1 /*- 2 * Copyright (c) 1995, David Greenman 3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice unmodified, this list of conditions, and the following 11 * disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 /* 32 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/mbuf.h> 38 #include <sys/malloc.h> 39 /* #include <sys/mutex.h> */ 40 #include <sys/kernel.h> 41 #include <sys/socket.h> 42 #include <sys/sysctl.h> 43 44 #include <net/if.h> 45 #include <net/if_dl.h> 46 #include <net/if_media.h> 47 48 #ifdef NS 49 #include <netns/ns.h> 50 #include <netns/ns_if.h> 51 #endif 52 53 #include <net/bpf.h> 54 #include <sys/sockio.h> 55 #include <sys/bus.h> 56 #include <machine/bus.h> 57 #include <sys/rman.h> 58 #include <machine/resource.h> 59 60 #include <net/ethernet.h> 61 #include <net/if_arp.h> 62 63 #include <vm/vm.h> /* for vtophys */ 64 #include <vm/pmap.h> /* for vtophys */ 65 #include <machine/clock.h> /* for DELAY */ 66 67 #include <net/if_types.h> 68 #include <net/if_vlan_var.h> 69 70 #include <pci/pcivar.h> 71 #include <pci/pcireg.h> /* for PCIM_CMD_xxx */ 72 73 #include <dev/mii/mii.h> 74 #include <dev/mii/miivar.h> 75 76 #include <dev/fxp/if_fxpreg.h> 77 #include <dev/fxp/if_fxpvar.h> 78 #include <dev/fxp/rcvbundl.h> 79 80 MODULE_DEPEND(fxp, miibus, 1, 1, 1); 81 #include "miibus_if.h" 82 83 /* 84 * NOTE! On the Alpha, we have an alignment constraint. The 85 * card DMAs the packet immediately following the RFA. However, 86 * the first thing in the packet is a 14-byte Ethernet header. 87 * This means that the packet is misaligned. To compensate, 88 * we actually offset the RFA 2 bytes into the cluster. This 89 * alignes the packet after the Ethernet header at a 32-bit 90 * boundary. HOWEVER! This means that the RFA is misaligned! 91 */ 92 #define RFA_ALIGNMENT_FUDGE 2 93 94 /* 95 * Set initial transmit threshold at 64 (512 bytes). This is 96 * increased by 64 (512 bytes) at a time, to maximum of 192 97 * (1536 bytes), if an underrun occurs. 98 */ 99 static int tx_threshold = 64; 100 101 /* 102 * The configuration byte map has several undefined fields which 103 * must be one or must be zero. Set up a template for these bits 104 * only, (assuming a 82557 chip) leaving the actual configuration 105 * to fxp_init. 106 * 107 * See struct fxp_cb_config for the bit definitions. 108 */ 109 static u_char fxp_cb_config_template[] = { 110 0x0, 0x0, /* cb_status */ 111 0x0, 0x0, /* cb_command */ 112 0x0, 0x0, 0x0, 0x0, /* link_addr */ 113 0x0, /* 0 */ 114 0x0, /* 1 */ 115 0x0, /* 2 */ 116 0x0, /* 3 */ 117 0x0, /* 4 */ 118 0x0, /* 5 */ 119 0x32, /* 6 */ 120 0x0, /* 7 */ 121 0x0, /* 8 */ 122 0x0, /* 9 */ 123 0x6, /* 10 */ 124 0x0, /* 11 */ 125 0x0, /* 12 */ 126 0x0, /* 13 */ 127 0xf2, /* 14 */ 128 0x48, /* 15 */ 129 0x0, /* 16 */ 130 0x40, /* 17 */ 131 0xf0, /* 18 */ 132 0x0, /* 19 */ 133 0x3f, /* 20 */ 134 0x5 /* 21 */ 135 }; 136 137 struct fxp_ident { 138 u_int16_t devid; 139 char *name; 140 }; 141 142 /* 143 * Claim various Intel PCI device identifiers for this driver. The 144 * sub-vendor and sub-device field are extensively used to identify 145 * particular variants, but we don't currently differentiate between 146 * them. 147 */ 148 static struct fxp_ident fxp_ident_table[] = { 149 { 0x1229, "Intel Pro 10/100B/100+ Ethernet" }, 150 { 0x2449, "Intel Pro/100 Ethernet" }, 151 { 0x1209, "Intel Embedded 10/100 Ethernet" }, 152 { 0x1029, "Intel Pro/100 Ethernet" }, 153 { 0x1030, "Intel Pro/100 Ethernet" }, 154 { 0x1031, "Intel Pro/100 Ethernet" }, 155 { 0x1032, "Intel Pro/100 Ethernet" }, 156 { 0x1033, "Intel Pro/100 Ethernet" }, 157 { 0x1034, "Intel Pro/100 Ethernet" }, 158 { 0x1035, "Intel Pro/100 Ethernet" }, 159 { 0x1036, "Intel Pro/100 Ethernet" }, 160 { 0x1037, "Intel Pro/100 Ethernet" }, 161 { 0x1038, "Intel Pro/100 Ethernet" }, 162 { 0x1039, "Intel Pro/100 Ethernet" }, 163 { 0, NULL }, 164 }; 165 166 static int fxp_probe(device_t dev); 167 static int fxp_attach(device_t dev); 168 static int fxp_detach(device_t dev); 169 static int fxp_shutdown(device_t dev); 170 static int fxp_suspend(device_t dev); 171 static int fxp_resume(device_t dev); 172 173 static void fxp_intr(void *xsc); 174 static void fxp_init(void *xsc); 175 static void fxp_tick(void *xsc); 176 static void fxp_powerstate_d0(device_t dev); 177 static void fxp_start(struct ifnet *ifp); 178 static void fxp_stop(struct fxp_softc *sc); 179 static void fxp_release(struct fxp_softc *sc); 180 static int fxp_ioctl(struct ifnet *ifp, u_long command, 181 caddr_t data); 182 static void fxp_watchdog(struct ifnet *ifp); 183 static int fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm); 184 static int fxp_mc_addrs(struct fxp_softc *sc); 185 static void fxp_mc_setup(struct fxp_softc *sc); 186 static u_int16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, 187 int autosize); 188 static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, 189 u_int16_t data); 190 static void fxp_autosize_eeprom(struct fxp_softc *sc); 191 static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, 192 int offset, int words); 193 static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, 194 int offset, int words); 195 static int fxp_ifmedia_upd(struct ifnet *ifp); 196 static void fxp_ifmedia_sts(struct ifnet *ifp, 197 struct ifmediareq *ifmr); 198 static int fxp_serial_ifmedia_upd(struct ifnet *ifp); 199 static void fxp_serial_ifmedia_sts(struct ifnet *ifp, 200 struct ifmediareq *ifmr); 201 static volatile int fxp_miibus_readreg(device_t dev, int phy, int reg); 202 static void fxp_miibus_writereg(device_t dev, int phy, int reg, 203 int value); 204 static void fxp_load_ucode(struct fxp_softc *sc); 205 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, 206 int low, int high); 207 static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS); 208 static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS); 209 static __inline void fxp_lwcopy(volatile u_int32_t *src, 210 volatile u_int32_t *dst); 211 static __inline void fxp_scb_wait(struct fxp_softc *sc); 212 static __inline void fxp_scb_cmd(struct fxp_softc *sc, int cmd); 213 static __inline void fxp_dma_wait(volatile u_int16_t *status, 214 struct fxp_softc *sc); 215 216 static device_method_t fxp_methods[] = { 217 /* Device interface */ 218 DEVMETHOD(device_probe, fxp_probe), 219 DEVMETHOD(device_attach, fxp_attach), 220 DEVMETHOD(device_detach, fxp_detach), 221 DEVMETHOD(device_shutdown, fxp_shutdown), 222 DEVMETHOD(device_suspend, fxp_suspend), 223 DEVMETHOD(device_resume, fxp_resume), 224 225 /* MII interface */ 226 DEVMETHOD(miibus_readreg, fxp_miibus_readreg), 227 DEVMETHOD(miibus_writereg, fxp_miibus_writereg), 228 229 { 0, 0 } 230 }; 231 232 static driver_t fxp_driver = { 233 "fxp", 234 fxp_methods, 235 sizeof(struct fxp_softc), 236 }; 237 238 static devclass_t fxp_devclass; 239 240 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0); 241 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0); 242 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0); 243 244 /* 245 * Inline function to copy a 16-bit aligned 32-bit quantity. 246 */ 247 static __inline void 248 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst) 249 { 250 #ifdef __i386__ 251 *dst = *src; 252 #else 253 volatile u_int16_t *a = (volatile u_int16_t *)src; 254 volatile u_int16_t *b = (volatile u_int16_t *)dst; 255 256 b[0] = a[0]; 257 b[1] = a[1]; 258 #endif 259 } 260 261 /* 262 * Wait for the previous command to be accepted (but not necessarily 263 * completed). 264 */ 265 static __inline void 266 fxp_scb_wait(struct fxp_softc *sc) 267 { 268 int i = 10000; 269 270 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) 271 DELAY(2); 272 if (i == 0) 273 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n", 274 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND), 275 CSR_READ_1(sc, FXP_CSR_SCB_STATACK), 276 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), 277 CSR_READ_2(sc, FXP_CSR_FLOWCONTROL)); 278 } 279 280 static __inline void 281 fxp_scb_cmd(struct fxp_softc *sc, int cmd) 282 { 283 284 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) { 285 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP); 286 fxp_scb_wait(sc); 287 } 288 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); 289 } 290 291 static __inline void 292 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc) 293 { 294 int i = 10000; 295 296 while (!(*status & FXP_CB_STATUS_C) && --i) 297 DELAY(2); 298 if (i == 0) 299 device_printf(sc->dev, "DMA timeout\n"); 300 } 301 302 /* 303 * Return identification string if this is device is ours. 304 */ 305 static int 306 fxp_probe(device_t dev) 307 { 308 u_int16_t devid; 309 struct fxp_ident *ident; 310 311 if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) { 312 devid = pci_get_device(dev); 313 for (ident = fxp_ident_table; ident->name != NULL; ident++) { 314 if (ident->devid == devid) { 315 device_set_desc(dev, ident->name); 316 return (0); 317 } 318 } 319 } 320 return (ENXIO); 321 } 322 323 static void 324 fxp_powerstate_d0(device_t dev) 325 { 326 #if __FreeBSD_version >= 430002 327 u_int32_t iobase, membase, irq; 328 329 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 330 /* Save important PCI config data. */ 331 iobase = pci_read_config(dev, FXP_PCI_IOBA, 4); 332 membase = pci_read_config(dev, FXP_PCI_MMBA, 4); 333 irq = pci_read_config(dev, PCIR_INTLINE, 4); 334 335 /* Reset the power state. */ 336 device_printf(dev, "chip is in D%d power mode " 337 "-- setting to D0\n", pci_get_powerstate(dev)); 338 339 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 340 341 /* Restore PCI config data. */ 342 pci_write_config(dev, FXP_PCI_IOBA, iobase, 4); 343 pci_write_config(dev, FXP_PCI_MMBA, membase, 4); 344 pci_write_config(dev, PCIR_INTLINE, irq, 4); 345 } 346 #endif 347 } 348 349 static int 350 fxp_attach(device_t dev) 351 { 352 int error = 0; 353 struct fxp_softc *sc = device_get_softc(dev); 354 struct ifnet *ifp; 355 u_int32_t val; 356 u_int16_t data; 357 int i, rid, m1, m2, prefer_iomap; 358 int s; 359 360 bzero(sc, sizeof(*sc)); 361 sc->dev = dev; 362 callout_handle_init(&sc->stat_ch); 363 sysctl_ctx_init(&sc->sysctl_ctx); 364 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 365 MTX_DEF | MTX_RECURSE); 366 367 s = splimp(); 368 369 /* 370 * Enable bus mastering. Enable memory space too, in case 371 * BIOS/Prom forgot about it. 372 */ 373 val = pci_read_config(dev, PCIR_COMMAND, 2); 374 val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); 375 pci_write_config(dev, PCIR_COMMAND, val, 2); 376 val = pci_read_config(dev, PCIR_COMMAND, 2); 377 378 fxp_powerstate_d0(dev); 379 380 /* 381 * Figure out which we should try first - memory mapping or i/o mapping? 382 * We default to memory mapping. Then we accept an override from the 383 * command line. Then we check to see which one is enabled. 384 */ 385 m1 = PCIM_CMD_MEMEN; 386 m2 = PCIM_CMD_PORTEN; 387 prefer_iomap = 0; 388 if (resource_int_value(device_get_name(dev), device_get_unit(dev), 389 "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) { 390 m1 = PCIM_CMD_PORTEN; 391 m2 = PCIM_CMD_MEMEN; 392 } 393 394 if (val & m1) { 395 sc->rtp = 396 (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; 397 sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA; 398 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd, 399 0, ~0, 1, RF_ACTIVE); 400 } 401 if (sc->mem == NULL && (val & m2)) { 402 sc->rtp = 403 (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; 404 sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA; 405 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd, 406 0, ~0, 1, RF_ACTIVE); 407 } 408 409 if (!sc->mem) { 410 device_printf(dev, "could not map device registers\n"); 411 error = ENXIO; 412 goto fail; 413 } 414 if (bootverbose) { 415 device_printf(dev, "using %s space register mapping\n", 416 sc->rtp == SYS_RES_MEMORY? "memory" : "I/O"); 417 } 418 419 sc->sc_st = rman_get_bustag(sc->mem); 420 sc->sc_sh = rman_get_bushandle(sc->mem); 421 422 /* 423 * Allocate our interrupt. 424 */ 425 rid = 0; 426 sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 427 RF_SHAREABLE | RF_ACTIVE); 428 if (sc->irq == NULL) { 429 device_printf(dev, "could not map interrupt\n"); 430 error = ENXIO; 431 goto fail; 432 } 433 434 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET, 435 fxp_intr, sc, &sc->ih); 436 if (error) { 437 device_printf(dev, "could not setup irq\n"); 438 goto fail; 439 } 440 441 /* 442 * Reset to a stable state. 443 */ 444 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 445 DELAY(10); 446 447 sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB, 448 M_DEVBUF, M_NOWAIT | M_ZERO); 449 if (sc->cbl_base == NULL) 450 goto failmem; 451 452 sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF, 453 M_NOWAIT | M_ZERO); 454 if (sc->fxp_stats == NULL) 455 goto failmem; 456 457 sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT); 458 if (sc->mcsp == NULL) 459 goto failmem; 460 461 /* 462 * Pre-allocate our receive buffers. 463 */ 464 for (i = 0; i < FXP_NRFABUFS; i++) { 465 if (fxp_add_rfabuf(sc, NULL) != 0) { 466 goto failmem; 467 } 468 } 469 470 /* 471 * Find out how large of an SEEPROM we have. 472 */ 473 fxp_autosize_eeprom(sc); 474 475 /* 476 * Determine whether we must use the 503 serial interface. 477 */ 478 fxp_read_eeprom(sc, &data, 6, 1); 479 if ((data & FXP_PHY_DEVICE_MASK) != 0 && 480 (data & FXP_PHY_SERIAL_ONLY)) 481 sc->flags |= FXP_FLAG_SERIAL_MEDIA; 482 483 /* 484 * Create the sysctl tree 485 */ 486 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 487 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 488 device_get_nameunit(dev), CTLFLAG_RD, 0, ""); 489 if (sc->sysctl_tree == NULL) 490 goto fail; 491 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 492 OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON, 493 &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I", 494 "FXP driver receive interrupt microcode bundling delay"); 495 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), 496 OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON, 497 &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I", 498 "FXP driver receive interrupt microcode bundle size limit"); 499 500 /* 501 * Pull in device tunables. 502 */ 503 sc->tunable_int_delay = TUNABLE_INT_DELAY; 504 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX; 505 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 506 "int_delay", &sc->tunable_int_delay); 507 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 508 "bundle_max", &sc->tunable_bundle_max); 509 510 /* 511 * Find out the chip revision; lump all 82557 revs together. 512 */ 513 fxp_read_eeprom(sc, &data, 5, 1); 514 if ((data >> 8) == 1) 515 sc->revision = FXP_REV_82557; 516 else 517 sc->revision = pci_get_revid(dev); 518 519 /* 520 * Enable workarounds for certain chip revision deficiencies. 521 * 522 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly 523 * some systems based a normal 82559 design, have a defect where 524 * the chip can cause a PCI protocol violation if it receives 525 * a CU_RESUME command when it is entering the IDLE state. The 526 * workaround is to disable Dynamic Standby Mode, so the chip never 527 * deasserts CLKRUN#, and always remains in an active state. 528 * 529 * See Intel 82801BA/82801BAM Specification Update, Errata #30. 530 */ 531 i = pci_get_device(dev); 532 if (i == 0x2449 || (i > 0x1030 && i < 0x1039) || 533 sc->revision >= FXP_REV_82559_A0) { 534 fxp_read_eeprom(sc, &data, 10, 1); 535 if (data & 0x02) { /* STB enable */ 536 u_int16_t cksum; 537 int i; 538 539 device_printf(dev, 540 "Disabling dynamic standby mode in EEPROM\n"); 541 data &= ~0x02; 542 fxp_write_eeprom(sc, &data, 10, 1); 543 device_printf(dev, "New EEPROM ID: 0x%x\n", data); 544 cksum = 0; 545 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) { 546 fxp_read_eeprom(sc, &data, i, 1); 547 cksum += data; 548 } 549 i = (1 << sc->eeprom_size) - 1; 550 cksum = 0xBABA - cksum; 551 fxp_read_eeprom(sc, &data, i, 1); 552 fxp_write_eeprom(sc, &cksum, i, 1); 553 device_printf(dev, 554 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n", 555 i, data, cksum); 556 #if 1 557 /* 558 * If the user elects to continue, try the software 559 * workaround, as it is better than nothing. 560 */ 561 sc->flags |= FXP_FLAG_CU_RESUME_BUG; 562 #endif 563 } 564 } 565 566 /* 567 * If we are not a 82557 chip, we can enable extended features. 568 */ 569 if (sc->revision != FXP_REV_82557) { 570 /* 571 * If MWI is enabled in the PCI configuration, and there 572 * is a valid cacheline size (8 or 16 dwords), then tell 573 * the board to turn on MWI. 574 */ 575 if (val & PCIM_CMD_MWRICEN && 576 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0) 577 sc->flags |= FXP_FLAG_MWI_ENABLE; 578 579 /* turn on the extended TxCB feature */ 580 sc->flags |= FXP_FLAG_EXT_TXCB; 581 582 /* enable reception of long frames for VLAN */ 583 sc->flags |= FXP_FLAG_LONG_PKT_EN; 584 } 585 586 /* 587 * Read MAC address. 588 */ 589 fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3); 590 device_printf(dev, "Ethernet address %6D%s\n", 591 sc->arpcom.ac_enaddr, ":", 592 sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : ""); 593 if (bootverbose) { 594 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n", 595 pci_get_vendor(dev), pci_get_device(dev), 596 pci_get_subvendor(dev), pci_get_subdevice(dev), 597 pci_get_revid(dev)); 598 fxp_read_eeprom(sc, &data, 10, 1); 599 device_printf(dev, "Dynamic Standby mode is %s\n", 600 data & 0x02 ? "enabled" : "disabled"); 601 } 602 603 /* 604 * If this is only a 10Mbps device, then there is no MII, and 605 * the PHY will use a serial interface instead. 606 * 607 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 608 * doesn't have a programming interface of any sort. The 609 * media is sensed automatically based on how the link partner 610 * is configured. This is, in essence, manual configuration. 611 */ 612 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) { 613 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd, 614 fxp_serial_ifmedia_sts); 615 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 616 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); 617 } else { 618 if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd, 619 fxp_ifmedia_sts)) { 620 device_printf(dev, "MII without any PHY!\n"); 621 error = ENXIO; 622 goto fail; 623 } 624 } 625 626 ifp = &sc->arpcom.ac_if; 627 ifp->if_unit = device_get_unit(dev); 628 ifp->if_name = "fxp"; 629 ifp->if_output = ether_output; 630 ifp->if_baudrate = 100000000; 631 ifp->if_init = fxp_init; 632 ifp->if_softc = sc; 633 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 634 ifp->if_ioctl = fxp_ioctl; 635 ifp->if_start = fxp_start; 636 ifp->if_watchdog = fxp_watchdog; 637 638 /* 639 * Attach the interface. 640 */ 641 ether_ifattach(ifp, ETHER_BPF_SUPPORTED); 642 643 /* 644 * Tell the upper layer(s) we support long frames. 645 */ 646 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 647 648 /* 649 * Let the system queue as many packets as we have available 650 * TX descriptors. 651 */ 652 ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1; 653 654 splx(s); 655 return (0); 656 657 failmem: 658 device_printf(dev, "Failed to malloc memory\n"); 659 error = ENOMEM; 660 fail: 661 splx(s); 662 fxp_release(sc); 663 return (error); 664 } 665 666 /* 667 * release all resources 668 */ 669 static void 670 fxp_release(struct fxp_softc *sc) 671 { 672 673 bus_generic_detach(sc->dev); 674 if (sc->miibus) 675 device_delete_child(sc->dev, sc->miibus); 676 677 if (sc->cbl_base) 678 free(sc->cbl_base, M_DEVBUF); 679 if (sc->fxp_stats) 680 free(sc->fxp_stats, M_DEVBUF); 681 if (sc->mcsp) 682 free(sc->mcsp, M_DEVBUF); 683 if (sc->rfa_headm) 684 m_freem(sc->rfa_headm); 685 686 if (sc->ih) 687 bus_teardown_intr(sc->dev, sc->irq, sc->ih); 688 if (sc->irq) 689 bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq); 690 if (sc->mem) 691 bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem); 692 693 sysctl_ctx_free(&sc->sysctl_ctx); 694 695 mtx_destroy(&sc->sc_mtx); 696 } 697 698 /* 699 * Detach interface. 700 */ 701 static int 702 fxp_detach(device_t dev) 703 { 704 struct fxp_softc *sc = device_get_softc(dev); 705 int s; 706 707 /* disable interrupts */ 708 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 709 710 s = splimp(); 711 712 /* 713 * Stop DMA and drop transmit queue. 714 */ 715 fxp_stop(sc); 716 717 /* 718 * Close down routes etc. 719 */ 720 ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED); 721 722 /* 723 * Free all media structures. 724 */ 725 ifmedia_removeall(&sc->sc_media); 726 727 splx(s); 728 729 /* Release our allocated resources. */ 730 fxp_release(sc); 731 732 return (0); 733 } 734 735 /* 736 * Device shutdown routine. Called at system shutdown after sync. The 737 * main purpose of this routine is to shut off receiver DMA so that 738 * kernel memory doesn't get clobbered during warmboot. 739 */ 740 static int 741 fxp_shutdown(device_t dev) 742 { 743 /* 744 * Make sure that DMA is disabled prior to reboot. Not doing 745 * do could allow DMA to corrupt kernel memory during the 746 * reboot before the driver initializes. 747 */ 748 fxp_stop((struct fxp_softc *) device_get_softc(dev)); 749 return (0); 750 } 751 752 /* 753 * Device suspend routine. Stop the interface and save some PCI 754 * settings in case the BIOS doesn't restore them properly on 755 * resume. 756 */ 757 static int 758 fxp_suspend(device_t dev) 759 { 760 struct fxp_softc *sc = device_get_softc(dev); 761 int i, s; 762 763 s = splimp(); 764 765 fxp_stop(sc); 766 767 for (i = 0; i < 5; i++) 768 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4); 769 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4); 770 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1); 771 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 772 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); 773 774 sc->suspended = 1; 775 776 splx(s); 777 return (0); 778 } 779 780 /* 781 * Device resume routine. Restore some PCI settings in case the BIOS 782 * doesn't, re-enable busmastering, and restart the interface if 783 * appropriate. 784 */ 785 static int 786 fxp_resume(device_t dev) 787 { 788 struct fxp_softc *sc = device_get_softc(dev); 789 struct ifnet *ifp = &sc->sc_if; 790 u_int16_t pci_command; 791 int i, s; 792 793 s = splimp(); 794 795 fxp_powerstate_d0(dev); 796 797 /* better way to do this? */ 798 for (i = 0; i < 5; i++) 799 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4); 800 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4); 801 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1); 802 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1); 803 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1); 804 805 /* reenable busmastering */ 806 pci_command = pci_read_config(dev, PCIR_COMMAND, 2); 807 pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); 808 pci_write_config(dev, PCIR_COMMAND, pci_command, 2); 809 810 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 811 DELAY(10); 812 813 /* reinitialize interface if necessary */ 814 if (ifp->if_flags & IFF_UP) 815 fxp_init(sc); 816 817 sc->suspended = 0; 818 819 splx(s); 820 return (0); 821 } 822 823 static void 824 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) 825 { 826 u_int16_t reg; 827 int x; 828 829 /* 830 * Shift in data. 831 */ 832 for (x = 1 << (length - 1); x; x >>= 1) { 833 if (data & x) 834 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 835 else 836 reg = FXP_EEPROM_EECS; 837 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 838 DELAY(1); 839 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 840 DELAY(1); 841 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 842 DELAY(1); 843 } 844 } 845 846 /* 847 * Read from the serial EEPROM. Basically, you manually shift in 848 * the read opcode (one bit at a time) and then shift in the address, 849 * and then you shift out the data (all of this one bit at a time). 850 * The word size is 16 bits, so you have to provide the address for 851 * every 16 bits of data. 852 */ 853 static u_int16_t 854 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize) 855 { 856 u_int16_t reg, data; 857 int x; 858 859 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 860 /* 861 * Shift in read opcode. 862 */ 863 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); 864 /* 865 * Shift in address. 866 */ 867 data = 0; 868 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) { 869 if (offset & x) 870 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 871 else 872 reg = FXP_EEPROM_EECS; 873 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 874 DELAY(1); 875 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 876 DELAY(1); 877 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 878 DELAY(1); 879 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO; 880 data++; 881 if (autosize && reg == 0) { 882 sc->eeprom_size = data; 883 break; 884 } 885 } 886 /* 887 * Shift out data. 888 */ 889 data = 0; 890 reg = FXP_EEPROM_EECS; 891 for (x = 1 << 15; x; x >>= 1) { 892 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 893 DELAY(1); 894 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 895 data |= x; 896 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 897 DELAY(1); 898 } 899 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 900 DELAY(1); 901 902 return (data); 903 } 904 905 static void 906 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data) 907 { 908 int i; 909 910 /* 911 * Erase/write enable. 912 */ 913 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 914 fxp_eeprom_shiftin(sc, 0x4, 3); 915 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); 916 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 917 DELAY(1); 918 /* 919 * Shift in write opcode, address, data. 920 */ 921 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 922 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); 923 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); 924 fxp_eeprom_shiftin(sc, data, 16); 925 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 926 DELAY(1); 927 /* 928 * Wait for EEPROM to finish up. 929 */ 930 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 931 DELAY(1); 932 for (i = 0; i < 1000; i++) { 933 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 934 break; 935 DELAY(50); 936 } 937 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 938 DELAY(1); 939 /* 940 * Erase/write disable. 941 */ 942 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 943 fxp_eeprom_shiftin(sc, 0x4, 3); 944 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); 945 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 946 DELAY(1); 947 } 948 949 /* 950 * From NetBSD: 951 * 952 * Figure out EEPROM size. 953 * 954 * 559's can have either 64-word or 256-word EEPROMs, the 558 955 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet 956 * talks about the existance of 16 to 256 word EEPROMs. 957 * 958 * The only known sizes are 64 and 256, where the 256 version is used 959 * by CardBus cards to store CIS information. 960 * 961 * The address is shifted in msb-to-lsb, and after the last 962 * address-bit the EEPROM is supposed to output a `dummy zero' bit, 963 * after which follows the actual data. We try to detect this zero, by 964 * probing the data-out bit in the EEPROM control register just after 965 * having shifted in a bit. If the bit is zero, we assume we've 966 * shifted enough address bits. The data-out should be tri-state, 967 * before this, which should translate to a logical one. 968 */ 969 static void 970 fxp_autosize_eeprom(struct fxp_softc *sc) 971 { 972 973 /* guess maximum size of 256 words */ 974 sc->eeprom_size = 8; 975 976 /* autosize */ 977 (void) fxp_eeprom_getword(sc, 0, 1); 978 } 979 980 static void 981 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 982 { 983 int i; 984 985 for (i = 0; i < words; i++) 986 data[i] = fxp_eeprom_getword(sc, offset + i, 0); 987 } 988 989 static void 990 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 991 { 992 int i; 993 994 for (i = 0; i < words; i++) 995 fxp_eeprom_putword(sc, offset + i, data[i]); 996 } 997 998 /* 999 * Start packet transmission on the interface. 1000 */ 1001 static void 1002 fxp_start(struct ifnet *ifp) 1003 { 1004 struct fxp_softc *sc = ifp->if_softc; 1005 struct fxp_cb_tx *txp; 1006 1007 /* 1008 * See if we need to suspend xmit until the multicast filter 1009 * has been reprogrammed (which can only be done at the head 1010 * of the command chain). 1011 */ 1012 if (sc->need_mcsetup) { 1013 return; 1014 } 1015 1016 txp = NULL; 1017 1018 /* 1019 * We're finished if there is nothing more to add to the list or if 1020 * we're all filled up with buffers to transmit. 1021 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add 1022 * a NOP command when needed. 1023 */ 1024 while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) { 1025 struct mbuf *m, *mb_head; 1026 int segment; 1027 1028 /* 1029 * Grab a packet to transmit. 1030 */ 1031 IF_DEQUEUE(&ifp->if_snd, mb_head); 1032 1033 /* 1034 * Get pointer to next available tx desc. 1035 */ 1036 txp = sc->cbl_last->next; 1037 1038 /* 1039 * Go through each of the mbufs in the chain and initialize 1040 * the transmit buffer descriptors with the physical address 1041 * and size of the mbuf. 1042 */ 1043 tbdinit: 1044 for (m = mb_head, segment = 0; m != NULL; m = m->m_next) { 1045 if (m->m_len != 0) { 1046 if (segment == FXP_NTXSEG) 1047 break; 1048 txp->tbd[segment].tb_addr = 1049 vtophys(mtod(m, vm_offset_t)); 1050 txp->tbd[segment].tb_size = m->m_len; 1051 segment++; 1052 } 1053 } 1054 if (m != NULL) { 1055 struct mbuf *mn; 1056 1057 /* 1058 * We ran out of segments. We have to recopy this 1059 * mbuf chain first. Bail out if we can't get the 1060 * new buffers. 1061 */ 1062 MGETHDR(mn, M_DONTWAIT, MT_DATA); 1063 if (mn == NULL) { 1064 m_freem(mb_head); 1065 break; 1066 } 1067 if (mb_head->m_pkthdr.len > MHLEN) { 1068 MCLGET(mn, M_DONTWAIT); 1069 if ((mn->m_flags & M_EXT) == 0) { 1070 m_freem(mn); 1071 m_freem(mb_head); 1072 break; 1073 } 1074 } 1075 m_copydata(mb_head, 0, mb_head->m_pkthdr.len, 1076 mtod(mn, caddr_t)); 1077 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len; 1078 m_freem(mb_head); 1079 mb_head = mn; 1080 goto tbdinit; 1081 } 1082 1083 txp->tbd_number = segment; 1084 txp->mb_head = mb_head; 1085 txp->cb_status = 0; 1086 if (sc->tx_queued != FXP_CXINT_THRESH - 1) { 1087 txp->cb_command = 1088 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | 1089 FXP_CB_COMMAND_S; 1090 } else { 1091 txp->cb_command = 1092 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | 1093 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; 1094 /* 1095 * Set a 5 second timer just in case we don't hear 1096 * from the card again. 1097 */ 1098 ifp->if_timer = 5; 1099 } 1100 txp->tx_threshold = tx_threshold; 1101 1102 /* 1103 * Advance the end of list forward. 1104 */ 1105 1106 #ifdef __alpha__ 1107 /* 1108 * On platforms which can't access memory in 16-bit 1109 * granularities, we must prevent the card from DMA'ing 1110 * up the status while we update the command field. 1111 * This could cause us to overwrite the completion status. 1112 */ 1113 atomic_clear_short(&sc->cbl_last->cb_command, 1114 FXP_CB_COMMAND_S); 1115 #else 1116 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S; 1117 #endif /*__alpha__*/ 1118 sc->cbl_last = txp; 1119 1120 /* 1121 * Advance the beginning of the list forward if there are 1122 * no other packets queued (when nothing is queued, cbl_first 1123 * sits on the last TxCB that was sent out). 1124 */ 1125 if (sc->tx_queued == 0) 1126 sc->cbl_first = txp; 1127 1128 sc->tx_queued++; 1129 1130 /* 1131 * Pass packet to bpf if there is a listener. 1132 */ 1133 if (ifp->if_bpf) 1134 bpf_mtap(ifp, mb_head); 1135 } 1136 1137 /* 1138 * We're finished. If we added to the list, issue a RESUME to get DMA 1139 * going again if suspended. 1140 */ 1141 if (txp != NULL) { 1142 fxp_scb_wait(sc); 1143 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 1144 } 1145 } 1146 1147 static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count); 1148 1149 #ifdef DEVICE_POLLING 1150 static poll_handler_t fxp_poll; 1151 1152 static void 1153 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1154 { 1155 struct fxp_softc *sc = ifp->if_softc; 1156 u_int8_t statack; 1157 1158 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */ 1159 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 1160 return; 1161 } 1162 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA | 1163 FXP_SCB_STATACK_FR; 1164 if (cmd == POLL_AND_CHECK_STATUS) { 1165 u_int8_t tmp; 1166 1167 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK); 1168 if (tmp == 0xff || tmp == 0) 1169 return; /* nothing to do */ 1170 tmp &= ~statack; 1171 /* ack what we can */ 1172 if (tmp != 0) 1173 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp); 1174 statack |= tmp; 1175 } 1176 fxp_intr_body(sc, statack, count); 1177 } 1178 #endif /* DEVICE_POLLING */ 1179 1180 /* 1181 * Process interface interrupts. 1182 */ 1183 static void 1184 fxp_intr(void *xsc) 1185 { 1186 struct fxp_softc *sc = xsc; 1187 u_int8_t statack; 1188 1189 #ifdef DEVICE_POLLING 1190 struct ifnet *ifp = &sc->sc_if; 1191 1192 if (ifp->if_ipending & IFF_POLLING) 1193 return; 1194 if (ether_poll_register(fxp_poll, ifp)) { 1195 /* disable interrupts */ 1196 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 1197 fxp_poll(ifp, 0, 1); 1198 return; 1199 } 1200 #endif 1201 1202 if (sc->suspended) { 1203 return; 1204 } 1205 1206 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { 1207 /* 1208 * It should not be possible to have all bits set; the 1209 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If 1210 * all bits are set, this may indicate that the card has 1211 * been physically ejected, so ignore it. 1212 */ 1213 if (statack == 0xff) 1214 return; 1215 1216 /* 1217 * First ACK all the interrupts in this pass. 1218 */ 1219 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); 1220 fxp_intr_body(sc, statack, -1); 1221 } 1222 } 1223 1224 static void 1225 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count) 1226 { 1227 struct ifnet *ifp = &sc->sc_if; 1228 1229 /* 1230 * Free any finished transmit mbuf chains. 1231 * 1232 * Handle the CNA event likt a CXTNO event. It used to 1233 * be that this event (control unit not ready) was not 1234 * encountered, but it is now with the SMPng modifications. 1235 * The exact sequence of events that occur when the interface 1236 * is brought up are different now, and if this event 1237 * goes unhandled, the configuration/rxfilter setup sequence 1238 * can stall for several seconds. The result is that no 1239 * packets go out onto the wire for about 5 to 10 seconds 1240 * after the interface is ifconfig'ed for the first time. 1241 */ 1242 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) { 1243 struct fxp_cb_tx *txp; 1244 1245 for (txp = sc->cbl_first; sc->tx_queued && 1246 (txp->cb_status & FXP_CB_STATUS_C) != 0; 1247 txp = txp->next) { 1248 if (txp->mb_head != NULL) { 1249 m_freem(txp->mb_head); 1250 txp->mb_head = NULL; 1251 } 1252 sc->tx_queued--; 1253 } 1254 sc->cbl_first = txp; 1255 ifp->if_timer = 0; 1256 if (sc->tx_queued == 0) { 1257 if (sc->need_mcsetup) 1258 fxp_mc_setup(sc); 1259 } 1260 /* 1261 * Try to start more packets transmitting. 1262 */ 1263 if (ifp->if_snd.ifq_head != NULL) 1264 fxp_start(ifp); 1265 } 1266 /* 1267 * Process receiver interrupts. If a no-resource (RNR) 1268 * condition exists, get whatever packets we can and 1269 * re-start the receiver. 1270 */ 1271 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) { 1272 struct mbuf *m; 1273 struct fxp_rfa *rfa; 1274 rcvloop: 1275 m = sc->rfa_headm; 1276 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + 1277 RFA_ALIGNMENT_FUDGE); 1278 1279 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */ 1280 if (count < 0 || count-- > 0) 1281 #endif 1282 if (rfa->rfa_status & FXP_RFA_STATUS_C) { 1283 /* 1284 * Remove first packet from the chain. 1285 */ 1286 sc->rfa_headm = m->m_next; 1287 m->m_next = NULL; 1288 1289 /* 1290 * Add a new buffer to the receive chain. 1291 * If this fails, the old buffer is recycled 1292 * instead. 1293 */ 1294 if (fxp_add_rfabuf(sc, m) == 0) { 1295 struct ether_header *eh; 1296 int total_len; 1297 1298 total_len = rfa->actual_size & 1299 (MCLBYTES - 1); 1300 if (total_len < 1301 sizeof(struct ether_header)) { 1302 m_freem(m); 1303 goto rcvloop; 1304 } 1305 1306 /* 1307 * Drop the packet if it has CRC 1308 * errors. This test is only needed 1309 * when doing 802.1q VLAN on the 82557 1310 * chip. 1311 */ 1312 if (rfa->rfa_status & 1313 FXP_RFA_STATUS_CRC) { 1314 m_freem(m); 1315 goto rcvloop; 1316 } 1317 1318 m->m_pkthdr.rcvif = ifp; 1319 m->m_pkthdr.len = m->m_len = total_len; 1320 eh = mtod(m, struct ether_header *); 1321 m->m_data += 1322 sizeof(struct ether_header); 1323 m->m_len -= 1324 sizeof(struct ether_header); 1325 m->m_pkthdr.len = m->m_len; 1326 ether_input(ifp, eh, m); 1327 } 1328 goto rcvloop; 1329 } 1330 if (statack & FXP_SCB_STATACK_RNR) { 1331 fxp_scb_wait(sc); 1332 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 1333 vtophys(sc->rfa_headm->m_ext.ext_buf) + 1334 RFA_ALIGNMENT_FUDGE); 1335 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 1336 } 1337 } 1338 } 1339 1340 /* 1341 * Update packet in/out/collision statistics. The i82557 doesn't 1342 * allow you to access these counters without doing a fairly 1343 * expensive DMA to get _all_ of the statistics it maintains, so 1344 * we do this operation here only once per second. The statistics 1345 * counters in the kernel are updated from the previous dump-stats 1346 * DMA and then a new dump-stats DMA is started. The on-chip 1347 * counters are zeroed when the DMA completes. If we can't start 1348 * the DMA immediately, we don't wait - we just prepare to read 1349 * them again next time. 1350 */ 1351 static void 1352 fxp_tick(void *xsc) 1353 { 1354 struct fxp_softc *sc = xsc; 1355 struct ifnet *ifp = &sc->sc_if; 1356 struct fxp_stats *sp = sc->fxp_stats; 1357 struct fxp_cb_tx *txp; 1358 int s; 1359 1360 ifp->if_opackets += sp->tx_good; 1361 ifp->if_collisions += sp->tx_total_collisions; 1362 if (sp->rx_good) { 1363 ifp->if_ipackets += sp->rx_good; 1364 sc->rx_idle_secs = 0; 1365 } else { 1366 /* 1367 * Receiver's been idle for another second. 1368 */ 1369 sc->rx_idle_secs++; 1370 } 1371 ifp->if_ierrors += 1372 sp->rx_crc_errors + 1373 sp->rx_alignment_errors + 1374 sp->rx_rnr_errors + 1375 sp->rx_overrun_errors; 1376 /* 1377 * If any transmit underruns occured, bump up the transmit 1378 * threshold by another 512 bytes (64 * 8). 1379 */ 1380 if (sp->tx_underruns) { 1381 ifp->if_oerrors += sp->tx_underruns; 1382 if (tx_threshold < 192) 1383 tx_threshold += 64; 1384 } 1385 s = splimp(); 1386 /* 1387 * Release any xmit buffers that have completed DMA. This isn't 1388 * strictly necessary to do here, but it's advantagous for mbufs 1389 * with external storage to be released in a timely manner rather 1390 * than being defered for a potentially long time. This limits 1391 * the delay to a maximum of one second. 1392 */ 1393 for (txp = sc->cbl_first; sc->tx_queued && 1394 (txp->cb_status & FXP_CB_STATUS_C) != 0; 1395 txp = txp->next) { 1396 if (txp->mb_head != NULL) { 1397 m_freem(txp->mb_head); 1398 txp->mb_head = NULL; 1399 } 1400 sc->tx_queued--; 1401 } 1402 sc->cbl_first = txp; 1403 /* 1404 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, 1405 * then assume the receiver has locked up and attempt to clear 1406 * the condition by reprogramming the multicast filter. This is 1407 * a work-around for a bug in the 82557 where the receiver locks 1408 * up if it gets certain types of garbage in the syncronization 1409 * bits prior to the packet header. This bug is supposed to only 1410 * occur in 10Mbps mode, but has been seen to occur in 100Mbps 1411 * mode as well (perhaps due to a 10/100 speed transition). 1412 */ 1413 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { 1414 sc->rx_idle_secs = 0; 1415 fxp_mc_setup(sc); 1416 } 1417 /* 1418 * If there is no pending command, start another stats 1419 * dump. Otherwise punt for now. 1420 */ 1421 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { 1422 /* 1423 * Start another stats dump. 1424 */ 1425 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); 1426 } else { 1427 /* 1428 * A previous command is still waiting to be accepted. 1429 * Just zero our copy of the stats and wait for the 1430 * next timer event to update them. 1431 */ 1432 sp->tx_good = 0; 1433 sp->tx_underruns = 0; 1434 sp->tx_total_collisions = 0; 1435 1436 sp->rx_good = 0; 1437 sp->rx_crc_errors = 0; 1438 sp->rx_alignment_errors = 0; 1439 sp->rx_rnr_errors = 0; 1440 sp->rx_overrun_errors = 0; 1441 } 1442 if (sc->miibus != NULL) 1443 mii_tick(device_get_softc(sc->miibus)); 1444 splx(s); 1445 /* 1446 * Schedule another timeout one second from now. 1447 */ 1448 sc->stat_ch = timeout(fxp_tick, sc, hz); 1449 } 1450 1451 /* 1452 * Stop the interface. Cancels the statistics updater and resets 1453 * the interface. 1454 */ 1455 static void 1456 fxp_stop(struct fxp_softc *sc) 1457 { 1458 struct ifnet *ifp = &sc->sc_if; 1459 struct fxp_cb_tx *txp; 1460 int i; 1461 1462 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1463 ifp->if_timer = 0; 1464 1465 #ifdef DEVICE_POLLING 1466 ether_poll_deregister(ifp); 1467 #endif 1468 /* 1469 * Cancel stats updater. 1470 */ 1471 untimeout(fxp_tick, sc, sc->stat_ch); 1472 1473 /* 1474 * Issue software reset, which also unloads the microcode. 1475 */ 1476 sc->flags &= ~FXP_FLAG_UCODE; 1477 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 1478 DELAY(50); 1479 1480 /* 1481 * Release any xmit buffers. 1482 */ 1483 txp = sc->cbl_base; 1484 if (txp != NULL) { 1485 for (i = 0; i < FXP_NTXCB; i++) { 1486 if (txp[i].mb_head != NULL) { 1487 m_freem(txp[i].mb_head); 1488 txp[i].mb_head = NULL; 1489 } 1490 } 1491 } 1492 sc->tx_queued = 0; 1493 1494 /* 1495 * Free all the receive buffers then reallocate/reinitialize 1496 */ 1497 if (sc->rfa_headm != NULL) 1498 m_freem(sc->rfa_headm); 1499 sc->rfa_headm = NULL; 1500 sc->rfa_tailm = NULL; 1501 for (i = 0; i < FXP_NRFABUFS; i++) { 1502 if (fxp_add_rfabuf(sc, NULL) != 0) { 1503 /* 1504 * This "can't happen" - we're at splimp() 1505 * and we just freed all the buffers we need 1506 * above. 1507 */ 1508 panic("fxp_stop: no buffers!"); 1509 } 1510 } 1511 } 1512 1513 /* 1514 * Watchdog/transmission transmit timeout handler. Called when a 1515 * transmission is started on the interface, but no interrupt is 1516 * received before the timeout. This usually indicates that the 1517 * card has wedged for some reason. 1518 */ 1519 static void 1520 fxp_watchdog(struct ifnet *ifp) 1521 { 1522 struct fxp_softc *sc = ifp->if_softc; 1523 1524 device_printf(sc->dev, "device timeout\n"); 1525 ifp->if_oerrors++; 1526 1527 fxp_init(sc); 1528 } 1529 1530 static void 1531 fxp_init(void *xsc) 1532 { 1533 struct fxp_softc *sc = xsc; 1534 struct ifnet *ifp = &sc->sc_if; 1535 struct fxp_cb_config *cbp; 1536 struct fxp_cb_ias *cb_ias; 1537 struct fxp_cb_tx *txp; 1538 struct fxp_cb_mcs *mcsp; 1539 int i, prm, s; 1540 1541 s = splimp(); 1542 /* 1543 * Cancel any pending I/O 1544 */ 1545 fxp_stop(sc); 1546 1547 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; 1548 1549 /* 1550 * Initialize base of CBL and RFA memory. Loading with zero 1551 * sets it up for regular linear addressing. 1552 */ 1553 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); 1554 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); 1555 1556 fxp_scb_wait(sc); 1557 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); 1558 1559 /* 1560 * Initialize base of dump-stats buffer. 1561 */ 1562 fxp_scb_wait(sc); 1563 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats)); 1564 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); 1565 1566 /* 1567 * Attempt to load microcode if requested. 1568 */ 1569 if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0) 1570 fxp_load_ucode(sc); 1571 1572 /* 1573 * Initialize the multicast address list. 1574 */ 1575 if (fxp_mc_addrs(sc)) { 1576 mcsp = sc->mcsp; 1577 mcsp->cb_status = 0; 1578 mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL; 1579 mcsp->link_addr = -1; 1580 /* 1581 * Start the multicast setup command. 1582 */ 1583 fxp_scb_wait(sc); 1584 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status)); 1585 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1586 /* ...and wait for it to complete. */ 1587 fxp_dma_wait(&mcsp->cb_status, sc); 1588 } 1589 1590 /* 1591 * We temporarily use memory that contains the TxCB list to 1592 * construct the config CB. The TxCB list memory is rebuilt 1593 * later. 1594 */ 1595 cbp = (struct fxp_cb_config *) sc->cbl_base; 1596 1597 /* 1598 * This bcopy is kind of disgusting, but there are a bunch of must be 1599 * zero and must be one bits in this structure and this is the easiest 1600 * way to initialize them all to proper values. 1601 */ 1602 bcopy(fxp_cb_config_template, 1603 (void *)(uintptr_t)(volatile void *)&cbp->cb_status, 1604 sizeof(fxp_cb_config_template)); 1605 1606 cbp->cb_status = 0; 1607 cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL; 1608 cbp->link_addr = -1; /* (no) next command */ 1609 cbp->byte_count = 22; /* (22) bytes to config */ 1610 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ 1611 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ 1612 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ 1613 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0; 1614 cbp->type_enable = 0; /* actually reserved */ 1615 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0; 1616 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0; 1617 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ 1618 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ 1619 cbp->dma_mbce = 0; /* (disable) dma max counters */ 1620 cbp->late_scb = 0; /* (don't) defer SCB update */ 1621 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */ 1622 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */ 1623 cbp->ci_int = 1; /* interrupt on CU idle */ 1624 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1; 1625 cbp->ext_stats_dis = 1; /* disable extended counters */ 1626 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */ 1627 cbp->save_bf = sc->revision == FXP_REV_82557 ? 1 : prm; 1628 cbp->disc_short_rx = !prm; /* discard short packets */ 1629 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */ 1630 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */ 1631 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */ 1632 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1; 1633 cbp->csma_dis = 0; /* (don't) disable link */ 1634 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */ 1635 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */ 1636 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */ 1637 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */ 1638 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */ 1639 cbp->nsai = 1; /* (don't) disable source addr insert */ 1640 cbp->preamble_length = 2; /* (7 byte) preamble */ 1641 cbp->loopback = 0; /* (don't) loopback */ 1642 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ 1643 cbp->linear_pri_mode = 0; /* (wait after xmit only) */ 1644 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ 1645 cbp->promiscuous = prm; /* promiscuous mode */ 1646 cbp->bcast_disable = 0; /* (don't) disable broadcasts */ 1647 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/ 1648 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */ 1649 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */ 1650 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0; 1651 1652 cbp->stripping = !prm; /* truncate rx packet to byte count */ 1653 cbp->padding = 1; /* (do) pad short tx packets */ 1654 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ 1655 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0; 1656 cbp->ia_wake_en = 0; /* (don't) wake up on address match */ 1657 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */ 1658 /* must set wake_en in PMCSR also */ 1659 cbp->force_fdx = 0; /* (don't) force full duplex */ 1660 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ 1661 cbp->multi_ia = 0; /* (don't) accept multiple IAs */ 1662 cbp->mc_all = sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0; 1663 1664 if (sc->revision == FXP_REV_82557) { 1665 /* 1666 * The 82557 has no hardware flow control, the values 1667 * below are the defaults for the chip. 1668 */ 1669 cbp->fc_delay_lsb = 0; 1670 cbp->fc_delay_msb = 0x40; 1671 cbp->pri_fc_thresh = 3; 1672 cbp->tx_fc_dis = 0; 1673 cbp->rx_fc_restop = 0; 1674 cbp->rx_fc_restart = 0; 1675 cbp->fc_filter = 0; 1676 cbp->pri_fc_loc = 1; 1677 } else { 1678 cbp->fc_delay_lsb = 0x1f; 1679 cbp->fc_delay_msb = 0x01; 1680 cbp->pri_fc_thresh = 3; 1681 cbp->tx_fc_dis = 0; /* enable transmit FC */ 1682 cbp->rx_fc_restop = 1; /* enable FC restop frames */ 1683 cbp->rx_fc_restart = 1; /* enable FC restart frames */ 1684 cbp->fc_filter = !prm; /* drop FC frames to host */ 1685 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */ 1686 } 1687 1688 /* 1689 * Start the config command/DMA. 1690 */ 1691 fxp_scb_wait(sc); 1692 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status)); 1693 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1694 /* ...and wait for it to complete. */ 1695 fxp_dma_wait(&cbp->cb_status, sc); 1696 1697 /* 1698 * Now initialize the station address. Temporarily use the TxCB 1699 * memory area like we did above for the config CB. 1700 */ 1701 cb_ias = (struct fxp_cb_ias *) sc->cbl_base; 1702 cb_ias->cb_status = 0; 1703 cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL; 1704 cb_ias->link_addr = -1; 1705 bcopy(sc->arpcom.ac_enaddr, 1706 (void *)(uintptr_t)(volatile void *)cb_ias->macaddr, 1707 sizeof(sc->arpcom.ac_enaddr)); 1708 1709 /* 1710 * Start the IAS (Individual Address Setup) command/DMA. 1711 */ 1712 fxp_scb_wait(sc); 1713 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1714 /* ...and wait for it to complete. */ 1715 fxp_dma_wait(&cb_ias->cb_status, sc); 1716 1717 /* 1718 * Initialize transmit control block (TxCB) list. 1719 */ 1720 1721 txp = sc->cbl_base; 1722 bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB); 1723 for (i = 0; i < FXP_NTXCB; i++) { 1724 txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK; 1725 txp[i].cb_command = FXP_CB_COMMAND_NOP; 1726 txp[i].link_addr = 1727 vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status); 1728 if (sc->flags & FXP_FLAG_EXT_TXCB) 1729 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]); 1730 else 1731 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]); 1732 txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK]; 1733 } 1734 /* 1735 * Set the suspend flag on the first TxCB and start the control 1736 * unit. It will execute the NOP and then suspend. 1737 */ 1738 txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S; 1739 sc->cbl_first = sc->cbl_last = txp; 1740 sc->tx_queued = 1; 1741 1742 fxp_scb_wait(sc); 1743 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1744 1745 /* 1746 * Initialize receiver buffer area - RFA. 1747 */ 1748 fxp_scb_wait(sc); 1749 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 1750 vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE); 1751 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 1752 1753 /* 1754 * Set current media. 1755 */ 1756 if (sc->miibus != NULL) 1757 mii_mediachg(device_get_softc(sc->miibus)); 1758 1759 ifp->if_flags |= IFF_RUNNING; 1760 ifp->if_flags &= ~IFF_OACTIVE; 1761 1762 /* 1763 * Enable interrupts. 1764 */ 1765 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 1766 splx(s); 1767 1768 /* 1769 * Start stats updater. 1770 */ 1771 sc->stat_ch = timeout(fxp_tick, sc, hz); 1772 } 1773 1774 static int 1775 fxp_serial_ifmedia_upd(struct ifnet *ifp) 1776 { 1777 1778 return (0); 1779 } 1780 1781 static void 1782 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1783 { 1784 1785 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 1786 } 1787 1788 /* 1789 * Change media according to request. 1790 */ 1791 static int 1792 fxp_ifmedia_upd(struct ifnet *ifp) 1793 { 1794 struct fxp_softc *sc = ifp->if_softc; 1795 struct mii_data *mii; 1796 1797 mii = device_get_softc(sc->miibus); 1798 mii_mediachg(mii); 1799 return (0); 1800 } 1801 1802 /* 1803 * Notify the world which media we're using. 1804 */ 1805 static void 1806 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1807 { 1808 struct fxp_softc *sc = ifp->if_softc; 1809 struct mii_data *mii; 1810 1811 mii = device_get_softc(sc->miibus); 1812 mii_pollstat(mii); 1813 ifmr->ifm_active = mii->mii_media_active; 1814 ifmr->ifm_status = mii->mii_media_status; 1815 1816 if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG) 1817 sc->cu_resume_bug = 1; 1818 else 1819 sc->cu_resume_bug = 0; 1820 } 1821 1822 /* 1823 * Add a buffer to the end of the RFA buffer list. 1824 * Return 0 if successful, 1 for failure. A failure results in 1825 * adding the 'oldm' (if non-NULL) on to the end of the list - 1826 * tossing out its old contents and recycling it. 1827 * The RFA struct is stuck at the beginning of mbuf cluster and the 1828 * data pointer is fixed up to point just past it. 1829 */ 1830 static int 1831 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm) 1832 { 1833 u_int32_t v; 1834 struct mbuf *m; 1835 struct fxp_rfa *rfa, *p_rfa; 1836 1837 MGETHDR(m, M_DONTWAIT, MT_DATA); 1838 if (m != NULL) { 1839 MCLGET(m, M_DONTWAIT); 1840 if ((m->m_flags & M_EXT) == 0) { 1841 m_freem(m); 1842 if (oldm == NULL) 1843 return 1; 1844 m = oldm; 1845 m->m_data = m->m_ext.ext_buf; 1846 } 1847 } else { 1848 if (oldm == NULL) 1849 return 1; 1850 m = oldm; 1851 m->m_data = m->m_ext.ext_buf; 1852 } 1853 1854 /* 1855 * Move the data pointer up so that the incoming data packet 1856 * will be 32-bit aligned. 1857 */ 1858 m->m_data += RFA_ALIGNMENT_FUDGE; 1859 1860 /* 1861 * Get a pointer to the base of the mbuf cluster and move 1862 * data start past it. 1863 */ 1864 rfa = mtod(m, struct fxp_rfa *); 1865 m->m_data += sizeof(struct fxp_rfa); 1866 rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE); 1867 1868 /* 1869 * Initialize the rest of the RFA. Note that since the RFA 1870 * is misaligned, we cannot store values directly. Instead, 1871 * we use an optimized, inline copy. 1872 */ 1873 1874 rfa->rfa_status = 0; 1875 rfa->rfa_control = FXP_RFA_CONTROL_EL; 1876 rfa->actual_size = 0; 1877 1878 v = -1; 1879 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr); 1880 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr); 1881 1882 /* 1883 * If there are other buffers already on the list, attach this 1884 * one to the end by fixing up the tail to point to this one. 1885 */ 1886 if (sc->rfa_headm != NULL) { 1887 p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf + 1888 RFA_ALIGNMENT_FUDGE); 1889 sc->rfa_tailm->m_next = m; 1890 v = vtophys(rfa); 1891 fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr); 1892 p_rfa->rfa_control = 0; 1893 } else { 1894 sc->rfa_headm = m; 1895 } 1896 sc->rfa_tailm = m; 1897 1898 return (m == oldm); 1899 } 1900 1901 static volatile int 1902 fxp_miibus_readreg(device_t dev, int phy, int reg) 1903 { 1904 struct fxp_softc *sc = device_get_softc(dev); 1905 int count = 10000; 1906 int value; 1907 1908 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 1909 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); 1910 1911 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 1912 && count--) 1913 DELAY(10); 1914 1915 if (count <= 0) 1916 device_printf(dev, "fxp_miibus_readreg: timed out\n"); 1917 1918 return (value & 0xffff); 1919 } 1920 1921 static void 1922 fxp_miibus_writereg(device_t dev, int phy, int reg, int value) 1923 { 1924 struct fxp_softc *sc = device_get_softc(dev); 1925 int count = 10000; 1926 1927 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 1928 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | 1929 (value & 0xffff)); 1930 1931 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && 1932 count--) 1933 DELAY(10); 1934 1935 if (count <= 0) 1936 device_printf(dev, "fxp_miibus_writereg: timed out\n"); 1937 } 1938 1939 static int 1940 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1941 { 1942 struct fxp_softc *sc = ifp->if_softc; 1943 struct ifreq *ifr = (struct ifreq *)data; 1944 struct mii_data *mii; 1945 int s, error = 0; 1946 1947 s = splimp(); 1948 1949 switch (command) { 1950 case SIOCSIFADDR: 1951 case SIOCGIFADDR: 1952 case SIOCSIFMTU: 1953 error = ether_ioctl(ifp, command, data); 1954 break; 1955 1956 case SIOCSIFFLAGS: 1957 if (ifp->if_flags & IFF_ALLMULTI) 1958 sc->flags |= FXP_FLAG_ALL_MCAST; 1959 else 1960 sc->flags &= ~FXP_FLAG_ALL_MCAST; 1961 1962 /* 1963 * If interface is marked up and not running, then start it. 1964 * If it is marked down and running, stop it. 1965 * XXX If it's up then re-initialize it. This is so flags 1966 * such as IFF_PROMISC are handled. 1967 */ 1968 if (ifp->if_flags & IFF_UP) { 1969 fxp_init(sc); 1970 } else { 1971 if (ifp->if_flags & IFF_RUNNING) 1972 fxp_stop(sc); 1973 } 1974 break; 1975 1976 case SIOCADDMULTI: 1977 case SIOCDELMULTI: 1978 if (ifp->if_flags & IFF_ALLMULTI) 1979 sc->flags |= FXP_FLAG_ALL_MCAST; 1980 else 1981 sc->flags &= ~FXP_FLAG_ALL_MCAST; 1982 /* 1983 * Multicast list has changed; set the hardware filter 1984 * accordingly. 1985 */ 1986 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) 1987 fxp_mc_setup(sc); 1988 /* 1989 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it 1990 * again rather than else {}. 1991 */ 1992 if (sc->flags & FXP_FLAG_ALL_MCAST) 1993 fxp_init(sc); 1994 error = 0; 1995 break; 1996 1997 case SIOCSIFMEDIA: 1998 case SIOCGIFMEDIA: 1999 if (sc->miibus != NULL) { 2000 mii = device_get_softc(sc->miibus); 2001 error = ifmedia_ioctl(ifp, ifr, 2002 &mii->mii_media, command); 2003 } else { 2004 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); 2005 } 2006 break; 2007 2008 default: 2009 error = EINVAL; 2010 } 2011 splx(s); 2012 return (error); 2013 } 2014 2015 /* 2016 * Fill in the multicast address list and return number of entries. 2017 */ 2018 static int 2019 fxp_mc_addrs(struct fxp_softc *sc) 2020 { 2021 struct fxp_cb_mcs *mcsp = sc->mcsp; 2022 struct ifnet *ifp = &sc->sc_if; 2023 struct ifmultiaddr *ifma; 2024 int nmcasts; 2025 2026 nmcasts = 0; 2027 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) { 2028 #if __FreeBSD_version < 500000 2029 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2030 #else 2031 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2032 #endif 2033 if (ifma->ifma_addr->sa_family != AF_LINK) 2034 continue; 2035 if (nmcasts >= MAXMCADDR) { 2036 sc->flags |= FXP_FLAG_ALL_MCAST; 2037 nmcasts = 0; 2038 break; 2039 } 2040 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 2041 (void *)(uintptr_t)(volatile void *) 2042 &sc->mcsp->mc_addr[nmcasts][0], 6); 2043 nmcasts++; 2044 } 2045 } 2046 mcsp->mc_cnt = nmcasts * 6; 2047 return (nmcasts); 2048 } 2049 2050 /* 2051 * Program the multicast filter. 2052 * 2053 * We have an artificial restriction that the multicast setup command 2054 * must be the first command in the chain, so we take steps to ensure 2055 * this. By requiring this, it allows us to keep up the performance of 2056 * the pre-initialized command ring (esp. link pointers) by not actually 2057 * inserting the mcsetup command in the ring - i.e. its link pointer 2058 * points to the TxCB ring, but the mcsetup descriptor itself is not part 2059 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it 2060 * lead into the regular TxCB ring when it completes. 2061 * 2062 * This function must be called at splimp. 2063 */ 2064 static void 2065 fxp_mc_setup(struct fxp_softc *sc) 2066 { 2067 struct fxp_cb_mcs *mcsp = sc->mcsp; 2068 struct ifnet *ifp = &sc->sc_if; 2069 int count; 2070 2071 /* 2072 * If there are queued commands, we must wait until they are all 2073 * completed. If we are already waiting, then add a NOP command 2074 * with interrupt option so that we're notified when all commands 2075 * have been completed - fxp_start() ensures that no additional 2076 * TX commands will be added when need_mcsetup is true. 2077 */ 2078 if (sc->tx_queued) { 2079 struct fxp_cb_tx *txp; 2080 2081 /* 2082 * need_mcsetup will be true if we are already waiting for the 2083 * NOP command to be completed (see below). In this case, bail. 2084 */ 2085 if (sc->need_mcsetup) 2086 return; 2087 sc->need_mcsetup = 1; 2088 2089 /* 2090 * Add a NOP command with interrupt so that we are notified 2091 * when all TX commands have been processed. 2092 */ 2093 txp = sc->cbl_last->next; 2094 txp->mb_head = NULL; 2095 txp->cb_status = 0; 2096 txp->cb_command = FXP_CB_COMMAND_NOP | 2097 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; 2098 /* 2099 * Advance the end of list forward. 2100 */ 2101 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S; 2102 sc->cbl_last = txp; 2103 sc->tx_queued++; 2104 /* 2105 * Issue a resume in case the CU has just suspended. 2106 */ 2107 fxp_scb_wait(sc); 2108 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 2109 /* 2110 * Set a 5 second timer just in case we don't hear from the 2111 * card again. 2112 */ 2113 ifp->if_timer = 5; 2114 2115 return; 2116 } 2117 sc->need_mcsetup = 0; 2118 2119 /* 2120 * Initialize multicast setup descriptor. 2121 */ 2122 mcsp->next = sc->cbl_base; 2123 mcsp->mb_head = NULL; 2124 mcsp->cb_status = 0; 2125 mcsp->cb_command = FXP_CB_COMMAND_MCAS | 2126 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; 2127 mcsp->link_addr = vtophys(&sc->cbl_base->cb_status); 2128 (void) fxp_mc_addrs(sc); 2129 sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp; 2130 sc->tx_queued = 1; 2131 2132 /* 2133 * Wait until command unit is not active. This should never 2134 * be the case when nothing is queued, but make sure anyway. 2135 */ 2136 count = 100; 2137 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) == 2138 FXP_SCB_CUS_ACTIVE && --count) 2139 DELAY(10); 2140 if (count == 0) { 2141 device_printf(sc->dev, "command queue timeout\n"); 2142 return; 2143 } 2144 2145 /* 2146 * Start the multicast setup command. 2147 */ 2148 fxp_scb_wait(sc); 2149 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status)); 2150 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2151 2152 ifp->if_timer = 2; 2153 return; 2154 } 2155 2156 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE; 2157 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE; 2158 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE; 2159 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE; 2160 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE; 2161 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE; 2162 2163 #define UCODE(x) x, sizeof(x) 2164 2165 struct ucode { 2166 u_int32_t revision; 2167 u_int32_t *ucode; 2168 int length; 2169 u_short int_delay_offset; 2170 u_short bundle_max_offset; 2171 } ucode_table[] = { 2172 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 }, 2173 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 }, 2174 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma), 2175 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD }, 2176 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s), 2177 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD }, 2178 { FXP_REV_82550, UCODE(fxp_ucode_d102), 2179 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD }, 2180 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c), 2181 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD }, 2182 { 0, NULL, 0, 0, 0 } 2183 }; 2184 2185 static void 2186 fxp_load_ucode(struct fxp_softc *sc) 2187 { 2188 struct ucode *uc; 2189 struct fxp_cb_ucode *cbp; 2190 2191 for (uc = ucode_table; uc->ucode != NULL; uc++) 2192 if (sc->revision == uc->revision) 2193 break; 2194 if (uc->ucode == NULL) 2195 return; 2196 cbp = (struct fxp_cb_ucode *)sc->cbl_base; 2197 cbp->cb_status = 0; 2198 cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL; 2199 cbp->link_addr = -1; /* (no) next command */ 2200 memcpy(cbp->ucode, uc->ucode, uc->length); 2201 if (uc->int_delay_offset) 2202 *(u_short *)&cbp->ucode[uc->int_delay_offset] = 2203 sc->tunable_int_delay + sc->tunable_int_delay / 2; 2204 if (uc->bundle_max_offset) 2205 *(u_short *)&cbp->ucode[uc->bundle_max_offset] = 2206 sc->tunable_bundle_max; 2207 /* 2208 * Download the ucode to the chip. 2209 */ 2210 fxp_scb_wait(sc); 2211 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status)); 2212 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2213 /* ...and wait for it to complete. */ 2214 fxp_dma_wait(&cbp->cb_status, sc); 2215 device_printf(sc->dev, 2216 "Microcode loaded, int_delay: %d usec bundle_max: %d\n", 2217 sc->tunable_int_delay, 2218 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max); 2219 sc->flags |= FXP_FLAG_UCODE; 2220 } 2221 2222 static int 2223 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 2224 { 2225 int error, value; 2226 2227 value = *(int *)arg1; 2228 error = sysctl_handle_int(oidp, &value, 0, req); 2229 if (error || !req->newptr) 2230 return (error); 2231 if (value < low || value > high) 2232 return (EINVAL); 2233 *(int *)arg1 = value; 2234 return (0); 2235 } 2236 2237 /* 2238 * Interrupt delay is expressed in microseconds, a multiplier is used 2239 * to convert this to the appropriate clock ticks before using. 2240 */ 2241 static int 2242 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS) 2243 { 2244 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000)); 2245 } 2246 2247 static int 2248 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS) 2249 { 2250 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff)); 2251 } 2252