1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 2004 5 * Doug Rabson 6 * Copyright (c) 2002-2003 7 * Hidetoshi Shimokawa. All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * 20 * This product includes software developed by Hidetoshi Shimokawa. 21 * 22 * 4. Neither the name of the author nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 */ 39 40 #ifdef HAVE_KERNEL_OPTION_HEADERS 41 #include "opt_device_polling.h" 42 #include "opt_inet.h" 43 #endif 44 45 #include <sys/param.h> 46 #include <sys/kernel.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/socket.h> 50 #include <sys/sockio.h> 51 #include <sys/sysctl.h> 52 #include <sys/systm.h> 53 #include <sys/taskqueue.h> 54 #include <sys/module.h> 55 #include <sys/bus.h> 56 #include <machine/bus.h> 57 58 #include <net/bpf.h> 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #include <net/firewire.h> 62 #include <net/if_arp.h> 63 #include <net/if_types.h> 64 #include <dev/firewire/firewire.h> 65 #include <dev/firewire/firewirereg.h> 66 #include <dev/firewire/iec13213.h> 67 #include <dev/firewire/if_fwipvar.h> 68 69 /* 70 * We really need a mechanism for allocating regions in the FIFO 71 * address space. We pick a address in the OHCI controller's 'middle' 72 * address space. This means that the controller will automatically 73 * send responses for us, which is fine since we don't have any 74 * important information to put in the response anyway. 75 */ 76 #define INET_FIFO 0xfffe00000000LL 77 78 #define FWIPDEBUG if (fwipdebug) if_printf 79 #define TX_MAX_QUEUE (FWMAXQUEUE - 1) 80 81 /* network interface */ 82 static void fwip_start (if_t); 83 static int fwip_ioctl (if_t, u_long, caddr_t); 84 static void fwip_init (void *); 85 86 static void fwip_post_busreset (void *); 87 static void fwip_output_callback (struct fw_xfer *); 88 static void fwip_async_output (struct fwip_softc *, if_t); 89 static void fwip_start_send (void *, int); 90 static void fwip_stream_input (struct fw_xferq *); 91 static void fwip_unicast_input(struct fw_xfer *); 92 93 static int fwipdebug = 0; 94 static int broadcast_channel = 0xc0 | 0x1f; /* tag | channel(XXX) */ 95 static int tx_speed = 2; 96 static int rx_queue_len = FWMAXQUEUE; 97 98 static MALLOC_DEFINE(M_FWIP, "if_fwip", "IP over FireWire interface"); 99 SYSCTL_INT(_debug, OID_AUTO, if_fwip_debug, CTLFLAG_RW, &fwipdebug, 0, ""); 100 SYSCTL_DECL(_hw_firewire); 101 static SYSCTL_NODE(_hw_firewire, OID_AUTO, fwip, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 102 "Firewire ip subsystem"); 103 SYSCTL_INT(_hw_firewire_fwip, OID_AUTO, rx_queue_len, CTLFLAG_RWTUN, &rx_queue_len, 104 0, "Length of the receive queue"); 105 106 #ifdef DEVICE_POLLING 107 static poll_handler_t fwip_poll; 108 109 static int 110 fwip_poll(if_t ifp, enum poll_cmd cmd, int count) 111 { 112 struct fwip_softc *fwip; 113 struct firewire_comm *fc; 114 115 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 116 return (0); 117 118 fwip = ((struct fwip_eth_softc *)if_getsoftc(ifp))->fwip; 119 fc = fwip->fd.fc; 120 fc->poll(fc, (cmd == POLL_AND_CHECK_STATUS)?0:1, count); 121 return (0); 122 } 123 #endif /* DEVICE_POLLING */ 124 125 static void 126 fwip_identify(driver_t *driver, device_t parent) 127 { 128 BUS_ADD_CHILD(parent, 0, "fwip", device_get_unit(parent)); 129 } 130 131 static int 132 fwip_probe(device_t dev) 133 { 134 device_t pa; 135 136 pa = device_get_parent(dev); 137 if (device_get_unit(dev) != device_get_unit(pa)) { 138 return (ENXIO); 139 } 140 141 device_set_desc(dev, "IP over FireWire"); 142 return (0); 143 } 144 145 static int 146 fwip_attach(device_t dev) 147 { 148 struct fwip_softc *fwip; 149 if_t ifp; 150 int unit, s; 151 struct fw_hwaddr *hwaddr; 152 153 fwip = ((struct fwip_softc *)device_get_softc(dev)); 154 unit = device_get_unit(dev); 155 ifp = fwip->fw_softc.fwip_ifp = if_alloc(IFT_IEEE1394); 156 157 mtx_init(&fwip->mtx, "fwip", NULL, MTX_DEF); 158 /* XXX */ 159 fwip->dma_ch = -1; 160 161 fwip->fd.fc = device_get_ivars(dev); 162 if (tx_speed < 0) 163 tx_speed = fwip->fd.fc->speed; 164 165 fwip->fd.dev = dev; 166 fwip->fd.post_explore = NULL; 167 fwip->fd.post_busreset = fwip_post_busreset; 168 fwip->fw_softc.fwip = fwip; 169 TASK_INIT(&fwip->start_send, 0, fwip_start_send, fwip); 170 171 /* 172 * Encode our hardware the way that arp likes it. 173 */ 174 hwaddr = &IFP2FWC(fwip->fw_softc.fwip_ifp)->fc_hwaddr; 175 hwaddr->sender_unique_ID_hi = htonl(fwip->fd.fc->eui.hi); 176 hwaddr->sender_unique_ID_lo = htonl(fwip->fd.fc->eui.lo); 177 hwaddr->sender_max_rec = fwip->fd.fc->maxrec; 178 hwaddr->sspd = fwip->fd.fc->speed; 179 hwaddr->sender_unicast_FIFO_hi = htons((uint16_t)(INET_FIFO >> 32)); 180 hwaddr->sender_unicast_FIFO_lo = htonl((uint32_t)INET_FIFO); 181 182 /* fill the rest and attach interface */ 183 if_setsoftc(ifp, &fwip->fw_softc); 184 185 if_initname(ifp, device_get_name(dev), unit); 186 if_setinitfn(ifp, fwip_init); 187 if_setstartfn(ifp, fwip_start); 188 if_setioctlfn(ifp, fwip_ioctl); 189 if_setflags(ifp, (IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST)); 190 if_setsendqlen(ifp, TX_MAX_QUEUE); 191 #ifdef DEVICE_POLLING 192 if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0); 193 #endif 194 195 s = splimp(); 196 firewire_ifattach(ifp, hwaddr); 197 splx(s); 198 199 FWIPDEBUG(ifp, "interface created\n"); 200 return (0); 201 } 202 203 static void 204 fwip_stop(struct fwip_softc *fwip) 205 { 206 struct firewire_comm *fc; 207 struct fw_xferq *xferq; 208 if_t ifp = fwip->fw_softc.fwip_ifp; 209 struct fw_xfer *xfer, *next; 210 int i; 211 212 fc = fwip->fd.fc; 213 214 if (fwip->dma_ch >= 0) { 215 xferq = fc->ir[fwip->dma_ch]; 216 217 if (xferq->flag & FWXFERQ_RUNNING) 218 fc->irx_disable(fc, fwip->dma_ch); 219 xferq->flag &= 220 ~(FWXFERQ_MODEMASK | FWXFERQ_OPEN | FWXFERQ_STREAM | 221 FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_CHTAGMASK); 222 xferq->hand = NULL; 223 224 for (i = 0; i < xferq->bnchunk; i++) 225 m_freem(xferq->bulkxfer[i].mbuf); 226 free(xferq->bulkxfer, M_FWIP); 227 228 fw_bindremove(fc, &fwip->fwb); 229 for (xfer = STAILQ_FIRST(&fwip->fwb.xferlist); xfer != NULL; 230 xfer = next) { 231 next = STAILQ_NEXT(xfer, link); 232 fw_xfer_free(xfer); 233 } 234 235 for (xfer = STAILQ_FIRST(&fwip->xferlist); xfer != NULL; 236 xfer = next) { 237 next = STAILQ_NEXT(xfer, link); 238 fw_xfer_free(xfer); 239 } 240 STAILQ_INIT(&fwip->xferlist); 241 242 xferq->bulkxfer = NULL; 243 fwip->dma_ch = -1; 244 } 245 246 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); 247 } 248 249 static int 250 fwip_detach(device_t dev) 251 { 252 struct fwip_softc *fwip; 253 if_t ifp; 254 int s; 255 256 fwip = (struct fwip_softc *)device_get_softc(dev); 257 ifp = fwip->fw_softc.fwip_ifp; 258 259 #ifdef DEVICE_POLLING 260 if (if_getcapenable(ifp) & IFCAP_POLLING) 261 ether_poll_deregister(ifp); 262 #endif 263 264 s = splimp(); 265 266 fwip_stop(fwip); 267 firewire_ifdetach(ifp); 268 if_free(ifp); 269 mtx_destroy(&fwip->mtx); 270 271 splx(s); 272 return 0; 273 } 274 275 static void 276 fwip_init(void *arg) 277 { 278 struct fwip_softc *fwip = ((struct fwip_eth_softc *)arg)->fwip; 279 struct firewire_comm *fc; 280 if_t ifp = fwip->fw_softc.fwip_ifp; 281 struct fw_xferq *xferq; 282 struct fw_xfer *xfer; 283 struct mbuf *m; 284 int i; 285 286 FWIPDEBUG(ifp, "initializing\n"); 287 288 fc = fwip->fd.fc; 289 #define START 0 290 if (fwip->dma_ch < 0) { 291 fwip->dma_ch = fw_open_isodma(fc, /* tx */0); 292 if (fwip->dma_ch < 0) 293 return; 294 xferq = fc->ir[fwip->dma_ch]; 295 xferq->flag |= FWXFERQ_EXTBUF | 296 FWXFERQ_HANDLER | FWXFERQ_STREAM; 297 xferq->flag &= ~0xff; 298 xferq->flag |= broadcast_channel & 0xff; 299 /* register fwip_input handler */ 300 xferq->sc = (caddr_t) fwip; 301 xferq->hand = fwip_stream_input; 302 xferq->bnchunk = rx_queue_len; 303 xferq->bnpacket = 1; 304 xferq->psize = MCLBYTES; 305 xferq->queued = 0; 306 xferq->buf = NULL; 307 xferq->bulkxfer = (struct fw_bulkxfer *) malloc( 308 sizeof(struct fw_bulkxfer) * xferq->bnchunk, 309 M_FWIP, M_WAITOK); 310 if (xferq->bulkxfer == NULL) { 311 printf("if_fwip: malloc failed\n"); 312 return; 313 } 314 STAILQ_INIT(&xferq->stvalid); 315 STAILQ_INIT(&xferq->stfree); 316 STAILQ_INIT(&xferq->stdma); 317 xferq->stproc = NULL; 318 for (i = 0; i < xferq->bnchunk; i++) { 319 m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR); 320 xferq->bulkxfer[i].mbuf = m; 321 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 322 STAILQ_INSERT_TAIL(&xferq->stfree, 323 &xferq->bulkxfer[i], link); 324 } 325 326 fwip->fwb.start = INET_FIFO; 327 fwip->fwb.end = INET_FIFO + 16384; /* S3200 packet size */ 328 329 /* pre-allocate xfer */ 330 STAILQ_INIT(&fwip->fwb.xferlist); 331 for (i = 0; i < rx_queue_len; i++) { 332 xfer = fw_xfer_alloc(M_FWIP); 333 if (xfer == NULL) 334 break; 335 m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR); 336 xfer->recv.payload = mtod(m, uint32_t *); 337 xfer->recv.pay_len = MCLBYTES; 338 xfer->hand = fwip_unicast_input; 339 xfer->fc = fc; 340 xfer->sc = (caddr_t)fwip; 341 xfer->mbuf = m; 342 STAILQ_INSERT_TAIL(&fwip->fwb.xferlist, xfer, link); 343 } 344 fw_bindadd(fc, &fwip->fwb); 345 346 STAILQ_INIT(&fwip->xferlist); 347 for (i = 0; i < TX_MAX_QUEUE; i++) { 348 xfer = fw_xfer_alloc(M_FWIP); 349 if (xfer == NULL) 350 break; 351 xfer->send.spd = tx_speed; 352 xfer->fc = fwip->fd.fc; 353 xfer->sc = (caddr_t)fwip; 354 xfer->hand = fwip_output_callback; 355 STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link); 356 } 357 } else 358 xferq = fc->ir[fwip->dma_ch]; 359 360 fwip->last_dest.hi = 0; 361 fwip->last_dest.lo = 0; 362 363 /* start dma */ 364 if ((xferq->flag & FWXFERQ_RUNNING) == 0) 365 fc->irx_enable(fc, fwip->dma_ch); 366 367 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 368 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 369 370 #if 0 371 /* attempt to start output */ 372 fwip_start(ifp); 373 #endif 374 } 375 376 static int 377 fwip_ioctl(if_t ifp, u_long cmd, caddr_t data) 378 { 379 struct fwip_softc *fwip = ((struct fwip_eth_softc *)if_getsoftc(ifp))->fwip; 380 int s, error; 381 382 switch (cmd) { 383 case SIOCSIFFLAGS: 384 s = splimp(); 385 if (if_getflags(ifp) & IFF_UP) { 386 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 387 fwip_init(&fwip->fw_softc); 388 } else { 389 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 390 fwip_stop(fwip); 391 } 392 splx(s); 393 break; 394 case SIOCADDMULTI: 395 case SIOCDELMULTI: 396 break; 397 case SIOCSIFCAP: 398 #ifdef DEVICE_POLLING 399 { 400 struct ifreq *ifr = (struct ifreq *) data; 401 struct firewire_comm *fc = fwip->fd.fc; 402 403 if (ifr->ifr_reqcap & IFCAP_POLLING && 404 !(if_getcapenable(ifp) & IFCAP_POLLING)) { 405 error = ether_poll_register(fwip_poll, ifp); 406 if (error) 407 return (error); 408 /* Disable interrupts */ 409 fc->set_intr(fc, 0); 410 if_setcapenablebit(ifp, IFCAP_POLLING, 0); 411 return (error); 412 } 413 if (!(ifr->ifr_reqcap & IFCAP_POLLING) && 414 if_getcapenable(ifp) & IFCAP_POLLING) { 415 error = ether_poll_deregister(ifp); 416 /* Enable interrupts. */ 417 fc->set_intr(fc, 1); 418 if_setcapenablebit(ifp, 0, IFCAP_POLLING); 419 return (error); 420 } 421 } 422 #endif /* DEVICE_POLLING */ 423 break; 424 default: 425 s = splimp(); 426 error = firewire_ioctl(ifp, cmd, data); 427 splx(s); 428 return (error); 429 } 430 431 return (0); 432 } 433 434 static void 435 fwip_post_busreset(void *arg) 436 { 437 struct fwip_softc *fwip = arg; 438 struct crom_src *src; 439 struct crom_chunk *root; 440 441 src = fwip->fd.fc->crom_src; 442 root = fwip->fd.fc->crom_root; 443 444 /* RFC2734 IPv4 over IEEE1394 */ 445 bzero(&fwip->unit4, sizeof(struct crom_chunk)); 446 crom_add_chunk(src, root, &fwip->unit4, CROM_UDIR); 447 crom_add_entry(&fwip->unit4, CSRKEY_SPEC, CSRVAL_IETF); 448 crom_add_simple_text(src, &fwip->unit4, &fwip->spec4, "IANA"); 449 crom_add_entry(&fwip->unit4, CSRKEY_VER, 1); 450 crom_add_simple_text(src, &fwip->unit4, &fwip->ver4, "IPv4"); 451 452 /* RFC3146 IPv6 over IEEE1394 */ 453 bzero(&fwip->unit6, sizeof(struct crom_chunk)); 454 crom_add_chunk(src, root, &fwip->unit6, CROM_UDIR); 455 crom_add_entry(&fwip->unit6, CSRKEY_SPEC, CSRVAL_IETF); 456 crom_add_simple_text(src, &fwip->unit6, &fwip->spec6, "IANA"); 457 crom_add_entry(&fwip->unit6, CSRKEY_VER, 2); 458 crom_add_simple_text(src, &fwip->unit6, &fwip->ver6, "IPv6"); 459 460 fwip->last_dest.hi = 0; 461 fwip->last_dest.lo = 0; 462 firewire_busreset(fwip->fw_softc.fwip_ifp); 463 } 464 465 static void 466 fwip_output_callback(struct fw_xfer *xfer) 467 { 468 struct fwip_softc *fwip; 469 if_t ifp; 470 int s; 471 472 fwip = (struct fwip_softc *)xfer->sc; 473 ifp = fwip->fw_softc.fwip_ifp; 474 /* XXX error check */ 475 FWIPDEBUG(ifp, "resp = %d\n", xfer->resp); 476 if (xfer->resp != 0) 477 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 478 m_freem(xfer->mbuf); 479 fw_xfer_unload(xfer); 480 481 s = splimp(); 482 FWIP_LOCK(fwip); 483 STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link); 484 FWIP_UNLOCK(fwip); 485 splx(s); 486 487 /* for queue full */ 488 if (!if_sendq_empty(ifp)) { 489 fwip_start(ifp); 490 } 491 } 492 493 static void 494 fwip_start(if_t ifp) 495 { 496 struct fwip_softc *fwip = ((struct fwip_eth_softc *)if_getsoftc(ifp))->fwip; 497 int s; 498 499 FWIPDEBUG(ifp, "starting\n"); 500 501 if (fwip->dma_ch < 0) { 502 struct mbuf *m = NULL; 503 504 FWIPDEBUG(ifp, "not ready\n"); 505 506 s = splimp(); 507 do { 508 m = if_dequeue(ifp); 509 if (m != NULL) 510 m_freem(m); 511 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 512 } while (m != NULL); 513 splx(s); 514 515 return; 516 } 517 518 s = splimp(); 519 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 520 521 if (!if_sendq_empty(ifp)) 522 fwip_async_output(fwip, ifp); 523 524 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 525 splx(s); 526 } 527 528 /* Async. stream output */ 529 static void 530 fwip_async_output(struct fwip_softc *fwip, if_t ifp) 531 { 532 struct firewire_comm *fc = fwip->fd.fc; 533 struct mbuf *m; 534 struct m_tag *mtag; 535 struct fw_hwaddr *destfw; 536 struct fw_xfer *xfer; 537 struct fw_xferq *xferq; 538 struct fw_pkt *fp; 539 uint16_t nodeid; 540 int error; 541 int i = 0; 542 543 xfer = NULL; 544 xferq = fc->atq; 545 while ((xferq->queued < xferq->maxq - 1) && 546 !if_sendq_empty(ifp)) { 547 FWIP_LOCK(fwip); 548 xfer = STAILQ_FIRST(&fwip->xferlist); 549 if (xfer == NULL) { 550 FWIP_UNLOCK(fwip); 551 #if 0 552 printf("if_fwip: lack of xfer\n"); 553 #endif 554 break; 555 } 556 STAILQ_REMOVE_HEAD(&fwip->xferlist, link); 557 FWIP_UNLOCK(fwip); 558 559 m = if_dequeue(ifp); 560 if (m == NULL) { 561 FWIP_LOCK(fwip); 562 STAILQ_INSERT_HEAD(&fwip->xferlist, xfer, link); 563 FWIP_UNLOCK(fwip); 564 break; 565 } 566 567 /* 568 * Dig out the link-level address which 569 * firewire_output got via arp or neighbour 570 * discovery. If we don't have a link-level address, 571 * just stick the thing on the broadcast channel. 572 */ 573 mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, 0); 574 if (mtag == NULL) 575 destfw = NULL; 576 else 577 destfw = (struct fw_hwaddr *) (mtag + 1); 578 579 580 /* 581 * We don't do any bpf stuff here - the generic code 582 * in firewire_output gives the packet to bpf before 583 * it adds the link-level encapsulation. 584 */ 585 586 /* 587 * Put the mbuf in the xfer early in case we hit an 588 * error case below - fwip_output_callback will free 589 * the mbuf. 590 */ 591 xfer->mbuf = m; 592 593 /* 594 * We use the arp result (if any) to add a suitable firewire 595 * packet header before handing off to the bus. 596 */ 597 fp = &xfer->send.hdr; 598 nodeid = FWLOCALBUS | fc->nodeid; 599 if ((m->m_flags & M_BCAST) || !destfw) { 600 /* 601 * Broadcast packets are sent as GASP packets with 602 * specifier ID 0x00005e, version 1 on the broadcast 603 * channel. To be conservative, we send at the 604 * slowest possible speed. 605 */ 606 uint32_t *p; 607 608 M_PREPEND(m, 2*sizeof(uint32_t), M_NOWAIT); 609 p = mtod(m, uint32_t *); 610 fp->mode.stream.len = m->m_pkthdr.len; 611 fp->mode.stream.chtag = broadcast_channel; 612 fp->mode.stream.tcode = FWTCODE_STREAM; 613 fp->mode.stream.sy = 0; 614 xfer->send.spd = 0; 615 p[0] = htonl(nodeid << 16); 616 p[1] = htonl((0x5e << 24) | 1); 617 } else { 618 /* 619 * Unicast packets are sent as block writes to the 620 * target's unicast fifo address. If we can't 621 * find the node address, we just give up. We 622 * could broadcast it but that might overflow 623 * the packet size limitations due to the 624 * extra GASP header. Note: the hardware 625 * address is stored in network byte order to 626 * make life easier for ARP. 627 */ 628 struct fw_device *fd; 629 struct fw_eui64 eui; 630 631 eui.hi = ntohl(destfw->sender_unique_ID_hi); 632 eui.lo = ntohl(destfw->sender_unique_ID_lo); 633 if (fwip->last_dest.hi != eui.hi || 634 fwip->last_dest.lo != eui.lo) { 635 fd = fw_noderesolve_eui64(fc, &eui); 636 if (!fd) { 637 /* error */ 638 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 639 /* XXX set error code */ 640 fwip_output_callback(xfer); 641 continue; 642 643 } 644 fwip->last_hdr.mode.wreqb.dst = FWLOCALBUS | fd->dst; 645 fwip->last_hdr.mode.wreqb.tlrt = 0; 646 fwip->last_hdr.mode.wreqb.tcode = FWTCODE_WREQB; 647 fwip->last_hdr.mode.wreqb.pri = 0; 648 fwip->last_hdr.mode.wreqb.src = nodeid; 649 fwip->last_hdr.mode.wreqb.dest_hi = 650 ntohs(destfw->sender_unicast_FIFO_hi); 651 fwip->last_hdr.mode.wreqb.dest_lo = 652 ntohl(destfw->sender_unicast_FIFO_lo); 653 fwip->last_hdr.mode.wreqb.extcode = 0; 654 fwip->last_dest = eui; 655 } 656 657 fp->mode.wreqb = fwip->last_hdr.mode.wreqb; 658 fp->mode.wreqb.len = m->m_pkthdr.len; 659 xfer->send.spd = min(destfw->sspd, fc->speed); 660 } 661 662 xfer->send.pay_len = m->m_pkthdr.len; 663 664 error = fw_asyreq(fc, -1, xfer); 665 if (error == EAGAIN) { 666 /* 667 * We ran out of tlabels - requeue the packet 668 * for later transmission. 669 */ 670 xfer->mbuf = 0; 671 FWIP_LOCK(fwip); 672 STAILQ_INSERT_TAIL(&fwip->xferlist, xfer, link); 673 FWIP_UNLOCK(fwip); 674 if_sendq_prepend(ifp, m); 675 break; 676 } 677 if (error) { 678 /* error */ 679 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 680 /* XXX set error code */ 681 fwip_output_callback(xfer); 682 continue; 683 } else { 684 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 685 i++; 686 } 687 } 688 #if 0 689 if (i > 1) 690 printf("%d queued\n", i); 691 #endif 692 if (i > 0) 693 xferq->start(fc); 694 } 695 696 static void 697 fwip_start_send (void *arg, int count) 698 { 699 struct fwip_softc *fwip = arg; 700 701 fwip->fd.fc->atq->start(fwip->fd.fc); 702 } 703 704 /* Async. stream output */ 705 static void 706 fwip_stream_input(struct fw_xferq *xferq) 707 { 708 struct epoch_tracker et; 709 struct mbuf *m, *m0; 710 struct m_tag *mtag; 711 if_t ifp; 712 struct fwip_softc *fwip; 713 struct fw_bulkxfer *sxfer; 714 struct fw_pkt *fp; 715 uint16_t src; 716 uint32_t *p; 717 718 fwip = (struct fwip_softc *)xferq->sc; 719 ifp = fwip->fw_softc.fwip_ifp; 720 721 NET_EPOCH_ENTER(et); 722 while ((sxfer = STAILQ_FIRST(&xferq->stvalid)) != NULL) { 723 STAILQ_REMOVE_HEAD(&xferq->stvalid, link); 724 fp = mtod(sxfer->mbuf, struct fw_pkt *); 725 if (fwip->fd.fc->irx_post != NULL) 726 fwip->fd.fc->irx_post(fwip->fd.fc, fp->mode.ld); 727 m = sxfer->mbuf; 728 729 /* insert new rbuf */ 730 sxfer->mbuf = m0 = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 731 if (m0 != NULL) { 732 m0->m_len = m0->m_pkthdr.len = m0->m_ext.ext_size; 733 STAILQ_INSERT_TAIL(&xferq->stfree, sxfer, link); 734 } else 735 printf("fwip_as_input: m_getcl failed\n"); 736 737 /* 738 * We must have a GASP header - leave the 739 * encapsulation sanity checks to the generic 740 * code. Remember that we also have the firewire async 741 * stream header even though that isn't accounted for 742 * in mode.stream.len. 743 */ 744 if (sxfer->resp != 0 || fp->mode.stream.len < 745 2*sizeof(uint32_t)) { 746 m_freem(m); 747 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 748 continue; 749 } 750 m->m_len = m->m_pkthdr.len = fp->mode.stream.len 751 + sizeof(fp->mode.stream); 752 753 /* 754 * If we received the packet on the broadcast channel, 755 * mark it as broadcast, otherwise we assume it must 756 * be multicast. 757 */ 758 if (fp->mode.stream.chtag == broadcast_channel) 759 m->m_flags |= M_BCAST; 760 else 761 m->m_flags |= M_MCAST; 762 763 /* 764 * Make sure we recognise the GASP specifier and 765 * version. 766 */ 767 p = mtod(m, uint32_t *); 768 if ((((ntohl(p[1]) & 0xffff) << 8) | ntohl(p[2]) >> 24) != 0x00005e 769 || (ntohl(p[2]) & 0xffffff) != 1) { 770 FWIPDEBUG(ifp, "Unrecognised GASP header %#08x %#08x\n", 771 ntohl(p[1]), ntohl(p[2])); 772 m_freem(m); 773 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 774 continue; 775 } 776 777 /* 778 * Record the sender ID for possible BPF usage. 779 */ 780 src = ntohl(p[1]) >> 16; 781 if (bpf_peers_present_if(ifp)) { 782 mtag = m_tag_alloc(MTAG_FIREWIRE, 783 MTAG_FIREWIRE_SENDER_EUID, 784 2*sizeof(uint32_t), M_NOWAIT); 785 if (mtag) { 786 /* bpf wants it in network byte order */ 787 struct fw_device *fd; 788 uint32_t *p = (uint32_t *) (mtag + 1); 789 fd = fw_noderesolve_nodeid(fwip->fd.fc, 790 src & 0x3f); 791 if (fd) { 792 p[0] = htonl(fd->eui.hi); 793 p[1] = htonl(fd->eui.lo); 794 } else { 795 p[0] = 0; 796 p[1] = 0; 797 } 798 m_tag_prepend(m, mtag); 799 } 800 } 801 802 /* 803 * Trim off the GASP header 804 */ 805 m_adj(m, 3*sizeof(uint32_t)); 806 m->m_pkthdr.rcvif = ifp; 807 firewire_input(ifp, m, src); 808 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 809 } 810 NET_EPOCH_EXIT(et); 811 if (STAILQ_FIRST(&xferq->stfree) != NULL) 812 fwip->fd.fc->irx_enable(fwip->fd.fc, fwip->dma_ch); 813 } 814 815 static __inline void 816 fwip_unicast_input_recycle(struct fwip_softc *fwip, struct fw_xfer *xfer) 817 { 818 struct mbuf *m; 819 820 /* 821 * We have finished with a unicast xfer. Allocate a new 822 * cluster and stick it on the back of the input queue. 823 */ 824 m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR); 825 xfer->mbuf = m; 826 xfer->recv.payload = mtod(m, uint32_t *); 827 xfer->recv.pay_len = MCLBYTES; 828 xfer->mbuf = m; 829 STAILQ_INSERT_TAIL(&fwip->fwb.xferlist, xfer, link); 830 } 831 832 static void 833 fwip_unicast_input(struct fw_xfer *xfer) 834 { 835 uint64_t address; 836 struct mbuf *m; 837 struct m_tag *mtag; 838 struct epoch_tracker et; 839 if_t ifp; 840 struct fwip_softc *fwip; 841 struct fw_pkt *fp; 842 //struct fw_pkt *sfp; 843 int rtcode; 844 845 fwip = (struct fwip_softc *)xfer->sc; 846 ifp = fwip->fw_softc.fwip_ifp; 847 m = xfer->mbuf; 848 xfer->mbuf = 0; 849 fp = &xfer->recv.hdr; 850 851 /* 852 * Check the fifo address - we only accept addresses of 853 * exactly INET_FIFO. 854 */ 855 address = ((uint64_t)fp->mode.wreqb.dest_hi << 32) 856 | fp->mode.wreqb.dest_lo; 857 if (fp->mode.wreqb.tcode != FWTCODE_WREQB) { 858 rtcode = FWRCODE_ER_TYPE; 859 } else if (address != INET_FIFO) { 860 rtcode = FWRCODE_ER_ADDR; 861 } else { 862 rtcode = FWRCODE_COMPLETE; 863 } 864 NET_EPOCH_ENTER(et); 865 866 /* 867 * Pick up a new mbuf and stick it on the back of the receive 868 * queue. 869 */ 870 fwip_unicast_input_recycle(fwip, xfer); 871 872 /* 873 * If we've already rejected the packet, give up now. 874 */ 875 if (rtcode != FWRCODE_COMPLETE) { 876 m_freem(m); 877 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 878 goto done; 879 } 880 881 if (bpf_peers_present_if(ifp)) { 882 /* 883 * Record the sender ID for possible BPF usage. 884 */ 885 mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 886 2*sizeof(uint32_t), M_NOWAIT); 887 if (mtag) { 888 /* bpf wants it in network byte order */ 889 struct fw_device *fd; 890 uint32_t *p = (uint32_t *) (mtag + 1); 891 fd = fw_noderesolve_nodeid(fwip->fd.fc, 892 fp->mode.wreqb.src & 0x3f); 893 if (fd) { 894 p[0] = htonl(fd->eui.hi); 895 p[1] = htonl(fd->eui.lo); 896 } else { 897 p[0] = 0; 898 p[1] = 0; 899 } 900 m_tag_prepend(m, mtag); 901 } 902 } 903 904 /* 905 * Hand off to the generic encapsulation code. We don't use 906 * ifp->if_input so that we can pass the source nodeid as an 907 * argument to facilitate link-level fragment reassembly. 908 */ 909 m->m_len = m->m_pkthdr.len = fp->mode.wreqb.len; 910 m->m_pkthdr.rcvif = ifp; 911 firewire_input(ifp, m, fp->mode.wreqb.src); 912 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 913 done: 914 NET_EPOCH_EXIT(et); 915 } 916 917 static device_method_t fwip_methods[] = { 918 /* device interface */ 919 DEVMETHOD(device_identify, fwip_identify), 920 DEVMETHOD(device_probe, fwip_probe), 921 DEVMETHOD(device_attach, fwip_attach), 922 DEVMETHOD(device_detach, fwip_detach), 923 { 0, 0 } 924 }; 925 926 static driver_t fwip_driver = { 927 "fwip", 928 fwip_methods, 929 sizeof(struct fwip_softc), 930 }; 931 932 933 DRIVER_MODULE(fwip, firewire, fwip_driver, 0, 0); 934 MODULE_VERSION(fwip, 1); 935 MODULE_DEPEND(fwip, firewire, 1, 1, 1); 936