xref: /freebsd/sys/dev/firewire/firewire.c (revision 6b3455a7665208c366849f0b2b3bc916fb97516e)
1 /*
2  * Copyright (c) 2003 Hidetoshi Shimokawa
3  * Copyright (c) 1998-2002 Katsushi Kobayashi and Hidetoshi Shimokawa
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the acknowledgement as bellow:
16  *
17  *    This product includes software developed by K. Kobayashi and H. Shimokawa
18  *
19  * 4. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
26  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
27  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
28  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
30  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD$
35  *
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/types.h>
41 
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/malloc.h>
45 #include <sys/conf.h>
46 #include <sys/sysctl.h>
47 
48 #if defined(__DragonFly__) || __FreeBSD_version < 500000
49 #include <machine/clock.h>	/* for DELAY() */
50 #endif
51 
52 #include <sys/bus.h>		/* used by smbus and newbus */
53 #include <machine/bus.h>
54 
55 #ifdef __DragonFly__
56 #include "firewire.h"
57 #include "firewirereg.h"
58 #include "fwmem.h"
59 #include "iec13213.h"
60 #include "iec68113.h"
61 #else
62 #include <dev/firewire/firewire.h>
63 #include <dev/firewire/firewirereg.h>
64 #include <dev/firewire/fwmem.h>
65 #include <dev/firewire/iec13213.h>
66 #include <dev/firewire/iec68113.h>
67 #endif
68 
69 struct crom_src_buf {
70 	struct crom_src	src;
71 	struct crom_chunk root;
72 	struct crom_chunk vendor;
73 	struct crom_chunk hw;
74 };
75 
76 int firewire_debug=0, try_bmr=1, hold_count=3;
77 SYSCTL_INT(_debug, OID_AUTO, firewire_debug, CTLFLAG_RW, &firewire_debug, 0,
78 	"FireWire driver debug flag");
79 SYSCTL_NODE(_hw, OID_AUTO, firewire, CTLFLAG_RD, 0, "FireWire Subsystem");
80 SYSCTL_INT(_hw_firewire, OID_AUTO, try_bmr, CTLFLAG_RW, &try_bmr, 0,
81 	"Try to be a bus manager");
82 SYSCTL_INT(_hw_firewire, OID_AUTO, hold_count, CTLFLAG_RW, &hold_count, 0,
83 	"Number of count of bus resets for removing lost device information");
84 
85 MALLOC_DEFINE(M_FW, "firewire", "FireWire");
86 MALLOC_DEFINE(M_FWXFER, "fw_xfer", "XFER/FireWire");
87 
88 #define FW_MAXASYRTY 4
89 
90 devclass_t firewire_devclass;
91 
92 static void firewire_identify	(driver_t *, device_t);
93 static int firewire_probe	(device_t);
94 static int firewire_attach      (device_t);
95 static int firewire_detach      (device_t);
96 static int firewire_resume      (device_t);
97 #if 0
98 static int firewire_shutdown    (device_t);
99 #endif
100 static device_t firewire_add_child   (device_t, int, const char *, int);
101 static void fw_try_bmr (void *);
102 static void fw_try_bmr_callback (struct fw_xfer *);
103 static void fw_asystart (struct fw_xfer *);
104 static int fw_get_tlabel (struct firewire_comm *, struct fw_xfer *);
105 static void fw_bus_probe (struct firewire_comm *);
106 static void fw_bus_explore (struct firewire_comm *);
107 static void fw_bus_explore_callback (struct fw_xfer *);
108 static void fw_attach_dev (struct firewire_comm *);
109 #ifdef FW_VMACCESS
110 static void fw_vmaccess (struct fw_xfer *);
111 #endif
112 struct fw_xfer *asyreqq (struct firewire_comm *, uint8_t, uint8_t, uint8_t,
113 	uint32_t, uint32_t, void (*)(struct fw_xfer *));
114 static int fw_bmr (struct firewire_comm *);
115 
116 static device_method_t firewire_methods[] = {
117 	/* Device interface */
118 	DEVMETHOD(device_identify,	firewire_identify),
119 	DEVMETHOD(device_probe,		firewire_probe),
120 	DEVMETHOD(device_attach,	firewire_attach),
121 	DEVMETHOD(device_detach,	firewire_detach),
122 	DEVMETHOD(device_suspend,	bus_generic_suspend),
123 	DEVMETHOD(device_resume,	firewire_resume),
124 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
125 
126 	/* Bus interface */
127 	DEVMETHOD(bus_add_child,	firewire_add_child),
128 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
129 
130 	{ 0, 0 }
131 };
132 char *linkspeed[] = {
133 	"S100", "S200", "S400", "S800",
134 	"S1600", "S3200", "undef", "undef"
135 };
136 
137 static char *tcode_str[] = {
138 	"WREQQ", "WREQB", "WRES",   "undef",
139 	"RREQQ", "RREQB", "RRESQ",  "RRESB",
140 	"CYCS",  "LREQ",  "STREAM", "LRES",
141 	"undef", "undef", "PHY",    "undef"
142 };
143 
144 /* IEEE-1394a Table C-2 Gap count as a function of hops*/
145 #define MAX_GAPHOP 15
146 u_int gap_cnt[] = { 5,  5,  7,  8, 10, 13, 16, 18,
147 		   21, 24, 26, 29, 32, 35, 37, 40};
148 
149 static driver_t firewire_driver = {
150 	"firewire",
151 	firewire_methods,
152 	sizeof(struct firewire_softc),
153 };
154 
155 /*
156  * Lookup fwdev by node id.
157  */
158 struct fw_device *
159 fw_noderesolve_nodeid(struct firewire_comm *fc, int dst)
160 {
161 	struct fw_device *fwdev;
162 	int s;
163 
164 	s = splfw();
165 	STAILQ_FOREACH(fwdev, &fc->devices, link)
166 		if (fwdev->dst == dst && fwdev->status != FWDEVINVAL)
167 			break;
168 	splx(s);
169 
170 	return fwdev;
171 }
172 
173 /*
174  * Lookup fwdev by EUI64.
175  */
176 struct fw_device *
177 fw_noderesolve_eui64(struct firewire_comm *fc, struct fw_eui64 *eui)
178 {
179 	struct fw_device *fwdev;
180 	int s;
181 
182 	s = splfw();
183 	STAILQ_FOREACH(fwdev, &fc->devices, link)
184 		if (FW_EUI64_EQUAL(fwdev->eui, *eui))
185 			break;
186 	splx(s);
187 
188 	if(fwdev == NULL) return NULL;
189 	if(fwdev->status == FWDEVINVAL) return NULL;
190 	return fwdev;
191 }
192 
193 /*
194  * Async. request procedure for userland application.
195  */
196 int
197 fw_asyreq(struct firewire_comm *fc, int sub, struct fw_xfer *xfer)
198 {
199 	int err = 0;
200 	struct fw_xferq *xferq;
201 	int tl = 0, len;
202 	struct fw_pkt *fp;
203 	int tcode;
204 	struct tcode_info *info;
205 
206 	if(xfer == NULL) return EINVAL;
207 	if(xfer->act.hand == NULL){
208 		printf("act.hand == NULL\n");
209 		return EINVAL;
210 	}
211 	fp = &xfer->send.hdr;
212 
213 	tcode = fp->mode.common.tcode & 0xf;
214 	info = &fc->tcode[tcode];
215 	if (info->flag == 0) {
216 		printf("invalid tcode=%x\n", tcode);
217 		return EINVAL;
218 	}
219 	if (info->flag & FWTI_REQ)
220 		xferq = fc->atq;
221 	else
222 		xferq = fc->ats;
223 	len = info->hdr_len;
224 	if (xfer->send.pay_len > MAXREC(fc->maxrec)) {
225 		printf("send.pay_len > maxrec\n");
226 		return EINVAL;
227 	}
228 	if (info->flag & FWTI_BLOCK_STR)
229 		len = fp->mode.stream.len;
230 	else if (info->flag & FWTI_BLOCK_ASY)
231 		len = fp->mode.rresb.len;
232 	else
233 		len = 0;
234 	if (len != xfer->send.pay_len){
235 		printf("len(%d) != send.pay_len(%d) %s(%x)\n",
236 		    len, xfer->send.pay_len, tcode_str[tcode], tcode);
237 		return EINVAL;
238 	}
239 
240 	if(xferq->start == NULL){
241 		printf("xferq->start == NULL\n");
242 		return EINVAL;
243 	}
244 	if(!(xferq->queued < xferq->maxq)){
245 		device_printf(fc->bdev, "Discard a packet (queued=%d)\n",
246 			xferq->queued);
247 		return EINVAL;
248 	}
249 
250 	if (info->flag & FWTI_TLABEL) {
251 		if ((tl = fw_get_tlabel(fc, xfer)) == -1)
252 			return EAGAIN;
253 		fp->mode.hdr.tlrt = tl << 2;
254 	}
255 
256 	xfer->tl = tl;
257 	xfer->resp = 0;
258 	xfer->fc = fc;
259 	xfer->q = xferq;
260 	xfer->retry_req = fw_asybusy;
261 
262 	fw_asystart(xfer);
263 	return err;
264 }
265 /*
266  * Wakeup blocked process.
267  */
268 void
269 fw_asy_callback(struct fw_xfer *xfer){
270 	wakeup(xfer);
271 	return;
272 }
273 /*
274  * Postpone to later retry.
275  */
276 void fw_asybusy(struct fw_xfer *xfer){
277 	printf("fw_asybusy\n");
278 /*
279 	xfer->ch =  timeout((timeout_t *)fw_asystart, (void *)xfer, 20000);
280 */
281 #if 0
282 	DELAY(20000);
283 #endif
284 	fw_asystart(xfer);
285 	return;
286 }
287 
288 /*
289  * Async. request with given xfer structure.
290  */
291 static void
292 fw_asystart(struct fw_xfer *xfer)
293 {
294 	struct firewire_comm *fc = xfer->fc;
295 	int s;
296 	if(xfer->retry++ >= fc->max_asyretry){
297 		device_printf(fc->bdev, "max_asyretry exceeded\n");
298 		xfer->resp = EBUSY;
299 		xfer->state = FWXF_BUSY;
300 		xfer->act.hand(xfer);
301 		return;
302 	}
303 #if 0 /* XXX allow bus explore packets only after bus rest */
304 	if (fc->status < FWBUSEXPLORE) {
305 		xfer->resp = EAGAIN;
306 		xfer->state = FWXF_BUSY;
307 		if (xfer->act.hand != NULL)
308 			xfer->act.hand(xfer);
309 		return;
310 	}
311 #endif
312 	microtime(&xfer->tv);
313 	s = splfw();
314 	xfer->state = FWXF_INQ;
315 	STAILQ_INSERT_TAIL(&xfer->q->q, xfer, link);
316 	xfer->q->queued ++;
317 	splx(s);
318 	/* XXX just queue for mbuf */
319 	if (xfer->mbuf == NULL)
320 		xfer->q->start(fc);
321 	return;
322 }
323 
324 static void
325 firewire_identify(driver_t *driver, device_t parent)
326 {
327 	BUS_ADD_CHILD(parent, 0, "firewire", -1);
328 }
329 
330 static int
331 firewire_probe(device_t dev)
332 {
333 	device_set_desc(dev, "IEEE1394(FireWire) bus");
334 	return (0);
335 }
336 
337 static void
338 firewire_xfer_timeout(struct firewire_comm *fc)
339 {
340 	struct fw_xfer *xfer;
341 	struct tlabel *tl;
342 	struct timeval tv;
343 	struct timeval split_timeout;
344 	int i, s;
345 
346 	split_timeout.tv_sec = 0;
347 	split_timeout.tv_usec = 200 * 1000;	 /* 200 msec */
348 
349 	microtime(&tv);
350 	timevalsub(&tv, &split_timeout);
351 
352 	s = splfw();
353 	for (i = 0; i < 0x40; i ++) {
354 		while ((tl = STAILQ_FIRST(&fc->tlabels[i])) != NULL) {
355 			xfer = tl->xfer;
356 			if (timevalcmp(&xfer->tv, &tv, >))
357 				/* the rests are newer than this */
358 				break;
359 			if (xfer->state == FWXF_START)
360 				/* not sent yet */
361 				break;
362 			device_printf(fc->bdev,
363 				"split transaction timeout dst=0x%x tl=0x%x state=%d\n",
364 				xfer->send.hdr.mode.hdr.dst, i, xfer->state);
365 			xfer->resp = ETIMEDOUT;
366 			STAILQ_REMOVE_HEAD(&fc->tlabels[i], link);
367 			fw_xfer_done(xfer);
368 		}
369 	}
370 	splx(s);
371 }
372 
373 #define WATCHDOC_HZ 10
374 static void
375 firewire_watchdog(void *arg)
376 {
377 	struct firewire_comm *fc;
378 	static int watchdoc_clock = 0;
379 
380 	fc = (struct firewire_comm *)arg;
381 
382 	/*
383 	 * At boot stage, the device interrupt is disabled and
384 	 * We encounter a timeout easily. To avoid this,
385 	 * ignore clock interrupt for a while.
386 	 */
387 	if (watchdoc_clock > WATCHDOC_HZ * 15) {
388 		firewire_xfer_timeout(fc);
389 		fc->timeout(fc);
390 	} else
391 		watchdoc_clock ++;
392 
393 	callout_reset(&fc->timeout_callout, hz / WATCHDOC_HZ,
394 			(void *)firewire_watchdog, (void *)fc);
395 }
396 
397 /*
398  * The attach routine.
399  */
400 static int
401 firewire_attach(device_t dev)
402 {
403 	int unit;
404 	struct firewire_softc *sc = device_get_softc(dev);
405 	device_t pa = device_get_parent(dev);
406 	struct firewire_comm *fc;
407 
408 	fc = (struct firewire_comm *)device_get_softc(pa);
409 	sc->fc = fc;
410 	fc->status = FWBUSNOTREADY;
411 
412 	unit = device_get_unit(dev);
413 	if( fc->nisodma > FWMAXNDMA) fc->nisodma = FWMAXNDMA;
414 
415 	fwdev_makedev(sc);
416 
417 	CALLOUT_INIT(&sc->fc->timeout_callout);
418 	CALLOUT_INIT(&sc->fc->bmr_callout);
419 	CALLOUT_INIT(&sc->fc->retry_probe_callout);
420 	CALLOUT_INIT(&sc->fc->busprobe_callout);
421 
422 	callout_reset(&sc->fc->timeout_callout, hz,
423 			(void *)firewire_watchdog, (void *)sc->fc);
424 
425 	/* Locate our children */
426 	bus_generic_probe(dev);
427 
428 	/* launch attachement of the added children */
429 	bus_generic_attach(dev);
430 
431 	/* bus_reset */
432 	fw_busreset(fc);
433 	fc->ibr(fc);
434 
435 	return 0;
436 }
437 
438 /*
439  * Attach it as child.
440  */
441 static device_t
442 firewire_add_child(device_t dev, int order, const char *name, int unit)
443 {
444         device_t child;
445 	struct firewire_softc *sc;
446 
447 	sc = (struct firewire_softc *)device_get_softc(dev);
448 	child = device_add_child(dev, name, unit);
449 	if (child) {
450 		device_set_ivars(child, sc->fc);
451 		device_probe_and_attach(child);
452 	}
453 
454 	return child;
455 }
456 
457 static int
458 firewire_resume(device_t dev)
459 {
460 	struct firewire_softc *sc;
461 
462 	sc = (struct firewire_softc *)device_get_softc(dev);
463 	sc->fc->status = FWBUSNOTREADY;
464 
465 	bus_generic_resume(dev);
466 
467 	return(0);
468 }
469 
470 /*
471  * Dettach it.
472  */
473 static int
474 firewire_detach(device_t dev)
475 {
476 	struct firewire_softc *sc;
477 	struct csrdir *csrd, *next;
478 	struct fw_device *fwdev, *fwdev_next;
479 	int err;
480 
481 	sc = (struct firewire_softc *)device_get_softc(dev);
482 	if ((err = fwdev_destroydev(sc)) != 0)
483 		return err;
484 
485 	if ((err = bus_generic_detach(dev)) != 0)
486 		return err;
487 
488 	callout_stop(&sc->fc->timeout_callout);
489 	callout_stop(&sc->fc->bmr_callout);
490 	callout_stop(&sc->fc->retry_probe_callout);
491 	callout_stop(&sc->fc->busprobe_callout);
492 
493 	/* XXX xfree_free and untimeout on all xfers */
494 	for (fwdev = STAILQ_FIRST(&sc->fc->devices); fwdev != NULL;
495 							fwdev = fwdev_next) {
496 		fwdev_next = STAILQ_NEXT(fwdev, link);
497 		free(fwdev, M_FW);
498 	}
499 	for (csrd = SLIST_FIRST(&sc->fc->csrfree); csrd != NULL; csrd = next) {
500 		next = SLIST_NEXT(csrd, link);
501 		free(csrd, M_FW);
502 	}
503 	free(sc->fc->topology_map, M_FW);
504 	free(sc->fc->speed_map, M_FW);
505 	free(sc->fc->crom_src_buf, M_FW);
506 	return(0);
507 }
508 #if 0
509 static int
510 firewire_shutdown( device_t dev )
511 {
512 	return 0;
513 }
514 #endif
515 
516 
517 static void
518 fw_xferq_drain(struct fw_xferq *xferq)
519 {
520 	struct fw_xfer *xfer;
521 
522 	while ((xfer = STAILQ_FIRST(&xferq->q)) != NULL) {
523 		STAILQ_REMOVE_HEAD(&xferq->q, link);
524 		xferq->queued --;
525 		xfer->resp = EAGAIN;
526 		fw_xfer_done(xfer);
527 	}
528 }
529 
530 void
531 fw_drain_txq(struct firewire_comm *fc)
532 {
533 	int i;
534 
535 	fw_xferq_drain(fc->atq);
536 	fw_xferq_drain(fc->ats);
537 	for(i = 0; i < fc->nisodma; i++)
538 		fw_xferq_drain(fc->it[i]);
539 }
540 
541 static void
542 fw_reset_csr(struct firewire_comm *fc)
543 {
544 	int i;
545 
546 	CSRARC(fc, STATE_CLEAR)
547 			= 1 << 23 | 0 << 17 | 1 << 16 | 1 << 15 | 1 << 14 ;
548 	CSRARC(fc, STATE_SET) = CSRARC(fc, STATE_CLEAR);
549 	CSRARC(fc, NODE_IDS) = 0x3f;
550 
551 	CSRARC(fc, TOPO_MAP + 8) = 0;
552 	fc->irm = -1;
553 
554 	fc->max_node = -1;
555 
556 	for(i = 2; i < 0x100/4 - 2 ; i++){
557 		CSRARC(fc, SPED_MAP + i * 4) = 0;
558 	}
559 	CSRARC(fc, STATE_CLEAR) = 1 << 23 | 0 << 17 | 1 << 16 | 1 << 15 | 1 << 14 ;
560 	CSRARC(fc, STATE_SET) = CSRARC(fc, STATE_CLEAR);
561 	CSRARC(fc, RESET_START) = 0;
562 	CSRARC(fc, SPLIT_TIMEOUT_HI) = 0;
563 	CSRARC(fc, SPLIT_TIMEOUT_LO) = 800 << 19;
564 	CSRARC(fc, CYCLE_TIME) = 0x0;
565 	CSRARC(fc, BUS_TIME) = 0x0;
566 	CSRARC(fc, BUS_MGR_ID) = 0x3f;
567 	CSRARC(fc, BANDWIDTH_AV) = 4915;
568 	CSRARC(fc, CHANNELS_AV_HI) = 0xffffffff;
569 	CSRARC(fc, CHANNELS_AV_LO) = 0xffffffff;
570 	CSRARC(fc, IP_CHANNELS) = (1 << 31);
571 
572 	CSRARC(fc, CONF_ROM) = 0x04 << 24;
573 	CSRARC(fc, CONF_ROM + 4) = 0x31333934; /* means strings 1394 */
574 	CSRARC(fc, CONF_ROM + 8) = 1 << 31 | 1 << 30 | 1 << 29 |
575 				1 << 28 | 0xff << 16 | 0x09 << 8;
576 	CSRARC(fc, CONF_ROM + 0xc) = 0;
577 
578 /* DV depend CSRs see blue book */
579 	CSRARC(fc, oPCR) &= ~DV_BROADCAST_ON;
580 	CSRARC(fc, iPCR) &= ~DV_BROADCAST_ON;
581 
582 	CSRARC(fc, STATE_CLEAR) &= ~(1 << 23 | 1 << 15 | 1 << 14 );
583 	CSRARC(fc, STATE_SET) = CSRARC(fc, STATE_CLEAR);
584 }
585 
586 static void
587 fw_init_crom(struct firewire_comm *fc)
588 {
589 	struct crom_src *src;
590 
591 	fc->crom_src_buf = (struct crom_src_buf *)
592 		malloc(sizeof(struct crom_src_buf), M_FW, M_WAITOK | M_ZERO);
593 	if (fc->crom_src_buf == NULL)
594 		return;
595 
596 	src = &fc->crom_src_buf->src;
597 	bzero(src, sizeof(struct crom_src));
598 
599 	/* BUS info sample */
600 	src->hdr.info_len = 4;
601 
602 	src->businfo.bus_name = CSR_BUS_NAME_IEEE1394;
603 
604 	src->businfo.irmc = 1;
605 	src->businfo.cmc = 1;
606 	src->businfo.isc = 1;
607 	src->businfo.bmc = 1;
608 	src->businfo.pmc = 0;
609 	src->businfo.cyc_clk_acc = 100;
610 	src->businfo.max_rec = fc->maxrec;
611 	src->businfo.max_rom = MAXROM_4;
612 	src->businfo.generation = 1;
613 	src->businfo.link_spd = fc->speed;
614 
615 	src->businfo.eui64.hi = fc->eui.hi;
616 	src->businfo.eui64.lo = fc->eui.lo;
617 
618 	STAILQ_INIT(&src->chunk_list);
619 
620 	fc->crom_src = src;
621 	fc->crom_root = &fc->crom_src_buf->root;
622 }
623 
624 static void
625 fw_reset_crom(struct firewire_comm *fc)
626 {
627 	struct crom_src_buf *buf;
628 	struct crom_src *src;
629 	struct crom_chunk *root;
630 
631 	if (fc->crom_src_buf == NULL)
632 		fw_init_crom(fc);
633 
634 	buf =  fc->crom_src_buf;
635 	src = fc->crom_src;
636 	root = fc->crom_root;
637 
638 	STAILQ_INIT(&src->chunk_list);
639 
640 	bzero(root, sizeof(struct crom_chunk));
641 	crom_add_chunk(src, NULL, root, 0);
642 	crom_add_entry(root, CSRKEY_NCAP, 0x0083c0); /* XXX */
643 	/* private company_id */
644 	crom_add_entry(root, CSRKEY_VENDOR, CSRVAL_VENDOR_PRIVATE);
645 #ifdef __DragonFly__
646 	crom_add_simple_text(src, root, &buf->vendor, "DragonFly Project");
647 	crom_add_entry(root, CSRKEY_HW, __DragonFly_cc_version);
648 #else
649 	crom_add_simple_text(src, root, &buf->vendor, "FreeBSD Project");
650 	crom_add_entry(root, CSRKEY_HW, __FreeBSD_version);
651 #endif
652 	crom_add_simple_text(src, root, &buf->hw, hostname);
653 }
654 
655 /*
656  * Called after bus reset.
657  */
658 void
659 fw_busreset(struct firewire_comm *fc)
660 {
661 	struct firewire_dev_comm *fdc;
662 	struct crom_src *src;
663 	device_t *devlistp;
664 	void *newrom;
665 	int i, devcnt;
666 
667 	switch(fc->status){
668 	case FWBUSMGRELECT:
669 		callout_stop(&fc->bmr_callout);
670 		break;
671 	default:
672 		break;
673 	}
674 	fc->status = FWBUSRESET;
675 	fw_reset_csr(fc);
676 	fw_reset_crom(fc);
677 
678 	if (device_get_children(fc->bdev, &devlistp, &devcnt) == 0) {
679 		for( i = 0 ; i < devcnt ; i++)
680 			if (device_get_state(devlistp[i]) >= DS_ATTACHED)  {
681 				fdc = device_get_softc(devlistp[i]);
682 				if (fdc->post_busreset != NULL)
683 					fdc->post_busreset(fdc);
684 			}
685 		free(devlistp, M_TEMP);
686 	}
687 
688 	newrom = malloc(CROMSIZE, M_FW, M_NOWAIT | M_ZERO);
689 	src = &fc->crom_src_buf->src;
690 	crom_load(src, (uint32_t *)newrom, CROMSIZE);
691 	if (bcmp(newrom, fc->config_rom, CROMSIZE) != 0) {
692 		/* bump generation and reload */
693 		src->businfo.generation ++;
694 		/* generation must be between 0x2 and 0xF */
695 		if (src->businfo.generation < 2)
696 			src->businfo.generation ++;
697 		crom_load(src, (uint32_t *)newrom, CROMSIZE);
698 		bcopy(newrom, (void *)fc->config_rom, CROMSIZE);
699 	}
700 	free(newrom, M_FW);
701 }
702 
703 /* Call once after reboot */
704 void fw_init(struct firewire_comm *fc)
705 {
706 	int i;
707 	struct csrdir *csrd;
708 #ifdef FW_VMACCESS
709 	struct fw_xfer *xfer;
710 	struct fw_bind *fwb;
711 #endif
712 
713 	fc->max_asyretry = FW_MAXASYRTY;
714 
715 	fc->arq->queued = 0;
716 	fc->ars->queued = 0;
717 	fc->atq->queued = 0;
718 	fc->ats->queued = 0;
719 
720 	fc->arq->buf = NULL;
721 	fc->ars->buf = NULL;
722 	fc->atq->buf = NULL;
723 	fc->ats->buf = NULL;
724 
725 	fc->arq->flag = 0;
726 	fc->ars->flag = 0;
727 	fc->atq->flag = 0;
728 	fc->ats->flag = 0;
729 
730 	STAILQ_INIT(&fc->atq->q);
731 	STAILQ_INIT(&fc->ats->q);
732 
733 	for( i = 0 ; i < fc->nisodma ; i ++ ){
734 		fc->it[i]->queued = 0;
735 		fc->ir[i]->queued = 0;
736 
737 		fc->it[i]->start = NULL;
738 		fc->ir[i]->start = NULL;
739 
740 		fc->it[i]->buf = NULL;
741 		fc->ir[i]->buf = NULL;
742 
743 		fc->it[i]->flag = FWXFERQ_STREAM;
744 		fc->ir[i]->flag = FWXFERQ_STREAM;
745 
746 		STAILQ_INIT(&fc->it[i]->q);
747 		STAILQ_INIT(&fc->ir[i]->q);
748 
749 		STAILQ_INIT(&fc->it[i]->binds);
750 		STAILQ_INIT(&fc->ir[i]->binds);
751 	}
752 
753 	fc->arq->maxq = FWMAXQUEUE;
754 	fc->ars->maxq = FWMAXQUEUE;
755 	fc->atq->maxq = FWMAXQUEUE;
756 	fc->ats->maxq = FWMAXQUEUE;
757 
758 	for( i = 0 ; i < fc->nisodma ; i++){
759 		fc->ir[i]->maxq = FWMAXQUEUE;
760 		fc->it[i]->maxq = FWMAXQUEUE;
761 	}
762 /* Initialize csr registers */
763 	fc->topology_map = (struct fw_topology_map *)malloc(
764 				sizeof(struct fw_topology_map),
765 				M_FW, M_NOWAIT | M_ZERO);
766 	fc->speed_map = (struct fw_speed_map *)malloc(
767 				sizeof(struct fw_speed_map),
768 				M_FW, M_NOWAIT | M_ZERO);
769 	CSRARC(fc, TOPO_MAP) = 0x3f1 << 16;
770 	CSRARC(fc, TOPO_MAP + 4) = 1;
771 	CSRARC(fc, SPED_MAP) = 0x3f1 << 16;
772 	CSRARC(fc, SPED_MAP + 4) = 1;
773 
774 	STAILQ_INIT(&fc->devices);
775 
776 /* Initialize csr ROM work space */
777 	SLIST_INIT(&fc->ongocsr);
778 	SLIST_INIT(&fc->csrfree);
779 	for( i = 0 ; i < FWMAXCSRDIR ; i++){
780 		csrd = (struct csrdir *) malloc(sizeof(struct csrdir), M_FW,M_NOWAIT);
781 		if(csrd == NULL) break;
782 		SLIST_INSERT_HEAD(&fc->csrfree, csrd, link);
783 	}
784 
785 /* Initialize Async handlers */
786 	STAILQ_INIT(&fc->binds);
787 	for( i = 0 ; i < 0x40 ; i++){
788 		STAILQ_INIT(&fc->tlabels[i]);
789 	}
790 
791 /* DV depend CSRs see blue book */
792 #if 0
793 	CSRARC(fc, oMPR) = 0x3fff0001; /* # output channel = 1 */
794 	CSRARC(fc, oPCR) = 0x8000007a;
795 	for(i = 4 ; i < 0x7c/4 ; i+=4){
796 		CSRARC(fc, i + oPCR) = 0x8000007a;
797 	}
798 
799 	CSRARC(fc, iMPR) = 0x00ff0001; /* # input channel = 1 */
800 	CSRARC(fc, iPCR) = 0x803f0000;
801 	for(i = 4 ; i < 0x7c/4 ; i+=4){
802 		CSRARC(fc, i + iPCR) = 0x0;
803 	}
804 #endif
805 
806 	fc->crom_src_buf = NULL;
807 
808 #ifdef FW_VMACCESS
809 	xfer = fw_xfer_alloc();
810 	if(xfer == NULL) return;
811 
812 	fwb = (struct fw_bind *)malloc(sizeof (struct fw_bind), M_FW, M_NOWAIT);
813 	if(fwb == NULL){
814 		fw_xfer_free(xfer);
815 	}
816 	xfer->act.hand = fw_vmaccess;
817 	xfer->fc = fc;
818 	xfer->sc = NULL;
819 
820 	fwb->start_hi = 0x2;
821 	fwb->start_lo = 0;
822 	fwb->addrlen = 0xffffffff;
823 	fwb->xfer = xfer;
824 	fw_bindadd(fc, fwb);
825 #endif
826 }
827 
828 #define BIND_CMP(addr, fwb) (((addr) < (fwb)->start)?-1:\
829     ((fwb)->end < (addr))?1:0)
830 
831 /*
832  * To lookup bound process from IEEE1394 address.
833  */
834 struct fw_bind *
835 fw_bindlookup(struct firewire_comm *fc, uint16_t dest_hi, uint32_t dest_lo)
836 {
837 	u_int64_t addr;
838 	struct fw_bind *tfw;
839 
840 	addr = ((u_int64_t)dest_hi << 32) | dest_lo;
841 	STAILQ_FOREACH(tfw, &fc->binds, fclist)
842 		if (tfw->act_type != FWACT_NULL && BIND_CMP(addr, tfw) == 0)
843 			return(tfw);
844 	return(NULL);
845 }
846 
847 /*
848  * To bind IEEE1394 address block to process.
849  */
850 int
851 fw_bindadd(struct firewire_comm *fc, struct fw_bind *fwb)
852 {
853 	struct fw_bind *tfw, *prev = NULL;
854 
855 	if (fwb->start > fwb->end) {
856 		printf("%s: invalid range\n", __func__);
857 		return EINVAL;
858 	}
859 
860 	STAILQ_FOREACH(tfw, &fc->binds, fclist) {
861 		if (fwb->end < tfw->start)
862 			break;
863 		prev = tfw;
864 	}
865 	if (prev == NULL) {
866 		STAILQ_INSERT_HEAD(&fc->binds, fwb, fclist);
867 		goto out;
868 	}
869 	if (prev->end < fwb->start) {
870 		STAILQ_INSERT_AFTER(&fc->binds, prev, fwb, fclist);
871 		goto out;
872 	}
873 
874 	printf("%s: bind failed\n", __func__);
875 	return (EBUSY);
876 
877 out:
878 	if (fwb->act_type == FWACT_CH)
879 		STAILQ_INSERT_HEAD(&fc->ir[fwb->sub]->binds, fwb, chlist);
880 	return (0);
881 }
882 
883 /*
884  * To free IEEE1394 address block.
885  */
886 int
887 fw_bindremove(struct firewire_comm *fc, struct fw_bind *fwb)
888 {
889 #if 0
890 	struct fw_xfer *xfer, *next;
891 #endif
892 	struct fw_bind *tfw;
893 	int s;
894 
895 	s = splfw();
896 	STAILQ_FOREACH(tfw, &fc->binds, fclist)
897 		if (tfw == fwb) {
898 			STAILQ_REMOVE(&fc->binds, fwb, fw_bind, fclist);
899 			goto found;
900 		}
901 
902 	printf("%s: no such binding\n", __func__);
903 	splx(s);
904 	return (1);
905 found:
906 #if 0
907 	/* shall we do this? */
908 	for (xfer = STAILQ_FIRST(&fwb->xferlist); xfer != NULL; xfer = next) {
909 		next = STAILQ_NEXT(xfer, link);
910 		fw_xfer_free(xfer);
911 	}
912 	STAILQ_INIT(&fwb->xferlist);
913 #endif
914 
915 	splx(s);
916 	return 0;
917 }
918 
919 /*
920  * To free transaction label.
921  */
922 static void
923 fw_tl_free(struct firewire_comm *fc, struct fw_xfer *xfer)
924 {
925 	struct tlabel *tl;
926 	int s = splfw();
927 
928 	for( tl = STAILQ_FIRST(&fc->tlabels[xfer->tl]); tl != NULL;
929 		tl = STAILQ_NEXT(tl, link)){
930 		if(tl->xfer == xfer){
931 			STAILQ_REMOVE(&fc->tlabels[xfer->tl], tl, tlabel, link);
932 			free(tl, M_FW);
933 			splx(s);
934 			return;
935 		}
936 	}
937 	splx(s);
938 	return;
939 }
940 
941 /*
942  * To obtain XFER structure by transaction label.
943  */
944 static struct fw_xfer *
945 fw_tl2xfer(struct firewire_comm *fc, int node, int tlabel)
946 {
947 	struct fw_xfer *xfer;
948 	struct tlabel *tl;
949 	int s = splfw();
950 
951 	for( tl = STAILQ_FIRST(&fc->tlabels[tlabel]); tl != NULL;
952 		tl = STAILQ_NEXT(tl, link)){
953 		if(tl->xfer->send.hdr.mode.hdr.dst == node){
954 			xfer = tl->xfer;
955 			splx(s);
956 			if (firewire_debug > 2)
957 				printf("fw_tl2xfer: found tl=%d\n", tlabel);
958 			return(xfer);
959 		}
960 	}
961 	if (firewire_debug > 1)
962 		printf("fw_tl2xfer: not found tl=%d\n", tlabel);
963 	splx(s);
964 	return(NULL);
965 }
966 
967 /*
968  * To allocate IEEE1394 XFER structure.
969  */
970 struct fw_xfer *
971 fw_xfer_alloc(struct malloc_type *type)
972 {
973 	struct fw_xfer *xfer;
974 
975 	xfer = malloc(sizeof(struct fw_xfer), type, M_NOWAIT | M_ZERO);
976 	if (xfer == NULL)
977 		return xfer;
978 
979 	xfer->malloc = type;
980 
981 	return xfer;
982 }
983 
984 struct fw_xfer *
985 fw_xfer_alloc_buf(struct malloc_type *type, int send_len, int recv_len)
986 {
987 	struct fw_xfer *xfer;
988 
989 	xfer = fw_xfer_alloc(type);
990 	if (xfer == NULL)
991 		return(NULL);
992 	xfer->send.pay_len = send_len;
993 	xfer->recv.pay_len = recv_len;
994 	if (send_len > 0) {
995 		xfer->send.payload = malloc(send_len, type, M_NOWAIT | M_ZERO);
996 		if (xfer->send.payload == NULL) {
997 			fw_xfer_free(xfer);
998 			return(NULL);
999 		}
1000 	}
1001 	if (recv_len > 0) {
1002 		xfer->recv.payload = malloc(recv_len, type, M_NOWAIT);
1003 		if (xfer->recv.payload == NULL) {
1004 			if (xfer->send.payload != NULL)
1005 				free(xfer->send.payload, type);
1006 			fw_xfer_free(xfer);
1007 			return(NULL);
1008 		}
1009 	}
1010 	return(xfer);
1011 }
1012 
1013 /*
1014  * IEEE1394 XFER post process.
1015  */
1016 void
1017 fw_xfer_done(struct fw_xfer *xfer)
1018 {
1019 	if (xfer->act.hand == NULL) {
1020 		printf("act.hand == NULL\n");
1021 		return;
1022 	}
1023 
1024 	if (xfer->fc == NULL)
1025 		panic("fw_xfer_done: why xfer->fc is NULL?");
1026 
1027 	xfer->act.hand(xfer);
1028 }
1029 
1030 void
1031 fw_xfer_unload(struct fw_xfer* xfer)
1032 {
1033 	int s;
1034 
1035 	if(xfer == NULL ) return;
1036 	if(xfer->state == FWXF_INQ){
1037 		printf("fw_xfer_free FWXF_INQ\n");
1038 		s = splfw();
1039 		STAILQ_REMOVE(&xfer->q->q, xfer, fw_xfer, link);
1040 		xfer->q->queued --;
1041 		splx(s);
1042 	}
1043 	if (xfer->fc != NULL) {
1044 #if 1
1045 		if(xfer->state == FWXF_START)
1046 			/*
1047 			 * This could happen if:
1048 			 *  1. We call fwohci_arcv() before fwohci_txd().
1049 			 *  2. firewire_watch() is called.
1050 			 */
1051 			printf("fw_xfer_free FWXF_START\n");
1052 #endif
1053 		fw_tl_free(xfer->fc, xfer);
1054 	}
1055 	xfer->state = FWXF_INIT;
1056 	xfer->resp = 0;
1057 	xfer->retry = 0;
1058 }
1059 /*
1060  * To free IEEE1394 XFER structure.
1061  */
1062 void
1063 fw_xfer_free_buf( struct fw_xfer* xfer)
1064 {
1065 	if (xfer == NULL) {
1066 		printf("%s: xfer == NULL\n", __func__);
1067 		return;
1068 	}
1069 	fw_xfer_unload(xfer);
1070 	if(xfer->send.payload != NULL){
1071 		free(xfer->send.payload, xfer->malloc);
1072 	}
1073 	if(xfer->recv.payload != NULL){
1074 		free(xfer->recv.payload, xfer->malloc);
1075 	}
1076 	free(xfer, xfer->malloc);
1077 }
1078 
1079 void
1080 fw_xfer_free( struct fw_xfer* xfer)
1081 {
1082 	if (xfer == NULL) {
1083 		printf("%s: xfer == NULL\n", __func__);
1084 		return;
1085 	}
1086 	fw_xfer_unload(xfer);
1087 	free(xfer, xfer->malloc);
1088 }
1089 
1090 void
1091 fw_asy_callback_free(struct fw_xfer *xfer)
1092 {
1093 #if 0
1094 	printf("asyreq done state=%d resp=%d\n",
1095 				xfer->state, xfer->resp);
1096 #endif
1097 	fw_xfer_free(xfer);
1098 }
1099 
1100 /*
1101  * To configure PHY.
1102  */
1103 static void
1104 fw_phy_config(struct firewire_comm *fc, int root_node, int gap_count)
1105 {
1106 	struct fw_xfer *xfer;
1107 	struct fw_pkt *fp;
1108 
1109 	fc->status = FWBUSPHYCONF;
1110 
1111 	xfer = fw_xfer_alloc(M_FWXFER);
1112 	if (xfer == NULL)
1113 		return;
1114 	xfer->fc = fc;
1115 	xfer->retry_req = fw_asybusy;
1116 	xfer->act.hand = fw_asy_callback_free;
1117 
1118 	fp = &xfer->send.hdr;
1119 	fp->mode.ld[1] = 0;
1120 	if (root_node >= 0)
1121 		fp->mode.ld[1] |= (root_node & 0x3f) << 24 | 1 << 23;
1122 	if (gap_count >= 0)
1123 		fp->mode.ld[1] |= 1 << 22 | (gap_count & 0x3f) << 16;
1124 	fp->mode.ld[2] = ~fp->mode.ld[1];
1125 /* XXX Dangerous, how to pass PHY packet to device driver */
1126 	fp->mode.common.tcode |= FWTCODE_PHY;
1127 
1128 	if (firewire_debug)
1129 		printf("send phy_config root_node=%d gap_count=%d\n",
1130 						root_node, gap_count);
1131 	fw_asyreq(fc, -1, xfer);
1132 }
1133 
1134 #if 0
1135 /*
1136  * Dump self ID.
1137  */
1138 static void
1139 fw_print_sid(uint32_t sid)
1140 {
1141 	union fw_self_id *s;
1142 	s = (union fw_self_id *) &sid;
1143 	printf("node:%d link:%d gap:%d spd:%d del:%d con:%d pwr:%d"
1144 		" p0:%d p1:%d p2:%d i:%d m:%d\n",
1145 		s->p0.phy_id, s->p0.link_active, s->p0.gap_count,
1146 		s->p0.phy_speed, s->p0.phy_delay, s->p0.contender,
1147 		s->p0.power_class, s->p0.port0, s->p0.port1,
1148 		s->p0.port2, s->p0.initiated_reset, s->p0.more_packets);
1149 }
1150 #endif
1151 
1152 /*
1153  * To receive self ID.
1154  */
1155 void fw_sidrcv(struct firewire_comm* fc, uint32_t *sid, u_int len)
1156 {
1157 	uint32_t *p;
1158 	union fw_self_id *self_id;
1159 	u_int i, j, node, c_port = 0, i_branch = 0;
1160 
1161 	fc->sid_cnt = len /(sizeof(uint32_t) * 2);
1162 	fc->status = FWBUSINIT;
1163 	fc->max_node = fc->nodeid & 0x3f;
1164 	CSRARC(fc, NODE_IDS) = ((uint32_t)fc->nodeid) << 16;
1165 	fc->status = FWBUSCYMELECT;
1166 	fc->topology_map->crc_len = 2;
1167 	fc->topology_map->generation ++;
1168 	fc->topology_map->self_id_count = 0;
1169 	fc->topology_map->node_count = 0;
1170 	fc->speed_map->generation ++;
1171 	fc->speed_map->crc_len = 1 + (64*64 + 3) / 4;
1172 	self_id = &fc->topology_map->self_id[0];
1173 	for(i = 0; i < fc->sid_cnt; i ++){
1174 		if (sid[1] != ~sid[0]) {
1175 			printf("fw_sidrcv: invalid self-id packet\n");
1176 			sid += 2;
1177 			continue;
1178 		}
1179 		*self_id = *((union fw_self_id *)sid);
1180 		fc->topology_map->crc_len++;
1181 		if(self_id->p0.sequel == 0){
1182 			fc->topology_map->node_count ++;
1183 			c_port = 0;
1184 #if 0
1185 			fw_print_sid(sid[0]);
1186 #endif
1187 			node = self_id->p0.phy_id;
1188 			if(fc->max_node < node){
1189 				fc->max_node = self_id->p0.phy_id;
1190 			}
1191 			/* XXX I'm not sure this is the right speed_map */
1192 			fc->speed_map->speed[node][node]
1193 					= self_id->p0.phy_speed;
1194 			for (j = 0; j < node; j ++) {
1195 				fc->speed_map->speed[j][node]
1196 					= fc->speed_map->speed[node][j]
1197 					= min(fc->speed_map->speed[j][j],
1198 							self_id->p0.phy_speed);
1199 			}
1200 			if ((fc->irm == -1 || self_id->p0.phy_id > fc->irm) &&
1201 			  (self_id->p0.link_active && self_id->p0.contender)) {
1202 				fc->irm = self_id->p0.phy_id;
1203 			}
1204 			if(self_id->p0.port0 >= 0x2){
1205 				c_port++;
1206 			}
1207 			if(self_id->p0.port1 >= 0x2){
1208 				c_port++;
1209 			}
1210 			if(self_id->p0.port2 >= 0x2){
1211 				c_port++;
1212 			}
1213 		}
1214 		if(c_port > 2){
1215 			i_branch += (c_port - 2);
1216 		}
1217 		sid += 2;
1218 		self_id++;
1219 		fc->topology_map->self_id_count ++;
1220 	}
1221 	device_printf(fc->bdev, "%d nodes", fc->max_node + 1);
1222 	/* CRC */
1223 	fc->topology_map->crc = fw_crc16(
1224 			(uint32_t *)&fc->topology_map->generation,
1225 			fc->topology_map->crc_len * 4);
1226 	fc->speed_map->crc = fw_crc16(
1227 			(uint32_t *)&fc->speed_map->generation,
1228 			fc->speed_map->crc_len * 4);
1229 	/* byteswap and copy to CSR */
1230 	p = (uint32_t *)fc->topology_map;
1231 	for (i = 0; i <= fc->topology_map->crc_len; i++)
1232 		CSRARC(fc, TOPO_MAP + i * 4) = htonl(*p++);
1233 	p = (uint32_t *)fc->speed_map;
1234 	CSRARC(fc, SPED_MAP) = htonl(*p++);
1235 	CSRARC(fc, SPED_MAP + 4) = htonl(*p++);
1236 	/* don't byte-swap uint8_t array */
1237 	bcopy(p, &CSRARC(fc, SPED_MAP + 8), (fc->speed_map->crc_len - 1)*4);
1238 
1239 	fc->max_hop = fc->max_node - i_branch;
1240 	printf(", maxhop <= %d", fc->max_hop);
1241 
1242 	if(fc->irm == -1 ){
1243 		printf(", Not found IRM capable node");
1244 	}else{
1245 		printf(", cable IRM = %d", fc->irm);
1246 		if (fc->irm == fc->nodeid)
1247 			printf(" (me)");
1248 	}
1249 	printf("\n");
1250 
1251 	if (try_bmr && (fc->irm != -1) && (CSRARC(fc, BUS_MGR_ID) == 0x3f)) {
1252 		if (fc->irm == fc->nodeid) {
1253 			fc->status = FWBUSMGRDONE;
1254 			CSRARC(fc, BUS_MGR_ID) = fc->set_bmr(fc, fc->irm);
1255 			fw_bmr(fc);
1256 		} else {
1257 			fc->status = FWBUSMGRELECT;
1258 			callout_reset(&fc->bmr_callout, hz/8,
1259 				(void *)fw_try_bmr, (void *)fc);
1260 		}
1261 	} else
1262 		fc->status = FWBUSMGRDONE;
1263 
1264 	callout_reset(&fc->busprobe_callout, hz/4,
1265 			(void *)fw_bus_probe, (void *)fc);
1266 }
1267 
1268 /*
1269  * To probe devices on the IEEE1394 bus.
1270  */
1271 static void
1272 fw_bus_probe(struct firewire_comm *fc)
1273 {
1274 	int s;
1275 	struct fw_device *fwdev;
1276 
1277 	s = splfw();
1278 	fc->status = FWBUSEXPLORE;
1279 	fc->retry_count = 0;
1280 
1281 	/* Invalidate all devices, just after bus reset. */
1282 	STAILQ_FOREACH(fwdev, &fc->devices, link)
1283 		if (fwdev->status != FWDEVINVAL) {
1284 			fwdev->status = FWDEVINVAL;
1285 			fwdev->rcnt = 0;
1286 		}
1287 
1288 	fc->ongonode = 0;
1289 	fc->ongoaddr = CSRROMOFF;
1290 	fc->ongodev = NULL;
1291 	fc->ongoeui.hi = 0xffffffff; fc->ongoeui.lo = 0xffffffff;
1292 	fw_bus_explore(fc);
1293 	splx(s);
1294 }
1295 
1296 /*
1297  * Find the self_id packet for a node, ignoring sequels.
1298  */
1299 static union fw_self_id *
1300 fw_find_self_id(struct firewire_comm *fc, int node)
1301 {
1302 	uint32_t i;
1303 	union fw_self_id *s;
1304 
1305 	for (i = 0; i < fc->topology_map->self_id_count; i++) {
1306 		s = &fc->topology_map->self_id[i];
1307 		if (s->p0.sequel)
1308 			continue;
1309 		if (s->p0.phy_id == node)
1310 			return s;
1311 	}
1312 	return 0;
1313 }
1314 
1315 /*
1316  * To collect device informations on the IEEE1394 bus.
1317  */
1318 static void
1319 fw_bus_explore(struct firewire_comm *fc )
1320 {
1321 	int err = 0;
1322 	struct fw_device *fwdev, *pfwdev, *tfwdev;
1323 	uint32_t addr;
1324 	struct fw_xfer *xfer;
1325 	struct fw_pkt *fp;
1326 
1327 	if(fc->status != FWBUSEXPLORE)
1328 		return;
1329 
1330 loop:
1331 	if(fc->ongonode == fc->nodeid) fc->ongonode++;
1332 
1333 	if(fc->ongonode > fc->max_node) goto done;
1334 	if(fc->ongonode >= 0x3f) goto done;
1335 
1336 	/* check link */
1337 	/* XXX we need to check phy_id first */
1338 	if (!fw_find_self_id(fc, fc->ongonode)->p0.link_active) {
1339 		if (firewire_debug)
1340 			printf("node%d: link down\n", fc->ongonode);
1341 		fc->ongonode++;
1342 		goto loop;
1343 	}
1344 
1345 	if(fc->ongoaddr <= CSRROMOFF &&
1346 		fc->ongoeui.hi == 0xffffffff &&
1347 		fc->ongoeui.lo == 0xffffffff ){
1348 		fc->ongoaddr = CSRROMOFF;
1349 		addr = 0xf0000000 | fc->ongoaddr;
1350 	}else if(fc->ongoeui.hi == 0xffffffff ){
1351 		fc->ongoaddr = CSRROMOFF + 0xc;
1352 		addr = 0xf0000000 | fc->ongoaddr;
1353 	}else if(fc->ongoeui.lo == 0xffffffff ){
1354 		fc->ongoaddr = CSRROMOFF + 0x10;
1355 		addr = 0xf0000000 | fc->ongoaddr;
1356 	}else if(fc->ongodev == NULL){
1357 		STAILQ_FOREACH(fwdev, &fc->devices, link)
1358 			if (FW_EUI64_EQUAL(fwdev->eui, fc->ongoeui))
1359 				break;
1360 		if(fwdev != NULL){
1361 			fwdev->dst = fc->ongonode;
1362 			fwdev->status = FWDEVINIT;
1363 			fc->ongodev = fwdev;
1364 			fc->ongoaddr = CSRROMOFF;
1365 			addr = 0xf0000000 | fc->ongoaddr;
1366 			goto dorequest;
1367 		}
1368 		fwdev = malloc(sizeof(struct fw_device), M_FW,
1369 							M_NOWAIT | M_ZERO);
1370 		if(fwdev == NULL)
1371 			return;
1372 		fwdev->fc = fc;
1373 		fwdev->rommax = 0;
1374 		fwdev->dst = fc->ongonode;
1375 		fwdev->eui.hi = fc->ongoeui.hi; fwdev->eui.lo = fc->ongoeui.lo;
1376 		fwdev->status = FWDEVINIT;
1377 		fwdev->speed = fc->speed_map->speed[fc->nodeid][fc->ongonode];
1378 
1379 		pfwdev = NULL;
1380 		STAILQ_FOREACH(tfwdev, &fc->devices, link) {
1381 			if (tfwdev->eui.hi > fwdev->eui.hi ||
1382 					(tfwdev->eui.hi == fwdev->eui.hi &&
1383 					tfwdev->eui.lo > fwdev->eui.lo))
1384 				break;
1385 			pfwdev = tfwdev;
1386 		}
1387 		if (pfwdev == NULL)
1388 			STAILQ_INSERT_HEAD(&fc->devices, fwdev, link);
1389 		else
1390 			STAILQ_INSERT_AFTER(&fc->devices, pfwdev, fwdev, link);
1391 
1392 		device_printf(fc->bdev, "New %s device ID:%08x%08x\n",
1393 			linkspeed[fwdev->speed],
1394 			fc->ongoeui.hi, fc->ongoeui.lo);
1395 
1396 		fc->ongodev = fwdev;
1397 		fc->ongoaddr = CSRROMOFF;
1398 		addr = 0xf0000000 | fc->ongoaddr;
1399 	}else{
1400 		addr = 0xf0000000 | fc->ongoaddr;
1401 	}
1402 dorequest:
1403 #if 0
1404 	xfer = asyreqq(fc, FWSPD_S100, 0, 0,
1405 		((FWLOCALBUS | fc->ongonode) << 16) | 0xffff , addr,
1406 		fw_bus_explore_callback);
1407 	if(xfer == NULL) goto done;
1408 #else
1409 	xfer = fw_xfer_alloc(M_FWXFER);
1410 	if(xfer == NULL){
1411 		goto done;
1412 	}
1413 	xfer->send.spd = 0;
1414 	fp = &xfer->send.hdr;
1415 	fp->mode.rreqq.dest_hi = 0xffff;
1416 	fp->mode.rreqq.tlrt = 0;
1417 	fp->mode.rreqq.tcode = FWTCODE_RREQQ;
1418 	fp->mode.rreqq.pri = 0;
1419 	fp->mode.rreqq.src = 0;
1420 	fp->mode.rreqq.dst = FWLOCALBUS | fc->ongonode;
1421 	fp->mode.rreqq.dest_lo = addr;
1422 	xfer->act.hand = fw_bus_explore_callback;
1423 
1424 	if (firewire_debug)
1425 		printf("node%d: explore addr=0x%x\n",
1426 				fc->ongonode, fc->ongoaddr);
1427 	err = fw_asyreq(fc, -1, xfer);
1428 	if(err){
1429 		fw_xfer_free( xfer);
1430 		return;
1431 	}
1432 #endif
1433 	return;
1434 done:
1435 	/* fw_attach_devs */
1436 	fc->status = FWBUSEXPDONE;
1437 	if (firewire_debug)
1438 		printf("bus_explore done\n");
1439 	fw_attach_dev(fc);
1440 	return;
1441 
1442 }
1443 
1444 /* Portable Async. request read quad */
1445 struct fw_xfer *
1446 asyreqq(struct firewire_comm *fc, uint8_t spd, uint8_t tl, uint8_t rt,
1447 	uint32_t addr_hi, uint32_t addr_lo,
1448 	void (*hand) (struct fw_xfer*))
1449 {
1450 	struct fw_xfer *xfer;
1451 	struct fw_pkt *fp;
1452 	int err;
1453 
1454 	xfer = fw_xfer_alloc(M_FWXFER);
1455 	if (xfer == NULL)
1456 		return NULL;
1457 
1458 	xfer->send.spd = spd; /* XXX:min(spd, fc->spd) */
1459 	fp = &xfer->send.hdr;
1460 	fp->mode.rreqq.dest_hi = addr_hi & 0xffff;
1461 	if(tl & FWP_TL_VALID){
1462 		fp->mode.rreqq.tlrt = (tl & 0x3f) << 2;
1463 	}else{
1464 		fp->mode.rreqq.tlrt = 0;
1465 	}
1466 	fp->mode.rreqq.tlrt |= rt & 0x3;
1467 	fp->mode.rreqq.tcode = FWTCODE_RREQQ;
1468 	fp->mode.rreqq.pri = 0;
1469 	fp->mode.rreqq.src = 0;
1470 	fp->mode.rreqq.dst = addr_hi >> 16;
1471 	fp->mode.rreqq.dest_lo = addr_lo;
1472 	xfer->act.hand = hand;
1473 
1474 	err = fw_asyreq(fc, -1, xfer);
1475 	if(err){
1476 		fw_xfer_free( xfer);
1477 		return NULL;
1478 	}
1479 	return xfer;
1480 }
1481 
1482 /*
1483  * Callback for the IEEE1394 bus information collection.
1484  */
1485 static void
1486 fw_bus_explore_callback(struct fw_xfer *xfer)
1487 {
1488 	struct firewire_comm *fc;
1489 	struct fw_pkt *sfp,*rfp;
1490 	struct csrhdr *chdr;
1491 	struct csrdir *csrd;
1492 	struct csrreg *csrreg;
1493 	uint32_t offset;
1494 
1495 
1496 	if(xfer == NULL) {
1497 		printf("xfer == NULL\n");
1498 		return;
1499 	}
1500 	fc = xfer->fc;
1501 
1502 	if (firewire_debug)
1503 		printf("node%d: callback addr=0x%x\n",
1504 			fc->ongonode, fc->ongoaddr);
1505 
1506 	if(xfer->resp != 0){
1507 		device_printf(fc->bdev,
1508 		    "bus_explore node=%d addr=0x%x resp=%d retry=%d\n",
1509 		    fc->ongonode, fc->ongoaddr, xfer->resp, xfer->retry);
1510 		if (xfer->retry < fc->max_asyretry) {
1511 			fw_asystart(xfer);
1512 			return;
1513 		}
1514 		goto errnode;
1515 	}
1516 
1517 	sfp = &xfer->send.hdr;
1518 	rfp = &xfer->recv.hdr;
1519 #if 0
1520 	{
1521 		uint32_t *qld;
1522 		int i;
1523 		qld = (uint32_t *)xfer->recv.buf;
1524 		printf("len:%d\n", xfer->recv.len);
1525 		for( i = 0 ; i <= xfer->recv.len && i < 32; i+= 4){
1526 			printf("0x%08x ", rfp->mode.ld[i/4]);
1527 			if((i % 16) == 15) printf("\n");
1528 		}
1529 		if((i % 16) != 15) printf("\n");
1530 	}
1531 #endif
1532 	if(fc->ongodev == NULL){
1533 		if(sfp->mode.rreqq.dest_lo == (0xf0000000 | CSRROMOFF)){
1534 			rfp->mode.rresq.data = ntohl(rfp->mode.rresq.data);
1535 			chdr = (struct csrhdr *)(&rfp->mode.rresq.data);
1536 /* If CSR is minimal confinguration, more investigation is not needed. */
1537 			if(chdr->info_len == 1){
1538 				if (firewire_debug)
1539 					printf("node%d: minimal config\n",
1540 								fc->ongonode);
1541 				goto nextnode;
1542 			}else{
1543 				fc->ongoaddr = CSRROMOFF + 0xc;
1544 			}
1545 		}else if(sfp->mode.rreqq.dest_lo == (0xf0000000 |(CSRROMOFF + 0xc))){
1546 			fc->ongoeui.hi = ntohl(rfp->mode.rresq.data);
1547 			fc->ongoaddr = CSRROMOFF + 0x10;
1548 		}else if(sfp->mode.rreqq.dest_lo == (0xf0000000 |(CSRROMOFF + 0x10))){
1549 			fc->ongoeui.lo = ntohl(rfp->mode.rresq.data);
1550 			if (fc->ongoeui.hi == 0 && fc->ongoeui.lo == 0) {
1551 				if (firewire_debug)
1552 					printf("node%d: eui64 is zero.\n",
1553 							fc->ongonode);
1554 				goto nextnode;
1555 			}
1556 			fc->ongoaddr = CSRROMOFF;
1557 		}
1558 	}else{
1559 		if (fc->ongoaddr == CSRROMOFF &&
1560 		    fc->ongodev->csrrom[0] == ntohl(rfp->mode.rresq.data)) {
1561 			fc->ongodev->status = FWDEVATTACHED;
1562 			goto nextnode;
1563 		}
1564 		fc->ongodev->csrrom[(fc->ongoaddr - CSRROMOFF)/4] = ntohl(rfp->mode.rresq.data);
1565 		if(fc->ongoaddr > fc->ongodev->rommax){
1566 			fc->ongodev->rommax = fc->ongoaddr;
1567 		}
1568 		csrd = SLIST_FIRST(&fc->ongocsr);
1569 		if((csrd = SLIST_FIRST(&fc->ongocsr)) == NULL){
1570 			chdr = (struct csrhdr *)(fc->ongodev->csrrom);
1571 			offset = CSRROMOFF;
1572 		}else{
1573 			chdr = (struct csrhdr *)&fc->ongodev->csrrom[(csrd->off - CSRROMOFF)/4];
1574 			offset = csrd->off;
1575 		}
1576 		if(fc->ongoaddr > (CSRROMOFF + 0x14) && fc->ongoaddr != offset){
1577 			csrreg = (struct csrreg *)&fc->ongodev->csrrom[(fc->ongoaddr - CSRROMOFF)/4];
1578 			if( csrreg->key == 0x81 || csrreg->key == 0xd1){
1579 				csrd = SLIST_FIRST(&fc->csrfree);
1580 				if(csrd == NULL){
1581 					goto nextnode;
1582 				}else{
1583 					csrd->ongoaddr = fc->ongoaddr;
1584 					fc->ongoaddr += csrreg->val * 4;
1585 					csrd->off = fc->ongoaddr;
1586 					SLIST_REMOVE_HEAD(&fc->csrfree, link);
1587 					SLIST_INSERT_HEAD(&fc->ongocsr, csrd, link);
1588 					goto nextaddr;
1589 				}
1590 			}
1591 		}
1592 		fc->ongoaddr += 4;
1593 		if(((fc->ongoaddr - offset)/4 > chdr->crc_len) &&
1594 				(fc->ongodev->rommax < 0x414)){
1595 			if(fc->ongodev->rommax <= 0x414){
1596 				csrd = SLIST_FIRST(&fc->csrfree);
1597 				if(csrd == NULL) goto nextnode;
1598 				csrd->off = fc->ongoaddr;
1599 				csrd->ongoaddr = fc->ongoaddr;
1600 				SLIST_REMOVE_HEAD(&fc->csrfree, link);
1601 				SLIST_INSERT_HEAD(&fc->ongocsr, csrd, link);
1602 			}
1603 			goto nextaddr;
1604 		}
1605 
1606 		while(((fc->ongoaddr - offset)/4 > chdr->crc_len)){
1607 			if(csrd == NULL){
1608 				goto nextnode;
1609 			};
1610 			fc->ongoaddr = csrd->ongoaddr + 4;
1611 			SLIST_REMOVE_HEAD(&fc->ongocsr, link);
1612 			SLIST_INSERT_HEAD(&fc->csrfree, csrd, link);
1613 			csrd = SLIST_FIRST(&fc->ongocsr);
1614 			if((csrd = SLIST_FIRST(&fc->ongocsr)) == NULL){
1615 				chdr = (struct csrhdr *)(fc->ongodev->csrrom);
1616 				offset = CSRROMOFF;
1617 			}else{
1618 				chdr = (struct csrhdr *)&(fc->ongodev->csrrom[(csrd->off - CSRROMOFF)/4]);
1619 				offset = csrd->off;
1620 			}
1621 		}
1622 		if((fc->ongoaddr - CSRROMOFF) > CSRROMSIZE){
1623 			goto nextnode;
1624 		}
1625 	}
1626 nextaddr:
1627 	fw_xfer_free( xfer);
1628 	fw_bus_explore(fc);
1629 	return;
1630 errnode:
1631 	fc->retry_count++;
1632 	if (fc->ongodev != NULL) {
1633 		fc->ongodev->status = FWDEVINVAL;
1634 		/* Invalidate ROM */
1635 		fc->ongodev->csrrom[0] = 0;
1636 	}
1637 nextnode:
1638 	fw_xfer_free( xfer);
1639 	fc->ongonode++;
1640 /* housekeeping work space */
1641 	fc->ongoaddr = CSRROMOFF;
1642 	fc->ongodev = NULL;
1643 	fc->ongoeui.hi = 0xffffffff; fc->ongoeui.lo = 0xffffffff;
1644 	while((csrd = SLIST_FIRST(&fc->ongocsr)) != NULL){
1645 		SLIST_REMOVE_HEAD(&fc->ongocsr, link);
1646 		SLIST_INSERT_HEAD(&fc->csrfree, csrd, link);
1647 	}
1648 	fw_bus_explore(fc);
1649 	return;
1650 }
1651 
1652 /*
1653  * To attach sub-devices layer onto IEEE1394 bus.
1654  */
1655 static void
1656 fw_attach_dev(struct firewire_comm *fc)
1657 {
1658 	struct fw_device *fwdev, *next;
1659 	int i, err;
1660 	device_t *devlistp;
1661 	int devcnt;
1662 	struct firewire_dev_comm *fdc;
1663 
1664 	for (fwdev = STAILQ_FIRST(&fc->devices); fwdev != NULL; fwdev = next) {
1665 		next = STAILQ_NEXT(fwdev, link);
1666 		if (fwdev->status == FWDEVINIT) {
1667 			fwdev->status = FWDEVATTACHED;
1668 		} else if (fwdev->status == FWDEVINVAL) {
1669 			fwdev->rcnt ++;
1670 			if (fwdev->rcnt > hold_count) {
1671 				/*
1672 				 * Remove devices which have not been seen
1673 				 * for a while.
1674 				 */
1675 				STAILQ_REMOVE(&fc->devices, fwdev, fw_device,
1676 				    link);
1677 				free(fwdev, M_FW);
1678 			}
1679 		}
1680 	}
1681 
1682 	err = device_get_children(fc->bdev, &devlistp, &devcnt);
1683 	if( err != 0 )
1684 		return;
1685 	for( i = 0 ; i < devcnt ; i++){
1686 		if (device_get_state(devlistp[i]) >= DS_ATTACHED)  {
1687 			fdc = device_get_softc(devlistp[i]);
1688 			if (fdc->post_explore != NULL)
1689 				fdc->post_explore(fdc);
1690 		}
1691 	}
1692 	free(devlistp, M_TEMP);
1693 
1694 	if (fc->retry_count > 0) {
1695 		device_printf(fc->bdev, "bus_explore failed for %d nodes\n",
1696 		    fc->retry_count);
1697 #if 0
1698 		callout_reset(&fc->retry_probe_callout, hz*2,
1699 					(void *)fc->ibr, (void *)fc);
1700 #endif
1701 	}
1702 	return;
1703 }
1704 
1705 /*
1706  * To allocate unique transaction label.
1707  */
1708 static int
1709 fw_get_tlabel(struct firewire_comm *fc, struct fw_xfer *xfer)
1710 {
1711 	u_int i;
1712 	struct tlabel *tl, *tmptl;
1713 	int s;
1714 	static uint32_t label = 0;
1715 
1716 	s = splfw();
1717 	for( i = 0 ; i < 0x40 ; i ++){
1718 		label = (label + 1) & 0x3f;
1719 		for(tmptl = STAILQ_FIRST(&fc->tlabels[label]);
1720 			tmptl != NULL; tmptl = STAILQ_NEXT(tmptl, link)){
1721 			if (tmptl->xfer->send.hdr.mode.hdr.dst ==
1722 			    xfer->send.hdr.mode.hdr.dst)
1723 				break;
1724 		}
1725 		if(tmptl == NULL) {
1726 			tl = malloc(sizeof(struct tlabel),M_FW,M_NOWAIT);
1727 			if (tl == NULL) {
1728 				splx(s);
1729 				return (-1);
1730 			}
1731 			tl->xfer = xfer;
1732 			STAILQ_INSERT_TAIL(&fc->tlabels[label], tl, link);
1733 			splx(s);
1734 			if (firewire_debug > 1)
1735 				printf("fw_get_tlabel: dst=%d tl=%d\n",
1736 				    xfer->send.hdr.mode.hdr.dst, label);
1737 			return(label);
1738 		}
1739 	}
1740 	splx(s);
1741 
1742 	if (firewire_debug > 1)
1743 		printf("fw_get_tlabel: no free tlabel\n");
1744 	return(-1);
1745 }
1746 
1747 static void
1748 fw_rcv_copy(struct fw_rcv_buf *rb)
1749 {
1750 	struct fw_pkt *pkt;
1751 	u_char *p;
1752 	struct tcode_info *tinfo;
1753 	u_int res, i, len, plen;
1754 
1755 	rb->xfer->recv.spd -= rb->spd;
1756 
1757 	pkt = (struct fw_pkt *)rb->vec->iov_base;
1758 	tinfo = &rb->fc->tcode[pkt->mode.hdr.tcode];
1759 
1760 	/* Copy header */
1761 	p = (u_char *)&rb->xfer->recv.hdr;
1762 	bcopy(rb->vec->iov_base, p, tinfo->hdr_len);
1763 	rb->vec->iov_base = (u_char *)rb->vec->iov_base + tinfo->hdr_len;
1764 	rb->vec->iov_len -= tinfo->hdr_len;
1765 
1766 	/* Copy payload */
1767 	p = (u_char *)rb->xfer->recv.payload;
1768 	res = rb->xfer->recv.pay_len;
1769 
1770 	/* special handling for RRESQ */
1771 	if (pkt->mode.hdr.tcode == FWTCODE_RRESQ &&
1772 	    p != NULL && res >= sizeof(uint32_t)) {
1773 		*(uint32_t *)p = pkt->mode.rresq.data;
1774 		rb->xfer->recv.pay_len = sizeof(uint32_t);
1775 		return;
1776 	}
1777 
1778 	if ((tinfo->flag & FWTI_BLOCK_ASY) == 0)
1779 		return;
1780 
1781 	plen = pkt->mode.rresb.len;
1782 
1783 	for (i = 0; i < rb->nvec; i++, rb->vec++) {
1784 		len = MIN(rb->vec->iov_len, plen);
1785 		if (res < len) {
1786 			printf("rcv buffer(%d) is %d bytes short.\n",
1787 			    rb->xfer->recv.pay_len, len - res);
1788 			len = res;
1789 		}
1790 		bcopy(rb->vec->iov_base, p, len);
1791 		p += len;
1792 		res -= len;
1793 		plen -= len;
1794 		if (res == 0 || plen == 0)
1795 			break;
1796 	}
1797 	rb->xfer->recv.pay_len -= res;
1798 
1799 }
1800 
1801 /*
1802  * Generic packet receiving process.
1803  */
1804 void
1805 fw_rcv(struct fw_rcv_buf *rb)
1806 {
1807 	struct fw_pkt *fp, *resfp;
1808 	struct fw_bind *bind;
1809 	int tcode, s;
1810 	int i, len, oldstate;
1811 #if 0
1812 	{
1813 		uint32_t *qld;
1814 		int i;
1815 		qld = (uint32_t *)buf;
1816 		printf("spd %d len:%d\n", spd, len);
1817 		for( i = 0 ; i <= len && i < 32; i+= 4){
1818 			printf("0x%08x ", ntohl(qld[i/4]));
1819 			if((i % 16) == 15) printf("\n");
1820 		}
1821 		if((i % 16) != 15) printf("\n");
1822 	}
1823 #endif
1824 	fp = (struct fw_pkt *)rb->vec[0].iov_base;
1825 	tcode = fp->mode.common.tcode;
1826 	switch (tcode) {
1827 	case FWTCODE_WRES:
1828 	case FWTCODE_RRESQ:
1829 	case FWTCODE_RRESB:
1830 	case FWTCODE_LRES:
1831 		rb->xfer = fw_tl2xfer(rb->fc, fp->mode.hdr.src,
1832 					fp->mode.hdr.tlrt >> 2);
1833 		if(rb->xfer == NULL) {
1834 			printf("fw_rcv: unknown response "
1835 			    "%s(%x) src=0x%x tl=0x%x rt=%d data=0x%x\n",
1836 			    tcode_str[tcode], tcode,
1837 			    fp->mode.hdr.src,
1838 			    fp->mode.hdr.tlrt >> 2,
1839 			    fp->mode.hdr.tlrt & 3,
1840 			    fp->mode.rresq.data);
1841 #if 1
1842 			printf("try ad-hoc work around!!\n");
1843 			rb->xfer = fw_tl2xfer(rb->fc, fp->mode.hdr.src,
1844 					(fp->mode.hdr.tlrt >> 2)^3);
1845 			if (rb->xfer == NULL) {
1846 				printf("no use...\n");
1847 				goto err;
1848 			}
1849 #else
1850 			goto err;
1851 #endif
1852 		}
1853 		fw_rcv_copy(rb);
1854 		if (rb->xfer->recv.hdr.mode.wres.rtcode != RESP_CMP)
1855 			rb->xfer->resp = EIO;
1856 		else
1857 			rb->xfer->resp = 0;
1858 		/* make sure the packet is drained in AT queue */
1859 		oldstate = rb->xfer->state;
1860 		rb->xfer->state = FWXF_RCVD;
1861 		switch (oldstate) {
1862 		case FWXF_SENT:
1863 			fw_xfer_done(rb->xfer);
1864 			break;
1865 		case FWXF_START:
1866 #if 0
1867 			if (firewire_debug)
1868 				printf("not sent yet tl=%x\n", rb->xfer->tl);
1869 #endif
1870 			break;
1871 		default:
1872 			printf("unexpected state %d\n", rb->xfer->state);
1873 		}
1874 		return;
1875 	case FWTCODE_WREQQ:
1876 	case FWTCODE_WREQB:
1877 	case FWTCODE_RREQQ:
1878 	case FWTCODE_RREQB:
1879 	case FWTCODE_LREQ:
1880 		bind = fw_bindlookup(rb->fc, fp->mode.rreqq.dest_hi,
1881 			fp->mode.rreqq.dest_lo);
1882 		if(bind == NULL){
1883 			printf("Unknown service addr 0x%04x:0x%08x %s(%x)"
1884 #if defined(__DragonFly__) || __FreeBSD_version < 500000
1885 			    " src=0x%x data=%lx\n",
1886 #else
1887 			    " src=0x%x data=%x\n",
1888 #endif
1889 			    fp->mode.wreqq.dest_hi, fp->mode.wreqq.dest_lo,
1890 			    tcode_str[tcode], tcode,
1891 			    fp->mode.hdr.src, ntohl(fp->mode.wreqq.data));
1892 			if (rb->fc->status == FWBUSRESET) {
1893 				printf("fw_rcv: cannot respond(bus reset)!\n");
1894 				goto err;
1895 			}
1896 			rb->xfer = fw_xfer_alloc(M_FWXFER);
1897 			if(rb->xfer == NULL){
1898 				return;
1899 			}
1900 			rb->xfer->send.spd = rb->spd;
1901 			rb->xfer->send.pay_len = 0;
1902 			resfp = &rb->xfer->send.hdr;
1903 			switch (tcode) {
1904 			case FWTCODE_WREQQ:
1905 			case FWTCODE_WREQB:
1906 				resfp->mode.hdr.tcode = FWTCODE_WRES;
1907 				break;
1908 			case FWTCODE_RREQQ:
1909 				resfp->mode.hdr.tcode = FWTCODE_RRESQ;
1910 				break;
1911 			case FWTCODE_RREQB:
1912 				resfp->mode.hdr.tcode = FWTCODE_RRESB;
1913 				break;
1914 			case FWTCODE_LREQ:
1915 				resfp->mode.hdr.tcode = FWTCODE_LRES;
1916 				break;
1917 			}
1918 			resfp->mode.hdr.dst = fp->mode.hdr.src;
1919 			resfp->mode.hdr.tlrt = fp->mode.hdr.tlrt;
1920 			resfp->mode.hdr.pri = fp->mode.hdr.pri;
1921 			resfp->mode.rresb.rtcode = RESP_ADDRESS_ERROR;
1922 			resfp->mode.rresb.extcode = 0;
1923 			resfp->mode.rresb.len = 0;
1924 /*
1925 			rb->xfer->act.hand = fw_asy_callback;
1926 */
1927 			rb->xfer->act.hand = fw_xfer_free;
1928 			if(fw_asyreq(rb->fc, -1, rb->xfer)){
1929 				fw_xfer_free(rb->xfer);
1930 				return;
1931 			}
1932 			goto err;
1933 		}
1934 		len = 0;
1935 		for (i = 0; i < rb->nvec; i ++)
1936 			len += rb->vec[i].iov_len;
1937 		switch(bind->act_type){
1938 		case FWACT_XFER:
1939 			/* splfw()?? */
1940 			rb->xfer = STAILQ_FIRST(&bind->xferlist);
1941 			if (rb->xfer == NULL) {
1942 				printf("Discard a packet for this bind.\n");
1943 				goto err;
1944 			}
1945 			STAILQ_REMOVE_HEAD(&bind->xferlist, link);
1946 			fw_rcv_copy(rb);
1947 			rb->xfer->act.hand(rb->xfer);
1948 			return;
1949 			break;
1950 		case FWACT_CH:
1951 			if(rb->fc->ir[bind->sub]->queued >=
1952 				rb->fc->ir[bind->sub]->maxq){
1953 				device_printf(rb->fc->bdev,
1954 					"Discard a packet %x %d\n",
1955 					bind->sub,
1956 					rb->fc->ir[bind->sub]->queued);
1957 				goto err;
1958 			}
1959 			rb->xfer = STAILQ_FIRST(&bind->xferlist);
1960 			if (rb->xfer == NULL) {
1961 				printf("Discard packet for this bind\n");
1962 				goto err;
1963 			}
1964 			STAILQ_REMOVE_HEAD(&bind->xferlist, link);
1965 			fw_rcv_copy(rb);
1966 			s = splfw();
1967 			rb->fc->ir[bind->sub]->queued++;
1968 			STAILQ_INSERT_TAIL(&rb->fc->ir[bind->sub]->q,
1969 			    rb->xfer, link);
1970 			splx(s);
1971 
1972 			wakeup((caddr_t)rb->fc->ir[bind->sub]);
1973 
1974 			return;
1975 			break;
1976 		default:
1977 			goto err;
1978 			break;
1979 		}
1980 		break;
1981 #if 0 /* shouldn't happen ?? or for GASP */
1982 	case FWTCODE_STREAM:
1983 	{
1984 		struct fw_xferq *xferq;
1985 
1986 		xferq = rb->fc->ir[sub];
1987 #if 0
1988 		printf("stream rcv dma %d len %d off %d spd %d\n",
1989 			sub, len, off, spd);
1990 #endif
1991 		if(xferq->queued >= xferq->maxq) {
1992 			printf("receive queue is full\n");
1993 			goto err;
1994 		}
1995 		/* XXX get xfer from xfer queue, we don't need copy for
1996 			per packet mode */
1997 		rb->xfer = fw_xfer_alloc_buf(M_FWXFER, 0, /* XXX */
1998 						vec[0].iov_len);
1999 		if (rb->xfer == NULL) goto err;
2000 		fw_rcv_copy(rb)
2001 		s = splfw();
2002 		xferq->queued++;
2003 		STAILQ_INSERT_TAIL(&xferq->q, rb->xfer, link);
2004 		splx(s);
2005 		sc = device_get_softc(rb->fc->bdev);
2006 #if defined(__DragonFly__) || __FreeBSD_version < 500000
2007 		if (&xferq->rsel.si_pid != 0)
2008 #else
2009 		if (SEL_WAITING(&xferq->rsel))
2010 #endif
2011 			selwakeuppri(&xferq->rsel, FWPRI);
2012 		if (xferq->flag & FWXFERQ_WAKEUP) {
2013 			xferq->flag &= ~FWXFERQ_WAKEUP;
2014 			wakeup((caddr_t)xferq);
2015 		}
2016 		if (xferq->flag & FWXFERQ_HANDLER) {
2017 			xferq->hand(xferq);
2018 		}
2019 		return;
2020 		break;
2021 	}
2022 #endif
2023 	default:
2024 		printf("fw_rcv: unknow tcode %d\n", tcode);
2025 		break;
2026 	}
2027 err:
2028 	return;
2029 }
2030 
2031 /*
2032  * Post process for Bus Manager election process.
2033  */
2034 static void
2035 fw_try_bmr_callback(struct fw_xfer *xfer)
2036 {
2037 	struct firewire_comm *fc;
2038 	int bmr;
2039 
2040 	if (xfer == NULL)
2041 		return;
2042 	fc = xfer->fc;
2043 	if (xfer->resp != 0)
2044 		goto error;
2045 	if (xfer->recv.payload == NULL)
2046 		goto error;
2047 	if (xfer->recv.hdr.mode.lres.rtcode != FWRCODE_COMPLETE)
2048 		goto error;
2049 
2050 	bmr = ntohl(xfer->recv.payload[0]);
2051 	if (bmr == 0x3f)
2052 		bmr = fc->nodeid;
2053 
2054 	CSRARC(fc, BUS_MGR_ID) = fc->set_bmr(fc, bmr & 0x3f);
2055 	fw_xfer_free_buf(xfer);
2056 	fw_bmr(fc);
2057 	return;
2058 
2059 error:
2060 	device_printf(fc->bdev, "bus manager election failed\n");
2061 	fw_xfer_free_buf(xfer);
2062 }
2063 
2064 
2065 /*
2066  * To candidate Bus Manager election process.
2067  */
2068 static void
2069 fw_try_bmr(void *arg)
2070 {
2071 	struct fw_xfer *xfer;
2072 	struct firewire_comm *fc = (struct firewire_comm *)arg;
2073 	struct fw_pkt *fp;
2074 	int err = 0;
2075 
2076 	xfer = fw_xfer_alloc_buf(M_FWXFER, 8, 4);
2077 	if(xfer == NULL){
2078 		return;
2079 	}
2080 	xfer->send.spd = 0;
2081 	fc->status = FWBUSMGRELECT;
2082 
2083 	fp = &xfer->send.hdr;
2084 	fp->mode.lreq.dest_hi = 0xffff;
2085 	fp->mode.lreq.tlrt = 0;
2086 	fp->mode.lreq.tcode = FWTCODE_LREQ;
2087 	fp->mode.lreq.pri = 0;
2088 	fp->mode.lreq.src = 0;
2089 	fp->mode.lreq.len = 8;
2090 	fp->mode.lreq.extcode = EXTCODE_CMP_SWAP;
2091 	fp->mode.lreq.dst = FWLOCALBUS | fc->irm;
2092 	fp->mode.lreq.dest_lo = 0xf0000000 | BUS_MGR_ID;
2093 	xfer->send.payload[0] = htonl(0x3f);
2094 	xfer->send.payload[1] = htonl(fc->nodeid);
2095 	xfer->act.hand = fw_try_bmr_callback;
2096 
2097 	err = fw_asyreq(fc, -1, xfer);
2098 	if(err){
2099 		fw_xfer_free_buf(xfer);
2100 		return;
2101 	}
2102 	return;
2103 }
2104 
2105 #ifdef FW_VMACCESS
2106 /*
2107  * Software implementation for physical memory block access.
2108  * XXX:Too slow, usef for debug purpose only.
2109  */
2110 static void
2111 fw_vmaccess(struct fw_xfer *xfer){
2112 	struct fw_pkt *rfp, *sfp = NULL;
2113 	uint32_t *ld = (uint32_t *)xfer->recv.buf;
2114 
2115 	printf("vmaccess spd:%2x len:%03x data:%08x %08x %08x %08x\n",
2116 			xfer->spd, xfer->recv.len, ntohl(ld[0]), ntohl(ld[1]), ntohl(ld[2]), ntohl(ld[3]));
2117 	printf("vmaccess          data:%08x %08x %08x %08x\n", ntohl(ld[4]), ntohl(ld[5]), ntohl(ld[6]), ntohl(ld[7]));
2118 	if(xfer->resp != 0){
2119 		fw_xfer_free( xfer);
2120 		return;
2121 	}
2122 	if(xfer->recv.buf == NULL){
2123 		fw_xfer_free( xfer);
2124 		return;
2125 	}
2126 	rfp = (struct fw_pkt *)xfer->recv.buf;
2127 	switch(rfp->mode.hdr.tcode){
2128 		/* XXX need fix for 64bit arch */
2129 		case FWTCODE_WREQB:
2130 			xfer->send.buf = malloc(12, M_FW, M_NOWAIT);
2131 			xfer->send.len = 12;
2132 			sfp = (struct fw_pkt *)xfer->send.buf;
2133 			bcopy(rfp->mode.wreqb.payload,
2134 				(caddr_t)ntohl(rfp->mode.wreqb.dest_lo), ntohs(rfp->mode.wreqb.len));
2135 			sfp->mode.wres.tcode = FWTCODE_WRES;
2136 			sfp->mode.wres.rtcode = 0;
2137 			break;
2138 		case FWTCODE_WREQQ:
2139 			xfer->send.buf = malloc(12, M_FW, M_NOWAIT);
2140 			xfer->send.len = 12;
2141 			sfp->mode.wres.tcode = FWTCODE_WRES;
2142 			*((uint32_t *)(ntohl(rfp->mode.wreqb.dest_lo))) = rfp->mode.wreqq.data;
2143 			sfp->mode.wres.rtcode = 0;
2144 			break;
2145 		case FWTCODE_RREQB:
2146 			xfer->send.buf = malloc(16 + rfp->mode.rreqb.len, M_FW, M_NOWAIT);
2147 			xfer->send.len = 16 + ntohs(rfp->mode.rreqb.len);
2148 			sfp = (struct fw_pkt *)xfer->send.buf;
2149 			bcopy((caddr_t)ntohl(rfp->mode.rreqb.dest_lo),
2150 				sfp->mode.rresb.payload, (uint16_t)ntohs(rfp->mode.rreqb.len));
2151 			sfp->mode.rresb.tcode = FWTCODE_RRESB;
2152 			sfp->mode.rresb.len = rfp->mode.rreqb.len;
2153 			sfp->mode.rresb.rtcode = 0;
2154 			sfp->mode.rresb.extcode = 0;
2155 			break;
2156 		case FWTCODE_RREQQ:
2157 			xfer->send.buf = malloc(16, M_FW, M_NOWAIT);
2158 			xfer->send.len = 16;
2159 			sfp = (struct fw_pkt *)xfer->send.buf;
2160 			sfp->mode.rresq.data = *(uint32_t *)(ntohl(rfp->mode.rreqq.dest_lo));
2161 			sfp->mode.wres.tcode = FWTCODE_RRESQ;
2162 			sfp->mode.rresb.rtcode = 0;
2163 			break;
2164 		default:
2165 			fw_xfer_free( xfer);
2166 			return;
2167 	}
2168 	sfp->mode.hdr.dst = rfp->mode.hdr.src;
2169 	xfer->dst = ntohs(rfp->mode.hdr.src);
2170 	xfer->act.hand = fw_xfer_free;
2171 	xfer->retry_req = fw_asybusy;
2172 
2173 	sfp->mode.hdr.tlrt = rfp->mode.hdr.tlrt;
2174 	sfp->mode.hdr.pri = 0;
2175 
2176 	fw_asyreq(xfer->fc, -1, xfer);
2177 /**/
2178 	return;
2179 }
2180 #endif
2181 
2182 /*
2183  * CRC16 check-sum for IEEE1394 register blocks.
2184  */
2185 uint16_t
2186 fw_crc16(uint32_t *ptr, uint32_t len){
2187 	uint32_t i, sum, crc = 0;
2188 	int shift;
2189 	len = (len + 3) & ~3;
2190 	for(i = 0 ; i < len ; i+= 4){
2191 		for( shift = 28 ; shift >= 0 ; shift -= 4){
2192 			sum = ((crc >> 12) ^ (ptr[i/4] >> shift)) & 0xf;
2193 			crc = (crc << 4) ^ ( sum << 12 ) ^ ( sum << 5) ^ sum;
2194 		}
2195 		crc &= 0xffff;
2196 	}
2197 	return((uint16_t) crc);
2198 }
2199 
2200 static int
2201 fw_bmr(struct firewire_comm *fc)
2202 {
2203 	struct fw_device fwdev;
2204 	union fw_self_id *self_id;
2205 	int cmstr;
2206 	uint32_t quad;
2207 
2208 	/* Check to see if the current root node is cycle master capable */
2209 	self_id = fw_find_self_id(fc, fc->max_node);
2210 	if (fc->max_node > 0) {
2211 		/* XXX check cmc bit of businfo block rather than contender */
2212 		if (self_id->p0.link_active && self_id->p0.contender)
2213 			cmstr = fc->max_node;
2214 		else {
2215 			device_printf(fc->bdev,
2216 				"root node is not cycle master capable\n");
2217 			/* XXX shall we be the cycle master? */
2218 			cmstr = fc->nodeid;
2219 			/* XXX need bus reset */
2220 		}
2221 	} else
2222 		cmstr = -1;
2223 
2224 	device_printf(fc->bdev, "bus manager %d ", CSRARC(fc, BUS_MGR_ID));
2225 	if(CSRARC(fc, BUS_MGR_ID) != fc->nodeid) {
2226 		/* We are not the bus manager */
2227 		printf("\n");
2228 		return(0);
2229 	}
2230 	printf("(me)\n");
2231 
2232 	/* Optimize gapcount */
2233 	if(fc->max_hop <= MAX_GAPHOP )
2234 		fw_phy_config(fc, cmstr, gap_cnt[fc->max_hop]);
2235 	/* If we are the cycle master, nothing to do */
2236 	if (cmstr == fc->nodeid || cmstr == -1)
2237 		return 0;
2238 	/* Bus probe has not finished, make dummy fwdev for cmstr */
2239 	bzero(&fwdev, sizeof(fwdev));
2240 	fwdev.fc = fc;
2241 	fwdev.dst = cmstr;
2242 	fwdev.speed = 0;
2243 	fwdev.maxrec = 8; /* 512 */
2244 	fwdev.status = FWDEVINIT;
2245 	/* Set cmstr bit on the cycle master */
2246 	quad = htonl(1 << 8);
2247 	fwmem_write_quad(&fwdev, NULL, 0/*spd*/,
2248 		0xffff, 0xf0000000 | STATE_SET, &quad, fw_asy_callback_free);
2249 
2250 	return 0;
2251 }
2252 
2253 static int
2254 fw_modevent(module_t mode, int type, void *data)
2255 {
2256 	int err = 0;
2257 #if defined(__FreeBSD__) && __FreeBSD_version >= 500000
2258 	static eventhandler_tag fwdev_ehtag = NULL;
2259 #endif
2260 
2261 	switch (type) {
2262 	case MOD_LOAD:
2263 #if defined(__FreeBSD__) && __FreeBSD_version >= 500000
2264 		fwdev_ehtag = EVENTHANDLER_REGISTER(dev_clone,
2265 						fwdev_clone, 0, 1000);
2266 #endif
2267 		break;
2268 	case MOD_UNLOAD:
2269 #if defined(__FreeBSD__) && __FreeBSD_version >= 500000
2270 		if (fwdev_ehtag != NULL)
2271 			EVENTHANDLER_DEREGISTER(dev_clone, fwdev_ehtag);
2272 #endif
2273 		break;
2274 	case MOD_SHUTDOWN:
2275 		break;
2276 	default:
2277 		return (EOPNOTSUPP);
2278 	}
2279 	return (err);
2280 }
2281 
2282 
2283 #ifdef __DragonFly__
2284 DECLARE_DUMMY_MODULE(firewire);
2285 #endif
2286 DRIVER_MODULE(firewire,fwohci,firewire_driver,firewire_devclass,fw_modevent,0);
2287 MODULE_VERSION(firewire, 1);
2288