1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2022 Adrian Chadd <adrian@FreeBSD.org>. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 29 #include "opt_platform.h" 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/bio.h> 34 #include <sys/bus.h> 35 #include <sys/conf.h> 36 #include <sys/kernel.h> 37 #include <sys/kthread.h> 38 #include <sys/lock.h> 39 #include <sys/mbuf.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/mutex.h> 43 #include <geom/geom_disk.h> 44 45 #ifdef FDT 46 #include <dev/fdt/fdt_common.h> 47 #include <dev/ofw/ofw_bus_subr.h> 48 #include <dev/ofw/openfirm.h> 49 #endif 50 51 #include <dev/spibus/spi.h> 52 #include "spibus_if.h" 53 54 #include <dev/flash/w25nreg.h> 55 56 #define W25N_SECTORSIZE 512 57 58 struct w25n_flash_ident 59 { 60 const char *name; 61 uint8_t manufacturer_id; 62 uint16_t device_id; 63 unsigned int sectorsize; 64 unsigned int sectorcount; 65 unsigned int erasesize; 66 unsigned int flags; 67 }; 68 69 struct w25n_softc 70 { 71 device_t sc_dev; 72 device_t sc_parent; 73 uint8_t sc_manufacturer_id; 74 uint16_t sc_device_id; 75 unsigned int sc_erasesize; 76 struct mtx sc_mtx; 77 struct disk *sc_disk; 78 struct proc *sc_p; 79 struct bio_queue_head sc_bio_queue; 80 unsigned int sc_flags; 81 unsigned int sc_taskstate; 82 }; 83 84 #define TSTATE_STOPPED 0 85 #define TSTATE_STOPPING 1 86 #define TSTATE_RUNNING 2 87 88 #define W25N_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx) 89 #define W25N_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx) 90 #define W25N_LOCK_INIT(_sc) \ 91 mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->sc_dev), \ 92 "w25n", MTX_DEF) 93 #define W25N_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx); 94 #define W25N_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED); 95 #define W25N_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED); 96 97 /* disk routines */ 98 static int w25n_open(struct disk *dp); 99 static int w25n_close(struct disk *dp); 100 static int w25n_ioctl(struct disk *, u_long, void *, int, struct thread *); 101 static void w25n_strategy(struct bio *bp); 102 static int w25n_getattr(struct bio *bp); 103 static void w25n_task(void *arg); 104 105 #define FL_NONE 0x00000000 106 107 static struct w25n_flash_ident flash_devices[] = { 108 109 { "w25n01gv", 0xef, 0xaa21, 2048, 64 * 1024, 128 * 1024, FL_NONE }, 110 }; 111 112 static int 113 w25n_read_status_register(struct w25n_softc *sc, uint8_t reg, 114 uint8_t *retval) 115 { 116 uint8_t txBuf[3], rxBuf[3]; 117 struct spi_command cmd; 118 int err; 119 120 memset(&cmd, 0, sizeof(cmd)); 121 122 txBuf[0] = CMD_READ_STATUS; 123 txBuf[1] = reg; 124 cmd.tx_cmd = txBuf; 125 cmd.rx_cmd = rxBuf; 126 cmd.rx_cmd_sz = 3; 127 cmd.tx_cmd_sz = 3; 128 err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd); 129 if (err != 0) 130 return (err); 131 *retval = rxBuf[2]; 132 return (0); 133 } 134 135 static int 136 w25n_wait_for_device_ready(struct w25n_softc *sc) 137 { 138 int err; 139 uint8_t val; 140 141 do { 142 err = w25n_read_status_register(sc, STATUS_REG_3, &val); 143 } while (err == 0 && (val & STATUS_REG_3_BUSY)); 144 145 return (err); 146 } 147 148 static int 149 w25n_set_page_address(struct w25n_softc *sc, uint16_t page_idx) 150 { 151 uint8_t txBuf[4], rxBuf[4]; 152 struct spi_command cmd; 153 int err; 154 155 txBuf[0] = CMD_PAGE_DATA_READ; 156 txBuf[1] = 0; /* dummy */ 157 txBuf[2] = (page_idx >> 8) & 0xff; 158 txBuf[3] = (page_idx >> 0) & 0xff; 159 cmd.tx_cmd = txBuf; 160 cmd.rx_cmd = rxBuf; 161 cmd.rx_cmd_sz = 4; 162 cmd.tx_cmd_sz = 4; 163 err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd); 164 if (err != 0) 165 return (err); 166 return (0); 167 } 168 169 static struct w25n_flash_ident* 170 w25n_get_device_ident(struct w25n_softc *sc) 171 { 172 uint8_t txBuf[8], rxBuf[8]; 173 struct spi_command cmd; 174 uint8_t manufacturer_id; 175 uint16_t dev_id; 176 int err, i; 177 178 memset(&cmd, 0, sizeof(cmd)); 179 memset(txBuf, 0, sizeof(txBuf)); 180 memset(rxBuf, 0, sizeof(rxBuf)); 181 182 txBuf[0] = CMD_READ_IDENT; 183 cmd.tx_cmd = &txBuf; 184 cmd.rx_cmd = &rxBuf; 185 186 cmd.tx_cmd_sz = 5; 187 cmd.rx_cmd_sz = 5; 188 err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd); 189 if (err) 190 return (NULL); 191 192 manufacturer_id = rxBuf[2]; 193 dev_id = (rxBuf[3] << 8) | (rxBuf[4]); 194 195 for (i = 0; i < nitems(flash_devices); i++) { 196 if ((flash_devices[i].manufacturer_id == manufacturer_id) && 197 (flash_devices[i].device_id == dev_id)) 198 return &flash_devices[i]; 199 } 200 201 device_printf(sc->sc_dev, 202 "Unknown SPI NAND flash device. Vendor: %02x, device id: %04x\n", 203 manufacturer_id, dev_id); 204 return (NULL); 205 } 206 207 static int 208 w25n_write(struct w25n_softc *sc, off_t offset, caddr_t data, off_t count) 209 { 210 211 return (ENXIO); 212 213 } 214 215 static int 216 w25n_read(struct w25n_softc *sc, off_t offset, caddr_t data, off_t count) 217 { 218 uint8_t txBuf[4], rxBuf[4]; 219 struct spi_command cmd; 220 int err; 221 int read_size; 222 uint16_t page_idx; 223 uint8_t st3, ecc_status; 224 225 /* 226 * We only support reading things at multiples of the page size. 227 */ 228 if (count % sc->sc_disk->d_sectorsize != 0) { 229 device_printf(sc->sc_dev, "%s: invalid count\n", __func__); 230 return (EIO); 231 } 232 if (offset % sc->sc_disk->d_sectorsize != 0) { 233 device_printf(sc->sc_dev, "%s: invalid offset\n", __func__); 234 return (EIO); 235 } 236 237 page_idx = offset / sc->sc_disk->d_sectorsize; 238 239 while (count > 0) { 240 /* Wait until we're ready */ 241 err = w25n_wait_for_device_ready(sc); 242 if (err != 0) { 243 device_printf(sc->sc_dev, "%s: failed to wait\n", 244 __func__); 245 return (err); 246 } 247 248 /* Issue the page change */ 249 err = w25n_set_page_address(sc, page_idx); 250 if (err != 0) { 251 device_printf(sc->sc_dev, "%s: page change failed\n", 252 __func__); 253 return (err); 254 } 255 256 /* Wait until the page change has read in data */ 257 err = w25n_wait_for_device_ready(sc); 258 if (err != 0) { 259 device_printf(sc->sc_dev, 260 "%s: failed to wait again\n", 261 __func__); 262 return (err); 263 } 264 265 /* 266 * Now we can issue a read command for the data 267 * in the buffer. We'll read into the data buffer 268 * until we run out of data in this page. 269 * 270 * To simplify things we're not starting at an 271 * arbitrary offset; so the column address here 272 * inside the page is 0. If we later want to support 273 * that kind of operation then we could do the math 274 * here. 275 */ 276 read_size = MIN(count, sc->sc_disk->d_sectorsize); 277 278 memset(data, 0xef, read_size); 279 280 txBuf[0] = CMD_FAST_READ; 281 txBuf[1] = 0; /* column address 15:8 */ 282 txBuf[2] = 0; /* column address 7:0 */ 283 txBuf[3] = 0; /* dummy byte */ 284 cmd.tx_cmd_sz = 4; 285 cmd.rx_cmd_sz = 4; 286 cmd.tx_cmd = txBuf; 287 cmd.rx_cmd = rxBuf; 288 289 cmd.tx_data = data; 290 cmd.rx_data = data; 291 cmd.tx_data_sz = read_size; 292 cmd.rx_data_sz = read_size; 293 294 err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd); 295 if (err != 0) { 296 device_printf(sc->sc_dev, 297 "ERROR: failed to do FAST_READ (%u)\n", 298 err); 299 return (err); 300 } 301 302 /* 303 * Now, check ECC status bits, see if we had an ECC 304 * error. 305 */ 306 err = w25n_read_status_register(sc, STATUS_REG_3, &st3); 307 if (err != 0) { 308 device_printf(sc->sc_dev, 309 "%s: failed to wait again\n", __func__); 310 return (err); 311 } 312 ecc_status = (st3 >> STATUS_REG_3_ECC_STATUS_SHIFT) 313 & STATUS_REG_3_ECC_STATUS_MASK; 314 if ((ecc_status != STATUS_ECC_OK) 315 && (ecc_status != STATUS_ECC_1BIT_OK)) { 316 device_printf(sc->sc_dev, 317 "%s: ECC status failed\n", __func__); 318 return (EIO); 319 } 320 321 count -= read_size; 322 data += read_size; 323 page_idx += 1; 324 } 325 326 return (0); 327 } 328 329 #ifdef FDT 330 static struct ofw_compat_data compat_data[] = { 331 { "spi-nand", 1 }, 332 { NULL, 0 }, 333 }; 334 #endif 335 336 static int 337 w25n_probe(device_t dev) 338 { 339 #ifdef FDT 340 int i; 341 342 if (!ofw_bus_status_okay(dev)) 343 return (ENXIO); 344 345 /* First try to match the compatible property to the compat_data */ 346 if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 1) 347 goto found; 348 349 /* 350 * Next, try to find a compatible device using the names in the 351 * flash_devices structure 352 */ 353 for (i = 0; i < nitems(flash_devices); i++) 354 if (ofw_bus_is_compatible(dev, flash_devices[i].name)) 355 goto found; 356 357 return (ENXIO); 358 found: 359 #endif 360 device_set_desc(dev, "W25N NAND Flash Family"); 361 362 return (0); 363 } 364 365 static int 366 w25n_attach(device_t dev) 367 { 368 struct w25n_softc *sc; 369 struct w25n_flash_ident *ident; 370 int err; 371 uint8_t st1, st2, st3; 372 373 sc = device_get_softc(dev); 374 sc->sc_dev = dev; 375 sc->sc_parent = device_get_parent(sc->sc_dev); 376 377 W25N_LOCK_INIT(sc); 378 379 ident = w25n_get_device_ident(sc); 380 if (ident == NULL) 381 return (ENXIO); 382 383 if ((err = w25n_wait_for_device_ready(sc)) != 0) 384 return (err); 385 386 /* 387 * Read the configuration, protection and status registers. 388 * Print them out here so the initial configuration can be checked. 389 */ 390 err = w25n_read_status_register(sc, STATUS_REG_1, &st1); 391 if (err != 0) 392 return (err); 393 err = w25n_read_status_register(sc, STATUS_REG_2, &st2); 394 if (err != 0) 395 return (err); 396 err = w25n_read_status_register(sc, STATUS_REG_3, &st3); 397 if (err != 0) 398 return (err); 399 400 device_printf(sc->sc_dev, 401 "device type %s, size %dK in %d sectors of %dK, erase size %dK\n", 402 ident->name, 403 ident->sectorcount * ident->sectorsize / 1024, 404 ident->sectorcount, ident->sectorsize / 1024, 405 ident->erasesize / 1024); 406 407 if (bootverbose) 408 device_printf(sc->sc_dev, 409 "status1=0x%08x, status2=0x%08x, status3=0x%08x\n", 410 st1, st2, st3); 411 412 /* 413 * For now we're only going to support parts that have 414 * device ECC enabled. Later on it may be interesting 415 * to do software driven ECC and figure out how we 416 * expose it over GEOM, but that day isn't today. 417 */ 418 if ((st2 & STATUS_REG_2_ECC_EN) == 0) { 419 device_printf(sc->sc_dev, 420 "ERROR: only ECC in HW is supported\n"); 421 return (err); 422 } 423 if ((st2 & STATUS_REG_2_BUF_EN) == 0) { 424 device_printf(sc->sc_dev, 425 "ERROR: only BUF mode is supported\n"); 426 return (err); 427 } 428 429 sc->sc_flags = ident->flags; 430 sc->sc_erasesize = ident->erasesize; 431 432 sc->sc_disk = disk_alloc(); 433 sc->sc_disk->d_open = w25n_open; 434 sc->sc_disk->d_close = w25n_close; 435 sc->sc_disk->d_strategy = w25n_strategy; 436 sc->sc_disk->d_getattr = w25n_getattr; 437 sc->sc_disk->d_ioctl = w25n_ioctl; 438 sc->sc_disk->d_name = "nand_flash/spi"; 439 sc->sc_disk->d_drv1 = sc; 440 sc->sc_disk->d_maxsize = DFLTPHYS; 441 sc->sc_disk->d_sectorsize = ident->sectorsize; 442 sc->sc_disk->d_mediasize = ident->sectorsize * ident->sectorcount; 443 sc->sc_disk->d_stripesize = sc->sc_erasesize; 444 sc->sc_disk->d_unit = device_get_unit(sc->sc_dev); 445 sc->sc_disk->d_dump = NULL; /* NB: no dumps */ 446 strlcpy(sc->sc_disk->d_descr, ident->name, 447 sizeof(sc->sc_disk->d_descr)); 448 449 disk_create(sc->sc_disk, DISK_VERSION); 450 bioq_init(&sc->sc_bio_queue); 451 kproc_create(&w25n_task, sc, &sc->sc_p, 0, 0, "task: w25n flash"); 452 sc->sc_taskstate = TSTATE_RUNNING; 453 454 return (0); 455 } 456 457 static int 458 w25n_detach(device_t dev) 459 { 460 struct w25n_softc *sc; 461 int err; 462 463 sc = device_get_softc(dev); 464 err = 0; 465 466 W25N_LOCK(sc); 467 if (sc->sc_taskstate == TSTATE_RUNNING) { 468 sc->sc_taskstate = TSTATE_STOPPING; 469 wakeup(sc); 470 while (err == 0 && sc->sc_taskstate != TSTATE_STOPPED) { 471 err = msleep(sc, &sc->sc_mtx, 0, "w25nd", hz * 3); 472 if (err != 0) { 473 sc->sc_taskstate = TSTATE_RUNNING; 474 device_printf(sc->sc_dev, 475 "Failed to stop queue task\n"); 476 } 477 } 478 } 479 W25N_UNLOCK(sc); 480 481 if (err == 0 && sc->sc_taskstate == TSTATE_STOPPED) { 482 disk_destroy(sc->sc_disk); 483 bioq_flush(&sc->sc_bio_queue, NULL, ENXIO); 484 W25N_LOCK_DESTROY(sc); 485 } 486 return (err); 487 } 488 489 static int 490 w25n_open(struct disk *dp) 491 { 492 return (0); 493 } 494 495 static int 496 w25n_close(struct disk *dp) 497 { 498 499 return (0); 500 } 501 502 static int 503 w25n_ioctl(struct disk *dp, u_long cmd, void *data, int fflag, 504 struct thread *td) 505 { 506 507 return (EINVAL); 508 } 509 510 static void 511 w25n_strategy(struct bio *bp) 512 { 513 struct w25n_softc *sc; 514 515 sc = (struct w25n_softc *)bp->bio_disk->d_drv1; 516 W25N_LOCK(sc); 517 bioq_disksort(&sc->sc_bio_queue, bp); 518 wakeup(sc); 519 W25N_UNLOCK(sc); 520 } 521 522 static int 523 w25n_getattr(struct bio *bp) 524 { 525 struct w25n_softc *sc; 526 device_t dev; 527 528 if (bp->bio_disk == NULL || bp->bio_disk->d_drv1 == NULL) 529 return (ENXIO); 530 531 sc = bp->bio_disk->d_drv1; 532 dev = sc->sc_dev; 533 534 if (strcmp(bp->bio_attribute, "SPI::device") == 0) { 535 if (bp->bio_length != sizeof(dev)) 536 return (EFAULT); 537 bcopy(&dev, bp->bio_data, sizeof(dev)); 538 } else 539 return (-1); 540 return (0); 541 } 542 543 static void 544 w25n_task(void *arg) 545 { 546 struct w25n_softc *sc = (struct w25n_softc*)arg; 547 struct bio *bp; 548 549 for (;;) { 550 W25N_LOCK(sc); 551 do { 552 if (sc->sc_taskstate == TSTATE_STOPPING) { 553 sc->sc_taskstate = TSTATE_STOPPED; 554 W25N_UNLOCK(sc); 555 wakeup(sc); 556 kproc_exit(0); 557 } 558 bp = bioq_first(&sc->sc_bio_queue); 559 if (bp == NULL) 560 msleep(sc, &sc->sc_mtx, PRIBIO, "w25nq", 0); 561 } while (bp == NULL); 562 bioq_remove(&sc->sc_bio_queue, bp); 563 W25N_UNLOCK(sc); 564 565 switch (bp->bio_cmd) { 566 case BIO_READ: 567 bp->bio_error = w25n_read(sc, bp->bio_offset, 568 bp->bio_data, bp->bio_bcount); 569 break; 570 case BIO_WRITE: 571 bp->bio_error = w25n_write(sc, bp->bio_offset, 572 bp->bio_data, bp->bio_bcount); 573 break; 574 default: 575 bp->bio_error = EOPNOTSUPP; 576 } 577 578 579 biodone(bp); 580 } 581 } 582 583 static device_method_t w25n_methods[] = { 584 /* Device interface */ 585 DEVMETHOD(device_probe, w25n_probe), 586 DEVMETHOD(device_attach, w25n_attach), 587 DEVMETHOD(device_detach, w25n_detach), 588 589 { 0, 0 } 590 }; 591 592 static driver_t w25n_driver = { 593 "w25n", 594 w25n_methods, 595 sizeof(struct w25n_softc), 596 }; 597 598 DRIVER_MODULE(w25n, spibus, w25n_driver, 0, 0); 599 MODULE_DEPEND(w25n, spibus, 1, 1, 1); 600 #ifdef FDT 601 MODULE_DEPEND(w25n, fdt_slicer, 1, 1, 1); 602 SPIBUS_FDT_PNP_INFO(compat_data); 603 #endif 604