xref: /freebsd/sys/dev/fxp/if_fxp.c (revision 1165fc9a526630487a1feb63daef65c5aee1a583)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-NetBSD
3  *
4  * Copyright (c) 1995, David Greenman
5  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 /*
36  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
37  */
38 
39 #ifdef HAVE_KERNEL_OPTION_HEADERS
40 #include "opt_device_polling.h"
41 #endif
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/bus.h>
46 #include <sys/endian.h>
47 #include <sys/kernel.h>
48 #include <sys/mbuf.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/module.h>
52 #include <sys/mutex.h>
53 #include <sys/rman.h>
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <sys/sysctl.h>
57 
58 #include <net/bpf.h>
59 #include <net/ethernet.h>
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_arp.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 #include <net/if_vlan_var.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 
74 #include <machine/bus.h>
75 #include <machine/in_cksum.h>
76 #include <machine/resource.h>
77 
78 #include <dev/pci/pcivar.h>
79 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
80 
81 #include <dev/mii/mii.h>
82 #include <dev/mii/miivar.h>
83 
84 #include <dev/fxp/if_fxpreg.h>
85 #include <dev/fxp/if_fxpvar.h>
86 #include <dev/fxp/rcvbundl.h>
87 
88 MODULE_DEPEND(fxp, pci, 1, 1, 1);
89 MODULE_DEPEND(fxp, ether, 1, 1, 1);
90 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
91 #include "miibus_if.h"
92 
93 /*
94  * NOTE!  On !x86 we typically have an alignment constraint.  The
95  * card DMAs the packet immediately following the RFA.  However,
96  * the first thing in the packet is a 14-byte Ethernet header.
97  * This means that the packet is misaligned.  To compensate,
98  * we actually offset the RFA 2 bytes into the cluster.  This
99  * alignes the packet after the Ethernet header at a 32-bit
100  * boundary.  HOWEVER!  This means that the RFA is misaligned!
101  */
102 #define	RFA_ALIGNMENT_FUDGE	2
103 
104 /*
105  * Set initial transmit threshold at 64 (512 bytes). This is
106  * increased by 64 (512 bytes) at a time, to maximum of 192
107  * (1536 bytes), if an underrun occurs.
108  */
109 static int tx_threshold = 64;
110 
111 /*
112  * The configuration byte map has several undefined fields which
113  * must be one or must be zero.  Set up a template for these bits.
114  * The actual configuration is performed in fxp_init_body.
115  *
116  * See struct fxp_cb_config for the bit definitions.
117  */
118 static const u_char fxp_cb_config_template[] = {
119 	0x0, 0x0,		/* cb_status */
120 	0x0, 0x0,		/* cb_command */
121 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
122 	0x0,	/*  0 */
123 	0x0,	/*  1 */
124 	0x0,	/*  2 */
125 	0x0,	/*  3 */
126 	0x0,	/*  4 */
127 	0x0,	/*  5 */
128 	0x32,	/*  6 */
129 	0x0,	/*  7 */
130 	0x0,	/*  8 */
131 	0x0,	/*  9 */
132 	0x6,	/* 10 */
133 	0x0,	/* 11 */
134 	0x0,	/* 12 */
135 	0x0,	/* 13 */
136 	0xf2,	/* 14 */
137 	0x48,	/* 15 */
138 	0x0,	/* 16 */
139 	0x40,	/* 17 */
140 	0xf0,	/* 18 */
141 	0x0,	/* 19 */
142 	0x3f,	/* 20 */
143 	0x5,	/* 21 */
144 	0x0,	/* 22 */
145 	0x0,	/* 23 */
146 	0x0,	/* 24 */
147 	0x0,	/* 25 */
148 	0x0,	/* 26 */
149 	0x0,	/* 27 */
150 	0x0,	/* 28 */
151 	0x0,	/* 29 */
152 	0x0,	/* 30 */
153 	0x0	/* 31 */
154 };
155 
156 /*
157  * Claim various Intel PCI device identifiers for this driver.  The
158  * sub-vendor and sub-device field are extensively used to identify
159  * particular variants, but we don't currently differentiate between
160  * them.
161  */
162 static const struct fxp_ident fxp_ident_table[] = {
163     { 0x8086, 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
164     { 0x8086, 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
165     { 0x8086, 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
166     { 0x8086, 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
167     { 0x8086, 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
168     { 0x8086, 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
169     { 0x8086, 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
170     { 0x8086, 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
171     { 0x8086, 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
172     { 0x8086, 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
173     { 0x8086, 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
174     { 0x8086, 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
175     { 0x8086, 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
176     { 0x8086, 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
177     { 0x8086, 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
178     { 0x8086, 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
179     { 0x8086, 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
180     { 0x8086, 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
181     { 0x8086, 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
182     { 0x8086, 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
183     { 0x8086, 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
184     { 0x8086, 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
185     { 0x8086, 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
186     { 0x8086, 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
187     { 0x8086, 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
188     { 0x8086, 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
189     { 0x8086, 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
190     { 0x8086, 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
191     { 0x8086, 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
192     { 0x8086, 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
193     { 0x8086, 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
194     { 0x8086, 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
195     { 0x8086, 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
196     { 0x8086, 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
197     { 0x8086, 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
198     { 0x8086, 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
199     { 0x8086, 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
200     { 0x8086, 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
201     { 0x8086, 0x1229,	0x0d,	0, "Intel 82550C Pro/100 Ethernet" },
202     { 0x8086, 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
203     { 0x8086, 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
204     { 0x8086, 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
205     { 0x8086, 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
206     { 0x8086, 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
207     { 0x8086, 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
208     { 0,      0,	-1,	0, NULL },
209 };
210 
211 #ifdef FXP_IP_CSUM_WAR
212 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
213 #else
214 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
215 #endif
216 
217 static int		fxp_probe(device_t dev);
218 static int		fxp_attach(device_t dev);
219 static int		fxp_detach(device_t dev);
220 static int		fxp_shutdown(device_t dev);
221 static int		fxp_suspend(device_t dev);
222 static int		fxp_resume(device_t dev);
223 
224 static const struct fxp_ident *fxp_find_ident(device_t dev);
225 static void		fxp_intr(void *xsc);
226 static void		fxp_rxcsum(struct fxp_softc *sc, if_t ifp,
227 			    struct mbuf *m, uint16_t status, int pos);
228 static int		fxp_intr_body(struct fxp_softc *sc, if_t ifp,
229 			    uint8_t statack, int count);
230 static void 		fxp_init(void *xsc);
231 static void 		fxp_init_body(struct fxp_softc *sc, int);
232 static void 		fxp_tick(void *xsc);
233 static void 		fxp_start(if_t ifp);
234 static void 		fxp_start_body(if_t ifp);
235 static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
236 static void		fxp_txeof(struct fxp_softc *sc);
237 static void		fxp_stop(struct fxp_softc *sc);
238 static void 		fxp_release(struct fxp_softc *sc);
239 static int		fxp_ioctl(if_t ifp, u_long command,
240 			    caddr_t data);
241 static void 		fxp_watchdog(struct fxp_softc *sc);
242 static void		fxp_add_rfabuf(struct fxp_softc *sc,
243 			    struct fxp_rx *rxp);
244 static void		fxp_discard_rfabuf(struct fxp_softc *sc,
245 			    struct fxp_rx *rxp);
246 static int		fxp_new_rfabuf(struct fxp_softc *sc,
247 			    struct fxp_rx *rxp);
248 static void		fxp_mc_addrs(struct fxp_softc *sc);
249 static void		fxp_mc_setup(struct fxp_softc *sc);
250 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
251 			    int autosize);
252 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
253 			    uint16_t data);
254 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
255 static void		fxp_load_eeprom(struct fxp_softc *sc);
256 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
257 			    int offset, int words);
258 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
259 			    int offset, int words);
260 static int		fxp_ifmedia_upd(if_t ifp);
261 static void		fxp_ifmedia_sts(if_t ifp,
262 			    struct ifmediareq *ifmr);
263 static int		fxp_serial_ifmedia_upd(if_t ifp);
264 static void		fxp_serial_ifmedia_sts(if_t ifp,
265 			    struct ifmediareq *ifmr);
266 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
267 static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
268 			    int value);
269 static void		fxp_miibus_statchg(device_t dev);
270 static void		fxp_load_ucode(struct fxp_softc *sc);
271 static void		fxp_update_stats(struct fxp_softc *sc);
272 static void		fxp_sysctl_node(struct fxp_softc *sc);
273 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
274 			    int low, int high);
275 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
276 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
277 static void 		fxp_scb_wait(struct fxp_softc *sc);
278 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
279 static void		fxp_dma_wait(struct fxp_softc *sc,
280 			    volatile uint16_t *status, bus_dma_tag_t dmat,
281 			    bus_dmamap_t map);
282 
283 static device_method_t fxp_methods[] = {
284 	/* Device interface */
285 	DEVMETHOD(device_probe,		fxp_probe),
286 	DEVMETHOD(device_attach,	fxp_attach),
287 	DEVMETHOD(device_detach,	fxp_detach),
288 	DEVMETHOD(device_shutdown,	fxp_shutdown),
289 	DEVMETHOD(device_suspend,	fxp_suspend),
290 	DEVMETHOD(device_resume,	fxp_resume),
291 
292 	/* MII interface */
293 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
294 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
295 	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
296 
297 	DEVMETHOD_END
298 };
299 
300 static driver_t fxp_driver = {
301 	"fxp",
302 	fxp_methods,
303 	sizeof(struct fxp_softc),
304 };
305 
306 DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, NULL, NULL, SI_ORDER_ANY);
307 MODULE_PNP_INFO("U16:vendor;U16:device", pci, fxp, fxp_ident_table,
308     nitems(fxp_ident_table) - 1);
309 DRIVER_MODULE(miibus, fxp, miibus_driver, NULL, NULL);
310 
311 static struct resource_spec fxp_res_spec_mem[] = {
312 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
313 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
314 	{ -1, 0 }
315 };
316 
317 static struct resource_spec fxp_res_spec_io[] = {
318 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
319 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
320 	{ -1, 0 }
321 };
322 
323 /*
324  * Wait for the previous command to be accepted (but not necessarily
325  * completed).
326  */
327 static void
328 fxp_scb_wait(struct fxp_softc *sc)
329 {
330 	union {
331 		uint16_t w;
332 		uint8_t b[2];
333 	} flowctl;
334 	int i = 10000;
335 
336 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
337 		DELAY(2);
338 	if (i == 0) {
339 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
340 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
341 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
342 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
343 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
344 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
345 	}
346 }
347 
348 static void
349 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
350 {
351 
352 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
353 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
354 		fxp_scb_wait(sc);
355 	}
356 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
357 }
358 
359 static void
360 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
361     bus_dma_tag_t dmat, bus_dmamap_t map)
362 {
363 	int i;
364 
365 	for (i = 10000; i > 0; i--) {
366 		DELAY(2);
367 		bus_dmamap_sync(dmat, map,
368 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
369 		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
370 			break;
371 	}
372 	if (i == 0)
373 		device_printf(sc->dev, "DMA timeout\n");
374 }
375 
376 static const struct fxp_ident *
377 fxp_find_ident(device_t dev)
378 {
379 	uint16_t vendor;
380 	uint16_t device;
381 	uint8_t revid;
382 	const struct fxp_ident *ident;
383 
384 	vendor = pci_get_vendor(dev);
385 	device = pci_get_device(dev);
386 	revid = pci_get_revid(dev);
387 	for (ident = fxp_ident_table; ident->name != NULL; ident++) {
388 		if (ident->vendor == vendor && ident->device == device &&
389 		    (ident->revid == revid || ident->revid == -1)) {
390 			return (ident);
391 		}
392 	}
393 	return (NULL);
394 }
395 
396 /*
397  * Return identification string if this device is ours.
398  */
399 static int
400 fxp_probe(device_t dev)
401 {
402 	const struct fxp_ident *ident;
403 
404 	ident = fxp_find_ident(dev);
405 	if (ident != NULL) {
406 		device_set_desc(dev, ident->name);
407 		return (BUS_PROBE_DEFAULT);
408 	}
409 	return (ENXIO);
410 }
411 
412 static void
413 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
414 {
415 	uint32_t *addr;
416 
417 	if (error)
418 		return;
419 
420 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
421 	addr = arg;
422 	*addr = segs->ds_addr;
423 }
424 
425 static int
426 fxp_attach(device_t dev)
427 {
428 	struct fxp_softc *sc;
429 	struct fxp_cb_tx *tcbp;
430 	struct fxp_tx *txp;
431 	struct fxp_rx *rxp;
432 	if_t ifp;
433 	uint32_t val;
434 	uint16_t data;
435 	u_char eaddr[ETHER_ADDR_LEN];
436 	int error, flags, i, pmc, prefer_iomap;
437 
438 	error = 0;
439 	sc = device_get_softc(dev);
440 	sc->dev = dev;
441 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
442 	    MTX_DEF);
443 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
444 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
445 	    fxp_serial_ifmedia_sts);
446 
447 	ifp = sc->ifp = if_gethandle(IFT_ETHER);
448 	if (ifp == (void *)NULL) {
449 		device_printf(dev, "can not if_alloc()\n");
450 		error = ENOSPC;
451 		goto fail;
452 	}
453 
454 	/*
455 	 * Enable bus mastering.
456 	 */
457 	pci_enable_busmaster(dev);
458 
459 	/*
460 	 * Figure out which we should try first - memory mapping or i/o mapping?
461 	 * We default to memory mapping. Then we accept an override from the
462 	 * command line. Then we check to see which one is enabled.
463 	 */
464 	prefer_iomap = 0;
465 	resource_int_value(device_get_name(dev), device_get_unit(dev),
466 	    "prefer_iomap", &prefer_iomap);
467 	if (prefer_iomap)
468 		sc->fxp_spec = fxp_res_spec_io;
469 	else
470 		sc->fxp_spec = fxp_res_spec_mem;
471 
472 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
473 	if (error) {
474 		if (sc->fxp_spec == fxp_res_spec_mem)
475 			sc->fxp_spec = fxp_res_spec_io;
476 		else
477 			sc->fxp_spec = fxp_res_spec_mem;
478 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
479 	}
480 	if (error) {
481 		device_printf(dev, "could not allocate resources\n");
482 		error = ENXIO;
483 		goto fail;
484 	}
485 
486 	if (bootverbose) {
487 		device_printf(dev, "using %s space register mapping\n",
488 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
489 	}
490 
491 	/*
492 	 * Put CU/RU idle state and prepare full reset.
493 	 */
494 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
495 	DELAY(10);
496 	/* Full reset and disable interrupts. */
497 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
498 	DELAY(10);
499 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
500 
501 	/*
502 	 * Find out how large of an SEEPROM we have.
503 	 */
504 	fxp_autosize_eeprom(sc);
505 	fxp_load_eeprom(sc);
506 
507 	/*
508 	 * Find out the chip revision; lump all 82557 revs together.
509 	 */
510 	sc->ident = fxp_find_ident(dev);
511 	if (sc->ident->ich > 0) {
512 		/* Assume ICH controllers are 82559. */
513 		sc->revision = FXP_REV_82559_A0;
514 	} else {
515 		data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
516 		if ((data >> 8) == 1)
517 			sc->revision = FXP_REV_82557;
518 		else
519 			sc->revision = pci_get_revid(dev);
520 	}
521 
522 	/*
523 	 * Check availability of WOL. 82559ER does not support WOL.
524 	 */
525 	if (sc->revision >= FXP_REV_82558_A4 &&
526 	    sc->revision != FXP_REV_82559S_A) {
527 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
528 		if ((data & 0x20) != 0 &&
529 		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
530 			sc->flags |= FXP_FLAG_WOLCAP;
531 	}
532 
533 	if (sc->revision == FXP_REV_82550_C) {
534 		/*
535 		 * 82550C with server extension requires microcode to
536 		 * receive fragmented UDP datagrams.  However if the
537 		 * microcode is used for client-only featured 82550C
538 		 * it locks up controller.
539 		 */
540 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
541 		if ((data & 0x0400) == 0)
542 			sc->flags |= FXP_FLAG_NO_UCODE;
543 	}
544 
545 	/* Receiver lock-up workaround detection. */
546 	if (sc->revision < FXP_REV_82558_A4) {
547 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
548 		if ((data & 0x03) != 0x03) {
549 			sc->flags |= FXP_FLAG_RXBUG;
550 			device_printf(dev, "Enabling Rx lock-up workaround\n");
551 		}
552 	}
553 
554 	/*
555 	 * Determine whether we must use the 503 serial interface.
556 	 */
557 	data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
558 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
559 	    && (data & FXP_PHY_SERIAL_ONLY))
560 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
561 
562 	fxp_sysctl_node(sc);
563 	/*
564 	 * Enable workarounds for certain chip revision deficiencies.
565 	 *
566 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
567 	 * some systems based a normal 82559 design, have a defect where
568 	 * the chip can cause a PCI protocol violation if it receives
569 	 * a CU_RESUME command when it is entering the IDLE state.  The
570 	 * workaround is to disable Dynamic Standby Mode, so the chip never
571 	 * deasserts CLKRUN#, and always remains in an active state.
572 	 *
573 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
574 	 */
575 	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
576 	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
577 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
578 		if (data & 0x02) {			/* STB enable */
579 			uint16_t cksum;
580 			int i;
581 
582 			device_printf(dev,
583 			    "Disabling dynamic standby mode in EEPROM\n");
584 			data &= ~0x02;
585 			sc->eeprom[FXP_EEPROM_MAP_ID] = data;
586 			fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
587 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
588 			cksum = 0;
589 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
590 				cksum += sc->eeprom[i];
591 			i = (1 << sc->eeprom_size) - 1;
592 			cksum = 0xBABA - cksum;
593 			fxp_write_eeprom(sc, &cksum, i, 1);
594 			device_printf(dev,
595 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
596 			    i, sc->eeprom[i], cksum);
597 			sc->eeprom[i] = cksum;
598 			/*
599 			 * If the user elects to continue, try the software
600 			 * workaround, as it is better than nothing.
601 			 */
602 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
603 		}
604 	}
605 
606 	/*
607 	 * If we are not a 82557 chip, we can enable extended features.
608 	 */
609 	if (sc->revision != FXP_REV_82557) {
610 		/*
611 		 * If MWI is enabled in the PCI configuration, and there
612 		 * is a valid cacheline size (8 or 16 dwords), then tell
613 		 * the board to turn on MWI.
614 		 */
615 		val = pci_read_config(dev, PCIR_COMMAND, 2);
616 		if (val & PCIM_CMD_MWRICEN &&
617 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
618 			sc->flags |= FXP_FLAG_MWI_ENABLE;
619 
620 		/* turn on the extended TxCB feature */
621 		sc->flags |= FXP_FLAG_EXT_TXCB;
622 
623 		/* enable reception of long frames for VLAN */
624 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
625 	} else {
626 		/* a hack to get long VLAN frames on a 82557 */
627 		sc->flags |= FXP_FLAG_SAVE_BAD;
628 	}
629 
630 	/* For 82559 or later chips, Rx checksum offload is supported. */
631 	if (sc->revision >= FXP_REV_82559_A0) {
632 		/* 82559ER does not support Rx checksum offloading. */
633 		if (sc->ident->device != 0x1209)
634 			sc->flags |= FXP_FLAG_82559_RXCSUM;
635 	}
636 	/*
637 	 * Enable use of extended RFDs and TCBs for 82550
638 	 * and later chips. Note: we need extended TXCB support
639 	 * too, but that's already enabled by the code above.
640 	 * Be careful to do this only on the right devices.
641 	 */
642 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
643 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
644 	    || sc->revision == FXP_REV_82551_10) {
645 		sc->rfa_size = sizeof (struct fxp_rfa);
646 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
647 		sc->flags |= FXP_FLAG_EXT_RFA;
648 		/* Use extended RFA instead of 82559 checksum mode. */
649 		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
650 	} else {
651 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
652 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
653 	}
654 
655 	/*
656 	 * Allocate DMA tags and DMA safe memory.
657 	 */
658 	sc->maxtxseg = FXP_NTXSEG;
659 	sc->maxsegsize = MCLBYTES;
660 	if (sc->flags & FXP_FLAG_EXT_RFA) {
661 		sc->maxtxseg--;
662 		sc->maxsegsize = FXP_TSO_SEGSIZE;
663 	}
664 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
665 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
666 	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
667 	    sc->maxtxseg, sc->maxsegsize, 0, NULL, NULL, &sc->fxp_txmtag);
668 	if (error) {
669 		device_printf(dev, "could not create TX DMA tag\n");
670 		goto fail;
671 	}
672 
673 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
674 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
675 	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->fxp_rxmtag);
676 	if (error) {
677 		device_printf(dev, "could not create RX DMA tag\n");
678 		goto fail;
679 	}
680 
681 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
682 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
683 	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
684 	    NULL, NULL, &sc->fxp_stag);
685 	if (error) {
686 		device_printf(dev, "could not create stats DMA tag\n");
687 		goto fail;
688 	}
689 
690 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
691 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
692 	if (error) {
693 		device_printf(dev, "could not allocate stats DMA memory\n");
694 		goto fail;
695 	}
696 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
697 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
698 	    BUS_DMA_NOWAIT);
699 	if (error) {
700 		device_printf(dev, "could not load the stats DMA buffer\n");
701 		goto fail;
702 	}
703 
704 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
705 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
706 	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0, NULL, NULL, &sc->cbl_tag);
707 	if (error) {
708 		device_printf(dev, "could not create TxCB DMA tag\n");
709 		goto fail;
710 	}
711 
712 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
713 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
714 	if (error) {
715 		device_printf(dev, "could not allocate TxCB DMA memory\n");
716 		goto fail;
717 	}
718 
719 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
720 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
721 	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
722 	if (error) {
723 		device_printf(dev, "could not load TxCB DMA buffer\n");
724 		goto fail;
725 	}
726 
727 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
728 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
729 	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
730 	    NULL, NULL, &sc->mcs_tag);
731 	if (error) {
732 		device_printf(dev,
733 		    "could not create multicast setup DMA tag\n");
734 		goto fail;
735 	}
736 
737 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
738 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
739 	if (error) {
740 		device_printf(dev,
741 		    "could not allocate multicast setup DMA memory\n");
742 		goto fail;
743 	}
744 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
745 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
746 	    BUS_DMA_NOWAIT);
747 	if (error) {
748 		device_printf(dev,
749 		    "can't load the multicast setup DMA buffer\n");
750 		goto fail;
751 	}
752 
753 	/*
754 	 * Pre-allocate the TX DMA maps and setup the pointers to
755 	 * the TX command blocks.
756 	 */
757 	txp = sc->fxp_desc.tx_list;
758 	tcbp = sc->fxp_desc.cbl_list;
759 	for (i = 0; i < FXP_NTXCB; i++) {
760 		txp[i].tx_cb = tcbp + i;
761 		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
762 		if (error) {
763 			device_printf(dev, "can't create DMA map for TX\n");
764 			goto fail;
765 		}
766 	}
767 	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
768 	if (error) {
769 		device_printf(dev, "can't create spare DMA map\n");
770 		goto fail;
771 	}
772 
773 	/*
774 	 * Pre-allocate our receive buffers.
775 	 */
776 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
777 	for (i = 0; i < FXP_NRFABUFS; i++) {
778 		rxp = &sc->fxp_desc.rx_list[i];
779 		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
780 		if (error) {
781 			device_printf(dev, "can't create DMA map for RX\n");
782 			goto fail;
783 		}
784 		if (fxp_new_rfabuf(sc, rxp) != 0) {
785 			error = ENOMEM;
786 			goto fail;
787 		}
788 		fxp_add_rfabuf(sc, rxp);
789 	}
790 
791 	/*
792 	 * Read MAC address.
793 	 */
794 	eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
795 	eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
796 	eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
797 	eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
798 	eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
799 	eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
800 	if (bootverbose) {
801 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
802 		    pci_get_vendor(dev), pci_get_device(dev),
803 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
804 		    pci_get_revid(dev));
805 		device_printf(dev, "Dynamic Standby mode is %s\n",
806 		    sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
807 		    "disabled");
808 	}
809 
810 	/*
811 	 * If this is only a 10Mbps device, then there is no MII, and
812 	 * the PHY will use a serial interface instead.
813 	 *
814 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
815 	 * doesn't have a programming interface of any sort.  The
816 	 * media is sensed automatically based on how the link partner
817 	 * is configured.  This is, in essence, manual configuration.
818 	 */
819 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
820 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
821 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
822 	} else {
823 		/*
824 		 * i82557 wedge when isolating all of their PHYs.
825 		 */
826 		flags = MIIF_NOISOLATE;
827 		if (sc->revision >= FXP_REV_82558_A4)
828 			flags |= MIIF_DOPAUSE;
829 		error = mii_attach(dev, &sc->miibus, ifp,
830 		    (ifm_change_cb_t)fxp_ifmedia_upd,
831 		    (ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK,
832 		    MII_PHY_ANY, MII_OFFSET_ANY, flags);
833 		if (error != 0) {
834 			device_printf(dev, "attaching PHYs failed\n");
835 			goto fail;
836 		}
837 	}
838 
839 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
840 	if_setdev(ifp, dev);
841 	if_setinitfn(ifp, fxp_init);
842 	if_setsoftc(ifp, sc);
843 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
844 	if_setioctlfn(ifp, fxp_ioctl);
845 	if_setstartfn(ifp, fxp_start);
846 
847 	if_setcapabilities(ifp, 0);
848 	if_setcapenable(ifp, 0);
849 
850 	/* Enable checksum offload/TSO for 82550 or better chips */
851 	if (sc->flags & FXP_FLAG_EXT_RFA) {
852 		if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO);
853 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
854 		if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
855 	}
856 
857 	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
858 		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
859 		if_setcapenablebit(ifp, IFCAP_RXCSUM, 0);
860 	}
861 
862 	if (sc->flags & FXP_FLAG_WOLCAP) {
863 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
864 		if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0);
865 	}
866 
867 #ifdef DEVICE_POLLING
868 	/* Inform the world we support polling. */
869 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
870 #endif
871 
872 	/*
873 	 * Attach the interface.
874 	 */
875 	ether_ifattach(ifp, eaddr);
876 
877 	/*
878 	 * Tell the upper layer(s) we support long frames.
879 	 * Must appear after the call to ether_ifattach() because
880 	 * ether_ifattach() sets ifi_hdrlen to the default value.
881 	 */
882 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
883 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
884 	if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
885 	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
886 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING |
887 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
888 		if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING |
889 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
890 	}
891 
892 	/*
893 	 * Let the system queue as many packets as we have available
894 	 * TX descriptors.
895 	 */
896 	if_setsendqlen(ifp, FXP_NTXCB - 1);
897 	if_setsendqready(ifp);
898 
899 	/*
900 	 * Hook our interrupt after all initialization is complete.
901 	 */
902 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
903 			       NULL, fxp_intr, sc, &sc->ih);
904 	if (error) {
905 		device_printf(dev, "could not setup irq\n");
906 		ether_ifdetach(sc->ifp);
907 		goto fail;
908 	}
909 
910 	/*
911 	 * Configure hardware to reject magic frames otherwise
912 	 * system will hang on recipt of magic frames.
913 	 */
914 	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
915 		FXP_LOCK(sc);
916 		/* Clear wakeup events. */
917 		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
918 		fxp_init_body(sc, 0);
919 		fxp_stop(sc);
920 		FXP_UNLOCK(sc);
921 	}
922 
923 fail:
924 	if (error)
925 		fxp_release(sc);
926 	return (error);
927 }
928 
929 /*
930  * Release all resources.  The softc lock should not be held and the
931  * interrupt should already be torn down.
932  */
933 static void
934 fxp_release(struct fxp_softc *sc)
935 {
936 	struct fxp_rx *rxp;
937 	struct fxp_tx *txp;
938 	int i;
939 
940 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
941 	KASSERT(sc->ih == NULL,
942 	    ("fxp_release() called with intr handle still active"));
943 	if (sc->miibus)
944 		device_delete_child(sc->dev, sc->miibus);
945 	bus_generic_detach(sc->dev);
946 	ifmedia_removeall(&sc->sc_media);
947 	if (sc->fxp_desc.cbl_list) {
948 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
949 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
950 		    sc->cbl_map);
951 	}
952 	if (sc->fxp_stats) {
953 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
954 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
955 	}
956 	if (sc->mcsp) {
957 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
958 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
959 	}
960 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
961 	if (sc->fxp_rxmtag) {
962 		for (i = 0; i < FXP_NRFABUFS; i++) {
963 			rxp = &sc->fxp_desc.rx_list[i];
964 			if (rxp->rx_mbuf != NULL) {
965 				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
966 				    BUS_DMASYNC_POSTREAD);
967 				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
968 				m_freem(rxp->rx_mbuf);
969 			}
970 			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
971 		}
972 		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
973 		bus_dma_tag_destroy(sc->fxp_rxmtag);
974 	}
975 	if (sc->fxp_txmtag) {
976 		for (i = 0; i < FXP_NTXCB; i++) {
977 			txp = &sc->fxp_desc.tx_list[i];
978 			if (txp->tx_mbuf != NULL) {
979 				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
980 				    BUS_DMASYNC_POSTWRITE);
981 				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
982 				m_freem(txp->tx_mbuf);
983 			}
984 			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
985 		}
986 		bus_dma_tag_destroy(sc->fxp_txmtag);
987 	}
988 	if (sc->fxp_stag)
989 		bus_dma_tag_destroy(sc->fxp_stag);
990 	if (sc->cbl_tag)
991 		bus_dma_tag_destroy(sc->cbl_tag);
992 	if (sc->mcs_tag)
993 		bus_dma_tag_destroy(sc->mcs_tag);
994 	if (sc->ifp)
995 		if_free(sc->ifp);
996 
997 	mtx_destroy(&sc->sc_mtx);
998 }
999 
1000 /*
1001  * Detach interface.
1002  */
1003 static int
1004 fxp_detach(device_t dev)
1005 {
1006 	struct fxp_softc *sc = device_get_softc(dev);
1007 
1008 #ifdef DEVICE_POLLING
1009 	if (if_getcapenable(sc->ifp) & IFCAP_POLLING)
1010 		ether_poll_deregister(sc->ifp);
1011 #endif
1012 
1013 	FXP_LOCK(sc);
1014 	/*
1015 	 * Stop DMA and drop transmit queue, but disable interrupts first.
1016 	 */
1017 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1018 	fxp_stop(sc);
1019 	FXP_UNLOCK(sc);
1020 	callout_drain(&sc->stat_ch);
1021 
1022 	/*
1023 	 * Close down routes etc.
1024 	 */
1025 	ether_ifdetach(sc->ifp);
1026 
1027 	/*
1028 	 * Unhook interrupt before dropping lock. This is to prevent
1029 	 * races with fxp_intr().
1030 	 */
1031 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1032 	sc->ih = NULL;
1033 
1034 	/* Release our allocated resources. */
1035 	fxp_release(sc);
1036 	return (0);
1037 }
1038 
1039 /*
1040  * Device shutdown routine. Called at system shutdown after sync. The
1041  * main purpose of this routine is to shut off receiver DMA so that
1042  * kernel memory doesn't get clobbered during warmboot.
1043  */
1044 static int
1045 fxp_shutdown(device_t dev)
1046 {
1047 
1048 	/*
1049 	 * Make sure that DMA is disabled prior to reboot. Not doing
1050 	 * do could allow DMA to corrupt kernel memory during the
1051 	 * reboot before the driver initializes.
1052 	 */
1053 	return (fxp_suspend(dev));
1054 }
1055 
1056 /*
1057  * Device suspend routine.  Stop the interface and save some PCI
1058  * settings in case the BIOS doesn't restore them properly on
1059  * resume.
1060  */
1061 static int
1062 fxp_suspend(device_t dev)
1063 {
1064 	struct fxp_softc *sc = device_get_softc(dev);
1065 	if_t ifp;
1066 	int pmc;
1067 	uint16_t pmstat;
1068 
1069 	FXP_LOCK(sc);
1070 
1071 	ifp = sc->ifp;
1072 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1073 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1074 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1075 		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1076 			/* Request PME. */
1077 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1078 			sc->flags |= FXP_FLAG_WOL;
1079 			/* Reconfigure hardware to accept magic frames. */
1080 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1081 			fxp_init_body(sc, 0);
1082 		}
1083 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1084 	}
1085 	fxp_stop(sc);
1086 
1087 	sc->suspended = 1;
1088 
1089 	FXP_UNLOCK(sc);
1090 	return (0);
1091 }
1092 
1093 /*
1094  * Device resume routine. re-enable busmastering, and restart the interface if
1095  * appropriate.
1096  */
1097 static int
1098 fxp_resume(device_t dev)
1099 {
1100 	struct fxp_softc *sc = device_get_softc(dev);
1101 	if_t ifp = sc->ifp;
1102 	int pmc;
1103 	uint16_t pmstat;
1104 
1105 	FXP_LOCK(sc);
1106 
1107 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1108 		sc->flags &= ~FXP_FLAG_WOL;
1109 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1110 		/* Disable PME and clear PME status. */
1111 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1112 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1113 		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1114 			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1115 			    CSR_READ_1(sc, FXP_CSR_PMDR));
1116 	}
1117 
1118 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1119 	DELAY(10);
1120 
1121 	/* reinitialize interface if necessary */
1122 	if (if_getflags(ifp) & IFF_UP)
1123 		fxp_init_body(sc, 1);
1124 
1125 	sc->suspended = 0;
1126 
1127 	FXP_UNLOCK(sc);
1128 	return (0);
1129 }
1130 
1131 static void
1132 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1133 {
1134 	uint16_t reg;
1135 	int x;
1136 
1137 	/*
1138 	 * Shift in data.
1139 	 */
1140 	for (x = 1 << (length - 1); x; x >>= 1) {
1141 		if (data & x)
1142 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1143 		else
1144 			reg = FXP_EEPROM_EECS;
1145 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1146 		DELAY(1);
1147 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1148 		DELAY(1);
1149 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1150 		DELAY(1);
1151 	}
1152 }
1153 
1154 /*
1155  * Read from the serial EEPROM. Basically, you manually shift in
1156  * the read opcode (one bit at a time) and then shift in the address,
1157  * and then you shift out the data (all of this one bit at a time).
1158  * The word size is 16 bits, so you have to provide the address for
1159  * every 16 bits of data.
1160  */
1161 static uint16_t
1162 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1163 {
1164 	uint16_t reg, data;
1165 	int x;
1166 
1167 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1168 	/*
1169 	 * Shift in read opcode.
1170 	 */
1171 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1172 	/*
1173 	 * Shift in address.
1174 	 */
1175 	data = 0;
1176 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1177 		if (offset & x)
1178 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1179 		else
1180 			reg = FXP_EEPROM_EECS;
1181 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1182 		DELAY(1);
1183 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1184 		DELAY(1);
1185 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1186 		DELAY(1);
1187 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1188 		data++;
1189 		if (autosize && reg == 0) {
1190 			sc->eeprom_size = data;
1191 			break;
1192 		}
1193 	}
1194 	/*
1195 	 * Shift out data.
1196 	 */
1197 	data = 0;
1198 	reg = FXP_EEPROM_EECS;
1199 	for (x = 1 << 15; x; x >>= 1) {
1200 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1201 		DELAY(1);
1202 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1203 			data |= x;
1204 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1205 		DELAY(1);
1206 	}
1207 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1208 	DELAY(1);
1209 
1210 	return (data);
1211 }
1212 
1213 static void
1214 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1215 {
1216 	int i;
1217 
1218 	/*
1219 	 * Erase/write enable.
1220 	 */
1221 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1222 	fxp_eeprom_shiftin(sc, 0x4, 3);
1223 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1224 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1225 	DELAY(1);
1226 	/*
1227 	 * Shift in write opcode, address, data.
1228 	 */
1229 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1230 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1231 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1232 	fxp_eeprom_shiftin(sc, data, 16);
1233 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1234 	DELAY(1);
1235 	/*
1236 	 * Wait for EEPROM to finish up.
1237 	 */
1238 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1239 	DELAY(1);
1240 	for (i = 0; i < 1000; i++) {
1241 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1242 			break;
1243 		DELAY(50);
1244 	}
1245 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1246 	DELAY(1);
1247 	/*
1248 	 * Erase/write disable.
1249 	 */
1250 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1251 	fxp_eeprom_shiftin(sc, 0x4, 3);
1252 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1253 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1254 	DELAY(1);
1255 }
1256 
1257 /*
1258  * From NetBSD:
1259  *
1260  * Figure out EEPROM size.
1261  *
1262  * 559's can have either 64-word or 256-word EEPROMs, the 558
1263  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1264  * talks about the existence of 16 to 256 word EEPROMs.
1265  *
1266  * The only known sizes are 64 and 256, where the 256 version is used
1267  * by CardBus cards to store CIS information.
1268  *
1269  * The address is shifted in msb-to-lsb, and after the last
1270  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1271  * after which follows the actual data. We try to detect this zero, by
1272  * probing the data-out bit in the EEPROM control register just after
1273  * having shifted in a bit. If the bit is zero, we assume we've
1274  * shifted enough address bits. The data-out should be tri-state,
1275  * before this, which should translate to a logical one.
1276  */
1277 static void
1278 fxp_autosize_eeprom(struct fxp_softc *sc)
1279 {
1280 
1281 	/* guess maximum size of 256 words */
1282 	sc->eeprom_size = 8;
1283 
1284 	/* autosize */
1285 	(void) fxp_eeprom_getword(sc, 0, 1);
1286 }
1287 
1288 static void
1289 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1290 {
1291 	int i;
1292 
1293 	for (i = 0; i < words; i++)
1294 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1295 }
1296 
1297 static void
1298 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1299 {
1300 	int i;
1301 
1302 	for (i = 0; i < words; i++)
1303 		fxp_eeprom_putword(sc, offset + i, data[i]);
1304 }
1305 
1306 static void
1307 fxp_load_eeprom(struct fxp_softc *sc)
1308 {
1309 	int i;
1310 	uint16_t cksum;
1311 
1312 	fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1313 	cksum = 0;
1314 	for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1315 		cksum += sc->eeprom[i];
1316 	cksum = 0xBABA - cksum;
1317 	if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1318 		device_printf(sc->dev,
1319 		    "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1320 		    cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1321 }
1322 
1323 /*
1324  * Grab the softc lock and call the real fxp_start_body() routine
1325  */
1326 static void
1327 fxp_start(if_t ifp)
1328 {
1329 	struct fxp_softc *sc = if_getsoftc(ifp);
1330 
1331 	FXP_LOCK(sc);
1332 	fxp_start_body(ifp);
1333 	FXP_UNLOCK(sc);
1334 }
1335 
1336 /*
1337  * Start packet transmission on the interface.
1338  * This routine must be called with the softc lock held, and is an
1339  * internal entry point only.
1340  */
1341 static void
1342 fxp_start_body(if_t ifp)
1343 {
1344 	struct fxp_softc *sc = if_getsoftc(ifp);
1345 	struct mbuf *mb_head;
1346 	int txqueued;
1347 
1348 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1349 
1350 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1351 	    IFF_DRV_RUNNING)
1352 		return;
1353 
1354 	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1355 		fxp_txeof(sc);
1356 	/*
1357 	 * We're finished if there is nothing more to add to the list or if
1358 	 * we're all filled up with buffers to transmit.
1359 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1360 	 *       a NOP command when needed.
1361 	 */
1362 	txqueued = 0;
1363 	while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) {
1364 
1365 		/*
1366 		 * Grab a packet to transmit.
1367 		 */
1368 		mb_head = if_dequeue(ifp);
1369 		if (mb_head == NULL)
1370 			break;
1371 
1372 		if (fxp_encap(sc, &mb_head)) {
1373 			if (mb_head == NULL)
1374 				break;
1375 			if_sendq_prepend(ifp, mb_head);
1376 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1377 		}
1378 		txqueued++;
1379 		/*
1380 		 * Pass packet to bpf if there is a listener.
1381 		 */
1382 		if_bpfmtap(ifp, mb_head);
1383 	}
1384 
1385 	/*
1386 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1387 	 * going again if suspended.
1388 	 */
1389 	if (txqueued > 0) {
1390 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1391 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1392 		fxp_scb_wait(sc);
1393 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1394 		/*
1395 		 * Set a 5 second timer just in case we don't hear
1396 		 * from the card again.
1397 		 */
1398 		sc->watchdog_timer = 5;
1399 	}
1400 }
1401 
1402 static int
1403 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1404 {
1405 	struct mbuf *m;
1406 	struct fxp_tx *txp;
1407 	struct fxp_cb_tx *cbp;
1408 	struct tcphdr *tcp;
1409 	bus_dma_segment_t segs[FXP_NTXSEG];
1410 	int error, i, nseg, tcp_payload;
1411 
1412 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1413 
1414 	tcp_payload = 0;
1415 	tcp = NULL;
1416 	/*
1417 	 * Get pointer to next available tx desc.
1418 	 */
1419 	txp = sc->fxp_desc.tx_last->tx_next;
1420 
1421 	/*
1422 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1423 	 * Ethernet Controller Family Open Source Software
1424 	 * Developer Manual says:
1425 	 *   Using software parsing is only allowed with legal
1426 	 *   TCP/IP or UDP/IP packets.
1427 	 *   ...
1428 	 *   For all other datagrams, hardware parsing must
1429 	 *   be used.
1430 	 * Software parsing appears to truncate ICMP and
1431 	 * fragmented UDP packets that contain one to three
1432 	 * bytes in the second (and final) mbuf of the packet.
1433 	 */
1434 	if (sc->flags & FXP_FLAG_EXT_RFA)
1435 		txp->tx_cb->ipcb_ip_activation_high =
1436 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1437 
1438 	m = *m_head;
1439 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1440 		/*
1441 		 * 82550/82551 requires ethernet/IP/TCP headers must be
1442 		 * contained in the first active transmit buffer.
1443 		 */
1444 		struct ether_header *eh;
1445 		struct ip *ip;
1446 		uint32_t ip_off, poff;
1447 
1448 		if (M_WRITABLE(*m_head) == 0) {
1449 			/* Get a writable copy. */
1450 			m = m_dup(*m_head, M_NOWAIT);
1451 			m_freem(*m_head);
1452 			if (m == NULL) {
1453 				*m_head = NULL;
1454 				return (ENOBUFS);
1455 			}
1456 			*m_head = m;
1457 		}
1458 		ip_off = sizeof(struct ether_header);
1459 		m = m_pullup(*m_head, ip_off);
1460 		if (m == NULL) {
1461 			*m_head = NULL;
1462 			return (ENOBUFS);
1463 		}
1464 		eh = mtod(m, struct ether_header *);
1465 		/* Check the existence of VLAN tag. */
1466 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1467 			ip_off = sizeof(struct ether_vlan_header);
1468 			m = m_pullup(m, ip_off);
1469 			if (m == NULL) {
1470 				*m_head = NULL;
1471 				return (ENOBUFS);
1472 			}
1473 		}
1474 		m = m_pullup(m, ip_off + sizeof(struct ip));
1475 		if (m == NULL) {
1476 			*m_head = NULL;
1477 			return (ENOBUFS);
1478 		}
1479 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1480 		poff = ip_off + (ip->ip_hl << 2);
1481 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1482 		if (m == NULL) {
1483 			*m_head = NULL;
1484 			return (ENOBUFS);
1485 		}
1486 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1487 		m = m_pullup(m, poff + (tcp->th_off << 2));
1488 		if (m == NULL) {
1489 			*m_head = NULL;
1490 			return (ENOBUFS);
1491 		}
1492 
1493 		/*
1494 		 * Since 82550/82551 doesn't modify IP length and pseudo
1495 		 * checksum in the first frame driver should compute it.
1496 		 */
1497 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1498 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1499 		ip->ip_sum = 0;
1500 		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1501 		    (tcp->th_off << 2));
1502 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1503 		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1504 		    m->m_pkthdr.tso_segsz));
1505 		/* Compute total TCP payload. */
1506 		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1507 		tcp_payload -= tcp->th_off << 2;
1508 		*m_head = m;
1509 	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1510 		/*
1511 		 * Deal with TCP/IP checksum offload. Note that
1512 		 * in order for TCP checksum offload to work,
1513 		 * the pseudo header checksum must have already
1514 		 * been computed and stored in the checksum field
1515 		 * in the TCP header. The stack should have
1516 		 * already done this for us.
1517 		 */
1518 		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1519 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1520 			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1521 
1522 #ifdef FXP_IP_CSUM_WAR
1523 		/*
1524 		 * XXX The 82550 chip appears to have trouble
1525 		 * dealing with IP header checksums in very small
1526 		 * datagrams, namely fragments from 1 to 3 bytes
1527 		 * in size. For example, say you want to transmit
1528 		 * a UDP packet of 1473 bytes. The packet will be
1529 		 * fragmented over two IP datagrams, the latter
1530 		 * containing only one byte of data. The 82550 will
1531 		 * botch the header checksum on the 1-byte fragment.
1532 		 * As long as the datagram contains 4 or more bytes
1533 		 * of data, you're ok.
1534 		 *
1535                  * The following code attempts to work around this
1536 		 * problem: if the datagram is less than 38 bytes
1537 		 * in size (14 bytes ether header, 20 bytes IP header,
1538 		 * plus 4 bytes of data), we punt and compute the IP
1539 		 * header checksum by hand. This workaround doesn't
1540 		 * work very well, however, since it can be fooled
1541 		 * by things like VLAN tags and IP options that make
1542 		 * the header sizes/offsets vary.
1543 		 */
1544 
1545 		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1546 			if (m->m_pkthdr.len < 38) {
1547 				struct ip *ip;
1548 				m->m_data += ETHER_HDR_LEN;
1549 				ip = mtod(m, struct ip *);
1550 				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1551 				m->m_data -= ETHER_HDR_LEN;
1552 				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1553 			} else {
1554 				txp->tx_cb->ipcb_ip_activation_high =
1555 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1556 				txp->tx_cb->ipcb_ip_schedule |=
1557 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1558 			}
1559 		}
1560 #endif
1561 	}
1562 
1563 	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1564 	    segs, &nseg, 0);
1565 	if (error == EFBIG) {
1566 		m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg);
1567 		if (m == NULL) {
1568 			m_freem(*m_head);
1569 			*m_head = NULL;
1570 			return (ENOMEM);
1571 		}
1572 		*m_head = m;
1573 		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1574 		    *m_head, segs, &nseg, 0);
1575 		if (error != 0) {
1576 			m_freem(*m_head);
1577 			*m_head = NULL;
1578 			return (ENOMEM);
1579 		}
1580 	} else if (error != 0)
1581 		return (error);
1582 	if (nseg == 0) {
1583 		m_freem(*m_head);
1584 		*m_head = NULL;
1585 		return (EIO);
1586 	}
1587 
1588 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1589 	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1590 
1591 	cbp = txp->tx_cb;
1592 	for (i = 0; i < nseg; i++) {
1593 		/*
1594 		 * If this is an 82550/82551, then we're using extended
1595 		 * TxCBs _and_ we're using checksum offload. This means
1596 		 * that the TxCB is really an IPCB. One major difference
1597 		 * between the two is that with plain extended TxCBs,
1598 		 * the bottom half of the TxCB contains two entries from
1599 		 * the TBD array, whereas IPCBs contain just one entry:
1600 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1601 		 * checksum offload control bits. So to make things work
1602 		 * right, we have to start filling in the TBD array
1603 		 * starting from a different place depending on whether
1604 		 * the chip is an 82550/82551 or not.
1605 		 */
1606 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1607 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1608 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1609 		} else {
1610 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1611 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1612 		}
1613 	}
1614 	if (sc->flags & FXP_FLAG_EXT_RFA) {
1615 		/* Configure dynamic TBD for 82550/82551. */
1616 		cbp->tbd_number = 0xFF;
1617 		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1618 	} else
1619 		cbp->tbd_number = nseg;
1620 	/* Configure TSO. */
1621 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1622 		cbp->tbdtso.tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1623 		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1624 		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1625 		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1626 		    FXP_IPCB_TCP_PACKET |
1627 		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1628 	}
1629 	/* Configure VLAN hardware tag insertion. */
1630 	if ((m->m_flags & M_VLANTAG) != 0) {
1631 		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1632 		txp->tx_cb->ipcb_ip_activation_high |=
1633 		    FXP_IPCB_INSERTVLAN_ENABLE;
1634 	}
1635 
1636 	txp->tx_mbuf = m;
1637 	txp->tx_cb->cb_status = 0;
1638 	txp->tx_cb->byte_count = 0;
1639 	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1640 		txp->tx_cb->cb_command =
1641 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1642 		    FXP_CB_COMMAND_S);
1643 	else
1644 		txp->tx_cb->cb_command =
1645 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1646 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1647 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1648 		txp->tx_cb->tx_threshold = tx_threshold;
1649 
1650 	/*
1651 	 * Advance the end of list forward.
1652 	 */
1653 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1654 	sc->fxp_desc.tx_last = txp;
1655 
1656 	/*
1657 	 * Advance the beginning of the list forward if there are
1658 	 * no other packets queued (when nothing is queued, tx_first
1659 	 * sits on the last TxCB that was sent out).
1660 	 */
1661 	if (sc->tx_queued == 0)
1662 		sc->fxp_desc.tx_first = txp;
1663 
1664 	sc->tx_queued++;
1665 
1666 	return (0);
1667 }
1668 
1669 #ifdef DEVICE_POLLING
1670 static poll_handler_t fxp_poll;
1671 
1672 static int
1673 fxp_poll(if_t ifp, enum poll_cmd cmd, int count)
1674 {
1675 	struct fxp_softc *sc = if_getsoftc(ifp);
1676 	uint8_t statack;
1677 	int rx_npkts = 0;
1678 
1679 	FXP_LOCK(sc);
1680 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1681 		FXP_UNLOCK(sc);
1682 		return (rx_npkts);
1683 	}
1684 
1685 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1686 	    FXP_SCB_STATACK_FR;
1687 	if (cmd == POLL_AND_CHECK_STATUS) {
1688 		uint8_t tmp;
1689 
1690 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1691 		if (tmp == 0xff || tmp == 0) {
1692 			FXP_UNLOCK(sc);
1693 			return (rx_npkts); /* nothing to do */
1694 		}
1695 		tmp &= ~statack;
1696 		/* ack what we can */
1697 		if (tmp != 0)
1698 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1699 		statack |= tmp;
1700 	}
1701 	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1702 	FXP_UNLOCK(sc);
1703 	return (rx_npkts);
1704 }
1705 #endif /* DEVICE_POLLING */
1706 
1707 /*
1708  * Process interface interrupts.
1709  */
1710 static void
1711 fxp_intr(void *xsc)
1712 {
1713 	struct fxp_softc *sc = xsc;
1714 	if_t ifp = sc->ifp;
1715 	uint8_t statack;
1716 
1717 	FXP_LOCK(sc);
1718 	if (sc->suspended) {
1719 		FXP_UNLOCK(sc);
1720 		return;
1721 	}
1722 
1723 #ifdef DEVICE_POLLING
1724 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
1725 		FXP_UNLOCK(sc);
1726 		return;
1727 	}
1728 #endif
1729 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1730 		/*
1731 		 * It should not be possible to have all bits set; the
1732 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1733 		 * all bits are set, this may indicate that the card has
1734 		 * been physically ejected, so ignore it.
1735 		 */
1736 		if (statack == 0xff) {
1737 			FXP_UNLOCK(sc);
1738 			return;
1739 		}
1740 
1741 		/*
1742 		 * First ACK all the interrupts in this pass.
1743 		 */
1744 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1745 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1746 			fxp_intr_body(sc, ifp, statack, -1);
1747 	}
1748 	FXP_UNLOCK(sc);
1749 }
1750 
1751 static void
1752 fxp_txeof(struct fxp_softc *sc)
1753 {
1754 	if_t ifp;
1755 	struct fxp_tx *txp;
1756 
1757 	ifp = sc->ifp;
1758 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1759 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1760 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1761 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1762 	    txp = txp->tx_next) {
1763 		if (txp->tx_mbuf != NULL) {
1764 			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1765 			    BUS_DMASYNC_POSTWRITE);
1766 			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1767 			m_freem(txp->tx_mbuf);
1768 			txp->tx_mbuf = NULL;
1769 			/* clear this to reset csum offload bits */
1770 			txp->tx_cb->tbd[0].tb_addr = 0;
1771 		}
1772 		sc->tx_queued--;
1773 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1774 	}
1775 	sc->fxp_desc.tx_first = txp;
1776 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1777 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1778 	if (sc->tx_queued == 0)
1779 		sc->watchdog_timer = 0;
1780 }
1781 
1782 static void
1783 fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m,
1784     uint16_t status, int pos)
1785 {
1786 	struct ether_header *eh;
1787 	struct ip *ip;
1788 	struct udphdr *uh;
1789 	int32_t hlen, len, pktlen, temp32;
1790 	uint16_t csum, *opts;
1791 
1792 	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1793 		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1794 			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1795 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1796 			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1797 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1798 			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1799 			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1800 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1801 				    CSUM_PSEUDO_HDR;
1802 				m->m_pkthdr.csum_data = 0xffff;
1803 			}
1804 		}
1805 		return;
1806 	}
1807 
1808 	pktlen = m->m_pkthdr.len;
1809 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1810 		return;
1811 	eh = mtod(m, struct ether_header *);
1812 	if (eh->ether_type != htons(ETHERTYPE_IP))
1813 		return;
1814 	ip = (struct ip *)(eh + 1);
1815 	if (ip->ip_v != IPVERSION)
1816 		return;
1817 
1818 	hlen = ip->ip_hl << 2;
1819 	pktlen -= sizeof(struct ether_header);
1820 	if (hlen < sizeof(struct ip))
1821 		return;
1822 	if (ntohs(ip->ip_len) < hlen)
1823 		return;
1824 	if (ntohs(ip->ip_len) != pktlen)
1825 		return;
1826 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1827 		return;	/* can't handle fragmented packet */
1828 
1829 	switch (ip->ip_p) {
1830 	case IPPROTO_TCP:
1831 		if (pktlen < (hlen + sizeof(struct tcphdr)))
1832 			return;
1833 		break;
1834 	case IPPROTO_UDP:
1835 		if (pktlen < (hlen + sizeof(struct udphdr)))
1836 			return;
1837 		uh = (struct udphdr *)((caddr_t)ip + hlen);
1838 		if (uh->uh_sum == 0)
1839 			return; /* no checksum */
1840 		break;
1841 	default:
1842 		return;
1843 	}
1844 	/* Extract computed checksum. */
1845 	csum = be16dec(mtod(m, char *) + pos);
1846 	/* checksum fixup for IP options */
1847 	len = hlen - sizeof(struct ip);
1848 	if (len > 0) {
1849 		opts = (uint16_t *)(ip + 1);
1850 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1851 			temp32 = csum - *opts;
1852 			temp32 = (temp32 >> 16) + (temp32 & 65535);
1853 			csum = temp32 & 65535;
1854 		}
1855 	}
1856 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1857 	m->m_pkthdr.csum_data = csum;
1858 }
1859 
1860 static int
1861 fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack,
1862     int count)
1863 {
1864 	struct mbuf *m;
1865 	struct fxp_rx *rxp;
1866 	struct fxp_rfa *rfa;
1867 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1868 	int rx_npkts;
1869 	uint16_t status;
1870 
1871 	rx_npkts = 0;
1872 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1873 
1874 	if (rnr)
1875 		sc->rnr++;
1876 #ifdef DEVICE_POLLING
1877 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1878 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1879 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1880 		rnr = 1;
1881 	}
1882 #endif
1883 
1884 	/*
1885 	 * Free any finished transmit mbuf chains.
1886 	 *
1887 	 * Handle the CNA event likt a CXTNO event. It used to
1888 	 * be that this event (control unit not ready) was not
1889 	 * encountered, but it is now with the SMPng modifications.
1890 	 * The exact sequence of events that occur when the interface
1891 	 * is brought up are different now, and if this event
1892 	 * goes unhandled, the configuration/rxfilter setup sequence
1893 	 * can stall for several seconds. The result is that no
1894 	 * packets go out onto the wire for about 5 to 10 seconds
1895 	 * after the interface is ifconfig'ed for the first time.
1896 	 */
1897 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1898 		fxp_txeof(sc);
1899 
1900 	/*
1901 	 * Try to start more packets transmitting.
1902 	 */
1903 	if (!if_sendq_empty(ifp))
1904 		fxp_start_body(ifp);
1905 
1906 	/*
1907 	 * Just return if nothing happened on the receive side.
1908 	 */
1909 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1910 		return (rx_npkts);
1911 
1912 	/*
1913 	 * Process receiver interrupts. If a no-resource (RNR)
1914 	 * condition exists, get whatever packets we can and
1915 	 * re-start the receiver.
1916 	 *
1917 	 * When using polling, we do not process the list to completion,
1918 	 * so when we get an RNR interrupt we must defer the restart
1919 	 * until we hit the last buffer with the C bit set.
1920 	 * If we run out of cycles and rfa_headm has the C bit set,
1921 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1922 	 * that the info will be used in the subsequent polling cycle.
1923 	 */
1924 	for (;;) {
1925 		rxp = sc->fxp_desc.rx_head;
1926 		m = rxp->rx_mbuf;
1927 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1928 		    RFA_ALIGNMENT_FUDGE);
1929 		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1930 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1931 
1932 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1933 		if (count >= 0 && count-- == 0) {
1934 			if (rnr) {
1935 				/* Defer RNR processing until the next time. */
1936 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1937 				rnr = 0;
1938 			}
1939 			break;
1940 		}
1941 #endif /* DEVICE_POLLING */
1942 
1943 		status = le16toh(rfa->rfa_status);
1944 		if ((status & FXP_RFA_STATUS_C) == 0)
1945 			break;
1946 
1947 		if ((status & FXP_RFA_STATUS_RNR) != 0)
1948 			rnr++;
1949 		/*
1950 		 * Advance head forward.
1951 		 */
1952 		sc->fxp_desc.rx_head = rxp->rx_next;
1953 
1954 		/*
1955 		 * Add a new buffer to the receive chain.
1956 		 * If this fails, the old buffer is recycled
1957 		 * instead.
1958 		 */
1959 		if (fxp_new_rfabuf(sc, rxp) == 0) {
1960 			int total_len;
1961 
1962 			/*
1963 			 * Fetch packet length (the top 2 bits of
1964 			 * actual_size are flags set by the controller
1965 			 * upon completion), and drop the packet in case
1966 			 * of bogus length or CRC errors.
1967 			 */
1968 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1969 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1970 			    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1971 				/* Adjust for appended checksum bytes. */
1972 				total_len -= 2;
1973 			}
1974 			if (total_len < (int)sizeof(struct ether_header) ||
1975 			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1976 			    sc->rfa_size) ||
1977 			    status & (FXP_RFA_STATUS_CRC |
1978 			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1979 				m_freem(m);
1980 				fxp_add_rfabuf(sc, rxp);
1981 				continue;
1982 			}
1983 
1984 			m->m_pkthdr.len = m->m_len = total_len;
1985 			if_setrcvif(m, ifp);
1986 
1987                         /* Do IP checksum checking. */
1988 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1989 				fxp_rxcsum(sc, ifp, m, status, total_len);
1990 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1991 			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1992 				m->m_pkthdr.ether_vtag =
1993 				    ntohs(rfa->rfax_vlan_id);
1994 				m->m_flags |= M_VLANTAG;
1995 			}
1996 			/*
1997 			 * Drop locks before calling if_input() since it
1998 			 * may re-enter fxp_start() in the netisr case.
1999 			 * This would result in a lock reversal.  Better
2000 			 * performance might be obtained by chaining all
2001 			 * packets received, dropping the lock, and then
2002 			 * calling if_input() on each one.
2003 			 */
2004 			FXP_UNLOCK(sc);
2005 			if_input(ifp, m);
2006 			FXP_LOCK(sc);
2007 			rx_npkts++;
2008 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2009 				return (rx_npkts);
2010 		} else {
2011 			/* Reuse RFA and loaded DMA map. */
2012 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2013 			fxp_discard_rfabuf(sc, rxp);
2014 		}
2015 		fxp_add_rfabuf(sc, rxp);
2016 	}
2017 	if (rnr) {
2018 		fxp_scb_wait(sc);
2019 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2020 		    sc->fxp_desc.rx_head->rx_addr);
2021 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2022 	}
2023 	return (rx_npkts);
2024 }
2025 
2026 static void
2027 fxp_update_stats(struct fxp_softc *sc)
2028 {
2029 	if_t ifp = sc->ifp;
2030 	struct fxp_stats *sp = sc->fxp_stats;
2031 	struct fxp_hwstats *hsp;
2032 	uint32_t *status;
2033 
2034 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2035 
2036 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2037 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2038 	/* Update statistical counters. */
2039 	if (sc->revision >= FXP_REV_82559_A0)
2040 		status = &sp->completion_status;
2041 	else if (sc->revision >= FXP_REV_82558_A4)
2042 		status = (uint32_t *)&sp->tx_tco;
2043 	else
2044 		status = &sp->tx_pause;
2045 	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2046 		hsp = &sc->fxp_hwstats;
2047 		hsp->tx_good += le32toh(sp->tx_good);
2048 		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2049 		hsp->tx_latecols += le32toh(sp->tx_latecols);
2050 		hsp->tx_underruns += le32toh(sp->tx_underruns);
2051 		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2052 		hsp->tx_deffered += le32toh(sp->tx_deffered);
2053 		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2054 		hsp->tx_multiple_collisions +=
2055 		    le32toh(sp->tx_multiple_collisions);
2056 		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2057 		hsp->rx_good += le32toh(sp->rx_good);
2058 		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2059 		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2060 		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2061 		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2062 		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2063 		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2064 		hsp->tx_pause += le32toh(sp->tx_pause);
2065 		hsp->rx_pause += le32toh(sp->rx_pause);
2066 		hsp->rx_controls += le32toh(sp->rx_controls);
2067 		hsp->tx_tco += le16toh(sp->tx_tco);
2068 		hsp->rx_tco += le16toh(sp->rx_tco);
2069 
2070 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good));
2071 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2072 		    le32toh(sp->tx_total_collisions));
2073 		if (sp->rx_good) {
2074 			if_inc_counter(ifp, IFCOUNTER_IPACKETS,
2075 			    le32toh(sp->rx_good));
2076 			sc->rx_idle_secs = 0;
2077 		} else if (sc->flags & FXP_FLAG_RXBUG) {
2078 			/*
2079 			 * Receiver's been idle for another second.
2080 			 */
2081 			sc->rx_idle_secs++;
2082 		}
2083 		if_inc_counter(ifp, IFCOUNTER_IERRORS,
2084 		    le32toh(sp->rx_crc_errors) +
2085 		    le32toh(sp->rx_alignment_errors) +
2086 		    le32toh(sp->rx_rnr_errors) +
2087 		    le32toh(sp->rx_overrun_errors));
2088 		/*
2089 		 * If any transmit underruns occurred, bump up the transmit
2090 		 * threshold by another 512 bytes (64 * 8).
2091 		 */
2092 		if (sp->tx_underruns) {
2093 			if_inc_counter(ifp, IFCOUNTER_OERRORS,
2094 			    le32toh(sp->tx_underruns));
2095 			if (tx_threshold < 192)
2096 				tx_threshold += 64;
2097 		}
2098 		*status = 0;
2099 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2100 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2101 	}
2102 }
2103 
2104 /*
2105  * Update packet in/out/collision statistics. The i82557 doesn't
2106  * allow you to access these counters without doing a fairly
2107  * expensive DMA to get _all_ of the statistics it maintains, so
2108  * we do this operation here only once per second. The statistics
2109  * counters in the kernel are updated from the previous dump-stats
2110  * DMA and then a new dump-stats DMA is started. The on-chip
2111  * counters are zeroed when the DMA completes. If we can't start
2112  * the DMA immediately, we don't wait - we just prepare to read
2113  * them again next time.
2114  */
2115 static void
2116 fxp_tick(void *xsc)
2117 {
2118 	struct fxp_softc *sc = xsc;
2119 	if_t ifp = sc->ifp;
2120 
2121 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2122 
2123 	/* Update statistical counters. */
2124 	fxp_update_stats(sc);
2125 
2126 	/*
2127 	 * Release any xmit buffers that have completed DMA. This isn't
2128 	 * strictly necessary to do here, but it's advantagous for mbufs
2129 	 * with external storage to be released in a timely manner rather
2130 	 * than being defered for a potentially long time. This limits
2131 	 * the delay to a maximum of one second.
2132 	 */
2133 	fxp_txeof(sc);
2134 
2135 	/*
2136 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2137 	 * then assume the receiver has locked up and attempt to clear
2138 	 * the condition by reprogramming the multicast filter. This is
2139 	 * a work-around for a bug in the 82557 where the receiver locks
2140 	 * up if it gets certain types of garbage in the synchronization
2141 	 * bits prior to the packet header. This bug is supposed to only
2142 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2143 	 * mode as well (perhaps due to a 10/100 speed transition).
2144 	 */
2145 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2146 		sc->rx_idle_secs = 0;
2147 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2148 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2149 			fxp_init_body(sc, 1);
2150 		}
2151 		return;
2152 	}
2153 	/*
2154 	 * If there is no pending command, start another stats
2155 	 * dump. Otherwise punt for now.
2156 	 */
2157 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2158 		/*
2159 		 * Start another stats dump.
2160 		 */
2161 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2162 	}
2163 	if (sc->miibus != NULL)
2164 		mii_tick(device_get_softc(sc->miibus));
2165 
2166 	/*
2167 	 * Check that chip hasn't hung.
2168 	 */
2169 	fxp_watchdog(sc);
2170 
2171 	/*
2172 	 * Schedule another timeout one second from now.
2173 	 */
2174 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2175 }
2176 
2177 /*
2178  * Stop the interface. Cancels the statistics updater and resets
2179  * the interface.
2180  */
2181 static void
2182 fxp_stop(struct fxp_softc *sc)
2183 {
2184 	if_t ifp = sc->ifp;
2185 	struct fxp_tx *txp;
2186 	int i;
2187 
2188 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2189 	sc->watchdog_timer = 0;
2190 
2191 	/*
2192 	 * Cancel stats updater.
2193 	 */
2194 	callout_stop(&sc->stat_ch);
2195 
2196 	/*
2197 	 * Preserve PCI configuration, configure, IA/multicast
2198 	 * setup and put RU and CU into idle state.
2199 	 */
2200 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2201 	DELAY(50);
2202 	/* Disable interrupts. */
2203 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2204 
2205 	fxp_update_stats(sc);
2206 
2207 	/*
2208 	 * Release any xmit buffers.
2209 	 */
2210 	txp = sc->fxp_desc.tx_list;
2211 	for (i = 0; i < FXP_NTXCB; i++) {
2212 		if (txp[i].tx_mbuf != NULL) {
2213 			bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2214 			    BUS_DMASYNC_POSTWRITE);
2215 			bus_dmamap_unload(sc->fxp_txmtag, txp[i].tx_map);
2216 			m_freem(txp[i].tx_mbuf);
2217 			txp[i].tx_mbuf = NULL;
2218 			/* clear this to reset csum offload bits */
2219 			txp[i].tx_cb->tbd[0].tb_addr = 0;
2220 		}
2221 	}
2222 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2223 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2224 	sc->tx_queued = 0;
2225 }
2226 
2227 /*
2228  * Watchdog/transmission transmit timeout handler. Called when a
2229  * transmission is started on the interface, but no interrupt is
2230  * received before the timeout. This usually indicates that the
2231  * card has wedged for some reason.
2232  */
2233 static void
2234 fxp_watchdog(struct fxp_softc *sc)
2235 {
2236 	if_t ifp = sc->ifp;
2237 
2238 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2239 
2240 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2241 		return;
2242 
2243 	device_printf(sc->dev, "device timeout\n");
2244 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2245 
2246 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2247 	fxp_init_body(sc, 1);
2248 }
2249 
2250 /*
2251  * Acquire locks and then call the real initialization function.  This
2252  * is necessary because ether_ioctl() calls if_init() and this would
2253  * result in mutex recursion if the mutex was held.
2254  */
2255 static void
2256 fxp_init(void *xsc)
2257 {
2258 	struct fxp_softc *sc = xsc;
2259 
2260 	FXP_LOCK(sc);
2261 	fxp_init_body(sc, 1);
2262 	FXP_UNLOCK(sc);
2263 }
2264 
2265 /*
2266  * Perform device initialization. This routine must be called with the
2267  * softc lock held.
2268  */
2269 static void
2270 fxp_init_body(struct fxp_softc *sc, int setmedia)
2271 {
2272 	if_t ifp = sc->ifp;
2273 	struct mii_data *mii;
2274 	struct fxp_cb_config *cbp;
2275 	struct fxp_cb_ias *cb_ias;
2276 	struct fxp_cb_tx *tcbp;
2277 	struct fxp_tx *txp;
2278 	int i, prm;
2279 
2280 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2281 
2282 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2283 		return;
2284 
2285 	/*
2286 	 * Cancel any pending I/O
2287 	 */
2288 	fxp_stop(sc);
2289 
2290 	/*
2291 	 * Issue software reset, which also unloads the microcode.
2292 	 */
2293 	sc->flags &= ~FXP_FLAG_UCODE;
2294 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2295 	DELAY(50);
2296 
2297 	prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0;
2298 
2299 	/*
2300 	 * Initialize base of CBL and RFA memory. Loading with zero
2301 	 * sets it up for regular linear addressing.
2302 	 */
2303 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2304 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2305 
2306 	fxp_scb_wait(sc);
2307 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2308 
2309 	/*
2310 	 * Initialize base of dump-stats buffer.
2311 	 */
2312 	fxp_scb_wait(sc);
2313 	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2314 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2315 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2316 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2317 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2318 
2319 	/*
2320 	 * Attempt to load microcode if requested.
2321 	 * For ICH based controllers do not load microcode.
2322 	 */
2323 	if (sc->ident->ich == 0) {
2324 		if (if_getflags(ifp) & IFF_LINK0 &&
2325 		    (sc->flags & FXP_FLAG_UCODE) == 0)
2326 			fxp_load_ucode(sc);
2327 	}
2328 
2329 	/*
2330 	 * Set IFF_ALLMULTI status. It's needed in configure action
2331 	 * command.
2332 	 */
2333 	fxp_mc_addrs(sc);
2334 
2335 	/*
2336 	 * We temporarily use memory that contains the TxCB list to
2337 	 * construct the config CB. The TxCB list memory is rebuilt
2338 	 * later.
2339 	 */
2340 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2341 
2342 	/*
2343 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2344 	 * zero and must be one bits in this structure and this is the easiest
2345 	 * way to initialize them all to proper values.
2346 	 */
2347 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2348 
2349 	cbp->cb_status =	0;
2350 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2351 	    FXP_CB_COMMAND_EL);
2352 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2353 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2354 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2355 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2356 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2357 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2358 	cbp->type_enable =	0;	/* actually reserved */
2359 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2360 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2361 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2362 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2363 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2364 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2365 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2366 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2367 	cbp->ci_int =		1;	/* interrupt on CU idle */
2368 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2369 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2370 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2371 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2372 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2373 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2374 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2375 	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2376 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2377 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2378 	cbp->csma_dis =		0;	/* (don't) disable link */
2379 	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2380 	    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0;
2381 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2382 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2383 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2384 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2385 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2386 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2387 	cbp->loopback =		0;	/* (don't) loopback */
2388 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2389 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2390 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2391 	cbp->promiscuous =	prm;	/* promiscuous mode */
2392 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2393 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2394 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2395 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2396 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2397 
2398 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2399 	cbp->padding =		1;	/* (do) pad short tx packets */
2400 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2401 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2402 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2403 	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2404 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2405 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2406 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2407 	cbp->mc_all =		if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm;
2408 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2409 	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2410 	    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2411 
2412 	if (sc->revision == FXP_REV_82557) {
2413 		/*
2414 		 * The 82557 has no hardware flow control, the values
2415 		 * below are the defaults for the chip.
2416 		 */
2417 		cbp->fc_delay_lsb =	0;
2418 		cbp->fc_delay_msb =	0x40;
2419 		cbp->pri_fc_thresh =	3;
2420 		cbp->tx_fc_dis =	0;
2421 		cbp->rx_fc_restop =	0;
2422 		cbp->rx_fc_restart =	0;
2423 		cbp->fc_filter =	0;
2424 		cbp->pri_fc_loc =	1;
2425 	} else {
2426 		/* Set pause RX FIFO threshold to 1KB. */
2427 		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2428 		/* Set pause time. */
2429 		cbp->fc_delay_lsb =	0xff;
2430 		cbp->fc_delay_msb =	0xff;
2431 		cbp->pri_fc_thresh =	3;
2432 		mii = device_get_softc(sc->miibus);
2433 		if ((IFM_OPTIONS(mii->mii_media_active) &
2434 		    IFM_ETH_TXPAUSE) != 0)
2435 			/* enable transmit FC */
2436 			cbp->tx_fc_dis = 0;
2437 		else
2438 			/* disable transmit FC */
2439 			cbp->tx_fc_dis = 1;
2440 		if ((IFM_OPTIONS(mii->mii_media_active) &
2441 		    IFM_ETH_RXPAUSE) != 0) {
2442 			/* enable FC restart/restop frames */
2443 			cbp->rx_fc_restart = 1;
2444 			cbp->rx_fc_restop = 1;
2445 		} else {
2446 			/* disable FC restart/restop frames */
2447 			cbp->rx_fc_restart = 0;
2448 			cbp->rx_fc_restop = 0;
2449 		}
2450 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2451 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2452 	}
2453 
2454 	/* Enable 82558 and 82559 extended statistics functionality. */
2455 	if (sc->revision >= FXP_REV_82558_A4) {
2456 		if (sc->revision >= FXP_REV_82559_A0) {
2457 			/*
2458 			 * Extend configuration table size to 32
2459 			 * to include TCO configuration.
2460 			 */
2461 			cbp->byte_count = 32;
2462 			cbp->ext_stats_dis = 1;
2463 			/* Enable TCO stats. */
2464 			cbp->tno_int_or_tco_en = 1;
2465 			cbp->gamla_rx = 1;
2466 		} else
2467 			cbp->ext_stats_dis = 0;
2468 	}
2469 
2470 	/*
2471 	 * Start the config command/DMA.
2472 	 */
2473 	fxp_scb_wait(sc);
2474 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2475 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2476 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2477 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2478 	/* ...and wait for it to complete. */
2479 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2480 
2481 	/*
2482 	 * Now initialize the station address. Temporarily use the TxCB
2483 	 * memory area like we did above for the config CB.
2484 	 */
2485 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2486 	cb_ias->cb_status = 0;
2487 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2488 	cb_ias->link_addr = 0xffffffff;
2489 	bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2490 
2491 	/*
2492 	 * Start the IAS (Individual Address Setup) command/DMA.
2493 	 */
2494 	fxp_scb_wait(sc);
2495 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2496 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2497 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2498 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2499 	/* ...and wait for it to complete. */
2500 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2501 
2502 	/*
2503 	 * Initialize the multicast address list.
2504 	 */
2505 	fxp_mc_setup(sc);
2506 
2507 	/*
2508 	 * Initialize transmit control block (TxCB) list.
2509 	 */
2510 	txp = sc->fxp_desc.tx_list;
2511 	tcbp = sc->fxp_desc.cbl_list;
2512 	bzero(tcbp, FXP_TXCB_SZ);
2513 	for (i = 0; i < FXP_NTXCB; i++) {
2514 		txp[i].tx_mbuf = NULL;
2515 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2516 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2517 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2518 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2519 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2520 			tcbp[i].tbd_array_addr =
2521 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2522 		else
2523 			tcbp[i].tbd_array_addr =
2524 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2525 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2526 	}
2527 	/*
2528 	 * Set the suspend flag on the first TxCB and start the control
2529 	 * unit. It will execute the NOP and then suspend.
2530 	 */
2531 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2532 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2533 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2534 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2535 	sc->tx_queued = 1;
2536 
2537 	fxp_scb_wait(sc);
2538 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2539 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2540 
2541 	/*
2542 	 * Initialize receiver buffer area - RFA.
2543 	 */
2544 	fxp_scb_wait(sc);
2545 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2546 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2547 
2548 	if (sc->miibus != NULL && setmedia != 0)
2549 		mii_mediachg(device_get_softc(sc->miibus));
2550 
2551 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2552 
2553 	/*
2554 	 * Enable interrupts.
2555 	 */
2556 #ifdef DEVICE_POLLING
2557 	/*
2558 	 * ... but only do that if we are not polling. And because (presumably)
2559 	 * the default is interrupts on, we need to disable them explicitly!
2560 	 */
2561 	if (if_getcapenable(ifp) & IFCAP_POLLING )
2562 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2563 	else
2564 #endif /* DEVICE_POLLING */
2565 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2566 
2567 	/*
2568 	 * Start stats updater.
2569 	 */
2570 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2571 }
2572 
2573 static int
2574 fxp_serial_ifmedia_upd(if_t ifp)
2575 {
2576 
2577 	return (0);
2578 }
2579 
2580 static void
2581 fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2582 {
2583 
2584 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2585 }
2586 
2587 /*
2588  * Change media according to request.
2589  */
2590 static int
2591 fxp_ifmedia_upd(if_t ifp)
2592 {
2593 	struct fxp_softc *sc = if_getsoftc(ifp);
2594 	struct mii_data *mii;
2595 	struct mii_softc	*miisc;
2596 
2597 	mii = device_get_softc(sc->miibus);
2598 	FXP_LOCK(sc);
2599 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2600 		PHY_RESET(miisc);
2601 	mii_mediachg(mii);
2602 	FXP_UNLOCK(sc);
2603 	return (0);
2604 }
2605 
2606 /*
2607  * Notify the world which media we're using.
2608  */
2609 static void
2610 fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2611 {
2612 	struct fxp_softc *sc = if_getsoftc(ifp);
2613 	struct mii_data *mii;
2614 
2615 	mii = device_get_softc(sc->miibus);
2616 	FXP_LOCK(sc);
2617 	mii_pollstat(mii);
2618 	ifmr->ifm_active = mii->mii_media_active;
2619 	ifmr->ifm_status = mii->mii_media_status;
2620 	FXP_UNLOCK(sc);
2621 }
2622 
2623 /*
2624  * Add a buffer to the end of the RFA buffer list.
2625  * Return 0 if successful, 1 for failure. A failure results in
2626  * reusing the RFA buffer.
2627  * The RFA struct is stuck at the beginning of mbuf cluster and the
2628  * data pointer is fixed up to point just past it.
2629  */
2630 static int
2631 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2632 {
2633 	struct mbuf *m;
2634 	struct fxp_rfa *rfa;
2635 	bus_dmamap_t tmp_map;
2636 	int error;
2637 
2638 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2639 	if (m == NULL)
2640 		return (ENOBUFS);
2641 
2642 	/*
2643 	 * Move the data pointer up so that the incoming data packet
2644 	 * will be 32-bit aligned.
2645 	 */
2646 	m->m_data += RFA_ALIGNMENT_FUDGE;
2647 
2648 	/*
2649 	 * Get a pointer to the base of the mbuf cluster and move
2650 	 * data start past it.
2651 	 */
2652 	rfa = mtod(m, struct fxp_rfa *);
2653 	m->m_data += sc->rfa_size;
2654 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2655 
2656 	rfa->rfa_status = 0;
2657 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2658 	rfa->actual_size = 0;
2659 	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2660 	    sc->rfa_size;
2661 
2662 	/*
2663 	 * Initialize the rest of the RFA.  Note that since the RFA
2664 	 * is misaligned, we cannot store values directly.  We're thus
2665 	 * using the le32enc() function which handles endianness and
2666 	 * is also alignment-safe.
2667 	 */
2668 	le32enc(&rfa->link_addr, 0xffffffff);
2669 	le32enc(&rfa->rbd_addr, 0xffffffff);
2670 
2671 	/* Map the RFA into DMA memory. */
2672 	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2673 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2674 	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2675 	if (error) {
2676 		m_freem(m);
2677 		return (error);
2678 	}
2679 
2680 	if (rxp->rx_mbuf != NULL)
2681 		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2682 	tmp_map = sc->spare_map;
2683 	sc->spare_map = rxp->rx_map;
2684 	rxp->rx_map = tmp_map;
2685 	rxp->rx_mbuf = m;
2686 
2687 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2688 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2689 	return (0);
2690 }
2691 
2692 static void
2693 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2694 {
2695 	struct fxp_rfa *p_rfa;
2696 	struct fxp_rx *p_rx;
2697 
2698 	/*
2699 	 * If there are other buffers already on the list, attach this
2700 	 * one to the end by fixing up the tail to point to this one.
2701 	 */
2702 	if (sc->fxp_desc.rx_head != NULL) {
2703 		p_rx = sc->fxp_desc.rx_tail;
2704 		p_rfa = (struct fxp_rfa *)
2705 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2706 		p_rx->rx_next = rxp;
2707 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2708 		p_rfa->rfa_control = 0;
2709 		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2710 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2711 	} else {
2712 		rxp->rx_next = NULL;
2713 		sc->fxp_desc.rx_head = rxp;
2714 	}
2715 	sc->fxp_desc.rx_tail = rxp;
2716 }
2717 
2718 static void
2719 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2720 {
2721 	struct mbuf *m;
2722 	struct fxp_rfa *rfa;
2723 
2724 	m = rxp->rx_mbuf;
2725 	m->m_data = m->m_ext.ext_buf;
2726 	/*
2727 	 * Move the data pointer up so that the incoming data packet
2728 	 * will be 32-bit aligned.
2729 	 */
2730 	m->m_data += RFA_ALIGNMENT_FUDGE;
2731 
2732 	/*
2733 	 * Get a pointer to the base of the mbuf cluster and move
2734 	 * data start past it.
2735 	 */
2736 	rfa = mtod(m, struct fxp_rfa *);
2737 	m->m_data += sc->rfa_size;
2738 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2739 
2740 	rfa->rfa_status = 0;
2741 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2742 	rfa->actual_size = 0;
2743 
2744 	/*
2745 	 * Initialize the rest of the RFA.  Note that since the RFA
2746 	 * is misaligned, we cannot store values directly.  We're thus
2747 	 * using the le32enc() function which handles endianness and
2748 	 * is also alignment-safe.
2749 	 */
2750 	le32enc(&rfa->link_addr, 0xffffffff);
2751 	le32enc(&rfa->rbd_addr, 0xffffffff);
2752 
2753 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2754 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2755 }
2756 
2757 static int
2758 fxp_miibus_readreg(device_t dev, int phy, int reg)
2759 {
2760 	struct fxp_softc *sc = device_get_softc(dev);
2761 	int count = 10000;
2762 	int value;
2763 
2764 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2765 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2766 
2767 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2768 	    && count--)
2769 		DELAY(10);
2770 
2771 	if (count <= 0)
2772 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2773 
2774 	return (value & 0xffff);
2775 }
2776 
2777 static int
2778 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2779 {
2780 	struct fxp_softc *sc = device_get_softc(dev);
2781 	int count = 10000;
2782 
2783 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2784 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2785 	    (value & 0xffff));
2786 
2787 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2788 	    count--)
2789 		DELAY(10);
2790 
2791 	if (count <= 0)
2792 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2793 	return (0);
2794 }
2795 
2796 static void
2797 fxp_miibus_statchg(device_t dev)
2798 {
2799 	struct fxp_softc *sc;
2800 	struct mii_data *mii;
2801 	if_t ifp;
2802 
2803 	sc = device_get_softc(dev);
2804 	mii = device_get_softc(sc->miibus);
2805 	ifp = sc->ifp;
2806 	if (mii == NULL || ifp == (void *)NULL ||
2807 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
2808 	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2809 	    (IFM_AVALID | IFM_ACTIVE))
2810 		return;
2811 
2812 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2813 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2814 		sc->cu_resume_bug = 1;
2815 	else
2816 		sc->cu_resume_bug = 0;
2817 	/*
2818 	 * Call fxp_init_body in order to adjust the flow control settings.
2819 	 * Note that the 82557 doesn't support hardware flow control.
2820 	 */
2821 	if (sc->revision == FXP_REV_82557)
2822 		return;
2823 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2824 	fxp_init_body(sc, 0);
2825 }
2826 
2827 static int
2828 fxp_ioctl(if_t ifp, u_long command, caddr_t data)
2829 {
2830 	struct fxp_softc *sc = if_getsoftc(ifp);
2831 	struct ifreq *ifr = (struct ifreq *)data;
2832 	struct mii_data *mii;
2833 	int flag, mask, error = 0, reinit;
2834 
2835 	switch (command) {
2836 	case SIOCSIFFLAGS:
2837 		FXP_LOCK(sc);
2838 		/*
2839 		 * If interface is marked up and not running, then start it.
2840 		 * If it is marked down and running, stop it.
2841 		 * XXX If it's up then re-initialize it. This is so flags
2842 		 * such as IFF_PROMISC are handled.
2843 		 */
2844 		if (if_getflags(ifp) & IFF_UP) {
2845 			if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) &&
2846 			    ((if_getflags(ifp) ^ sc->if_flags) &
2847 			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) {
2848 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2849 				fxp_init_body(sc, 0);
2850 			} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2851 				fxp_init_body(sc, 1);
2852 		} else {
2853 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2854 				fxp_stop(sc);
2855 		}
2856 		sc->if_flags = if_getflags(ifp);
2857 		FXP_UNLOCK(sc);
2858 		break;
2859 
2860 	case SIOCADDMULTI:
2861 	case SIOCDELMULTI:
2862 		FXP_LOCK(sc);
2863 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2864 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2865 			fxp_init_body(sc, 0);
2866 		}
2867 		FXP_UNLOCK(sc);
2868 		break;
2869 
2870 	case SIOCSIFMEDIA:
2871 	case SIOCGIFMEDIA:
2872 		if (sc->miibus != NULL) {
2873 			mii = device_get_softc(sc->miibus);
2874                         error = ifmedia_ioctl(ifp, ifr,
2875                             &mii->mii_media, command);
2876 		} else {
2877                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2878 		}
2879 		break;
2880 
2881 	case SIOCSIFCAP:
2882 		reinit = 0;
2883 		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
2884 #ifdef DEVICE_POLLING
2885 		if (mask & IFCAP_POLLING) {
2886 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2887 				error = ether_poll_register(fxp_poll, ifp);
2888 				if (error)
2889 					return(error);
2890 				FXP_LOCK(sc);
2891 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2892 				    FXP_SCB_INTR_DISABLE);
2893 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2894 				FXP_UNLOCK(sc);
2895 			} else {
2896 				error = ether_poll_deregister(ifp);
2897 				/* Enable interrupts in any case */
2898 				FXP_LOCK(sc);
2899 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2900 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2901 				FXP_UNLOCK(sc);
2902 			}
2903 		}
2904 #endif
2905 		FXP_LOCK(sc);
2906 		if ((mask & IFCAP_TXCSUM) != 0 &&
2907 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2908 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2909 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2910 				if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0);
2911 			else
2912 				if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES);
2913 		}
2914 		if ((mask & IFCAP_RXCSUM) != 0 &&
2915 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
2916 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2917 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2918 				reinit++;
2919 		}
2920 		if ((mask & IFCAP_TSO4) != 0 &&
2921 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
2922 			if_togglecapenable(ifp, IFCAP_TSO4);
2923 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
2924 				if_sethwassistbits(ifp, CSUM_TSO, 0);
2925 			else
2926 				if_sethwassistbits(ifp, 0, CSUM_TSO);
2927 		}
2928 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2929 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2930 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2931 		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2932 		    (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) {
2933 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
2934 			if (sc->revision != FXP_REV_82557)
2935 				flag = FXP_FLAG_LONG_PKT_EN;
2936 			else /* a hack to get long frames on the old chip */
2937 				flag = FXP_FLAG_SAVE_BAD;
2938 			sc->flags ^= flag;
2939 			if (if_getflags(ifp) & IFF_UP)
2940 				reinit++;
2941 		}
2942 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2943 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2944 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2945 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2946 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2947 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2948 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2949 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2950 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2951 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2952 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO |
2953 				    IFCAP_VLAN_HWCSUM);
2954 			reinit++;
2955 		}
2956 		if (reinit > 0 &&
2957 		    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2958 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2959 			fxp_init_body(sc, 0);
2960 		}
2961 		FXP_UNLOCK(sc);
2962 		if_vlancap(ifp);
2963 		break;
2964 
2965 	default:
2966 		error = ether_ioctl(ifp, command, data);
2967 	}
2968 	return (error);
2969 }
2970 
2971 static u_int
2972 fxp_setup_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2973 {
2974 	struct fxp_softc *sc = arg;
2975 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2976 
2977 	if (mcsp->mc_cnt < MAXMCADDR)
2978 		bcopy(LLADDR(sdl), mcsp->mc_addr[mcsp->mc_cnt * ETHER_ADDR_LEN],
2979 		    ETHER_ADDR_LEN);
2980 	mcsp->mc_cnt++;
2981 	return (1);
2982 }
2983 
2984 /*
2985  * Fill in the multicast address list and return number of entries.
2986  */
2987 static void
2988 fxp_mc_addrs(struct fxp_softc *sc)
2989 {
2990 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2991 	if_t ifp = sc->ifp;
2992 
2993 	if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) {
2994 		mcsp->mc_cnt = 0;
2995 		if_foreach_llmaddr(sc->ifp, fxp_setup_maddr, sc);
2996 		if (mcsp->mc_cnt >= MAXMCADDR) {
2997 			if_setflagbits(ifp, IFF_ALLMULTI, 0);
2998 			mcsp->mc_cnt = 0;
2999 		}
3000 	}
3001 	mcsp->mc_cnt = htole16(mcsp->mc_cnt * ETHER_ADDR_LEN);
3002 }
3003 
3004 /*
3005  * Program the multicast filter.
3006  *
3007  * We have an artificial restriction that the multicast setup command
3008  * must be the first command in the chain, so we take steps to ensure
3009  * this. By requiring this, it allows us to keep up the performance of
3010  * the pre-initialized command ring (esp. link pointers) by not actually
3011  * inserting the mcsetup command in the ring - i.e. its link pointer
3012  * points to the TxCB ring, but the mcsetup descriptor itself is not part
3013  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
3014  * lead into the regular TxCB ring when it completes.
3015  */
3016 static void
3017 fxp_mc_setup(struct fxp_softc *sc)
3018 {
3019 	struct fxp_cb_mcs *mcsp;
3020 	int count;
3021 
3022 	FXP_LOCK_ASSERT(sc, MA_OWNED);
3023 
3024 	mcsp = sc->mcsp;
3025 	mcsp->cb_status = 0;
3026 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3027 	mcsp->link_addr = 0xffffffff;
3028 	fxp_mc_addrs(sc);
3029 
3030 	/*
3031 	 * Wait until command unit is idle. This should never be the
3032 	 * case when nothing is queued, but make sure anyway.
3033 	 */
3034 	count = 100;
3035 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3036 	    FXP_SCB_CUS_IDLE && --count)
3037 		DELAY(10);
3038 	if (count == 0) {
3039 		device_printf(sc->dev, "command queue timeout\n");
3040 		return;
3041 	}
3042 
3043 	/*
3044 	 * Start the multicast setup command.
3045 	 */
3046 	fxp_scb_wait(sc);
3047 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3048 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3049 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3050 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3051 	/* ...and wait for it to complete. */
3052 	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3053 }
3054 
3055 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3056 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3057 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3058 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3059 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3060 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3061 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3062 
3063 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3064 
3065 static const struct ucode {
3066 	uint32_t	revision;
3067 	uint32_t	*ucode;
3068 	int		length;
3069 	u_short		int_delay_offset;
3070 	u_short		bundle_max_offset;
3071 } ucode_table[] = {
3072 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3073 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3074 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3075 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3076 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3077 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3078 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3079 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3080 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3081 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3082 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3083 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3084 	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3085 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3086 	{ 0, NULL, 0, 0, 0 }
3087 };
3088 
3089 static void
3090 fxp_load_ucode(struct fxp_softc *sc)
3091 {
3092 	const struct ucode *uc;
3093 	struct fxp_cb_ucode *cbp;
3094 	int i;
3095 
3096 	if (sc->flags & FXP_FLAG_NO_UCODE)
3097 		return;
3098 
3099 	for (uc = ucode_table; uc->ucode != NULL; uc++)
3100 		if (sc->revision == uc->revision)
3101 			break;
3102 	if (uc->ucode == NULL)
3103 		return;
3104 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3105 	cbp->cb_status = 0;
3106 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3107 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3108 	for (i = 0; i < uc->length; i++)
3109 		cbp->ucode[i] = htole32(uc->ucode[i]);
3110 	if (uc->int_delay_offset)
3111 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3112 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3113 	if (uc->bundle_max_offset)
3114 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3115 		    htole16(sc->tunable_bundle_max);
3116 	/*
3117 	 * Download the ucode to the chip.
3118 	 */
3119 	fxp_scb_wait(sc);
3120 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3121 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3122 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3123 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3124 	/* ...and wait for it to complete. */
3125 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3126 	device_printf(sc->dev,
3127 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3128 	    sc->tunable_int_delay,
3129 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3130 	sc->flags |= FXP_FLAG_UCODE;
3131 	bzero(cbp, FXP_TXCB_SZ);
3132 }
3133 
3134 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3135 	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3136 
3137 static void
3138 fxp_sysctl_node(struct fxp_softc *sc)
3139 {
3140 	struct sysctl_ctx_list *ctx;
3141 	struct sysctl_oid_list *child, *parent;
3142 	struct sysctl_oid *tree;
3143 	struct fxp_hwstats *hsp;
3144 
3145 	ctx = device_get_sysctl_ctx(sc->dev);
3146 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3147 
3148 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_delay",
3149 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
3150 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3151 	    "FXP driver receive interrupt microcode bundling delay");
3152 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "bundle_max",
3153 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
3154 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3155 	    "FXP driver receive interrupt microcode bundle size limit");
3156 	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3157 	    "FXP RNR events");
3158 
3159 	/*
3160 	 * Pull in device tunables.
3161 	 */
3162 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3163 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3164 	(void) resource_int_value(device_get_name(sc->dev),
3165 	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3166 	(void) resource_int_value(device_get_name(sc->dev),
3167 	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3168 	sc->rnr = 0;
3169 
3170 	hsp = &sc->fxp_hwstats;
3171 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
3172 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "FXP statistics");
3173 	parent = SYSCTL_CHILDREN(tree);
3174 
3175 	/* Rx MAC statistics. */
3176 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
3177 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
3178 	child = SYSCTL_CHILDREN(tree);
3179 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3180 	    &hsp->rx_good, "Good frames");
3181 	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3182 	    &hsp->rx_crc_errors, "CRC errors");
3183 	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3184 	    &hsp->rx_alignment_errors, "Alignment errors");
3185 	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3186 	    &hsp->rx_rnr_errors, "RNR errors");
3187 	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3188 	    &hsp->rx_overrun_errors, "Overrun errors");
3189 	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3190 	    &hsp->rx_cdt_errors, "Collision detect errors");
3191 	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3192 	    &hsp->rx_shortframes, "Short frame errors");
3193 	if (sc->revision >= FXP_REV_82558_A4) {
3194 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3195 		    &hsp->rx_pause, "Pause frames");
3196 		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3197 		    &hsp->rx_controls, "Unsupported control frames");
3198 	}
3199 	if (sc->revision >= FXP_REV_82559_A0)
3200 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3201 		    &hsp->rx_tco, "TCO frames");
3202 
3203 	/* Tx MAC statistics. */
3204 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
3205 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
3206 	child = SYSCTL_CHILDREN(tree);
3207 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3208 	    &hsp->tx_good, "Good frames");
3209 	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3210 	    &hsp->tx_maxcols, "Maximum collisions errors");
3211 	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3212 	    &hsp->tx_latecols, "Late collisions errors");
3213 	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3214 	    &hsp->tx_underruns, "Underrun errors");
3215 	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3216 	    &hsp->tx_lostcrs, "Lost carrier sense");
3217 	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3218 	    &hsp->tx_deffered, "Deferred");
3219 	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3220 	    &hsp->tx_single_collisions, "Single collisions");
3221 	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3222 	    &hsp->tx_multiple_collisions, "Multiple collisions");
3223 	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3224 	    &hsp->tx_total_collisions, "Total collisions");
3225 	if (sc->revision >= FXP_REV_82558_A4)
3226 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3227 		    &hsp->tx_pause, "Pause frames");
3228 	if (sc->revision >= FXP_REV_82559_A0)
3229 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3230 		    &hsp->tx_tco, "TCO frames");
3231 }
3232 
3233 #undef FXP_SYSCTL_STAT_ADD
3234 
3235 static int
3236 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3237 {
3238 	int error, value;
3239 
3240 	value = *(int *)arg1;
3241 	error = sysctl_handle_int(oidp, &value, 0, req);
3242 	if (error || !req->newptr)
3243 		return (error);
3244 	if (value < low || value > high)
3245 		return (EINVAL);
3246 	*(int *)arg1 = value;
3247 	return (0);
3248 }
3249 
3250 /*
3251  * Interrupt delay is expressed in microseconds, a multiplier is used
3252  * to convert this to the appropriate clock ticks before using.
3253  */
3254 static int
3255 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3256 {
3257 
3258 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3259 }
3260 
3261 static int
3262 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3263 {
3264 
3265 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3266 }
3267