xref: /freebsd/sys/dev/firewire/if_fwip.c (revision aa0a1e58f0189b0fde359a8bda032887e72057fa)
1 /*-
2  * Copyright (c) 2004
3  *	Doug Rabson
4  * Copyright (c) 2002-2003
5  * 	Hidetoshi Shimokawa. All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *
18  *	This product includes software developed by Hidetoshi Shimokawa.
19  *
20  * 4. Neither the name of the author nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $FreeBSD$
37  */
38 
39 #ifdef HAVE_KERNEL_OPTION_HEADERS
40 #include "opt_device_polling.h"
41 #include "opt_inet.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/socket.h>
49 #include <sys/sockio.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/taskqueue.h>
53 #include <sys/module.h>
54 #include <sys/bus.h>
55 #include <machine/bus.h>
56 
57 #include <net/bpf.h>
58 #include <net/if.h>
59 #include <net/firewire.h>
60 #include <net/if_arp.h>
61 #include <net/if_types.h>
62 #ifdef __DragonFly__
63 #include <bus/firewire/firewire.h>
64 #include <bus/firewire/firewirereg.h>
65 #include "if_fwipvar.h"
66 #else
67 #include <dev/firewire/firewire.h>
68 #include <dev/firewire/firewirereg.h>
69 #include <dev/firewire/iec13213.h>
70 #include <dev/firewire/if_fwipvar.h>
71 #endif
72 
73 /*
74  * We really need a mechanism for allocating regions in the FIFO
75  * address space. We pick a address in the OHCI controller's 'middle'
76  * address space. This means that the controller will automatically
77  * send responses for us, which is fine since we don't have any
78  * important information to put in the response anyway.
79  */
80 #define INET_FIFO	0xfffe00000000LL
81 
82 #define FWIPDEBUG	if (fwipdebug) if_printf
83 #define TX_MAX_QUEUE	(FWMAXQUEUE - 1)
84 
85 /* network interface */
86 static void fwip_start (struct ifnet *);
87 static int fwip_ioctl (struct ifnet *, u_long, caddr_t);
88 static void fwip_init (void *);
89 
90 static void fwip_post_busreset (void *);
91 static void fwip_output_callback (struct fw_xfer *);
92 static void fwip_async_output (struct fwip_softc *, struct ifnet *);
93 static void fwip_start_send (void *, int);
94 static void fwip_stream_input (struct fw_xferq *);
95 static void fwip_unicast_input(struct fw_xfer *);
96 
97 static int fwipdebug = 0;
98 static int broadcast_channel = 0xc0 | 0x1f; /*  tag | channel(XXX) */
99 static int tx_speed = 2;
100 static int rx_queue_len = FWMAXQUEUE;
101 
102 MALLOC_DEFINE(M_FWIP, "if_fwip", "IP over FireWire interface");
103 SYSCTL_INT(_debug, OID_AUTO, if_fwip_debug, CTLFLAG_RW, &fwipdebug, 0, "");
104 SYSCTL_DECL(_hw_firewire);
105 SYSCTL_NODE(_hw_firewire, OID_AUTO, fwip, CTLFLAG_RD, 0,
106 	"Firewire ip subsystem");
107 SYSCTL_INT(_hw_firewire_fwip, OID_AUTO, rx_queue_len, CTLFLAG_RW, &rx_queue_len,
108 	0, "Length of the receive queue");
109 
110 TUNABLE_INT("hw.firewire.fwip.rx_queue_len", &rx_queue_len);
111 
112 #ifdef DEVICE_POLLING
113 static poll_handler_t fwip_poll;
114 
115 static int
116 fwip_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
117 {
118 	struct fwip_softc *fwip;
119 	struct firewire_comm *fc;
120 
121 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
122 		return (0);
123 
124 	fwip = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
125 	fc = fwip->fd.fc;
126 	fc->poll(fc, (cmd == POLL_AND_CHECK_STATUS)?0:1, count);
127 	return (0);
128 }
129 #endif /* DEVICE_POLLING */
130 
131 static void
132 fwip_identify(driver_t *driver, device_t parent)
133 {
134 	BUS_ADD_CHILD(parent, 0, "fwip", device_get_unit(parent));
135 }
136 
137 static int
138 fwip_probe(device_t dev)
139 {
140 	device_t pa;
141 
142 	pa = device_get_parent(dev);
143 	if(device_get_unit(dev) != device_get_unit(pa)){
144 		return(ENXIO);
145 	}
146 
147 	device_set_desc(dev, "IP over FireWire");
148 	return (0);
149 }
150 
151 static int
152 fwip_attach(device_t dev)
153 {
154 	struct fwip_softc *fwip;
155 	struct ifnet *ifp;
156 	int unit, s;
157 	struct fw_hwaddr *hwaddr;
158 
159 	fwip = ((struct fwip_softc *)device_get_softc(dev));
160 	unit = device_get_unit(dev);
161 	ifp = fwip->fw_softc.fwip_ifp = if_alloc(IFT_IEEE1394);
162 	if (ifp == NULL)
163 		return (ENOSPC);
164 
165 	mtx_init(&fwip->mtx, "fwip", NULL, MTX_DEF);
166 	/* XXX */
167 	fwip->dma_ch = -1;
168 
169 	fwip->fd.fc = device_get_ivars(dev);
170 	if (tx_speed < 0)
171 		tx_speed = fwip->fd.fc->speed;
172 
173 	fwip->fd.dev = dev;
174 	fwip->fd.post_explore = NULL;
175 	fwip->fd.post_busreset = fwip_post_busreset;
176 	fwip->fw_softc.fwip = fwip;
177 	TASK_INIT(&fwip->start_send, 0, fwip_start_send, fwip);
178 
179 	/*
180 	 * Encode our hardware the way that arp likes it.
181 	 */
182 	hwaddr = &IFP2FWC(fwip->fw_softc.fwip_ifp)->fc_hwaddr;
183 	hwaddr->sender_unique_ID_hi = htonl(fwip->fd.fc->eui.hi);
184 	hwaddr->sender_unique_ID_lo = htonl(fwip->fd.fc->eui.lo);
185 	hwaddr->sender_max_rec = fwip->fd.fc->maxrec;
186 	hwaddr->sspd = fwip->fd.fc->speed;
187 	hwaddr->sender_unicast_FIFO_hi = htons((uint16_t)(INET_FIFO >> 32));
188 	hwaddr->sender_unicast_FIFO_lo = htonl((uint32_t)INET_FIFO);
189 
190 	/* fill the rest and attach interface */
191 	ifp->if_softc = &fwip->fw_softc;
192 
193 #if __FreeBSD_version >= 501113 || defined(__DragonFly__)
194 	if_initname(ifp, device_get_name(dev), unit);
195 #else
196 	ifp->if_unit = unit;
197 	ifp->if_name = "fwip";
198 #endif
199 	ifp->if_init = fwip_init;
200 	ifp->if_start = fwip_start;
201 	ifp->if_ioctl = fwip_ioctl;
202 	ifp->if_flags = (IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST);
203 	ifp->if_snd.ifq_maxlen = TX_MAX_QUEUE;
204 #ifdef DEVICE_POLLING
205 	ifp->if_capabilities |= IFCAP_POLLING;
206 #endif
207 
208 	s = splimp();
209 	firewire_ifattach(ifp, hwaddr);
210 	splx(s);
211 
212 	FWIPDEBUG(ifp, "interface created\n");
213 	return 0;
214 }
215 
216 static void
217 fwip_stop(struct fwip_softc *fwip)
218 {
219 	struct firewire_comm *fc;
220 	struct fw_xferq *xferq;
221 	struct ifnet *ifp = fwip->fw_softc.fwip_ifp;
222 	struct fw_xfer *xfer, *next;
223 	int i;
224 
225 	fc = fwip->fd.fc;
226 
227 	if (fwip->dma_ch >= 0) {
228 		xferq = fc->ir[fwip->dma_ch];
229 
230 		if (xferq->flag & FWXFERQ_RUNNING)
231 			fc->irx_disable(fc, fwip->dma_ch);
232 		xferq->flag &=
233 			~(FWXFERQ_MODEMASK | FWXFERQ_OPEN | FWXFERQ_STREAM |
234 			FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_CHTAGMASK);
235 		xferq->hand =  NULL;
236 
237 		for (i = 0; i < xferq->bnchunk; i ++)
238 			m_freem(xferq->bulkxfer[i].mbuf);
239 		free(xferq->bulkxfer, M_FWIP);
240 
241 		fw_bindremove(fc, &fwip->fwb);
242 		for (xfer = STAILQ_FIRST(&fwip->fwb.xferlist); xfer != NULL;
243 					xfer = next) {
244 			next = STAILQ_NEXT(xfer, link);
245 			fw_xfer_free(xfer);
246 		}
247 
248 		for (xfer = STAILQ_FIRST(&fwip->xferlist); xfer != NULL;
249 					xfer = next) {
250 			next = STAILQ_NEXT(xfer, link);
251 			fw_xfer_free(xfer);
252 		}
253 		STAILQ_INIT(&fwip->xferlist);
254 
255 		xferq->bulkxfer =  NULL;
256 		fwip->dma_ch = -1;
257 	}
258 
259 #if defined(__FreeBSD__)
260 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
261 #else
262 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
263 #endif
264 }
265 
266 static int
267 fwip_detach(device_t dev)
268 {
269 	struct fwip_softc *fwip;
270 	struct ifnet *ifp;
271 	int s;
272 
273 	fwip = (struct fwip_softc *)device_get_softc(dev);
274 	ifp = fwip->fw_softc.fwip_ifp;
275 
276 #ifdef DEVICE_POLLING
277 	if (ifp->if_capenable & IFCAP_POLLING)
278 		ether_poll_deregister(ifp);
279 #endif
280 
281 	s = splimp();
282 
283 	fwip_stop(fwip);
284 	firewire_ifdetach(ifp);
285 	if_free(ifp);
286 	mtx_destroy(&fwip->mtx);
287 
288 	splx(s);
289 	return 0;
290 }
291 
292 static void
293 fwip_init(void *arg)
294 {
295 	struct fwip_softc *fwip = ((struct fwip_eth_softc *)arg)->fwip;
296 	struct firewire_comm *fc;
297 	struct ifnet *ifp = fwip->fw_softc.fwip_ifp;
298 	struct fw_xferq *xferq;
299 	struct fw_xfer *xfer;
300 	struct mbuf *m;
301 	int i;
302 
303 	FWIPDEBUG(ifp, "initializing\n");
304 
305 	fc = fwip->fd.fc;
306 #define START 0
307 	if (fwip->dma_ch < 0) {
308 		fwip->dma_ch = fw_open_isodma(fc, /* tx */0);
309 		if (fwip->dma_ch < 0)
310 			return;
311 		xferq = fc->ir[fwip->dma_ch];
312 		xferq->flag |= FWXFERQ_EXTBUF |
313 				FWXFERQ_HANDLER | FWXFERQ_STREAM;
314 		xferq->flag &= ~0xff;
315 		xferq->flag |= broadcast_channel & 0xff;
316 		/* register fwip_input handler */
317 		xferq->sc = (caddr_t) fwip;
318 		xferq->hand = fwip_stream_input;
319 		xferq->bnchunk = rx_queue_len;
320 		xferq->bnpacket = 1;
321 		xferq->psize = MCLBYTES;
322 		xferq->queued = 0;
323 		xferq->buf = NULL;
324 		xferq->bulkxfer = (struct fw_bulkxfer *) malloc(
325 			sizeof(struct fw_bulkxfer) * xferq->bnchunk,
326 							M_FWIP, M_WAITOK);
327 		if (xferq->bulkxfer == NULL) {
328 			printf("if_fwip: malloc failed\n");
329 			return;
330 		}
331 		STAILQ_INIT(&xferq->stvalid);
332 		STAILQ_INIT(&xferq->stfree);
333 		STAILQ_INIT(&xferq->stdma);
334 		xferq->stproc = NULL;
335 		for (i = 0; i < xferq->bnchunk; i ++) {
336 			m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
337 			xferq->bulkxfer[i].mbuf = m;
338 			m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
339 			STAILQ_INSERT_TAIL(&xferq->stfree,
340 					&xferq->bulkxfer[i], link);
341 		}
342 
343 		fwip->fwb.start = INET_FIFO;
344 		fwip->fwb.end = INET_FIFO + 16384; /* S3200 packet size */
345 
346 		/* pre-allocate xfer */
347 		STAILQ_INIT(&fwip->fwb.xferlist);
348 		for (i = 0; i < rx_queue_len; i ++) {
349 			xfer = fw_xfer_alloc(M_FWIP);
350 			if (xfer == NULL)
351 				break;
352 			m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
353 			xfer->recv.payload = mtod(m, uint32_t *);
354 			xfer->recv.pay_len = MCLBYTES;
355 			xfer->hand = fwip_unicast_input;
356 			xfer->fc = fc;
357 			xfer->sc = (caddr_t)fwip;
358 			xfer->mbuf = m;
359 			STAILQ_INSERT_TAIL(&fwip->fwb.xferlist, xfer, link);
360 		}
361 		fw_bindadd(fc, &fwip->fwb);
362 
363 		STAILQ_INIT(&fwip->xferlist);
364 		for (i = 0; i < TX_MAX_QUEUE; i++) {
365 			xfer = fw_xfer_alloc(M_FWIP);
366 			if (xfer == NULL)
367 				break;
368 			xfer->send.spd = tx_speed;
369 			xfer->fc = fwip->fd.fc;
370 			xfer->sc = (caddr_t)fwip;
371 			xfer->hand = fwip_output_callback;
372 			STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link);
373 		}
374 	} else
375 		xferq = fc->ir[fwip->dma_ch];
376 
377 	fwip->last_dest.hi = 0;
378 	fwip->last_dest.lo = 0;
379 
380 	/* start dma */
381 	if ((xferq->flag & FWXFERQ_RUNNING) == 0)
382 		fc->irx_enable(fc, fwip->dma_ch);
383 
384 #if defined(__FreeBSD__)
385 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
386 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
387 #else
388 	ifp->if_flags |= IFF_RUNNING;
389 	ifp->if_flags &= ~IFF_OACTIVE;
390 #endif
391 
392 #if 0
393 	/* attempt to start output */
394 	fwip_start(ifp);
395 #endif
396 }
397 
398 static int
399 fwip_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
400 {
401 	struct fwip_softc *fwip = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
402 	int s, error;
403 
404 	switch (cmd) {
405 	case SIOCSIFFLAGS:
406 		s = splimp();
407 		if (ifp->if_flags & IFF_UP) {
408 #if defined(__FreeBSD__)
409 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
410 #else
411 			if (!(ifp->if_flags & IFF_RUNNING))
412 #endif
413 				fwip_init(&fwip->fw_softc);
414 		} else {
415 #if defined(__FreeBSD__)
416 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
417 #else
418 			if (ifp->if_flags & IFF_RUNNING)
419 #endif
420 				fwip_stop(fwip);
421 		}
422 		splx(s);
423 		break;
424 	case SIOCADDMULTI:
425 	case SIOCDELMULTI:
426 		break;
427 	case SIOCSIFCAP:
428 #ifdef DEVICE_POLLING
429 	    {
430 		struct ifreq *ifr = (struct ifreq *) data;
431 		struct firewire_comm *fc = fwip->fd.fc;
432 
433 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
434 		    !(ifp->if_capenable & IFCAP_POLLING)) {
435 			error = ether_poll_register(fwip_poll, ifp);
436 			if (error)
437 				return(error);
438 			/* Disable interrupts */
439 			fc->set_intr(fc, 0);
440 			ifp->if_capenable |= IFCAP_POLLING |
441 			    IFCAP_POLLING_NOCOUNT;
442 			return (error);
443 
444 		}
445 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
446 		    ifp->if_capenable & IFCAP_POLLING) {
447 			error = ether_poll_deregister(ifp);
448 			/* Enable interrupts. */
449 			fc->set_intr(fc, 1);
450 			ifp->if_capenable &= ~IFCAP_POLLING;
451 			ifp->if_capenable &= ~IFCAP_POLLING_NOCOUNT;
452 			return (error);
453 		}
454 	    }
455 #endif /* DEVICE_POLLING */
456 		break;
457 #if defined(__FreeBSD__) && __FreeBSD_version >= 500000
458 	default:
459 #else
460 	case SIOCSIFADDR:
461 	case SIOCGIFADDR:
462 	case SIOCSIFMTU:
463 #endif
464 		s = splimp();
465 		error = firewire_ioctl(ifp, cmd, data);
466 		splx(s);
467 		return (error);
468 #if defined(__DragonFly__) || __FreeBSD_version < 500000
469 	default:
470 		return (EINVAL);
471 #endif
472 	}
473 
474 	return (0);
475 }
476 
477 static void
478 fwip_post_busreset(void *arg)
479 {
480 	struct fwip_softc *fwip = arg;
481 	struct crom_src *src;
482 	struct crom_chunk *root;
483 
484 	src = fwip->fd.fc->crom_src;
485 	root = fwip->fd.fc->crom_root;
486 
487 	/* RFC2734 IPv4 over IEEE1394 */
488 	bzero(&fwip->unit4, sizeof(struct crom_chunk));
489 	crom_add_chunk(src, root, &fwip->unit4, CROM_UDIR);
490 	crom_add_entry(&fwip->unit4, CSRKEY_SPEC, CSRVAL_IETF);
491 	crom_add_simple_text(src, &fwip->unit4, &fwip->spec4, "IANA");
492 	crom_add_entry(&fwip->unit4, CSRKEY_VER, 1);
493 	crom_add_simple_text(src, &fwip->unit4, &fwip->ver4, "IPv4");
494 
495 	/* RFC3146 IPv6 over IEEE1394 */
496 	bzero(&fwip->unit6, sizeof(struct crom_chunk));
497 	crom_add_chunk(src, root, &fwip->unit6, CROM_UDIR);
498 	crom_add_entry(&fwip->unit6, CSRKEY_SPEC, CSRVAL_IETF);
499 	crom_add_simple_text(src, &fwip->unit6, &fwip->spec6, "IANA");
500 	crom_add_entry(&fwip->unit6, CSRKEY_VER, 2);
501 	crom_add_simple_text(src, &fwip->unit6, &fwip->ver6, "IPv6");
502 
503 	fwip->last_dest.hi = 0;
504 	fwip->last_dest.lo = 0;
505 	firewire_busreset(fwip->fw_softc.fwip_ifp);
506 }
507 
508 static void
509 fwip_output_callback(struct fw_xfer *xfer)
510 {
511 	struct fwip_softc *fwip;
512 	struct ifnet *ifp;
513 	int s;
514 
515 	fwip = (struct fwip_softc *)xfer->sc;
516 	ifp = fwip->fw_softc.fwip_ifp;
517 	/* XXX error check */
518 	FWIPDEBUG(ifp, "resp = %d\n", xfer->resp);
519 	if (xfer->resp != 0)
520 		ifp->if_oerrors ++;
521 
522 	m_freem(xfer->mbuf);
523 	fw_xfer_unload(xfer);
524 
525 	s = splimp();
526 	FWIP_LOCK(fwip);
527 	STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link);
528 	FWIP_UNLOCK(fwip);
529 	splx(s);
530 
531 	/* for queue full */
532 	if (ifp->if_snd.ifq_head != NULL) {
533 		fwip_start(ifp);
534 	}
535 }
536 
537 static void
538 fwip_start(struct ifnet *ifp)
539 {
540 	struct fwip_softc *fwip = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
541 	int s;
542 
543 	FWIPDEBUG(ifp, "starting\n");
544 
545 	if (fwip->dma_ch < 0) {
546 		struct mbuf	*m = NULL;
547 
548 		FWIPDEBUG(ifp, "not ready\n");
549 
550 		s = splimp();
551 		do {
552 			IF_DEQUEUE(&ifp->if_snd, m);
553 			if (m != NULL)
554 				m_freem(m);
555 			ifp->if_oerrors ++;
556 		} while (m != NULL);
557 		splx(s);
558 
559 		return;
560 	}
561 
562 	s = splimp();
563 #if defined(__FreeBSD__)
564 	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
565 #else
566 	ifp->if_flags |= IFF_OACTIVE;
567 #endif
568 
569 	if (ifp->if_snd.ifq_len != 0)
570 		fwip_async_output(fwip, ifp);
571 
572 #if defined(__FreeBSD__)
573 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
574 #else
575 	ifp->if_flags &= ~IFF_OACTIVE;
576 #endif
577 	splx(s);
578 }
579 
580 /* Async. stream output */
581 static void
582 fwip_async_output(struct fwip_softc *fwip, struct ifnet *ifp)
583 {
584 	struct firewire_comm *fc = fwip->fd.fc;
585 	struct mbuf *m;
586 	struct m_tag *mtag;
587 	struct fw_hwaddr *destfw;
588 	struct fw_xfer *xfer;
589 	struct fw_xferq *xferq;
590 	struct fw_pkt *fp;
591 	uint16_t nodeid;
592 	int error;
593 	int i = 0;
594 
595 	xfer = NULL;
596 	xferq = fc->atq;
597 	while ((xferq->queued < xferq->maxq - 1) &&
598 			(ifp->if_snd.ifq_head != NULL)) {
599 		FWIP_LOCK(fwip);
600 		xfer = STAILQ_FIRST(&fwip->xferlist);
601 		if (xfer == NULL) {
602 			FWIP_UNLOCK(fwip);
603 #if 0
604 			printf("if_fwip: lack of xfer\n");
605 #endif
606 			break;
607 		}
608 		STAILQ_REMOVE_HEAD(&fwip->xferlist, link);
609 		FWIP_UNLOCK(fwip);
610 
611 		IF_DEQUEUE(&ifp->if_snd, m);
612 		if (m == NULL) {
613 			FWIP_LOCK(fwip);
614 			STAILQ_INSERT_HEAD(&fwip->xferlist, xfer, link);
615 			FWIP_UNLOCK(fwip);
616 			break;
617 		}
618 
619 		/*
620 		 * Dig out the link-level address which
621 		 * firewire_output got via arp or neighbour
622 		 * discovery. If we don't have a link-level address,
623 		 * just stick the thing on the broadcast channel.
624 		 */
625 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, 0);
626 		if (mtag == NULL)
627 			destfw = 0;
628 		else
629 			destfw = (struct fw_hwaddr *) (mtag + 1);
630 
631 
632 		/*
633 		 * We don't do any bpf stuff here - the generic code
634 		 * in firewire_output gives the packet to bpf before
635 		 * it adds the link-level encapsulation.
636 		 */
637 
638 		/*
639 		 * Put the mbuf in the xfer early in case we hit an
640 		 * error case below - fwip_output_callback will free
641 		 * the mbuf.
642 		 */
643 		xfer->mbuf = m;
644 
645 		/*
646 		 * We use the arp result (if any) to add a suitable firewire
647 		 * packet header before handing off to the bus.
648 		 */
649 		fp = &xfer->send.hdr;
650 		nodeid = FWLOCALBUS | fc->nodeid;
651 		if ((m->m_flags & M_BCAST) || !destfw) {
652 			/*
653 			 * Broadcast packets are sent as GASP packets with
654 			 * specifier ID 0x00005e, version 1 on the broadcast
655 			 * channel. To be conservative, we send at the
656 			 * slowest possible speed.
657 			 */
658 			uint32_t *p;
659 
660 			M_PREPEND(m, 2*sizeof(uint32_t), M_DONTWAIT);
661 			p = mtod(m, uint32_t *);
662 			fp->mode.stream.len = m->m_pkthdr.len;
663 			fp->mode.stream.chtag = broadcast_channel;
664 			fp->mode.stream.tcode = FWTCODE_STREAM;
665 			fp->mode.stream.sy = 0;
666 			xfer->send.spd = 0;
667 			p[0] = htonl(nodeid << 16);
668 			p[1] = htonl((0x5e << 24) | 1);
669 		} else {
670 			/*
671 			 * Unicast packets are sent as block writes to the
672 			 * target's unicast fifo address. If we can't
673 			 * find the node address, we just give up. We
674 			 * could broadcast it but that might overflow
675 			 * the packet size limitations due to the
676 			 * extra GASP header. Note: the hardware
677 			 * address is stored in network byte order to
678 			 * make life easier for ARP.
679 			 */
680 			struct fw_device *fd;
681 			struct fw_eui64 eui;
682 
683 			eui.hi = ntohl(destfw->sender_unique_ID_hi);
684 			eui.lo = ntohl(destfw->sender_unique_ID_lo);
685 			if (fwip->last_dest.hi != eui.hi ||
686 			    fwip->last_dest.lo != eui.lo) {
687 				fd = fw_noderesolve_eui64(fc, &eui);
688 				if (!fd) {
689 					/* error */
690 					ifp->if_oerrors ++;
691 					/* XXX set error code */
692 					fwip_output_callback(xfer);
693 					continue;
694 
695 				}
696 				fwip->last_hdr.mode.wreqb.dst = FWLOCALBUS | fd->dst;
697 				fwip->last_hdr.mode.wreqb.tlrt = 0;
698 				fwip->last_hdr.mode.wreqb.tcode = FWTCODE_WREQB;
699 				fwip->last_hdr.mode.wreqb.pri = 0;
700 				fwip->last_hdr.mode.wreqb.src = nodeid;
701 				fwip->last_hdr.mode.wreqb.dest_hi =
702 					ntohs(destfw->sender_unicast_FIFO_hi);
703 				fwip->last_hdr.mode.wreqb.dest_lo =
704 					ntohl(destfw->sender_unicast_FIFO_lo);
705 				fwip->last_hdr.mode.wreqb.extcode = 0;
706 				fwip->last_dest = eui;
707 			}
708 
709 			fp->mode.wreqb = fwip->last_hdr.mode.wreqb;
710 			fp->mode.wreqb.len = m->m_pkthdr.len;
711 			xfer->send.spd = min(destfw->sspd, fc->speed);
712 		}
713 
714 		xfer->send.pay_len = m->m_pkthdr.len;
715 
716 		error = fw_asyreq(fc, -1, xfer);
717 		if (error == EAGAIN) {
718 			/*
719 			 * We ran out of tlabels - requeue the packet
720 			 * for later transmission.
721 			 */
722 			xfer->mbuf = 0;
723 			FWIP_LOCK(fwip);
724 			STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link);
725 			FWIP_UNLOCK(fwip);
726 			IF_PREPEND(&ifp->if_snd, m);
727 			break;
728 		}
729 		if (error) {
730 			/* error */
731 			ifp->if_oerrors ++;
732 			/* XXX set error code */
733 			fwip_output_callback(xfer);
734 			continue;
735 		} else {
736 			ifp->if_opackets ++;
737 			i++;
738 		}
739 	}
740 #if 0
741 	if (i > 1)
742 		printf("%d queued\n", i);
743 #endif
744 	if (i > 0)
745 		xferq->start(fc);
746 }
747 
748 static void
749 fwip_start_send (void *arg, int count)
750 {
751 	struct fwip_softc *fwip = arg;
752 
753 	fwip->fd.fc->atq->start(fwip->fd.fc);
754 }
755 
756 /* Async. stream output */
757 static void
758 fwip_stream_input(struct fw_xferq *xferq)
759 {
760 	struct mbuf *m, *m0;
761 	struct m_tag *mtag;
762 	struct ifnet *ifp;
763 	struct fwip_softc *fwip;
764 	struct fw_bulkxfer *sxfer;
765 	struct fw_pkt *fp;
766 	uint16_t src;
767 	uint32_t *p;
768 
769 
770 	fwip = (struct fwip_softc *)xferq->sc;
771 	ifp = fwip->fw_softc.fwip_ifp;
772 
773 	while ((sxfer = STAILQ_FIRST(&xferq->stvalid)) != NULL) {
774 		STAILQ_REMOVE_HEAD(&xferq->stvalid, link);
775 		fp = mtod(sxfer->mbuf, struct fw_pkt *);
776 		if (fwip->fd.fc->irx_post != NULL)
777 			fwip->fd.fc->irx_post(fwip->fd.fc, fp->mode.ld);
778 		m = sxfer->mbuf;
779 
780 		/* insert new rbuf */
781 		sxfer->mbuf = m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
782 		if (m0 != NULL) {
783 			m0->m_len = m0->m_pkthdr.len = m0->m_ext.ext_size;
784 			STAILQ_INSERT_TAIL(&xferq->stfree, sxfer, link);
785 		} else
786 			printf("fwip_as_input: m_getcl failed\n");
787 
788 		/*
789 		 * We must have a GASP header - leave the
790 		 * encapsulation sanity checks to the generic
791 		 * code. Remeber that we also have the firewire async
792 		 * stream header even though that isn't accounted for
793 		 * in mode.stream.len.
794 		 */
795 		if (sxfer->resp != 0 || fp->mode.stream.len <
796 		    2*sizeof(uint32_t)) {
797 			m_freem(m);
798 			ifp->if_ierrors ++;
799 			continue;
800 		}
801 		m->m_len = m->m_pkthdr.len = fp->mode.stream.len
802 			+ sizeof(fp->mode.stream);
803 
804 		/*
805 		 * If we received the packet on the broadcast channel,
806 		 * mark it as broadcast, otherwise we assume it must
807 		 * be multicast.
808 		 */
809 		if (fp->mode.stream.chtag == broadcast_channel)
810 			m->m_flags |= M_BCAST;
811 		else
812 			m->m_flags |= M_MCAST;
813 
814 		/*
815 		 * Make sure we recognise the GASP specifier and
816 		 * version.
817 		 */
818 		p = mtod(m, uint32_t *);
819 		if ((((ntohl(p[1]) & 0xffff) << 8) | ntohl(p[2]) >> 24) != 0x00005e
820 		    || (ntohl(p[2]) & 0xffffff) != 1) {
821 			FWIPDEBUG(ifp, "Unrecognised GASP header %#08x %#08x\n",
822 			    ntohl(p[1]), ntohl(p[2]));
823 			m_freem(m);
824 			ifp->if_ierrors ++;
825 			continue;
826 		}
827 
828 		/*
829 		 * Record the sender ID for possible BPF usage.
830 		 */
831 		src = ntohl(p[1]) >> 16;
832 		if (bpf_peers_present(ifp->if_bpf)) {
833 			mtag = m_tag_alloc(MTAG_FIREWIRE,
834 			    MTAG_FIREWIRE_SENDER_EUID,
835 			    2*sizeof(uint32_t), M_NOWAIT);
836 			if (mtag) {
837 				/* bpf wants it in network byte order */
838 				struct fw_device *fd;
839 				uint32_t *p = (uint32_t *) (mtag + 1);
840 				fd = fw_noderesolve_nodeid(fwip->fd.fc,
841 				    src & 0x3f);
842 				if (fd) {
843 					p[0] = htonl(fd->eui.hi);
844 					p[1] = htonl(fd->eui.lo);
845 				} else {
846 					p[0] = 0;
847 					p[1] = 0;
848 				}
849 				m_tag_prepend(m, mtag);
850 			}
851 		}
852 
853 		/*
854 		 * Trim off the GASP header
855 		 */
856 		m_adj(m, 3*sizeof(uint32_t));
857 		m->m_pkthdr.rcvif = ifp;
858 		firewire_input(ifp, m, src);
859 		ifp->if_ipackets ++;
860 	}
861 	if (STAILQ_FIRST(&xferq->stfree) != NULL)
862 		fwip->fd.fc->irx_enable(fwip->fd.fc, fwip->dma_ch);
863 }
864 
865 static __inline void
866 fwip_unicast_input_recycle(struct fwip_softc *fwip, struct fw_xfer *xfer)
867 {
868 	struct mbuf *m;
869 
870 	/*
871 	 * We have finished with a unicast xfer. Allocate a new
872 	 * cluster and stick it on the back of the input queue.
873 	 */
874 	m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
875 	xfer->mbuf = m;
876 	xfer->recv.payload = mtod(m, uint32_t *);
877 	xfer->recv.pay_len = MCLBYTES;
878 	xfer->mbuf = m;
879 	STAILQ_INSERT_TAIL(&fwip->fwb.xferlist, xfer, link);
880 }
881 
882 static void
883 fwip_unicast_input(struct fw_xfer *xfer)
884 {
885 	uint64_t address;
886 	struct mbuf *m;
887 	struct m_tag *mtag;
888 	struct ifnet *ifp;
889 	struct fwip_softc *fwip;
890 	struct fw_pkt *fp;
891 	//struct fw_pkt *sfp;
892 	int rtcode;
893 
894 	fwip = (struct fwip_softc *)xfer->sc;
895 	ifp = fwip->fw_softc.fwip_ifp;
896 	m = xfer->mbuf;
897 	xfer->mbuf = 0;
898 	fp = &xfer->recv.hdr;
899 
900 	/*
901 	 * Check the fifo address - we only accept addresses of
902 	 * exactly INET_FIFO.
903 	 */
904 	address = ((uint64_t)fp->mode.wreqb.dest_hi << 32)
905 		| fp->mode.wreqb.dest_lo;
906 	if (fp->mode.wreqb.tcode != FWTCODE_WREQB) {
907 		rtcode = FWRCODE_ER_TYPE;
908 	} else if (address != INET_FIFO) {
909 		rtcode = FWRCODE_ER_ADDR;
910 	} else {
911 		rtcode = FWRCODE_COMPLETE;
912 	}
913 
914 	/*
915 	 * Pick up a new mbuf and stick it on the back of the receive
916 	 * queue.
917 	 */
918 	fwip_unicast_input_recycle(fwip, xfer);
919 
920 	/*
921 	 * If we've already rejected the packet, give up now.
922 	 */
923 	if (rtcode != FWRCODE_COMPLETE) {
924 		m_freem(m);
925 		ifp->if_ierrors ++;
926 		return;
927 	}
928 
929 	if (bpf_peers_present(ifp->if_bpf)) {
930 		/*
931 		 * Record the sender ID for possible BPF usage.
932 		 */
933 		mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID,
934 		    2*sizeof(uint32_t), M_NOWAIT);
935 		if (mtag) {
936 			/* bpf wants it in network byte order */
937 			struct fw_device *fd;
938 			uint32_t *p = (uint32_t *) (mtag + 1);
939 			fd = fw_noderesolve_nodeid(fwip->fd.fc,
940 			    fp->mode.wreqb.src & 0x3f);
941 			if (fd) {
942 				p[0] = htonl(fd->eui.hi);
943 				p[1] = htonl(fd->eui.lo);
944 			} else {
945 				p[0] = 0;
946 				p[1] = 0;
947 			}
948 			m_tag_prepend(m, mtag);
949 		}
950 	}
951 
952 	/*
953 	 * Hand off to the generic encapsulation code. We don't use
954 	 * ifp->if_input so that we can pass the source nodeid as an
955 	 * argument to facilitate link-level fragment reassembly.
956 	 */
957 	m->m_len = m->m_pkthdr.len = fp->mode.wreqb.len;
958 	m->m_pkthdr.rcvif = ifp;
959 	firewire_input(ifp, m, fp->mode.wreqb.src);
960 	ifp->if_ipackets ++;
961 }
962 
963 static devclass_t fwip_devclass;
964 
965 static device_method_t fwip_methods[] = {
966 	/* device interface */
967 	DEVMETHOD(device_identify,	fwip_identify),
968 	DEVMETHOD(device_probe,		fwip_probe),
969 	DEVMETHOD(device_attach,	fwip_attach),
970 	DEVMETHOD(device_detach,	fwip_detach),
971 	{ 0, 0 }
972 };
973 
974 static driver_t fwip_driver = {
975         "fwip",
976 	fwip_methods,
977 	sizeof(struct fwip_softc),
978 };
979 
980 
981 #ifdef __DragonFly__
982 DECLARE_DUMMY_MODULE(fwip);
983 #endif
984 DRIVER_MODULE(fwip, firewire, fwip_driver, fwip_devclass, 0, 0);
985 MODULE_VERSION(fwip, 1);
986 MODULE_DEPEND(fwip, firewire, 1, 1, 1);
987