1 /*- 2 * Copyright (c) 2004 3 * Doug Rabson 4 * Copyright (c) 2002-2003 5 * Hidetoshi Shimokawa. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * 18 * This product includes software developed by Hidetoshi Shimokawa. 19 * 20 * 4. Neither the name of the author nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * $FreeBSD$ 37 */ 38 39 #ifdef HAVE_KERNEL_OPTION_HEADERS 40 #include "opt_device_polling.h" 41 #include "opt_inet.h" 42 #endif 43 44 #include <sys/param.h> 45 #include <sys/kernel.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/socket.h> 49 #include <sys/sockio.h> 50 #include <sys/sysctl.h> 51 #include <sys/systm.h> 52 #include <sys/taskqueue.h> 53 #include <sys/module.h> 54 #include <sys/bus.h> 55 #include <machine/bus.h> 56 57 #include <net/bpf.h> 58 #include <net/if.h> 59 #include <net/firewire.h> 60 #include <net/if_arp.h> 61 #include <net/if_types.h> 62 #ifdef __DragonFly__ 63 #include <bus/firewire/firewire.h> 64 #include <bus/firewire/firewirereg.h> 65 #include "if_fwipvar.h" 66 #else 67 #include <dev/firewire/firewire.h> 68 #include <dev/firewire/firewirereg.h> 69 #include <dev/firewire/iec13213.h> 70 #include <dev/firewire/if_fwipvar.h> 71 #endif 72 73 /* 74 * We really need a mechanism for allocating regions in the FIFO 75 * address space. We pick a address in the OHCI controller's 'middle' 76 * address space. This means that the controller will automatically 77 * send responses for us, which is fine since we don't have any 78 * important information to put in the response anyway. 79 */ 80 #define INET_FIFO 0xfffe00000000LL 81 82 #define FWIPDEBUG if (fwipdebug) if_printf 83 #define TX_MAX_QUEUE (FWMAXQUEUE - 1) 84 85 /* network interface */ 86 static void fwip_start (struct ifnet *); 87 static int fwip_ioctl (struct ifnet *, u_long, caddr_t); 88 static void fwip_init (void *); 89 90 static void fwip_post_busreset (void *); 91 static void fwip_output_callback (struct fw_xfer *); 92 static void fwip_async_output (struct fwip_softc *, struct ifnet *); 93 static void fwip_start_send (void *, int); 94 static void fwip_stream_input (struct fw_xferq *); 95 static void fwip_unicast_input(struct fw_xfer *); 96 97 static int fwipdebug = 0; 98 static int broadcast_channel = 0xc0 | 0x1f; /* tag | channel(XXX) */ 99 static int tx_speed = 2; 100 static int rx_queue_len = FWMAXQUEUE; 101 102 MALLOC_DEFINE(M_FWIP, "if_fwip", "IP over FireWire interface"); 103 SYSCTL_INT(_debug, OID_AUTO, if_fwip_debug, CTLFLAG_RW, &fwipdebug, 0, ""); 104 SYSCTL_DECL(_hw_firewire); 105 SYSCTL_NODE(_hw_firewire, OID_AUTO, fwip, CTLFLAG_RD, 0, 106 "Firewire ip subsystem"); 107 SYSCTL_INT(_hw_firewire_fwip, OID_AUTO, rx_queue_len, CTLFLAG_RW, &rx_queue_len, 108 0, "Length of the receive queue"); 109 110 TUNABLE_INT("hw.firewire.fwip.rx_queue_len", &rx_queue_len); 111 112 #ifdef DEVICE_POLLING 113 static poll_handler_t fwip_poll; 114 115 static void 116 fwip_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 117 { 118 struct fwip_softc *fwip; 119 struct firewire_comm *fc; 120 121 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 122 return; 123 124 fwip = ((struct fwip_eth_softc *)ifp->if_softc)->fwip; 125 fc = fwip->fd.fc; 126 fc->poll(fc, (cmd == POLL_AND_CHECK_STATUS)?0:1, count); 127 } 128 #endif /* DEVICE_POLLING */ 129 130 static void 131 fwip_identify(driver_t *driver, device_t parent) 132 { 133 BUS_ADD_CHILD(parent, 0, "fwip", device_get_unit(parent)); 134 } 135 136 static int 137 fwip_probe(device_t dev) 138 { 139 device_t pa; 140 141 pa = device_get_parent(dev); 142 if(device_get_unit(dev) != device_get_unit(pa)){ 143 return(ENXIO); 144 } 145 146 device_set_desc(dev, "IP over FireWire"); 147 return (0); 148 } 149 150 static int 151 fwip_attach(device_t dev) 152 { 153 struct fwip_softc *fwip; 154 struct ifnet *ifp; 155 int unit, s; 156 struct fw_hwaddr *hwaddr; 157 158 fwip = ((struct fwip_softc *)device_get_softc(dev)); 159 unit = device_get_unit(dev); 160 ifp = fwip->fw_softc.fwip_ifp = if_alloc(IFT_IEEE1394); 161 if (ifp == NULL) 162 return (ENOSPC); 163 164 /* XXX */ 165 fwip->dma_ch = -1; 166 167 fwip->fd.fc = device_get_ivars(dev); 168 if (tx_speed < 0) 169 tx_speed = fwip->fd.fc->speed; 170 171 fwip->fd.dev = dev; 172 fwip->fd.post_explore = NULL; 173 fwip->fd.post_busreset = fwip_post_busreset; 174 fwip->fw_softc.fwip = fwip; 175 TASK_INIT(&fwip->start_send, 0, fwip_start_send, fwip); 176 177 /* 178 * Encode our hardware the way that arp likes it. 179 */ 180 hwaddr = &IFP2FWC(fwip->fw_softc.fwip_ifp)->fc_hwaddr; 181 hwaddr->sender_unique_ID_hi = htonl(fwip->fd.fc->eui.hi); 182 hwaddr->sender_unique_ID_lo = htonl(fwip->fd.fc->eui.lo); 183 hwaddr->sender_max_rec = fwip->fd.fc->maxrec; 184 hwaddr->sspd = fwip->fd.fc->speed; 185 hwaddr->sender_unicast_FIFO_hi = htons((uint16_t)(INET_FIFO >> 32)); 186 hwaddr->sender_unicast_FIFO_lo = htonl((uint32_t)INET_FIFO); 187 188 /* fill the rest and attach interface */ 189 ifp->if_softc = &fwip->fw_softc; 190 191 #if __FreeBSD_version >= 501113 || defined(__DragonFly__) 192 if_initname(ifp, device_get_name(dev), unit); 193 #else 194 ifp->if_unit = unit; 195 ifp->if_name = "fwip"; 196 #endif 197 ifp->if_init = fwip_init; 198 ifp->if_start = fwip_start; 199 ifp->if_ioctl = fwip_ioctl; 200 ifp->if_flags = (IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST| 201 IFF_NEEDSGIANT); 202 ifp->if_snd.ifq_maxlen = TX_MAX_QUEUE; 203 #ifdef DEVICE_POLLING 204 ifp->if_capabilities |= IFCAP_POLLING; 205 #endif 206 207 s = splimp(); 208 firewire_ifattach(ifp, hwaddr); 209 splx(s); 210 211 FWIPDEBUG(ifp, "interface created\n"); 212 return 0; 213 } 214 215 static void 216 fwip_stop(struct fwip_softc *fwip) 217 { 218 struct firewire_comm *fc; 219 struct fw_xferq *xferq; 220 struct ifnet *ifp = fwip->fw_softc.fwip_ifp; 221 struct fw_xfer *xfer, *next; 222 int i; 223 224 fc = fwip->fd.fc; 225 226 if (fwip->dma_ch >= 0) { 227 xferq = fc->ir[fwip->dma_ch]; 228 229 if (xferq->flag & FWXFERQ_RUNNING) 230 fc->irx_disable(fc, fwip->dma_ch); 231 xferq->flag &= 232 ~(FWXFERQ_MODEMASK | FWXFERQ_OPEN | FWXFERQ_STREAM | 233 FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_CHTAGMASK); 234 xferq->hand = NULL; 235 236 for (i = 0; i < xferq->bnchunk; i ++) 237 m_freem(xferq->bulkxfer[i].mbuf); 238 free(xferq->bulkxfer, M_FWIP); 239 240 fw_bindremove(fc, &fwip->fwb); 241 for (xfer = STAILQ_FIRST(&fwip->fwb.xferlist); xfer != NULL; 242 xfer = next) { 243 next = STAILQ_NEXT(xfer, link); 244 fw_xfer_free(xfer); 245 } 246 247 for (xfer = STAILQ_FIRST(&fwip->xferlist); xfer != NULL; 248 xfer = next) { 249 next = STAILQ_NEXT(xfer, link); 250 fw_xfer_free(xfer); 251 } 252 STAILQ_INIT(&fwip->xferlist); 253 254 xferq->bulkxfer = NULL; 255 fwip->dma_ch = -1; 256 } 257 258 #if defined(__FreeBSD__) 259 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 260 #else 261 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 262 #endif 263 } 264 265 static int 266 fwip_detach(device_t dev) 267 { 268 struct fwip_softc *fwip; 269 struct ifnet *ifp; 270 int s; 271 272 fwip = (struct fwip_softc *)device_get_softc(dev); 273 ifp = fwip->fw_softc.fwip_ifp; 274 275 #ifdef DEVICE_POLLING 276 if (ifp->if_capenable & IFCAP_POLLING) 277 ether_poll_deregister(ifp); 278 #endif 279 280 s = splimp(); 281 282 fwip_stop(fwip); 283 firewire_ifdetach(ifp); 284 if_free(ifp); 285 286 splx(s); 287 return 0; 288 } 289 290 static void 291 fwip_init(void *arg) 292 { 293 struct fwip_softc *fwip = ((struct fwip_eth_softc *)arg)->fwip; 294 struct firewire_comm *fc; 295 struct ifnet *ifp = fwip->fw_softc.fwip_ifp; 296 struct fw_xferq *xferq; 297 struct fw_xfer *xfer; 298 struct mbuf *m; 299 int i; 300 301 FWIPDEBUG(ifp, "initializing\n"); 302 303 fc = fwip->fd.fc; 304 #define START 0 305 if (fwip->dma_ch < 0) { 306 for (i = START; i < fc->nisodma; i ++) { 307 xferq = fc->ir[i]; 308 if ((xferq->flag & FWXFERQ_OPEN) == 0) 309 goto found; 310 } 311 printf("no free dma channel\n"); 312 return; 313 found: 314 fwip->dma_ch = i; 315 /* allocate DMA channel and init packet mode */ 316 xferq->flag |= FWXFERQ_OPEN | FWXFERQ_EXTBUF | 317 FWXFERQ_HANDLER | FWXFERQ_STREAM; 318 xferq->flag &= ~0xff; 319 xferq->flag |= broadcast_channel & 0xff; 320 /* register fwip_input handler */ 321 xferq->sc = (caddr_t) fwip; 322 xferq->hand = fwip_stream_input; 323 xferq->bnchunk = rx_queue_len; 324 xferq->bnpacket = 1; 325 xferq->psize = MCLBYTES; 326 xferq->queued = 0; 327 xferq->buf = NULL; 328 xferq->bulkxfer = (struct fw_bulkxfer *) malloc( 329 sizeof(struct fw_bulkxfer) * xferq->bnchunk, 330 M_FWIP, M_WAITOK); 331 if (xferq->bulkxfer == NULL) { 332 printf("if_fwip: malloc failed\n"); 333 return; 334 } 335 STAILQ_INIT(&xferq->stvalid); 336 STAILQ_INIT(&xferq->stfree); 337 STAILQ_INIT(&xferq->stdma); 338 xferq->stproc = NULL; 339 for (i = 0; i < xferq->bnchunk; i ++) { 340 m = 341 #if defined(__DragonFly__) || __FreeBSD_version < 500000 342 m_getcl(M_WAIT, MT_DATA, M_PKTHDR); 343 #else 344 m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR); 345 #endif 346 xferq->bulkxfer[i].mbuf = m; 347 if (m != NULL) { 348 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 349 STAILQ_INSERT_TAIL(&xferq->stfree, 350 &xferq->bulkxfer[i], link); 351 } else 352 printf("fwip_as_input: m_getcl failed\n"); 353 } 354 355 fwip->fwb.start = INET_FIFO; 356 fwip->fwb.end = INET_FIFO + 16384; /* S3200 packet size */ 357 358 /* pre-allocate xfer */ 359 STAILQ_INIT(&fwip->fwb.xferlist); 360 for (i = 0; i < rx_queue_len; i ++) { 361 xfer = fw_xfer_alloc(M_FWIP); 362 if (xfer == NULL) 363 break; 364 m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR); 365 xfer->recv.payload = mtod(m, uint32_t *); 366 xfer->recv.pay_len = MCLBYTES; 367 xfer->hand = fwip_unicast_input; 368 xfer->fc = fc; 369 xfer->sc = (caddr_t)fwip; 370 xfer->mbuf = m; 371 STAILQ_INSERT_TAIL(&fwip->fwb.xferlist, xfer, link); 372 } 373 fw_bindadd(fc, &fwip->fwb); 374 375 STAILQ_INIT(&fwip->xferlist); 376 for (i = 0; i < TX_MAX_QUEUE; i++) { 377 xfer = fw_xfer_alloc(M_FWIP); 378 if (xfer == NULL) 379 break; 380 xfer->send.spd = tx_speed; 381 xfer->fc = fwip->fd.fc; 382 xfer->sc = (caddr_t)fwip; 383 xfer->hand = fwip_output_callback; 384 STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link); 385 } 386 } else 387 xferq = fc->ir[fwip->dma_ch]; 388 389 fwip->last_dest.hi = 0; 390 fwip->last_dest.lo = 0; 391 392 /* start dma */ 393 if ((xferq->flag & FWXFERQ_RUNNING) == 0) 394 fc->irx_enable(fc, fwip->dma_ch); 395 396 #if defined(__FreeBSD__) 397 ifp->if_drv_flags |= IFF_DRV_RUNNING; 398 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 399 #else 400 ifp->if_flags |= IFF_RUNNING; 401 ifp->if_flags &= ~IFF_OACTIVE; 402 #endif 403 404 #if 0 405 /* attempt to start output */ 406 fwip_start(ifp); 407 #endif 408 } 409 410 static int 411 fwip_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 412 { 413 struct fwip_softc *fwip = ((struct fwip_eth_softc *)ifp->if_softc)->fwip; 414 int s, error; 415 416 switch (cmd) { 417 case SIOCSIFFLAGS: 418 s = splimp(); 419 if (ifp->if_flags & IFF_UP) { 420 #if defined(__FreeBSD__) 421 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 422 #else 423 if (!(ifp->if_flags & IFF_RUNNING)) 424 #endif 425 fwip_init(&fwip->fw_softc); 426 } else { 427 #if defined(__FreeBSD__) 428 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 429 #else 430 if (ifp->if_flags & IFF_RUNNING) 431 #endif 432 fwip_stop(fwip); 433 } 434 splx(s); 435 break; 436 case SIOCADDMULTI: 437 case SIOCDELMULTI: 438 break; 439 case SIOCSIFCAP: 440 #ifdef DEVICE_POLLING 441 { 442 struct ifreq *ifr = (struct ifreq *) data; 443 struct firewire_comm *fc = fc = fwip->fd.fc; 444 445 if (ifr->ifr_reqcap & IFCAP_POLLING && 446 !(ifp->if_capenable & IFCAP_POLLING)) { 447 error = ether_poll_register(fwip_poll, ifp); 448 if (error) 449 return(error); 450 /* Disable interrupts */ 451 fc->set_intr(fc, 0); 452 ifp->if_capenable |= IFCAP_POLLING; 453 return (error); 454 455 } 456 if (!(ifr->ifr_reqcap & IFCAP_POLLING) && 457 ifp->if_capenable & IFCAP_POLLING) { 458 error = ether_poll_deregister(ifp); 459 /* Enable interrupts. */ 460 fc->set_intr(fc, 1); 461 ifp->if_capenable &= ~IFCAP_POLLING; 462 return (error); 463 } 464 } 465 #endif /* DEVICE_POLLING */ 466 break; 467 #if defined(__FreeBSD__) && __FreeBSD_version >= 500000 468 default: 469 #else 470 case SIOCSIFADDR: 471 case SIOCGIFADDR: 472 case SIOCSIFMTU: 473 #endif 474 s = splimp(); 475 error = firewire_ioctl(ifp, cmd, data); 476 splx(s); 477 return (error); 478 #if defined(__DragonFly__) || __FreeBSD_version < 500000 479 default: 480 return (EINVAL); 481 #endif 482 } 483 484 return (0); 485 } 486 487 static void 488 fwip_post_busreset(void *arg) 489 { 490 struct fwip_softc *fwip = arg; 491 struct crom_src *src; 492 struct crom_chunk *root; 493 494 src = fwip->fd.fc->crom_src; 495 root = fwip->fd.fc->crom_root; 496 497 /* RFC2734 IPv4 over IEEE1394 */ 498 bzero(&fwip->unit4, sizeof(struct crom_chunk)); 499 crom_add_chunk(src, root, &fwip->unit4, CROM_UDIR); 500 crom_add_entry(&fwip->unit4, CSRKEY_SPEC, CSRVAL_IETF); 501 crom_add_simple_text(src, &fwip->unit4, &fwip->spec4, "IANA"); 502 crom_add_entry(&fwip->unit4, CSRKEY_VER, 1); 503 crom_add_simple_text(src, &fwip->unit4, &fwip->ver4, "IPv4"); 504 505 /* RFC3146 IPv6 over IEEE1394 */ 506 bzero(&fwip->unit6, sizeof(struct crom_chunk)); 507 crom_add_chunk(src, root, &fwip->unit6, CROM_UDIR); 508 crom_add_entry(&fwip->unit6, CSRKEY_SPEC, CSRVAL_IETF); 509 crom_add_simple_text(src, &fwip->unit6, &fwip->spec6, "IANA"); 510 crom_add_entry(&fwip->unit6, CSRKEY_VER, 2); 511 crom_add_simple_text(src, &fwip->unit6, &fwip->ver6, "IPv6"); 512 513 fwip->last_dest.hi = 0; 514 fwip->last_dest.lo = 0; 515 firewire_busreset(fwip->fw_softc.fwip_ifp); 516 } 517 518 static void 519 fwip_output_callback(struct fw_xfer *xfer) 520 { 521 struct fwip_softc *fwip; 522 struct ifnet *ifp; 523 int s; 524 525 GIANT_REQUIRED; 526 527 fwip = (struct fwip_softc *)xfer->sc; 528 ifp = fwip->fw_softc.fwip_ifp; 529 /* XXX error check */ 530 FWIPDEBUG(ifp, "resp = %d\n", xfer->resp); 531 if (xfer->resp != 0) 532 ifp->if_oerrors ++; 533 534 m_freem(xfer->mbuf); 535 fw_xfer_unload(xfer); 536 537 s = splimp(); 538 STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link); 539 splx(s); 540 541 /* for queue full */ 542 if (ifp->if_snd.ifq_head != NULL) 543 fwip_start(ifp); 544 } 545 546 static void 547 fwip_start(struct ifnet *ifp) 548 { 549 struct fwip_softc *fwip = ((struct fwip_eth_softc *)ifp->if_softc)->fwip; 550 int s; 551 552 GIANT_REQUIRED; 553 554 FWIPDEBUG(ifp, "starting\n"); 555 556 if (fwip->dma_ch < 0) { 557 struct mbuf *m = NULL; 558 559 FWIPDEBUG(ifp, "not ready\n"); 560 561 s = splimp(); 562 do { 563 IF_DEQUEUE(&ifp->if_snd, m); 564 if (m != NULL) 565 m_freem(m); 566 ifp->if_oerrors ++; 567 } while (m != NULL); 568 splx(s); 569 570 return; 571 } 572 573 s = splimp(); 574 #if defined(__FreeBSD__) 575 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 576 #else 577 ifp->if_flags |= IFF_OACTIVE; 578 #endif 579 580 if (ifp->if_snd.ifq_len != 0) 581 fwip_async_output(fwip, ifp); 582 583 #if defined(__FreeBSD__) 584 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 585 #else 586 ifp->if_flags &= ~IFF_OACTIVE; 587 #endif 588 splx(s); 589 } 590 591 /* Async. stream output */ 592 static void 593 fwip_async_output(struct fwip_softc *fwip, struct ifnet *ifp) 594 { 595 struct firewire_comm *fc = fwip->fd.fc; 596 struct mbuf *m; 597 struct m_tag *mtag; 598 struct fw_hwaddr *destfw; 599 struct fw_xfer *xfer; 600 struct fw_xferq *xferq; 601 struct fw_pkt *fp; 602 uint16_t nodeid; 603 int error; 604 int i = 0; 605 606 GIANT_REQUIRED; 607 608 xfer = NULL; 609 xferq = fwip->fd.fc->atq; 610 while (xferq->queued < xferq->maxq - 1) { 611 xfer = STAILQ_FIRST(&fwip->xferlist); 612 if (xfer == NULL) { 613 printf("if_fwip: lack of xfer\n"); 614 return; 615 } 616 IF_DEQUEUE(&ifp->if_snd, m); 617 if (m == NULL) 618 break; 619 620 /* 621 * Dig out the link-level address which 622 * firewire_output got via arp or neighbour 623 * discovery. If we don't have a link-level address, 624 * just stick the thing on the broadcast channel. 625 */ 626 mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, 0); 627 if (mtag == NULL) 628 destfw = 0; 629 else 630 destfw = (struct fw_hwaddr *) (mtag + 1); 631 632 STAILQ_REMOVE_HEAD(&fwip->xferlist, link); 633 634 /* 635 * We don't do any bpf stuff here - the generic code 636 * in firewire_output gives the packet to bpf before 637 * it adds the link-level encapsulation. 638 */ 639 640 /* 641 * Put the mbuf in the xfer early in case we hit an 642 * error case below - fwip_output_callback will free 643 * the mbuf. 644 */ 645 xfer->mbuf = m; 646 647 /* 648 * We use the arp result (if any) to add a suitable firewire 649 * packet header before handing off to the bus. 650 */ 651 fp = &xfer->send.hdr; 652 nodeid = FWLOCALBUS | fc->nodeid; 653 if ((m->m_flags & M_BCAST) || !destfw) { 654 /* 655 * Broadcast packets are sent as GASP packets with 656 * specifier ID 0x00005e, version 1 on the broadcast 657 * channel. To be conservative, we send at the 658 * slowest possible speed. 659 */ 660 uint32_t *p; 661 662 M_PREPEND(m, 2*sizeof(uint32_t), M_DONTWAIT); 663 p = mtod(m, uint32_t *); 664 fp->mode.stream.len = m->m_pkthdr.len; 665 fp->mode.stream.chtag = broadcast_channel; 666 fp->mode.stream.tcode = FWTCODE_STREAM; 667 fp->mode.stream.sy = 0; 668 xfer->send.spd = 0; 669 p[0] = htonl(nodeid << 16); 670 p[1] = htonl((0x5e << 24) | 1); 671 } else { 672 /* 673 * Unicast packets are sent as block writes to the 674 * target's unicast fifo address. If we can't 675 * find the node address, we just give up. We 676 * could broadcast it but that might overflow 677 * the packet size limitations due to the 678 * extra GASP header. Note: the hardware 679 * address is stored in network byte order to 680 * make life easier for ARP. 681 */ 682 struct fw_device *fd; 683 struct fw_eui64 eui; 684 685 eui.hi = ntohl(destfw->sender_unique_ID_hi); 686 eui.lo = ntohl(destfw->sender_unique_ID_lo); 687 if (fwip->last_dest.hi != eui.hi || 688 fwip->last_dest.lo != eui.lo) { 689 fd = fw_noderesolve_eui64(fc, &eui); 690 if (!fd) { 691 /* error */ 692 ifp->if_oerrors ++; 693 /* XXX set error code */ 694 fwip_output_callback(xfer); 695 continue; 696 697 } 698 fwip->last_hdr.mode.wreqb.dst = FWLOCALBUS | fd->dst; 699 fwip->last_hdr.mode.wreqb.tlrt = 0; 700 fwip->last_hdr.mode.wreqb.tcode = FWTCODE_WREQB; 701 fwip->last_hdr.mode.wreqb.pri = 0; 702 fwip->last_hdr.mode.wreqb.src = nodeid; 703 fwip->last_hdr.mode.wreqb.dest_hi = 704 ntohs(destfw->sender_unicast_FIFO_hi); 705 fwip->last_hdr.mode.wreqb.dest_lo = 706 ntohl(destfw->sender_unicast_FIFO_lo); 707 fwip->last_hdr.mode.wreqb.extcode = 0; 708 fwip->last_dest = eui; 709 } 710 711 fp->mode.wreqb = fwip->last_hdr.mode.wreqb; 712 fp->mode.wreqb.len = m->m_pkthdr.len; 713 xfer->send.spd = min(destfw->sspd, fc->speed); 714 } 715 716 xfer->send.pay_len = m->m_pkthdr.len; 717 718 error = fw_asyreq(fc, -1, xfer); 719 if (error == EAGAIN) { 720 /* 721 * We ran out of tlabels - requeue the packet 722 * for later transmission. 723 */ 724 xfer->mbuf = 0; 725 STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link); 726 IF_PREPEND(&ifp->if_snd, m); 727 break; 728 } 729 if (error) { 730 /* error */ 731 ifp->if_oerrors ++; 732 /* XXX set error code */ 733 fwip_output_callback(xfer); 734 continue; 735 } else { 736 ifp->if_opackets ++; 737 i++; 738 } 739 } 740 #if 0 741 if (i > 1) 742 printf("%d queued\n", i); 743 #endif 744 if (i > 0) { 745 #if 1 746 xferq->start(fc); 747 #else 748 taskqueue_enqueue(taskqueue_swi_giant, &fwip->start_send); 749 #endif 750 } 751 } 752 753 static void 754 fwip_start_send (void *arg, int count) 755 { 756 struct fwip_softc *fwip = arg; 757 758 GIANT_REQUIRED; 759 fwip->fd.fc->atq->start(fwip->fd.fc); 760 } 761 762 /* Async. stream output */ 763 static void 764 fwip_stream_input(struct fw_xferq *xferq) 765 { 766 struct mbuf *m, *m0; 767 struct m_tag *mtag; 768 struct ifnet *ifp; 769 struct fwip_softc *fwip; 770 struct fw_bulkxfer *sxfer; 771 struct fw_pkt *fp; 772 uint16_t src; 773 uint32_t *p; 774 775 GIANT_REQUIRED; 776 777 fwip = (struct fwip_softc *)xferq->sc; 778 ifp = fwip->fw_softc.fwip_ifp; 779 780 while ((sxfer = STAILQ_FIRST(&xferq->stvalid)) != NULL) { 781 STAILQ_REMOVE_HEAD(&xferq->stvalid, link); 782 fp = mtod(sxfer->mbuf, struct fw_pkt *); 783 if (fwip->fd.fc->irx_post != NULL) 784 fwip->fd.fc->irx_post(fwip->fd.fc, fp->mode.ld); 785 m = sxfer->mbuf; 786 787 /* insert new rbuf */ 788 sxfer->mbuf = m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 789 if (m0 != NULL) { 790 m0->m_len = m0->m_pkthdr.len = m0->m_ext.ext_size; 791 STAILQ_INSERT_TAIL(&xferq->stfree, sxfer, link); 792 } else 793 printf("fwip_as_input: m_getcl failed\n"); 794 795 /* 796 * We must have a GASP header - leave the 797 * encapsulation sanity checks to the generic 798 * code. Remeber that we also have the firewire async 799 * stream header even though that isn't accounted for 800 * in mode.stream.len. 801 */ 802 if (sxfer->resp != 0 || fp->mode.stream.len < 803 2*sizeof(uint32_t)) { 804 m_freem(m); 805 ifp->if_ierrors ++; 806 continue; 807 } 808 m->m_len = m->m_pkthdr.len = fp->mode.stream.len 809 + sizeof(fp->mode.stream); 810 811 /* 812 * If we received the packet on the broadcast channel, 813 * mark it as broadcast, otherwise we assume it must 814 * be multicast. 815 */ 816 if (fp->mode.stream.chtag == broadcast_channel) 817 m->m_flags |= M_BCAST; 818 else 819 m->m_flags |= M_MCAST; 820 821 /* 822 * Make sure we recognise the GASP specifier and 823 * version. 824 */ 825 p = mtod(m, uint32_t *); 826 if ((((ntohl(p[1]) & 0xffff) << 8) | ntohl(p[2]) >> 24) != 0x00005e 827 || (ntohl(p[2]) & 0xffffff) != 1) { 828 FWIPDEBUG(ifp, "Unrecognised GASP header %#08x %#08x\n", 829 ntohl(p[1]), ntohl(p[2])); 830 m_freem(m); 831 ifp->if_ierrors ++; 832 continue; 833 } 834 835 /* 836 * Record the sender ID for possible BPF usage. 837 */ 838 src = ntohl(p[1]) >> 16; 839 if (bpf_peers_present(ifp->if_bpf)) { 840 mtag = m_tag_alloc(MTAG_FIREWIRE, 841 MTAG_FIREWIRE_SENDER_EUID, 842 2*sizeof(uint32_t), M_NOWAIT); 843 if (mtag) { 844 /* bpf wants it in network byte order */ 845 struct fw_device *fd; 846 uint32_t *p = (uint32_t *) (mtag + 1); 847 fd = fw_noderesolve_nodeid(fwip->fd.fc, 848 src & 0x3f); 849 if (fd) { 850 p[0] = htonl(fd->eui.hi); 851 p[1] = htonl(fd->eui.lo); 852 } else { 853 p[0] = 0; 854 p[1] = 0; 855 } 856 m_tag_prepend(m, mtag); 857 } 858 } 859 860 /* 861 * Trim off the GASP header 862 */ 863 m_adj(m, 3*sizeof(uint32_t)); 864 m->m_pkthdr.rcvif = ifp; 865 firewire_input(ifp, m, src); 866 ifp->if_ipackets ++; 867 } 868 if (STAILQ_FIRST(&xferq->stfree) != NULL) 869 fwip->fd.fc->irx_enable(fwip->fd.fc, fwip->dma_ch); 870 } 871 872 static __inline void 873 fwip_unicast_input_recycle(struct fwip_softc *fwip, struct fw_xfer *xfer) 874 { 875 struct mbuf *m; 876 877 GIANT_REQUIRED; 878 879 /* 880 * We have finished with a unicast xfer. Allocate a new 881 * cluster and stick it on the back of the input queue. 882 */ 883 m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR); 884 xfer->mbuf = m; 885 xfer->recv.payload = mtod(m, uint32_t *); 886 xfer->recv.pay_len = MCLBYTES; 887 xfer->mbuf = m; 888 STAILQ_INSERT_TAIL(&fwip->fwb.xferlist, xfer, link); 889 } 890 891 static void 892 fwip_unicast_input(struct fw_xfer *xfer) 893 { 894 uint64_t address; 895 struct mbuf *m; 896 struct m_tag *mtag; 897 struct ifnet *ifp; 898 struct fwip_softc *fwip; 899 struct fw_pkt *fp; 900 //struct fw_pkt *sfp; 901 int rtcode; 902 903 GIANT_REQUIRED; 904 905 fwip = (struct fwip_softc *)xfer->sc; 906 ifp = fwip->fw_softc.fwip_ifp; 907 m = xfer->mbuf; 908 xfer->mbuf = 0; 909 fp = &xfer->recv.hdr; 910 911 /* 912 * Check the fifo address - we only accept addresses of 913 * exactly INET_FIFO. 914 */ 915 address = ((uint64_t)fp->mode.wreqb.dest_hi << 32) 916 | fp->mode.wreqb.dest_lo; 917 if (fp->mode.wreqb.tcode != FWTCODE_WREQB) { 918 rtcode = FWRCODE_ER_TYPE; 919 } else if (address != INET_FIFO) { 920 rtcode = FWRCODE_ER_ADDR; 921 } else { 922 rtcode = FWRCODE_COMPLETE; 923 } 924 925 /* 926 * Pick up a new mbuf and stick it on the back of the receive 927 * queue. 928 */ 929 fwip_unicast_input_recycle(fwip, xfer); 930 931 /* 932 * If we've already rejected the packet, give up now. 933 */ 934 if (rtcode != FWRCODE_COMPLETE) { 935 m_freem(m); 936 ifp->if_ierrors ++; 937 return; 938 } 939 940 if (bpf_peers_present(ifp->if_bpf)) { 941 /* 942 * Record the sender ID for possible BPF usage. 943 */ 944 mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 945 2*sizeof(uint32_t), M_NOWAIT); 946 if (mtag) { 947 /* bpf wants it in network byte order */ 948 struct fw_device *fd; 949 uint32_t *p = (uint32_t *) (mtag + 1); 950 fd = fw_noderesolve_nodeid(fwip->fd.fc, 951 fp->mode.wreqb.src & 0x3f); 952 if (fd) { 953 p[0] = htonl(fd->eui.hi); 954 p[1] = htonl(fd->eui.lo); 955 } else { 956 p[0] = 0; 957 p[1] = 0; 958 } 959 m_tag_prepend(m, mtag); 960 } 961 } 962 963 /* 964 * Hand off to the generic encapsulation code. We don't use 965 * ifp->if_input so that we can pass the source nodeid as an 966 * argument to facilitate link-level fragment reassembly. 967 */ 968 m->m_len = m->m_pkthdr.len = fp->mode.wreqb.len; 969 m->m_pkthdr.rcvif = ifp; 970 firewire_input(ifp, m, fp->mode.wreqb.src); 971 ifp->if_ipackets ++; 972 } 973 974 static devclass_t fwip_devclass; 975 976 static device_method_t fwip_methods[] = { 977 /* device interface */ 978 DEVMETHOD(device_identify, fwip_identify), 979 DEVMETHOD(device_probe, fwip_probe), 980 DEVMETHOD(device_attach, fwip_attach), 981 DEVMETHOD(device_detach, fwip_detach), 982 { 0, 0 } 983 }; 984 985 static driver_t fwip_driver = { 986 "fwip", 987 fwip_methods, 988 sizeof(struct fwip_softc), 989 }; 990 991 992 #ifdef __DragonFly__ 993 DECLARE_DUMMY_MODULE(fwip); 994 #endif 995 DRIVER_MODULE(fwip, firewire, fwip_driver, fwip_devclass, 0, 0); 996 MODULE_VERSION(fwip, 1); 997 MODULE_DEPEND(fwip, firewire, 1, 1, 1); 998