_queued == 0) {
1664 			if (sc->need_mcsetup)
1665 				fxp_mc_setup(sc);
1666 		}
1667 		/*
1668 		 * Try to start more packets transmitting.
1669 		 */
1670 		if (ifp->if_snd.ifq_head != NULL)
1671 			fxp_start_body(ifp);
1672 	}
1673 
1674 	/*
1675 	 * Just return if nothing happened on the receive side.
1676 	 */
1677 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1678 		return;
1679 
1680 	/*
1681 	 * Process receiver interrupts. If a no-resource (RNR)
1682 	 * condition exists, get whatever packets we can and
1683 	 * re-start the receiver.
1684 	 *
1685 	 * When using polling, we do not process the list to completion,
1686 	 * so when we get an RNR interrupt we must defer the restart
1687 	 * until we hit the last buffer with the C bit set.
1688 	 * If we run out of cycles and rfa_headm has the C bit set,
1689 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1690 	 * that the info will be used in the subsequent polling cycle.
1691 	 */
1692 	for (;;) {
1693 		rxp = sc->fxp_desc.rx_head;
1694 		m = rxp->rx_mbuf;
1695 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1696 		    RFA_ALIGNMENT_FUDGE);
1697 		bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
1698 		    BUS_DMASYNC_POSTREAD);
1699 
1700 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1701 		if (count >= 0 && count-- == 0) {
1702 			if (rnr) {
1703 				/* Defer RNR processing until the next time. */
1704 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1705 				rnr = 0;
1706 			}
1707 			break;
1708 		}
1709 #endif /* DEVICE_POLLING */
1710 
1711 		if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
1712 			break;
1713 
1714 		/*
1715 		 * Advance head forward.
1716 		 */
1717 		sc->fxp_desc.rx_head = rxp->rx_next;
1718 
1719 		/*
1720 		 * Add a new buffer to the receive chain.
1721 		 * If this fails, the old buffer is recycled
1722 		 * instead.
1723 		 */
1724 		if (fxp_add_rfabuf(sc, rxp) == 0) {
1725 			int total_len;
1726 
1727 			/*
1728 			 * Fetch packet length (the top 2 bits of
1729 			 * actual_size are flags set by the controller
1730 			 * upon completion), and drop the packet in case
1731 			 * of bogus length or CRC errors.
1732 			 */
1733 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1734 			if (total_len < sizeof(struct ether_header) ||
1735 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1736 				sc->rfa_size ||
1737 			    le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
1738 				m_freem(m);
1739 				continue;
1740 			}
1741 
1742                         /* Do IP checksum checking. */
1743 			if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
1744 				if (rfa->rfax_csum_sts &
1745 				    FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1746 					m->m_pkthdr.csum_flags |=
1747 					    CSUM_IP_CHECKED;
1748 				if (rfa->rfax_csum_sts &
1749 				    FXP_RFDX_CS_IP_CSUM_VALID)
1750 					m->m_pkthdr.csum_flags |=
1751 					    CSUM_IP_VALID;
1752 				if ((rfa->rfax_csum_sts &
1753 				    FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1754 				    (rfa->rfax_csum_sts &
1755 				    FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1756 					m->m_pkthdr.csum_flags |=
1757 					    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1758 					m->m_pkthdr.csum_data = 0xffff;
1759 				}
1760 			}
1761 
1762 			m->m_pkthdr.len = m->m_len = total_len;
1763 			m->m_pkthdr.rcvif = ifp;
1764 
1765 			/*
1766 			 * Drop locks before calling if_input() since it
1767 			 * may re-enter fxp_start() in the netisr case.
1768 			 * This would result in a lock reversal.  Better
1769 			 * performance might be obtained by chaining all
1770 			 * packets received, dropping the lock, and then
1771 			 * calling if_input() on each one.
1772 			 */
1773 			FXP_UNLOCK(sc);
1774 			(*ifp->if_input)(ifp, m);
1775 			FXP_LOCK(sc);
1776 		}
1777 	}
1778 	if (rnr) {
1779 		fxp_scb_wait(sc);
1780 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1781 		    sc->fxp_desc.rx_head->rx_addr);
1782 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1783 	}
1784 }
1785 
1786 /*
1787  * Update packet in/out/collision statistics. The i82557 doesn't
1788  * allow you to access these counters without doing a fairly
1789  * expensive DMA to get _all_ of the statistics it maintains, so
1790  * we do this operation here only once per second. The statistics
1791  * counters in the kernel are updated from the previous dump-stats
1792  * DMA and then a new dump-stats DMA is started. The on-chip
1793  * counters are zeroed when the DMA completes. If we can't start
1794  * the DMA immediately, we don't wait - we just prepare to read
1795  * them again next time.
1796  */
1797 static void
1798 fxp_tick(void *xsc)
1799 {
1800 	struct fxp_softc *sc = xsc;
1801 	struct ifnet *ifp = &sc->sc_if;
1802 	struct fxp_stats *sp = sc->fxp_stats;
1803 	int s;
1804 
1805 	FXP_LOCK(sc);
1806 	s = splimp();
1807 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
1808 	ifp->if_opackets += le32toh(sp->tx_good);
1809 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1810 	if (sp->rx_good) {
1811 		ifp->if_ipackets += le32toh(sp->rx_good);
1812 		sc->rx_idle_secs = 0;
1813 	} else {
1814 		/*
1815 		 * Receiver's been idle for another second.
1816 		 */
1817 		sc->rx_idle_secs++;
1818 	}
1819 	ifp->if_ierrors +=
1820 	    le32toh(sp->rx_crc_errors) +
1821 	    le32toh(sp->rx_alignment_errors) +
1822 	    le32toh(sp->rx_rnr_errors) +
1823 	    le32toh(sp->rx_overrun_errors);
1824 	/*
1825 	 * If any transmit underruns occured, bump up the transmit
1826 	 * threshold by another 512 bytes (64 * 8).
1827 	 */
1828 	if (sp->tx_underruns) {
1829 		ifp->if_oerrors += le32toh(sp->tx_underruns);
1830 		if (tx_threshold < 192)
1831 			tx_threshold += 64;
1832 	}
1833 
1834 	/*
1835 	 * Release any xmit buffers that have completed DMA. This isn't
1836 	 * strictly necessary to do here, but it's advantagous for mbufs
1837 	 * with external storage to be released in a timely manner rather
1838 	 * than being defered for a potentially long time. This limits
1839 	 * the delay to a maximum of one second.
1840 	 */
1841 	fxp_txeof(sc);
1842 
1843 	/*
1844 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1845 	 * then assume the receiver has locked up and attempt to clear
1846 	 * the condition by reprogramming the multicast filter. This is
1847 	 * a work-around for a bug in the 82557 where the receiver locks
1848 	 * up if it gets certain types of garbage in the syncronization
1849 	 * bits prior to the packet header. This bug is supposed to only
1850 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1851 	 * mode as well (perhaps due to a 10/100 speed transition).
1852 	 */
1853 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1854 		sc->rx_idle_secs = 0;
1855 		fxp_mc_setup(sc);
1856 	}
1857 	/*
1858 	 * If there is no pending command, start another stats
1859 	 * dump. Otherwise punt for now.
1860 	 */
1861 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1862 		/*
1863 		 * Start another stats dump.
1864 		 */
1865 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
1866 		    BUS_DMASYNC_PREREAD);
1867 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1868 	} else {
1869 		/*
1870 		 * A previous command is still waiting to be accepted.
1871 		 * Just zero our copy of the stats and wait for the
1872 		 * next timer event to update them.
1873 		 */
1874 		sp->tx_good = 0;
1875 		sp->tx_underruns = 0;
1876 		sp->tx_total_collisions = 0;
1877 
1878 		sp->rx_good = 0;
1879 		sp->rx_crc_errors = 0;
1880 		sp->rx_alignment_errors = 0;
1881 		sp->rx_rnr_errors = 0;
1882 		sp->rx_overrun_errors = 0;
1883 	}
1884 	if (sc->miibus != NULL)
1885 		mii_tick(device_get_softc(sc->miibus));
1886 
1887 	/*
1888 	 * Schedule another timeout one second from now.
1889 	 */
1890 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
1891 	FXP_UNLOCK(sc);
1892 	splx(s);
1893 }
1894 
1895 /*
1896  * Stop the interface. Cancels the statistics updater and resets
1897  * the interface.
1898  */
1899 static void
1900 fxp_stop(struct fxp_softc *sc)
1901 {
1902 	struct ifnet *ifp = &sc->sc_if;
1903 	struct fxp_tx *txp;
1904 	int i;
1905 
1906 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1907 	ifp->if_timer = 0;
1908 
1909 #ifdef DEVICE_POLLING
1910 	ether_poll_deregister(ifp);
1911 #endif
1912 	/*
1913 	 * Cancel stats updater.
1914 	 */
1915 	callout_stop(&sc->stat_ch);
1916 
1917 	/*
1918 	 * Issue software reset, which also unloads the microcode.
1919 	 */
1920 	sc->flags &= ~FXP_FLAG_UCODE;
1921 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1922 	DELAY(50);
1923 
1924 	/*
1925 	 * Release any xmit buffers.
1926 	 */
1927 	txp = sc->fxp_desc.tx_list;
1928 	if (txp != NULL) {
1929 		for (i = 0; i < FXP_NTXCB; i++) {
1930  			if (txp[i].tx_mbuf != NULL) {
1931 				bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
1932 				    BUS_DMASYNC_POSTWRITE);
1933 				bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
1934 				m_freem(txp[i].tx_mbuf);
1935 				txp[i].tx_mbuf = NULL;
1936 				/* clear this to reset csum offload bits */
1937 				txp[i].tx_cb->tbd[0].tb_addr = 0;
1938 			}
1939 		}
1940 	}
1941 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
1942 	sc->tx_queued = 0;
1943 }
1944 
1945 /*
1946  * Watchdog/transmission transmit timeout handler. Called when a
1947  * transmission is started on the interface, but no interrupt is
1948  * received before the timeout. This usually indicates that the
1949  * card has wedged for some reason.
1950  */
1951 static void
1952 fxp_watchdog(struct ifnet *ifp)
1953 {
1954 	struct fxp_softc *sc = ifp->if_softc;
1955 
1956 	FXP_LOCK(sc);
1957 	device_printf(sc->dev, "device timeout\n");
1958 	ifp->if_oerrors++;
1959 
1960 	fxp_init_body(sc);
1961 	FXP_UNLOCK(sc);
1962 }
1963 
1964 /*
1965  * Acquire locks and then call the real initialization function.  This
1966  * is necessary because ether_ioctl() calls if_init() and this would
1967  * result in mutex recursion if the mutex was held.
1968  */
1969 static void
1970 fxp_init(void *xsc)
1971 {
1972 	struct fxp_softc *sc = xsc;
1973 
1974 	FXP_LOCK(sc);
1975 	fxp_init_body(sc);
1976 	FXP_UNLOCK(sc);
1977 }
1978 
1979 /*
1980  * Perform device initialization. This routine must be called with the
1981  * softc lock held.
1982  */
1983 static void
1984 fxp_init_body(struct fxp_softc *sc)
1985 {
1986 	struct ifnet *ifp = &sc->sc_if;
1987 	struct fxp_cb_config *cbp;
1988 	struct fxp_cb_ias *cb_ias;
1989 	struct fxp_cb_tx *tcbp;
1990 	struct fxp_tx *txp;
1991 	struct fxp_cb_mcs *mcsp;
1992 	int i, prm, s;
1993 
1994 	mtx_assert(&sc->sc_mtx, MA_OWNED);
1995 	s = splimp();
1996 	/*
1997 	 * Cancel any pending I/O
1998 	 */
1999 	fxp_stop(sc);
2000 
2001 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2002 
2003 	/*
2004 	 * Initialize base of CBL and RFA memory. Loading with zero
2005 	 * sets it up for regular linear addressing.
2006 	 */
2007 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2008 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2009 
2010 	fxp_scb_wait(sc);
2011 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2012 
2013 	/*
2014 	 * Initialize base of dump-stats buffer.
2015 	 */
2016 	fxp_scb_wait(sc);
2017 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
2018 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2019 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2020 
2021 	/*
2022 	 * Attempt to load microcode if requested.
2023 	 */
2024 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
2025 		fxp_load_ucode(sc);
2026 
2027 	/*
2028 	 * Initialize the multicast address list.
2029 	 */
2030 	if (fxp_mc_addrs(sc)) {
2031 		mcsp = sc->mcsp;
2032 		mcsp->cb_status = 0;
2033 		mcsp->cb_command =
2034 		    htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2035 		mcsp->link_addr = 0xffffffff;
2036 		/*
2037 	 	 * Start the multicast setup command.
2038 		 */
2039 		fxp_scb_wait(sc);
2040 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2041 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2042 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2043 		/* ...and wait for it to complete. */
2044 		fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
2045 		bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
2046 		    BUS_DMASYNC_POSTWRITE);
2047 	}
2048 
2049 	/*
2050 	 * We temporarily use memory that contains the TxCB list to
2051 	 * construct the config CB. The TxCB list memory is rebuilt
2052 	 * later.
2053 	 */
2054 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2055 
2056 	/*
2057 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2058 	 * zero and must be one bits in this structure and this is the easiest
2059 	 * way to initialize them all to proper values.
2060 	 */
2061 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2062 
2063 	cbp->cb_status =	0;
2064 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2065 	    FXP_CB_COMMAND_EL);
2066 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2067 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2068 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2069 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2070 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2071 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2072 	cbp->type_enable =	0;	/* actually reserved */
2073 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2074 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2075 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2076 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2077 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2078 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2079 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2080 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2081 	cbp->ci_int =		1;	/* interrupt on CU idle */
2082 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2083 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2084 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2085 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
2086 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2087 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2088 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2089 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
2090 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2091 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2092 	cbp->csma_dis =		0;	/* (don't) disable link */
2093 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
2094 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2095 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2096 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2097 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2098 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2099 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2100 	cbp->loopback =		0;	/* (don't) loopback */
2101 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2102 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2103 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2104 	cbp->promiscuous =	prm;	/* promiscuous mode */
2105 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2106 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2107 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2108 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2109 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2110 
2111 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2112 	cbp->padding =		1;	/* (do) pad short tx packets */
2113 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2114 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2115 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2116 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
2117 					/* must set wake_en in PMCSR also */
2118 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2119 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2120 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2121 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
2122 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2123 
2124 	if (fxp_noflow || sc->revision == FXP_REV_82557) {
2125 		/*
2126 		 * The 82557 has no hardware flow control, the values
2127 		 * below are the defaults for the chip.
2128 		 */
2129 		cbp->fc_delay_lsb =	0;
2130 		cbp->fc_delay_msb =	0x40;
2131 		cbp->pri_fc_thresh =	3;
2132 		cbp->tx_fc_dis =	0;
2133 		cbp->rx_fc_restop =	0;
2134 		cbp->rx_fc_restart =	0;
2135 		cbp->fc_filter =	0;
2136 		cbp->pri_fc_loc =	1;
2137 	} else {
2138 		cbp->fc_delay_lsb =	0x1f;
2139 		cbp->fc_delay_msb =	0x01;
2140 		cbp->pri_fc_thresh =	3;
2141 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
2142 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
2143 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
2144 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2145 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2146 	}
2147 
2148 	/*
2149 	 * Start the config command/DMA.
2150 	 */
2151 	fxp_scb_wait(sc);
2152 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2153 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2154 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2155 	/* ...and wait for it to complete. */
2156 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2157 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2158 
2159 	/*
2160 	 * Now initialize the station address. Temporarily use the TxCB
2161 	 * memory area like we did above for the config CB.
2162 	 */
2163 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2164 	cb_ias->cb_status = 0;
2165 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2166 	cb_ias->link_addr = 0xffffffff;
2167 	bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
2168 	    sizeof(sc->arpcom.ac_enaddr));
2169 
2170 	/*
2171 	 * Start the IAS (Individual Address Setup) command/DMA.
2172 	 */
2173 	fxp_scb_wait(sc);
2174 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2175 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2176 	/* ...and wait for it to complete. */
2177 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2178 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2179 
2180 	/*
2181 	 * Initialize transmit control block (TxCB) list.
2182 	 */
2183 	txp = sc->fxp_desc.tx_list;
2184 	tcbp = sc->fxp_desc.cbl_list;
2185 	bzero(tcbp, FXP_TXCB_SZ);
2186 	for (i = 0; i < FXP_NTXCB; i++) {
2187 		txp[i].tx_cb = tcbp + i;
2188 		txp[i].tx_mbuf = NULL;
2189 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2190 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2191 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2192 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2193 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2194 			tcbp[i].tbd_array_addr =
2195 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2196 		else
2197 			tcbp[i].tbd_array_addr =
2198 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2199 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2200 	}
2201 	/*
2202 	 * Set the suspend flag on the first TxCB and start the control
2203 	 * unit. It will execute the NOP and then suspend.
2204 	 */
2205 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2206 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2207 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2208 	sc->tx_queued = 1;
2209 
2210 	fxp_scb_wait(sc);
2211 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2212 
2213 	/*
2214 	 * Initialize receiver buffer area - RFA.
2215 	 */
2216 	fxp_scb_wait(sc);
2217 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2218 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2219 
2220 	/*
2221 	 * Set current media.
2222 	 */
2223 	if (sc->miibus != NULL)
2224 		mii_mediachg(device_get_softc(sc->miibus));
2225 
2226 	ifp->if_flags |= IFF_RUNNING;
2227 	ifp->if_flags &= ~IFF_OACTIVE;
2228 
2229 	/*
2230 	 * Enable interrupts.
2231 	 */
2232 #ifdef DEVICE_POLLING
2233 	/*
2234 	 * ... but only do that if we are not polling. And because (presumably)
2235 	 * the default is interrupts on, we need to disable them explicitly!
2236 	 */
2237 	if ( ifp->if_flags & IFF_POLLING )
2238 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2239 	else
2240 #endif /* DEVICE_POLLING */
2241 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2242 
2243 	/*
2244 	 * Start stats updater.
2245 	 */
2246 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2247 	splx(s);
2248 }
2249 
2250 static int
2251 fxp_serial_ifmedia_upd(struct ifnet *ifp)
2252 {
2253 
2254 	return (0);
2255 }
2256 
2257 static void
2258 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2259 {
2260 
2261 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2262 }
2263 
2264 /*
2265  * Change media according to request.
2266  */
2267 static int
2268 fxp_ifmedia_upd(struct ifnet *ifp)
2269 {
2270 	struct fxp_softc *sc = ifp->if_softc;
2271 	struct mii_data *mii;
2272 
2273 	mii = device_get_softc(sc->miibus);
2274 	mii_mediachg(mii);
2275 	return (0);
2276 }
2277 
2278 /*
2279  * Notify the world which media we're using.
2280  */
2281 static void
2282 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2283 {
2284 	struct fxp_softc *sc = ifp->if_softc;
2285 	struct mii_data *mii;
2286 
2287 	mii = device_get_softc(sc->miibus);
2288 	mii_pollstat(mii);
2289 	ifmr->ifm_active = mii->mii_media_active;
2290 	ifmr->ifm_status = mii->mii_media_status;
2291 
2292 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2293 		sc->cu_resume_bug = 1;
2294 	else
2295 		sc->cu_resume_bug = 0;
2296 }
2297 
2298 /*
2299  * Add a buffer to the end of the RFA buffer list.
2300  * Return 0 if successful, 1 for failure. A failure results in
2301  * adding the 'oldm' (if non-NULL) on to the end of the list -
2302  * tossing out its old contents and recycling it.
2303  * The RFA struct is stuck at the beginning of mbuf cluster and the
2304  * data pointer is fixed up to point just past it.
2305  */
2306 static int
2307 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2308 {
2309 	struct mbuf *m;
2310 	struct fxp_rfa *rfa, *p_rfa;
2311 	struct fxp_rx *p_rx;
2312 	bus_dmamap_t tmp_map;
2313 	int error;
2314 
2315 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2316 	if (m == NULL)
2317 		return (ENOBUFS);
2318 
2319 	/*
2320 	 * Move the data pointer up so that the incoming data packet
2321 	 * will be 32-bit aligned.
2322 	 */
2323 	m->m_data += RFA_ALIGNMENT_FUDGE;
2324 
2325 	/*
2326 	 * Get a pointer to the base of the mbuf cluster and move
2327 	 * data start past it.
2328 	 */
2329 	rfa = mtod(m, struct fxp_rfa *);
2330 	m->m_data += sc->rfa_size;
2331 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2332 
2333 	rfa->rfa_status = 0;
2334 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2335 	rfa->actual_size = 0;
2336 
2337 	/*
2338 	 * Initialize the rest of the RFA.  Note that since the RFA
2339 	 * is misaligned, we cannot store values directly.  We're thus
2340 	 * using the le32enc() function which handles endianness and
2341 	 * is also alignment-safe.
2342 	 */
2343 	le32enc(&rfa->link_addr, 0xffffffff);
2344 	le32enc(&rfa->rbd_addr, 0xffffffff);
2345 
2346 	/* Map the RFA into DMA memory. */
2347 	error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
2348 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2349 	    &rxp->rx_addr, 0);
2350 	if (error) {
2351 		m_freem(m);
2352 		return (error);
2353 	}
2354 
2355 	bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
2356 	tmp_map = sc->spare_map;
2357 	sc->spare_map = rxp->rx_map;
2358 	rxp->rx_map = tmp_map;
2359 	rxp->rx_mbuf = m;
2360 
2361 	bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
2362 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2363 
2364 	/*
2365 	 * If there are other buffers already on the list, attach this
2366 	 * one to the end by fixing up the tail to point to this one.
2367 	 */
2368 	if (sc->fxp_desc.rx_head != NULL) {
2369 		p_rx = sc->fxp_desc.rx_tail;
2370 		p_rfa = (struct fxp_rfa *)
2371 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2372 		p_rx->rx_next = rxp;
2373 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2374 		p_rfa->rfa_control = 0;
2375 		bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
2376 		    BUS_DMASYNC_PREWRITE);
2377 	} else {
2378 		rxp->rx_next = NULL;
2379 		sc->fxp_desc.rx_head = rxp;
2380 	}
2381 	sc->fxp_desc.rx_tail = rxp;
2382 	return (0);
2383 }
2384 
2385 static volatile int
2386 fxp_miibus_readreg(device_t dev, int phy, int reg)
2387 {
2388 	struct fxp_softc *sc = device_get_softc(dev);
2389 	int count = 10000;
2390 	int value;
2391 
2392 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2393 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2394 
2395 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2396 	    && count--)
2397 		DELAY(10);
2398 
2399 	if (count <= 0)
2400 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2401 
2402 	return (value & 0xffff);
2403 }
2404 
2405 static void
2406 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2407 {
2408 	struct fxp_softc *sc = device_get_softc(dev);
2409 	int count = 10000;
2410 
2411 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2412 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2413 	    (value & 0xffff));
2414 
2415 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2416 	    count--)
2417 		DELAY(10);
2418 
2419 	if (count <= 0)
2420 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2421 }
2422 
2423 static int
2424 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2425 {
2426 	struct fxp_softc *sc = ifp->if_softc;
2427 	struct ifreq *ifr = (struct ifreq *)data;
2428 	struct mii_data *mii;
2429 	int s, error = 0;
2430 
2431 	/*
2432 	 * Detaching causes us to call ioctl with the mutex owned.  Preclude
2433 	 * that by saying we're busy if the lock is already held.
2434 	 */
2435 	if (mtx_owned(&sc->sc_mtx))
2436 		return (EBUSY);
2437 
2438 	FXP_LOCK(sc);
2439 	s = splimp();
2440 
2441 	switch (command) {
2442 	case SIOCSIFFLAGS:
2443 		if (ifp->if_flags & IFF_ALLMULTI)
2444 			sc->flags |= FXP_FLAG_ALL_MCAST;
2445 		else
2446 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2447 
2448 		/*
2449 		 * If interface is marked up and not running, then start it.
2450 		 * If it is marked down and running, stop it.
2451 		 * XXX If it's up then re-initialize it. This is so flags
2452 		 * such as IFF_PROMISC are handled.
2453 		 */
2454 		if (ifp->if_flags & IFF_UP) {
2455 			fxp_init_body(sc);
2456 		} else {
2457 			if (ifp->if_flags & IFF_RUNNING)
2458 				fxp_stop(sc);
2459 		}
2460 		break;
2461 
2462 	case SIOCADDMULTI:
2463 	case SIOCDELMULTI:
2464 		if (ifp->if_flags & IFF_ALLMULTI)
2465 			sc->flags |= FXP_FLAG_ALL_MCAST;
2466 		else
2467 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2468 		/*
2469 		 * Multicast list has changed; set the hardware filter
2470 		 * accordingly.
2471 		 */
2472 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2473 			fxp_mc_setup(sc);
2474 		/*
2475 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2476 		 * again rather than else {}.
2477 		 */
2478 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2479 			fxp_init_body(sc);
2480 		error = 0;
2481 		break;
2482 
2483 	case SIOCSIFMEDIA:
2484 	case SIOCGIFMEDIA:
2485 		if (sc->miibus != NULL) {
2486 			mii = device_get_softc(sc->miibus);
2487                         error = ifmedia_ioctl(ifp, ifr,
2488                             &mii->mii_media, command);
2489 		} else {
2490                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2491 		}
2492 		break;
2493 
2494 	case SIOCSIFCAP:
2495 		ifp->if_capenable = ifr->ifr_reqcap;
2496 		break;
2497 
2498 	default:
2499 		/*
2500 		 * ether_ioctl() will eventually call fxp_start() which
2501 		 * will result in mutex recursion so drop it first.
2502 		 */
2503 		FXP_UNLOCK(sc);
2504 		error = ether_ioctl(ifp, command, data);
2505 	}
2506 	if (mtx_owned(&sc->sc_mtx))
2507 		FXP_UNLOCK(sc);
2508 	splx(s);
2509 	return (error);
2510 }
2511 
2512 /*
2513  * Fill in the multicast address list and return number of entries.
2514  */
2515 static int
2516 fxp_mc_addrs(struct fxp_softc *sc)
2517 {
2518 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2519 	struct ifnet *ifp = &sc->sc_if;
2520 	struct ifmultiaddr *ifma;
2521 	int nmcasts;
2522 
2523 	nmcasts = 0;
2524 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2525 #if __FreeBSD_version < 500000
2526 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2527 #else
2528 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2529 #endif
2530 			if (ifma->ifma_addr->sa_family != AF_LINK)
2531 				continue;
2532 			if (nmcasts >= MAXMCADDR) {
2533 				sc->flags |= FXP_FLAG_ALL_MCAST;
2534 				nmcasts = 0;
2535 				break;
2536 			}
2537 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2538 			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2539 			nmcasts++;
2540 		}
2541 	}
2542 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2543 	return (nmcasts);
2544 }
2545 
2546 /*
2547  * Program the multicast filter.
2548  *
2549  * We have an artificial restriction that the multicast setup command
2550  * must be the first command in the chain, so we take steps to ensure
2551  * this. By requiring this, it allows us to keep up the performance of
2552  * the pre-initialized command ring (esp. link pointers) by not actually
2553  * inserting the mcsetup command in the ring - i.e. its link pointer
2554  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2555  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2556  * lead into the regular TxCB ring when it completes.
2557  *
2558  * This function must be called at splimp.
2559  */
2560 static void
2561 fxp_mc_setup(struct fxp_softc *sc)
2562 {
2563 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2564 	struct ifnet *ifp = &sc->sc_if;
2565 	struct fxp_tx *txp;
2566 	int count;
2567 
2568 	/*
2569 	 * If there are queued commands, we must wait until they are all
2570 	 * completed. If we are already waiting, then add a NOP command
2571 	 * with interrupt option so that we're notified when all commands
2572 	 * have been completed - fxp_start() ensures that no additional
2573 	 * TX commands will be added when need_mcsetup is true.
2574 	 */
2575 	if (sc->tx_queued) {
2576 		/*
2577 		 * need_mcsetup will be true if we are already waiting for the
2578 		 * NOP command to be completed (see below). In this case, bail.
2579 		 */
2580 		if (sc->need_mcsetup)
2581 			return;
2582 		sc->need_mcsetup = 1;
2583 
2584 		/*
2585 		 * Add a NOP command with interrupt so that we are notified
2586 		 * when all TX commands have been processed.
2587 		 */
2588 		txp = sc->fxp_desc.tx_last->tx_next;
2589 		txp->tx_mbuf = NULL;
2590 		txp->tx_cb->cb_status = 0;
2591 		txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
2592 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2593 		/*
2594 		 * Advance the end of list forward.
2595 		 */
2596 		sc->fxp_desc.tx_last->tx_cb->cb_command &=
2597 		    htole16(~FXP_CB_COMMAND_S);
2598 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2599 		sc->fxp_desc.tx_last = txp;
2600 		sc->tx_queued++;
2601 		/*
2602 		 * Issue a resume in case the CU has just suspended.
2603 		 */
2604 		fxp_scb_wait(sc);
2605 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2606 		/*
2607 		 * Set a 5 second timer just in case we don't hear from the
2608 		 * card again.
2609 		 */
2610 		ifp->if_timer = 5;
2611 
2612 		return;
2613 	}
2614 	sc->need_mcsetup = 0;
2615 
2616 	/*
2617 	 * Initialize multicast setup descriptor.
2618 	 */
2619 	mcsp->cb_status = 0;
2620 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
2621 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
2622 	mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
2623 	txp = &sc->fxp_desc.mcs_tx;
2624 	txp->tx_mbuf = NULL;
2625 	txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
2626 	txp->tx_next = sc->fxp_desc.tx_list;
2627 	(void) fxp_mc_addrs(sc);
2628 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2629 	sc->tx_queued = 1;
2630 
2631 	/*
2632 	 * Wait until command unit is not active. This should never
2633 	 * be the case when nothing is queued, but make sure anyway.
2634 	 */
2635 	count = 100;
2636 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2637 	    FXP_SCB_CUS_ACTIVE && --count)
2638 		DELAY(10);
2639 	if (count == 0) {
2640 		device_printf(sc->dev, "command queue timeout\n");
2641 		return;
2642 	}
2643 
2644 	/*
2645 	 * Start the multicast setup command.
2646 	 */
2647 	fxp_scb_wait(sc);
2648 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
2649 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
2650 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2651 
2652 	ifp->if_timer = 2;
2653 	return;
2654 }
2655 
2656 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2657 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2658 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2659 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2660 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2661 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2662 
2663 #define UCODE(x)	x, sizeof(x)
2664 
2665 struct ucode {
2666 	u_int32_t	revision;
2667 	u_int32_t	*ucode;
2668 	int		length;
2669 	u_short		int_delay_offset;
2670 	u_short		bundle_max_offset;
2671 } ucode_table[] = {
2672 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2673 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2674 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2675 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2676 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2677 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2678 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2679 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2680 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2681 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2682 	{ 0, NULL, 0, 0, 0 }
2683 };
2684 
2685 static void
2686 fxp_load_ucode(struct fxp_softc *sc)
2687 {
2688 	struct ucode *uc;
2689 	struct fxp_cb_ucode *cbp;
2690 
2691 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2692 		if (sc->revision == uc->revision)
2693 			break;
2694 	if (uc->ucode == NULL)
2695 		return;
2696 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
2697 	cbp->cb_status = 0;
2698 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2699 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
2700 	memcpy(cbp->ucode, uc->ucode, uc->length);
2701 	if (uc->int_delay_offset)
2702 		*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
2703 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
2704 	if (uc->bundle_max_offset)
2705 		*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
2706 		    htole16(sc->tunable_bundle_max);
2707 	/*
2708 	 * Download the ucode to the chip.
2709 	 */
2710 	fxp_scb_wait(sc);
2711 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
2712 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2713 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2714 	/* ...and wait for it to complete. */
2715 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2716 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
2717 	device_printf(sc->dev,
2718 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2719 	    sc->tunable_int_delay,
2720 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2721 	sc->flags |= FXP_FLAG_UCODE;
2722 }
2723 
2724 static int
2725 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2726 {
2727 	int error, value;
2728 
2729 	value = *(int *)arg1;
2730 	error = sysctl_handle_int(oidp, &value, 0, req);
2731 	if (error || !req->newptr)
2732 		return (error);
2733 	if (value < low || value > high)
2734 		return (EINVAL);
2735 	*(int *)arg1 = value;
2736 	return (0);
2737 }
2738 
2739 /*
2740  * Interrupt delay is expressed in microseconds, a multiplier is used
2741  * to convert this to the appropriate clock ticks before using.
2742  */
2743 static int
2744 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2745 {
2746 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2747 }
2748 
2749 static int
2750 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2751 {
2752 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2753 }
2754