xref: /freebsd/sys/dev/firewire/if_fwip.c (revision 54ebdd631db8c0bba2baab0155f603a8b5cf014a)
1 /*-
2  * Copyright (c) 2004
3  *	Doug Rabson
4  * Copyright (c) 2002-2003
5  * 	Hidetoshi Shimokawa. All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *
18  *	This product includes software developed by Hidetoshi Shimokawa.
19  *
20  * 4. Neither the name of the author nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $FreeBSD$
37  */
38 
39 #ifdef HAVE_KERNEL_OPTION_HEADERS
40 #include "opt_device_polling.h"
41 #include "opt_inet.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/socket.h>
49 #include <sys/sockio.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/taskqueue.h>
53 #include <sys/module.h>
54 #include <sys/bus.h>
55 #include <machine/bus.h>
56 
57 #include <net/bpf.h>
58 #include <net/if.h>
59 #include <net/firewire.h>
60 #include <net/if_arp.h>
61 #include <net/if_types.h>
62 #ifdef __DragonFly__
63 #include <bus/firewire/firewire.h>
64 #include <bus/firewire/firewirereg.h>
65 #include "if_fwipvar.h"
66 #else
67 #include <dev/firewire/firewire.h>
68 #include <dev/firewire/firewirereg.h>
69 #include <dev/firewire/iec13213.h>
70 #include <dev/firewire/if_fwipvar.h>
71 #endif
72 
73 /*
74  * We really need a mechanism for allocating regions in the FIFO
75  * address space. We pick a address in the OHCI controller's 'middle'
76  * address space. This means that the controller will automatically
77  * send responses for us, which is fine since we don't have any
78  * important information to put in the response anyway.
79  */
80 #define INET_FIFO	0xfffe00000000LL
81 
82 #define FWIPDEBUG	if (fwipdebug) if_printf
83 #define TX_MAX_QUEUE	(FWMAXQUEUE - 1)
84 
85 /* network interface */
86 static void fwip_start (struct ifnet *);
87 static int fwip_ioctl (struct ifnet *, u_long, caddr_t);
88 static void fwip_init (void *);
89 
90 static void fwip_post_busreset (void *);
91 static void fwip_output_callback (struct fw_xfer *);
92 static void fwip_async_output (struct fwip_softc *, struct ifnet *);
93 static void fwip_start_send (void *, int);
94 static void fwip_stream_input (struct fw_xferq *);
95 static void fwip_unicast_input(struct fw_xfer *);
96 
97 static int fwipdebug = 0;
98 static int broadcast_channel = 0xc0 | 0x1f; /*  tag | channel(XXX) */
99 static int tx_speed = 2;
100 static int rx_queue_len = FWMAXQUEUE;
101 
102 MALLOC_DEFINE(M_FWIP, "if_fwip", "IP over FireWire interface");
103 SYSCTL_INT(_debug, OID_AUTO, if_fwip_debug, CTLFLAG_RW, &fwipdebug, 0, "");
104 SYSCTL_DECL(_hw_firewire);
105 SYSCTL_NODE(_hw_firewire, OID_AUTO, fwip, CTLFLAG_RD, 0,
106 	"Firewire ip subsystem");
107 SYSCTL_INT(_hw_firewire_fwip, OID_AUTO, rx_queue_len, CTLFLAG_RW, &rx_queue_len,
108 	0, "Length of the receive queue");
109 
110 TUNABLE_INT("hw.firewire.fwip.rx_queue_len", &rx_queue_len);
111 
112 #ifdef DEVICE_POLLING
113 static poll_handler_t fwip_poll;
114 
115 static void
116 fwip_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
117 {
118 	struct fwip_softc *fwip;
119 	struct firewire_comm *fc;
120 
121 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
122 		return;
123 
124 	fwip = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
125 	fc = fwip->fd.fc;
126 	fc->poll(fc, (cmd == POLL_AND_CHECK_STATUS)?0:1, count);
127 }
128 #endif /* DEVICE_POLLING */
129 
130 static void
131 fwip_identify(driver_t *driver, device_t parent)
132 {
133 	BUS_ADD_CHILD(parent, 0, "fwip", device_get_unit(parent));
134 }
135 
136 static int
137 fwip_probe(device_t dev)
138 {
139 	device_t pa;
140 
141 	pa = device_get_parent(dev);
142 	if(device_get_unit(dev) != device_get_unit(pa)){
143 		return(ENXIO);
144 	}
145 
146 	device_set_desc(dev, "IP over FireWire");
147 	return (0);
148 }
149 
150 static int
151 fwip_attach(device_t dev)
152 {
153 	struct fwip_softc *fwip;
154 	struct ifnet *ifp;
155 	int unit, s;
156 	struct fw_hwaddr *hwaddr;
157 
158 	fwip = ((struct fwip_softc *)device_get_softc(dev));
159 	unit = device_get_unit(dev);
160 	ifp = fwip->fw_softc.fwip_ifp = if_alloc(IFT_IEEE1394);
161 	if (ifp == NULL)
162 		return (ENOSPC);
163 
164 	mtx_init(&fwip->mtx, "fwip", NULL, MTX_DEF);
165 	/* XXX */
166 	fwip->dma_ch = -1;
167 
168 	fwip->fd.fc = device_get_ivars(dev);
169 	if (tx_speed < 0)
170 		tx_speed = fwip->fd.fc->speed;
171 
172 	fwip->fd.dev = dev;
173 	fwip->fd.post_explore = NULL;
174 	fwip->fd.post_busreset = fwip_post_busreset;
175 	fwip->fw_softc.fwip = fwip;
176 	TASK_INIT(&fwip->start_send, 0, fwip_start_send, fwip);
177 
178 	/*
179 	 * Encode our hardware the way that arp likes it.
180 	 */
181 	hwaddr = &IFP2FWC(fwip->fw_softc.fwip_ifp)->fc_hwaddr;
182 	hwaddr->sender_unique_ID_hi = htonl(fwip->fd.fc->eui.hi);
183 	hwaddr->sender_unique_ID_lo = htonl(fwip->fd.fc->eui.lo);
184 	hwaddr->sender_max_rec = fwip->fd.fc->maxrec;
185 	hwaddr->sspd = fwip->fd.fc->speed;
186 	hwaddr->sender_unicast_FIFO_hi = htons((uint16_t)(INET_FIFO >> 32));
187 	hwaddr->sender_unicast_FIFO_lo = htonl((uint32_t)INET_FIFO);
188 
189 	/* fill the rest and attach interface */
190 	ifp->if_softc = &fwip->fw_softc;
191 
192 #if __FreeBSD_version >= 501113 || defined(__DragonFly__)
193 	if_initname(ifp, device_get_name(dev), unit);
194 #else
195 	ifp->if_unit = unit;
196 	ifp->if_name = "fwip";
197 #endif
198 	ifp->if_init = fwip_init;
199 	ifp->if_start = fwip_start;
200 	ifp->if_ioctl = fwip_ioctl;
201 	ifp->if_flags = (IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST);
202 	ifp->if_snd.ifq_maxlen = TX_MAX_QUEUE;
203 #ifdef DEVICE_POLLING
204 	ifp->if_capabilities |= IFCAP_POLLING;
205 #endif
206 
207 	s = splimp();
208 	firewire_ifattach(ifp, hwaddr);
209 	splx(s);
210 
211 	FWIPDEBUG(ifp, "interface created\n");
212 	return 0;
213 }
214 
215 static void
216 fwip_stop(struct fwip_softc *fwip)
217 {
218 	struct firewire_comm *fc;
219 	struct fw_xferq *xferq;
220 	struct ifnet *ifp = fwip->fw_softc.fwip_ifp;
221 	struct fw_xfer *xfer, *next;
222 	int i;
223 
224 	fc = fwip->fd.fc;
225 
226 	if (fwip->dma_ch >= 0) {
227 		xferq = fc->ir[fwip->dma_ch];
228 
229 		if (xferq->flag & FWXFERQ_RUNNING)
230 			fc->irx_disable(fc, fwip->dma_ch);
231 		xferq->flag &=
232 			~(FWXFERQ_MODEMASK | FWXFERQ_OPEN | FWXFERQ_STREAM |
233 			FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_CHTAGMASK);
234 		xferq->hand =  NULL;
235 
236 		for (i = 0; i < xferq->bnchunk; i ++)
237 			m_freem(xferq->bulkxfer[i].mbuf);
238 		free(xferq->bulkxfer, M_FWIP);
239 
240 		fw_bindremove(fc, &fwip->fwb);
241 		for (xfer = STAILQ_FIRST(&fwip->fwb.xferlist); xfer != NULL;
242 					xfer = next) {
243 			next = STAILQ_NEXT(xfer, link);
244 			fw_xfer_free(xfer);
245 		}
246 
247 		for (xfer = STAILQ_FIRST(&fwip->xferlist); xfer != NULL;
248 					xfer = next) {
249 			next = STAILQ_NEXT(xfer, link);
250 			fw_xfer_free(xfer);
251 		}
252 		STAILQ_INIT(&fwip->xferlist);
253 
254 		xferq->bulkxfer =  NULL;
255 		fwip->dma_ch = -1;
256 	}
257 
258 #if defined(__FreeBSD__)
259 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
260 #else
261 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
262 #endif
263 }
264 
265 static int
266 fwip_detach(device_t dev)
267 {
268 	struct fwip_softc *fwip;
269 	struct ifnet *ifp;
270 	int s;
271 
272 	fwip = (struct fwip_softc *)device_get_softc(dev);
273 	ifp = fwip->fw_softc.fwip_ifp;
274 
275 #ifdef DEVICE_POLLING
276 	if (ifp->if_capenable & IFCAP_POLLING)
277 		ether_poll_deregister(ifp);
278 #endif
279 
280 	s = splimp();
281 
282 	fwip_stop(fwip);
283 	firewire_ifdetach(ifp);
284 	if_free(ifp);
285 	mtx_destroy(&fwip->mtx);
286 
287 	splx(s);
288 	return 0;
289 }
290 
291 static void
292 fwip_init(void *arg)
293 {
294 	struct fwip_softc *fwip = ((struct fwip_eth_softc *)arg)->fwip;
295 	struct firewire_comm *fc;
296 	struct ifnet *ifp = fwip->fw_softc.fwip_ifp;
297 	struct fw_xferq *xferq;
298 	struct fw_xfer *xfer;
299 	struct mbuf *m;
300 	int i;
301 
302 	FWIPDEBUG(ifp, "initializing\n");
303 
304 	fc = fwip->fd.fc;
305 #define START 0
306 	if (fwip->dma_ch < 0) {
307 		fwip->dma_ch = fw_open_isodma(fc, /* tx */0);
308 		if (fwip->dma_ch < 0)
309 			return;
310 		xferq = fc->ir[fwip->dma_ch];
311 		xferq->flag |= FWXFERQ_EXTBUF |
312 				FWXFERQ_HANDLER | FWXFERQ_STREAM;
313 		xferq->flag &= ~0xff;
314 		xferq->flag |= broadcast_channel & 0xff;
315 		/* register fwip_input handler */
316 		xferq->sc = (caddr_t) fwip;
317 		xferq->hand = fwip_stream_input;
318 		xferq->bnchunk = rx_queue_len;
319 		xferq->bnpacket = 1;
320 		xferq->psize = MCLBYTES;
321 		xferq->queued = 0;
322 		xferq->buf = NULL;
323 		xferq->bulkxfer = (struct fw_bulkxfer *) malloc(
324 			sizeof(struct fw_bulkxfer) * xferq->bnchunk,
325 							M_FWIP, M_WAITOK);
326 		if (xferq->bulkxfer == NULL) {
327 			printf("if_fwip: malloc failed\n");
328 			return;
329 		}
330 		STAILQ_INIT(&xferq->stvalid);
331 		STAILQ_INIT(&xferq->stfree);
332 		STAILQ_INIT(&xferq->stdma);
333 		xferq->stproc = NULL;
334 		for (i = 0; i < xferq->bnchunk; i ++) {
335 			m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
336 			xferq->bulkxfer[i].mbuf = m;
337 			m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
338 			STAILQ_INSERT_TAIL(&xferq->stfree,
339 					&xferq->bulkxfer[i], link);
340 		}
341 
342 		fwip->fwb.start = INET_FIFO;
343 		fwip->fwb.end = INET_FIFO + 16384; /* S3200 packet size */
344 
345 		/* pre-allocate xfer */
346 		STAILQ_INIT(&fwip->fwb.xferlist);
347 		for (i = 0; i < rx_queue_len; i ++) {
348 			xfer = fw_xfer_alloc(M_FWIP);
349 			if (xfer == NULL)
350 				break;
351 			m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
352 			xfer->recv.payload = mtod(m, uint32_t *);
353 			xfer->recv.pay_len = MCLBYTES;
354 			xfer->hand = fwip_unicast_input;
355 			xfer->fc = fc;
356 			xfer->sc = (caddr_t)fwip;
357 			xfer->mbuf = m;
358 			STAILQ_INSERT_TAIL(&fwip->fwb.xferlist, xfer, link);
359 		}
360 		fw_bindadd(fc, &fwip->fwb);
361 
362 		STAILQ_INIT(&fwip->xferlist);
363 		for (i = 0; i < TX_MAX_QUEUE; i++) {
364 			xfer = fw_xfer_alloc(M_FWIP);
365 			if (xfer == NULL)
366 				break;
367 			xfer->send.spd = tx_speed;
368 			xfer->fc = fwip->fd.fc;
369 			xfer->sc = (caddr_t)fwip;
370 			xfer->hand = fwip_output_callback;
371 			STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link);
372 		}
373 	} else
374 		xferq = fc->ir[fwip->dma_ch];
375 
376 	fwip->last_dest.hi = 0;
377 	fwip->last_dest.lo = 0;
378 
379 	/* start dma */
380 	if ((xferq->flag & FWXFERQ_RUNNING) == 0)
381 		fc->irx_enable(fc, fwip->dma_ch);
382 
383 #if defined(__FreeBSD__)
384 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
385 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
386 #else
387 	ifp->if_flags |= IFF_RUNNING;
388 	ifp->if_flags &= ~IFF_OACTIVE;
389 #endif
390 
391 #if 0
392 	/* attempt to start output */
393 	fwip_start(ifp);
394 #endif
395 }
396 
397 static int
398 fwip_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
399 {
400 	struct fwip_softc *fwip = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
401 	int s, error;
402 
403 	switch (cmd) {
404 	case SIOCSIFFLAGS:
405 		s = splimp();
406 		if (ifp->if_flags & IFF_UP) {
407 #if defined(__FreeBSD__)
408 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
409 #else
410 			if (!(ifp->if_flags & IFF_RUNNING))
411 #endif
412 				fwip_init(&fwip->fw_softc);
413 		} else {
414 #if defined(__FreeBSD__)
415 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
416 #else
417 			if (ifp->if_flags & IFF_RUNNING)
418 #endif
419 				fwip_stop(fwip);
420 		}
421 		splx(s);
422 		break;
423 	case SIOCADDMULTI:
424 	case SIOCDELMULTI:
425 		break;
426 	case SIOCSIFCAP:
427 #ifdef DEVICE_POLLING
428 	    {
429 		struct ifreq *ifr = (struct ifreq *) data;
430 		struct firewire_comm *fc = fc = fwip->fd.fc;
431 
432 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
433 		    !(ifp->if_capenable & IFCAP_POLLING)) {
434 			error = ether_poll_register(fwip_poll, ifp);
435 			if (error)
436 				return(error);
437 			/* Disable interrupts */
438 			fc->set_intr(fc, 0);
439 			ifp->if_capenable |= IFCAP_POLLING;
440 			return (error);
441 
442 		}
443 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
444 		    ifp->if_capenable & IFCAP_POLLING) {
445 			error = ether_poll_deregister(ifp);
446 			/* Enable interrupts. */
447 			fc->set_intr(fc, 1);
448 			ifp->if_capenable &= ~IFCAP_POLLING;
449 			return (error);
450 		}
451 	    }
452 #endif /* DEVICE_POLLING */
453 		break;
454 #if defined(__FreeBSD__) && __FreeBSD_version >= 500000
455 	default:
456 #else
457 	case SIOCSIFADDR:
458 	case SIOCGIFADDR:
459 	case SIOCSIFMTU:
460 #endif
461 		s = splimp();
462 		error = firewire_ioctl(ifp, cmd, data);
463 		splx(s);
464 		return (error);
465 #if defined(__DragonFly__) || __FreeBSD_version < 500000
466 	default:
467 		return (EINVAL);
468 #endif
469 	}
470 
471 	return (0);
472 }
473 
474 static void
475 fwip_post_busreset(void *arg)
476 {
477 	struct fwip_softc *fwip = arg;
478 	struct crom_src *src;
479 	struct crom_chunk *root;
480 
481 	src = fwip->fd.fc->crom_src;
482 	root = fwip->fd.fc->crom_root;
483 
484 	/* RFC2734 IPv4 over IEEE1394 */
485 	bzero(&fwip->unit4, sizeof(struct crom_chunk));
486 	crom_add_chunk(src, root, &fwip->unit4, CROM_UDIR);
487 	crom_add_entry(&fwip->unit4, CSRKEY_SPEC, CSRVAL_IETF);
488 	crom_add_simple_text(src, &fwip->unit4, &fwip->spec4, "IANA");
489 	crom_add_entry(&fwip->unit4, CSRKEY_VER, 1);
490 	crom_add_simple_text(src, &fwip->unit4, &fwip->ver4, "IPv4");
491 
492 	/* RFC3146 IPv6 over IEEE1394 */
493 	bzero(&fwip->unit6, sizeof(struct crom_chunk));
494 	crom_add_chunk(src, root, &fwip->unit6, CROM_UDIR);
495 	crom_add_entry(&fwip->unit6, CSRKEY_SPEC, CSRVAL_IETF);
496 	crom_add_simple_text(src, &fwip->unit6, &fwip->spec6, "IANA");
497 	crom_add_entry(&fwip->unit6, CSRKEY_VER, 2);
498 	crom_add_simple_text(src, &fwip->unit6, &fwip->ver6, "IPv6");
499 
500 	fwip->last_dest.hi = 0;
501 	fwip->last_dest.lo = 0;
502 	firewire_busreset(fwip->fw_softc.fwip_ifp);
503 }
504 
505 static void
506 fwip_output_callback(struct fw_xfer *xfer)
507 {
508 	struct fwip_softc *fwip;
509 	struct ifnet *ifp;
510 	int s;
511 
512 	fwip = (struct fwip_softc *)xfer->sc;
513 	ifp = fwip->fw_softc.fwip_ifp;
514 	/* XXX error check */
515 	FWIPDEBUG(ifp, "resp = %d\n", xfer->resp);
516 	if (xfer->resp != 0)
517 		ifp->if_oerrors ++;
518 
519 	m_freem(xfer->mbuf);
520 	fw_xfer_unload(xfer);
521 
522 	s = splimp();
523 	FWIP_LOCK(fwip);
524 	STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link);
525 	FWIP_UNLOCK(fwip);
526 	splx(s);
527 
528 	/* for queue full */
529 	if (ifp->if_snd.ifq_head != NULL) {
530 		fwip_start(ifp);
531 	}
532 }
533 
534 static void
535 fwip_start(struct ifnet *ifp)
536 {
537 	struct fwip_softc *fwip = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
538 	int s;
539 
540 	FWIPDEBUG(ifp, "starting\n");
541 
542 	if (fwip->dma_ch < 0) {
543 		struct mbuf	*m = NULL;
544 
545 		FWIPDEBUG(ifp, "not ready\n");
546 
547 		s = splimp();
548 		do {
549 			IF_DEQUEUE(&ifp->if_snd, m);
550 			if (m != NULL)
551 				m_freem(m);
552 			ifp->if_oerrors ++;
553 		} while (m != NULL);
554 		splx(s);
555 
556 		return;
557 	}
558 
559 	s = splimp();
560 #if defined(__FreeBSD__)
561 	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
562 #else
563 	ifp->if_flags |= IFF_OACTIVE;
564 #endif
565 
566 	if (ifp->if_snd.ifq_len != 0)
567 		fwip_async_output(fwip, ifp);
568 
569 #if defined(__FreeBSD__)
570 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
571 #else
572 	ifp->if_flags &= ~IFF_OACTIVE;
573 #endif
574 	splx(s);
575 }
576 
577 /* Async. stream output */
578 static void
579 fwip_async_output(struct fwip_softc *fwip, struct ifnet *ifp)
580 {
581 	struct firewire_comm *fc = fwip->fd.fc;
582 	struct mbuf *m;
583 	struct m_tag *mtag;
584 	struct fw_hwaddr *destfw;
585 	struct fw_xfer *xfer;
586 	struct fw_xferq *xferq;
587 	struct fw_pkt *fp;
588 	uint16_t nodeid;
589 	int error;
590 	int i = 0;
591 
592 	xfer = NULL;
593 	xferq = fc->atq;
594 	while ((xferq->queued < xferq->maxq - 1) &&
595 			(ifp->if_snd.ifq_head != NULL)) {
596 		FWIP_LOCK(fwip);
597 		xfer = STAILQ_FIRST(&fwip->xferlist);
598 		if (xfer == NULL) {
599 			FWIP_UNLOCK(fwip);
600 #if 0
601 			printf("if_fwip: lack of xfer\n");
602 #endif
603 			break;
604 		}
605 		STAILQ_REMOVE_HEAD(&fwip->xferlist, link);
606 		FWIP_UNLOCK(fwip);
607 
608 		IF_DEQUEUE(&ifp->if_snd, m);
609 		if (m == NULL) {
610 			FWIP_LOCK(fwip);
611 			STAILQ_INSERT_HEAD(&fwip->xferlist, xfer, link);
612 			FWIP_UNLOCK(fwip);
613 			break;
614 		}
615 
616 		/*
617 		 * Dig out the link-level address which
618 		 * firewire_output got via arp or neighbour
619 		 * discovery. If we don't have a link-level address,
620 		 * just stick the thing on the broadcast channel.
621 		 */
622 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, 0);
623 		if (mtag == NULL)
624 			destfw = 0;
625 		else
626 			destfw = (struct fw_hwaddr *) (mtag + 1);
627 
628 
629 		/*
630 		 * We don't do any bpf stuff here - the generic code
631 		 * in firewire_output gives the packet to bpf before
632 		 * it adds the link-level encapsulation.
633 		 */
634 
635 		/*
636 		 * Put the mbuf in the xfer early in case we hit an
637 		 * error case below - fwip_output_callback will free
638 		 * the mbuf.
639 		 */
640 		xfer->mbuf = m;
641 
642 		/*
643 		 * We use the arp result (if any) to add a suitable firewire
644 		 * packet header before handing off to the bus.
645 		 */
646 		fp = &xfer->send.hdr;
647 		nodeid = FWLOCALBUS | fc->nodeid;
648 		if ((m->m_flags & M_BCAST) || !destfw) {
649 			/*
650 			 * Broadcast packets are sent as GASP packets with
651 			 * specifier ID 0x00005e, version 1 on the broadcast
652 			 * channel. To be conservative, we send at the
653 			 * slowest possible speed.
654 			 */
655 			uint32_t *p;
656 
657 			M_PREPEND(m, 2*sizeof(uint32_t), M_DONTWAIT);
658 			p = mtod(m, uint32_t *);
659 			fp->mode.stream.len = m->m_pkthdr.len;
660 			fp->mode.stream.chtag = broadcast_channel;
661 			fp->mode.stream.tcode = FWTCODE_STREAM;
662 			fp->mode.stream.sy = 0;
663 			xfer->send.spd = 0;
664 			p[0] = htonl(nodeid << 16);
665 			p[1] = htonl((0x5e << 24) | 1);
666 		} else {
667 			/*
668 			 * Unicast packets are sent as block writes to the
669 			 * target's unicast fifo address. If we can't
670 			 * find the node address, we just give up. We
671 			 * could broadcast it but that might overflow
672 			 * the packet size limitations due to the
673 			 * extra GASP header. Note: the hardware
674 			 * address is stored in network byte order to
675 			 * make life easier for ARP.
676 			 */
677 			struct fw_device *fd;
678 			struct fw_eui64 eui;
679 
680 			eui.hi = ntohl(destfw->sender_unique_ID_hi);
681 			eui.lo = ntohl(destfw->sender_unique_ID_lo);
682 			if (fwip->last_dest.hi != eui.hi ||
683 			    fwip->last_dest.lo != eui.lo) {
684 				fd = fw_noderesolve_eui64(fc, &eui);
685 				if (!fd) {
686 					/* error */
687 					ifp->if_oerrors ++;
688 					/* XXX set error code */
689 					fwip_output_callback(xfer);
690 					continue;
691 
692 				}
693 				fwip->last_hdr.mode.wreqb.dst = FWLOCALBUS | fd->dst;
694 				fwip->last_hdr.mode.wreqb.tlrt = 0;
695 				fwip->last_hdr.mode.wreqb.tcode = FWTCODE_WREQB;
696 				fwip->last_hdr.mode.wreqb.pri = 0;
697 				fwip->last_hdr.mode.wreqb.src = nodeid;
698 				fwip->last_hdr.mode.wreqb.dest_hi =
699 					ntohs(destfw->sender_unicast_FIFO_hi);
700 				fwip->last_hdr.mode.wreqb.dest_lo =
701 					ntohl(destfw->sender_unicast_FIFO_lo);
702 				fwip->last_hdr.mode.wreqb.extcode = 0;
703 				fwip->last_dest = eui;
704 			}
705 
706 			fp->mode.wreqb = fwip->last_hdr.mode.wreqb;
707 			fp->mode.wreqb.len = m->m_pkthdr.len;
708 			xfer->send.spd = min(destfw->sspd, fc->speed);
709 		}
710 
711 		xfer->send.pay_len = m->m_pkthdr.len;
712 
713 		error = fw_asyreq(fc, -1, xfer);
714 		if (error == EAGAIN) {
715 			/*
716 			 * We ran out of tlabels - requeue the packet
717 			 * for later transmission.
718 			 */
719 			xfer->mbuf = 0;
720 			FWIP_LOCK(fwip);
721 			STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link);
722 			FWIP_UNLOCK(fwip);
723 			IF_PREPEND(&ifp->if_snd, m);
724 			break;
725 		}
726 		if (error) {
727 			/* error */
728 			ifp->if_oerrors ++;
729 			/* XXX set error code */
730 			fwip_output_callback(xfer);
731 			continue;
732 		} else {
733 			ifp->if_opackets ++;
734 			i++;
735 		}
736 	}
737 #if 0
738 	if (i > 1)
739 		printf("%d queued\n", i);
740 #endif
741 	if (i > 0)
742 		xferq->start(fc);
743 }
744 
745 static void
746 fwip_start_send (void *arg, int count)
747 {
748 	struct fwip_softc *fwip = arg;
749 
750 	fwip->fd.fc->atq->start(fwip->fd.fc);
751 }
752 
753 /* Async. stream output */
754 static void
755 fwip_stream_input(struct fw_xferq *xferq)
756 {
757 	struct mbuf *m, *m0;
758 	struct m_tag *mtag;
759 	struct ifnet *ifp;
760 	struct fwip_softc *fwip;
761 	struct fw_bulkxfer *sxfer;
762 	struct fw_pkt *fp;
763 	uint16_t src;
764 	uint32_t *p;
765 
766 
767 	fwip = (struct fwip_softc *)xferq->sc;
768 	ifp = fwip->fw_softc.fwip_ifp;
769 
770 	while ((sxfer = STAILQ_FIRST(&xferq->stvalid)) != NULL) {
771 		STAILQ_REMOVE_HEAD(&xferq->stvalid, link);
772 		fp = mtod(sxfer->mbuf, struct fw_pkt *);
773 		if (fwip->fd.fc->irx_post != NULL)
774 			fwip->fd.fc->irx_post(fwip->fd.fc, fp->mode.ld);
775 		m = sxfer->mbuf;
776 
777 		/* insert new rbuf */
778 		sxfer->mbuf = m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
779 		if (m0 != NULL) {
780 			m0->m_len = m0->m_pkthdr.len = m0->m_ext.ext_size;
781 			STAILQ_INSERT_TAIL(&xferq->stfree, sxfer, link);
782 		} else
783 			printf("fwip_as_input: m_getcl failed\n");
784 
785 		/*
786 		 * We must have a GASP header - leave the
787 		 * encapsulation sanity checks to the generic
788 		 * code. Remeber that we also have the firewire async
789 		 * stream header even though that isn't accounted for
790 		 * in mode.stream.len.
791 		 */
792 		if (sxfer->resp != 0 || fp->mode.stream.len <
793 		    2*sizeof(uint32_t)) {
794 			m_freem(m);
795 			ifp->if_ierrors ++;
796 			continue;
797 		}
798 		m->m_len = m->m_pkthdr.len = fp->mode.stream.len
799 			+ sizeof(fp->mode.stream);
800 
801 		/*
802 		 * If we received the packet on the broadcast channel,
803 		 * mark it as broadcast, otherwise we assume it must
804 		 * be multicast.
805 		 */
806 		if (fp->mode.stream.chtag == broadcast_channel)
807 			m->m_flags |= M_BCAST;
808 		else
809 			m->m_flags |= M_MCAST;
810 
811 		/*
812 		 * Make sure we recognise the GASP specifier and
813 		 * version.
814 		 */
815 		p = mtod(m, uint32_t *);
816 		if ((((ntohl(p[1]) & 0xffff) << 8) | ntohl(p[2]) >> 24) != 0x00005e
817 		    || (ntohl(p[2]) & 0xffffff) != 1) {
818 			FWIPDEBUG(ifp, "Unrecognised GASP header %#08x %#08x\n",
819 			    ntohl(p[1]), ntohl(p[2]));
820 			m_freem(m);
821 			ifp->if_ierrors ++;
822 			continue;
823 		}
824 
825 		/*
826 		 * Record the sender ID for possible BPF usage.
827 		 */
828 		src = ntohl(p[1]) >> 16;
829 		if (bpf_peers_present(ifp->if_bpf)) {
830 			mtag = m_tag_alloc(MTAG_FIREWIRE,
831 			    MTAG_FIREWIRE_SENDER_EUID,
832 			    2*sizeof(uint32_t), M_NOWAIT);
833 			if (mtag) {
834 				/* bpf wants it in network byte order */
835 				struct fw_device *fd;
836 				uint32_t *p = (uint32_t *) (mtag + 1);
837 				fd = fw_noderesolve_nodeid(fwip->fd.fc,
838 				    src & 0x3f);
839 				if (fd) {
840 					p[0] = htonl(fd->eui.hi);
841 					p[1] = htonl(fd->eui.lo);
842 				} else {
843 					p[0] = 0;
844 					p[1] = 0;
845 				}
846 				m_tag_prepend(m, mtag);
847 			}
848 		}
849 
850 		/*
851 		 * Trim off the GASP header
852 		 */
853 		m_adj(m, 3*sizeof(uint32_t));
854 		m->m_pkthdr.rcvif = ifp;
855 		firewire_input(ifp, m, src);
856 		ifp->if_ipackets ++;
857 	}
858 	if (STAILQ_FIRST(&xferq->stfree) != NULL)
859 		fwip->fd.fc->irx_enable(fwip->fd.fc, fwip->dma_ch);
860 }
861 
862 static __inline void
863 fwip_unicast_input_recycle(struct fwip_softc *fwip, struct fw_xfer *xfer)
864 {
865 	struct mbuf *m;
866 
867 	/*
868 	 * We have finished with a unicast xfer. Allocate a new
869 	 * cluster and stick it on the back of the input queue.
870 	 */
871 	m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
872 	xfer->mbuf = m;
873 	xfer->recv.payload = mtod(m, uint32_t *);
874 	xfer->recv.pay_len = MCLBYTES;
875 	xfer->mbuf = m;
876 	STAILQ_INSERT_TAIL(&fwip->fwb.xferlist, xfer, link);
877 }
878 
879 static void
880 fwip_unicast_input(struct fw_xfer *xfer)
881 {
882 	uint64_t address;
883 	struct mbuf *m;
884 	struct m_tag *mtag;
885 	struct ifnet *ifp;
886 	struct fwip_softc *fwip;
887 	struct fw_pkt *fp;
888 	//struct fw_pkt *sfp;
889 	int rtcode;
890 
891 	fwip = (struct fwip_softc *)xfer->sc;
892 	ifp = fwip->fw_softc.fwip_ifp;
893 	m = xfer->mbuf;
894 	xfer->mbuf = 0;
895 	fp = &xfer->recv.hdr;
896 
897 	/*
898 	 * Check the fifo address - we only accept addresses of
899 	 * exactly INET_FIFO.
900 	 */
901 	address = ((uint64_t)fp->mode.wreqb.dest_hi << 32)
902 		| fp->mode.wreqb.dest_lo;
903 	if (fp->mode.wreqb.tcode != FWTCODE_WREQB) {
904 		rtcode = FWRCODE_ER_TYPE;
905 	} else if (address != INET_FIFO) {
906 		rtcode = FWRCODE_ER_ADDR;
907 	} else {
908 		rtcode = FWRCODE_COMPLETE;
909 	}
910 
911 	/*
912 	 * Pick up a new mbuf and stick it on the back of the receive
913 	 * queue.
914 	 */
915 	fwip_unicast_input_recycle(fwip, xfer);
916 
917 	/*
918 	 * If we've already rejected the packet, give up now.
919 	 */
920 	if (rtcode != FWRCODE_COMPLETE) {
921 		m_freem(m);
922 		ifp->if_ierrors ++;
923 		return;
924 	}
925 
926 	if (bpf_peers_present(ifp->if_bpf)) {
927 		/*
928 		 * Record the sender ID for possible BPF usage.
929 		 */
930 		mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID,
931 		    2*sizeof(uint32_t), M_NOWAIT);
932 		if (mtag) {
933 			/* bpf wants it in network byte order */
934 			struct fw_device *fd;
935 			uint32_t *p = (uint32_t *) (mtag + 1);
936 			fd = fw_noderesolve_nodeid(fwip->fd.fc,
937 			    fp->mode.wreqb.src & 0x3f);
938 			if (fd) {
939 				p[0] = htonl(fd->eui.hi);
940 				p[1] = htonl(fd->eui.lo);
941 			} else {
942 				p[0] = 0;
943 				p[1] = 0;
944 			}
945 			m_tag_prepend(m, mtag);
946 		}
947 	}
948 
949 	/*
950 	 * Hand off to the generic encapsulation code. We don't use
951 	 * ifp->if_input so that we can pass the source nodeid as an
952 	 * argument to facilitate link-level fragment reassembly.
953 	 */
954 	m->m_len = m->m_pkthdr.len = fp->mode.wreqb.len;
955 	m->m_pkthdr.rcvif = ifp;
956 	firewire_input(ifp, m, fp->mode.wreqb.src);
957 	ifp->if_ipackets ++;
958 }
959 
960 static devclass_t fwip_devclass;
961 
962 static device_method_t fwip_methods[] = {
963 	/* device interface */
964 	DEVMETHOD(device_identify,	fwip_identify),
965 	DEVMETHOD(device_probe,		fwip_probe),
966 	DEVMETHOD(device_attach,	fwip_attach),
967 	DEVMETHOD(device_detach,	fwip_detach),
968 	{ 0, 0 }
969 };
970 
971 static driver_t fwip_driver = {
972         "fwip",
973 	fwip_methods,
974 	sizeof(struct fwip_softc),
975 };
976 
977 
978 #ifdef __DragonFly__
979 DECLARE_DUMMY_MODULE(fwip);
980 #endif
981 DRIVER_MODULE(fwip, firewire, fwip_driver, fwip_devclass, 0, 0);
982 MODULE_VERSION(fwip, 1);
983 MODULE_DEPEND(fwip, firewire, 1, 1, 1);
984