xref: /freebsd/sys/dev/ffec/if_ffec.c (revision fae50821ae22099d0406090228bc4c5b6af693ad)
1 /*-
2  * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * Driver for Freescale Fast Ethernet Controller, found on imx-series SoCs among
33  * others.  Also works for the ENET Gigibit controller found on imx6 and imx28,
34  * but the driver doesn't currently use any of the ENET advanced features other
35  * than enabling gigabit.
36  *
37  * The interface name 'fec' is already taken by netgraph's Fast Etherchannel
38  * (netgraph/ng_fec.c), so we use 'ffec'.
39  *
40  * Requires an FDT entry with at least these properties:
41  *   fec: ethernet@02188000 {
42  *      compatible = "fsl,imxNN-fec";
43  *      reg = <0x02188000 0x4000>;
44  *      interrupts = <150 151>;
45  *      phy-mode = "rgmii";
46  *      phy-disable-preamble; // optional
47  *   };
48  * The second interrupt number is for IEEE-1588, and is not currently used; it
49  * need not be present.  phy-mode must be one of: "mii", "rmii", "rgmii".
50  * There is also an optional property, phy-disable-preamble, which if present
51  * will disable the preamble bits, cutting the size of each mdio transaction
52  * (and thus the busy-wait time) in half.
53  */
54 
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/bus.h>
58 #include <sys/endian.h>
59 #include <sys/kernel.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mbuf.h>
63 #include <sys/module.h>
64 #include <sys/mutex.h>
65 #include <sys/rman.h>
66 #include <sys/socket.h>
67 #include <sys/sockio.h>
68 #include <sys/sysctl.h>
69 
70 #include <machine/bus.h>
71 
72 #include <net/bpf.h>
73 #include <net/if.h>
74 #include <net/ethernet.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_types.h>
78 #include <net/if_var.h>
79 #include <net/if_vlan_var.h>
80 
81 #include <dev/ffec/if_ffecreg.h>
82 #include <dev/ofw/ofw_bus.h>
83 #include <dev/ofw/ofw_bus_subr.h>
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include "miibus_if.h"
87 
88 /*
89  * There are small differences in the hardware on various SoCs.  Not every SoC
90  * we support has its own FECTYPE; most work as GENERIC and only the ones that
91  * need different handling get their own entry.  In addition to the types in
92  * this list, there are some flags below that can be ORed into the upper bits.
93  */
94 enum {
95 	FECTYPE_NONE,
96 	FECTYPE_GENERIC,
97 	FECTYPE_IMX53,
98 	FECTYPE_IMX6,
99 	FECTYPE_MVF,
100 };
101 
102 /*
103  * Flags that describe general differences between the FEC hardware in various
104  * SoCs.  These are ORed into the FECTYPE enum values.
105  */
106 #define	FECTYPE_MASK		0x0000ffff
107 #define	FECFLAG_GBE		(0x0001 << 16)
108 
109 /*
110  * Table of supported FDT compat strings and their associated FECTYPE values.
111  */
112 static struct ofw_compat_data compat_data[] = {
113 	{"fsl,imx51-fec",	FECTYPE_GENERIC},
114 	{"fsl,imx53-fec",	FECTYPE_IMX53},
115 	{"fsl,imx6q-fec",	FECTYPE_IMX6 | FECFLAG_GBE},
116 	{"fsl,mvf600-fec",	FECTYPE_MVF},
117 	{"fsl,mvf-fec",		FECTYPE_MVF},
118 	{NULL,		 	FECTYPE_NONE},
119 };
120 
121 /*
122  * Driver data and defines.
123  */
124 #define	RX_DESC_COUNT	64
125 #define	RX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * RX_DESC_COUNT)
126 #define	TX_DESC_COUNT	64
127 #define	TX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * TX_DESC_COUNT)
128 
129 #define	WATCHDOG_TIMEOUT_SECS	5
130 #define	STATS_HARVEST_INTERVAL	3
131 
132 struct ffec_bufmap {
133 	struct mbuf	*mbuf;
134 	bus_dmamap_t	map;
135 };
136 
137 enum {
138 	PHY_CONN_UNKNOWN,
139 	PHY_CONN_MII,
140 	PHY_CONN_RMII,
141 	PHY_CONN_RGMII
142 };
143 
144 struct ffec_softc {
145 	device_t		dev;
146 	device_t		miibus;
147 	struct mii_data *	mii_softc;
148 	struct ifnet		*ifp;
149 	int			if_flags;
150 	struct mtx		mtx;
151 	struct resource		*irq_res;
152 	struct resource		*mem_res;
153 	void *			intr_cookie;
154 	struct callout		ffec_callout;
155 	uint8_t			phy_conn_type;
156 	uint8_t			fectype;
157 	boolean_t		link_is_up;
158 	boolean_t		is_attached;
159 	boolean_t		is_detaching;
160 	int			tx_watchdog_count;
161 	int			stats_harvest_count;
162 
163 	bus_dma_tag_t		rxdesc_tag;
164 	bus_dmamap_t		rxdesc_map;
165 	struct ffec_hwdesc	*rxdesc_ring;
166 	bus_addr_t		rxdesc_ring_paddr;
167 	bus_dma_tag_t		rxbuf_tag;
168 	struct ffec_bufmap	rxbuf_map[RX_DESC_COUNT];
169 	uint32_t		rx_idx;
170 
171 	bus_dma_tag_t		txdesc_tag;
172 	bus_dmamap_t		txdesc_map;
173 	struct ffec_hwdesc	*txdesc_ring;
174 	bus_addr_t		txdesc_ring_paddr;
175 	bus_dma_tag_t		txbuf_tag;
176 	struct ffec_bufmap	txbuf_map[RX_DESC_COUNT];
177 	uint32_t		tx_idx_head;
178 	uint32_t		tx_idx_tail;
179 	int			txcount;
180 };
181 
182 #define	FFEC_LOCK(sc)			mtx_lock(&(sc)->mtx)
183 #define	FFEC_UNLOCK(sc)			mtx_unlock(&(sc)->mtx)
184 #define	FFEC_LOCK_INIT(sc)		mtx_init(&(sc)->mtx, \
185 	    device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF)
186 #define	FFEC_LOCK_DESTROY(sc)		mtx_destroy(&(sc)->mtx);
187 #define	FFEC_ASSERT_LOCKED(sc)		mtx_assert(&(sc)->mtx, MA_OWNED);
188 #define	FFEC_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED);
189 
190 static void ffec_init_locked(struct ffec_softc *sc);
191 static void ffec_stop_locked(struct ffec_softc *sc);
192 static void ffec_txstart_locked(struct ffec_softc *sc);
193 static void ffec_txfinish_locked(struct ffec_softc *sc);
194 
195 static inline uint16_t
196 RD2(struct ffec_softc *sc, bus_size_t off)
197 {
198 
199 	return (bus_read_2(sc->mem_res, off));
200 }
201 
202 static inline void
203 WR2(struct ffec_softc *sc, bus_size_t off, uint16_t val)
204 {
205 
206 	bus_write_2(sc->mem_res, off, val);
207 }
208 
209 static inline uint32_t
210 RD4(struct ffec_softc *sc, bus_size_t off)
211 {
212 
213 	return (bus_read_4(sc->mem_res, off));
214 }
215 
216 static inline void
217 WR4(struct ffec_softc *sc, bus_size_t off, uint32_t val)
218 {
219 
220 	bus_write_4(sc->mem_res, off, val);
221 }
222 
223 static inline uint32_t
224 next_rxidx(struct ffec_softc *sc, uint32_t curidx)
225 {
226 
227 	return ((curidx == RX_DESC_COUNT - 1) ? 0 : curidx + 1);
228 }
229 
230 static inline uint32_t
231 next_txidx(struct ffec_softc *sc, uint32_t curidx)
232 {
233 
234 	return ((curidx == TX_DESC_COUNT - 1) ? 0 : curidx + 1);
235 }
236 
237 static void
238 ffec_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
239 {
240 
241 	if (error != 0)
242 		return;
243 	*(bus_addr_t *)arg = segs[0].ds_addr;
244 }
245 
246 static void
247 ffec_miigasket_setup(struct ffec_softc *sc)
248 {
249 	uint32_t ifmode;
250 
251 	/*
252 	 * We only need the gasket for MII and RMII connections on certain SoCs.
253 	 */
254 
255 	switch (sc->fectype & FECTYPE_MASK)
256 	{
257 	case FECTYPE_IMX53:
258 		break;
259 	default:
260 		return;
261 	}
262 
263 	switch (sc->phy_conn_type)
264 	{
265 	case PHY_CONN_MII:
266 		ifmode = 0;
267 		break;
268 	case PHY_CONN_RMII:
269 		ifmode = FEC_MIIGSK_CFGR_IF_MODE_RMII;
270 		break;
271 	default:
272 		return;
273 	}
274 
275 	/*
276 	 * Disable the gasket, configure for either MII or RMII, then enable.
277 	 */
278 
279 	WR2(sc, FEC_MIIGSK_ENR, 0);
280 	while (RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY)
281 		continue;
282 
283 	WR2(sc, FEC_MIIGSK_CFGR, ifmode);
284 
285 	WR2(sc, FEC_MIIGSK_ENR, FEC_MIIGSK_ENR_EN);
286 	while (!(RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY))
287 		continue;
288 }
289 
290 static boolean_t
291 ffec_miibus_iowait(struct ffec_softc *sc)
292 {
293 	uint32_t timeout;
294 
295 	for (timeout = 10000; timeout != 0; --timeout)
296 		if (RD4(sc, FEC_IER_REG) & FEC_IER_MII)
297 			return (true);
298 
299 	return (false);
300 }
301 
302 static int
303 ffec_miibus_readreg(device_t dev, int phy, int reg)
304 {
305 	struct ffec_softc *sc;
306 	int val;
307 
308 	sc = device_get_softc(dev);
309 
310 	WR4(sc, FEC_IER_REG, FEC_IER_MII);
311 
312 	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_READ |
313 	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
314 	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
315 	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK));
316 
317 	if (!ffec_miibus_iowait(sc)) {
318 		device_printf(dev, "timeout waiting for mii read\n");
319 		return (-1); /* All-ones is a symptom of bad mdio. */
320 	}
321 
322 	val = RD4(sc, FEC_MMFR_REG) & FEC_MMFR_DATA_MASK;
323 
324 	return (val);
325 }
326 
327 static int
328 ffec_miibus_writereg(device_t dev, int phy, int reg, int val)
329 {
330 	struct ffec_softc *sc;
331 
332 	sc = device_get_softc(dev);
333 
334 	WR4(sc, FEC_IER_REG, FEC_IER_MII);
335 
336 	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_WRITE |
337 	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
338 	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
339 	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK) |
340 	    (val & FEC_MMFR_DATA_MASK));
341 
342 	if (!ffec_miibus_iowait(sc)) {
343 		device_printf(dev, "timeout waiting for mii write\n");
344 		return (-1);
345 	}
346 
347 	return (0);
348 }
349 
350 static void
351 ffec_miibus_statchg(device_t dev)
352 {
353 	struct ffec_softc *sc;
354 	struct mii_data *mii;
355 	uint32_t ecr, rcr, tcr;
356 
357 	/*
358 	 * Called by the MII bus driver when the PHY establishes link to set the
359 	 * MAC interface registers.
360 	 */
361 
362 	sc = device_get_softc(dev);
363 
364 	FFEC_ASSERT_LOCKED(sc);
365 
366 	mii = sc->mii_softc;
367 
368 	if (mii->mii_media_status & IFM_ACTIVE)
369 		sc->link_is_up = true;
370 	else
371 		sc->link_is_up = false;
372 
373 	ecr = RD4(sc, FEC_ECR_REG) & ~FEC_ECR_SPEED;
374 	rcr = RD4(sc, FEC_RCR_REG) & ~(FEC_RCR_RMII_10T | FEC_RCR_RMII_MODE |
375 	    FEC_RCR_RGMII_EN | FEC_RCR_DRT | FEC_RCR_FCE);
376 	tcr = RD4(sc, FEC_TCR_REG) & ~FEC_TCR_FDEN;
377 
378 	rcr |= FEC_RCR_MII_MODE; /* Must always be on even for R[G]MII. */
379 	switch (sc->phy_conn_type) {
380 	case PHY_CONN_MII:
381 		break;
382 	case PHY_CONN_RMII:
383 		rcr |= FEC_RCR_RMII_MODE;
384 		break;
385 	case PHY_CONN_RGMII:
386 		rcr |= FEC_RCR_RGMII_EN;
387 		break;
388 	}
389 
390 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
391 	case IFM_1000_T:
392 	case IFM_1000_SX:
393 		ecr |= FEC_ECR_SPEED;
394 		break;
395 	case IFM_100_TX:
396 		/* Not-FEC_ECR_SPEED + not-FEC_RCR_RMII_10T means 100TX */
397 		break;
398 	case IFM_10_T:
399 		rcr |= FEC_RCR_RMII_10T;
400 		break;
401 	case IFM_NONE:
402 		sc->link_is_up = false;
403 		return;
404 	default:
405 		sc->link_is_up = false;
406 		device_printf(dev, "Unsupported media %u\n",
407 		    IFM_SUBTYPE(mii->mii_media_active));
408 		return;
409 	}
410 
411 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
412 		tcr |= FEC_TCR_FDEN;
413 	else
414 		rcr |= FEC_RCR_DRT;
415 
416 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLOW) != 0)
417 		rcr |= FEC_RCR_FCE;
418 
419 	WR4(sc, FEC_RCR_REG, rcr);
420 	WR4(sc, FEC_TCR_REG, tcr);
421 	WR4(sc, FEC_ECR_REG, ecr);
422 }
423 
424 static void
425 ffec_media_status(struct ifnet * ifp, struct ifmediareq *ifmr)
426 {
427 	struct ffec_softc *sc;
428 	struct mii_data *mii;
429 
430 
431 	sc = ifp->if_softc;
432 	mii = sc->mii_softc;
433 	FFEC_LOCK(sc);
434 	mii_pollstat(mii);
435 	ifmr->ifm_active = mii->mii_media_active;
436 	ifmr->ifm_status = mii->mii_media_status;
437 	FFEC_UNLOCK(sc);
438 }
439 
440 static int
441 ffec_media_change_locked(struct ffec_softc *sc)
442 {
443 
444 	return (mii_mediachg(sc->mii_softc));
445 }
446 
447 static int
448 ffec_media_change(struct ifnet * ifp)
449 {
450 	struct ffec_softc *sc;
451 	int error;
452 
453 	sc = ifp->if_softc;
454 
455 	FFEC_LOCK(sc);
456 	error = ffec_media_change_locked(sc);
457 	FFEC_UNLOCK(sc);
458 	return (error);
459 }
460 
461 static void ffec_clear_stats(struct ffec_softc *sc)
462 {
463 
464 	WR4(sc, FEC_RMON_R_PACKETS, 0);
465 	WR4(sc, FEC_RMON_R_MC_PKT, 0);
466 	WR4(sc, FEC_RMON_R_CRC_ALIGN, 0);
467 	WR4(sc, FEC_RMON_R_UNDERSIZE, 0);
468 	WR4(sc, FEC_RMON_R_OVERSIZE, 0);
469 	WR4(sc, FEC_RMON_R_FRAG, 0);
470 	WR4(sc, FEC_RMON_R_JAB, 0);
471 	WR4(sc, FEC_RMON_T_PACKETS, 0);
472 	WR4(sc, FEC_RMON_T_MC_PKT, 0);
473 	WR4(sc, FEC_RMON_T_CRC_ALIGN, 0);
474 	WR4(sc, FEC_RMON_T_UNDERSIZE, 0);
475 	WR4(sc, FEC_RMON_T_OVERSIZE , 0);
476 	WR4(sc, FEC_RMON_T_FRAG, 0);
477 	WR4(sc, FEC_RMON_T_JAB, 0);
478 	WR4(sc, FEC_RMON_T_COL, 0);
479 }
480 
481 static void
482 ffec_harvest_stats(struct ffec_softc *sc)
483 {
484 	struct ifnet *ifp;
485 
486 	/* We don't need to harvest too often. */
487 	if (++sc->stats_harvest_count < STATS_HARVEST_INTERVAL)
488 		return;
489 
490 	/*
491 	 * Try to avoid harvesting unless the IDLE flag is on, but if it has
492 	 * been too long just go ahead and do it anyway, the worst that'll
493 	 * happen is we'll lose a packet count or two as we clear at the end.
494 	 */
495 	if (sc->stats_harvest_count < (2 * STATS_HARVEST_INTERVAL) &&
496 	    ((RD4(sc, FEC_MIBC_REG) & FEC_MIBC_IDLE) == 0))
497 		return;
498 
499 	sc->stats_harvest_count = 0;
500 	ifp = sc->ifp;
501 
502 	ifp->if_ipackets   += RD4(sc, FEC_RMON_R_PACKETS);
503 	ifp->if_imcasts    += RD4(sc, FEC_RMON_R_MC_PKT);
504 	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_CRC_ALIGN);
505 	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_UNDERSIZE);
506 	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_OVERSIZE);
507 	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_FRAG);
508 	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_JAB);
509 
510 	ifp->if_opackets   += RD4(sc, FEC_RMON_T_PACKETS);
511 	ifp->if_omcasts    += RD4(sc, FEC_RMON_T_MC_PKT);
512 	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_CRC_ALIGN);
513 	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_UNDERSIZE);
514 	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_OVERSIZE );
515 	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_FRAG);
516 	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_JAB);
517 
518 	ifp->if_collisions += RD4(sc, FEC_RMON_T_COL);
519 
520 	ffec_clear_stats(sc);
521 }
522 
523 static void
524 ffec_tick(void *arg)
525 {
526 	struct ffec_softc *sc;
527 	struct ifnet *ifp;
528 	int link_was_up;
529 
530 	sc = arg;
531 
532 	FFEC_ASSERT_LOCKED(sc);
533 
534 	ifp = sc->ifp;
535 
536 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
537 	    return;
538 
539 	/*
540 	 * Typical tx watchdog.  If this fires it indicates that we enqueued
541 	 * packets for output and never got a txdone interrupt for them.  Maybe
542 	 * it's a missed interrupt somehow, just pretend we got one.
543 	 */
544 	if (sc->tx_watchdog_count > 0) {
545 		if (--sc->tx_watchdog_count == 0) {
546 			ffec_txfinish_locked(sc);
547 		}
548 	}
549 
550 	/* Gather stats from hardware counters. */
551 	ffec_harvest_stats(sc);
552 
553 	/* Check the media status. */
554 	link_was_up = sc->link_is_up;
555 	mii_tick(sc->mii_softc);
556 	if (sc->link_is_up && !link_was_up)
557 		ffec_txstart_locked(sc);
558 
559 	/* Schedule another check one second from now. */
560 	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
561 }
562 
563 inline static uint32_t
564 ffec_setup_txdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr,
565     uint32_t len)
566 {
567 	uint32_t nidx;
568 	uint32_t flags;
569 
570 	nidx = next_txidx(sc, idx);
571 
572 	/* Addr/len 0 means we're clearing the descriptor after xmit done. */
573 	if (paddr == 0 || len == 0) {
574 		flags = 0;
575 		--sc->txcount;
576 	} else {
577 		flags = FEC_TXDESC_READY | FEC_TXDESC_L | FEC_TXDESC_TC;
578 		++sc->txcount;
579 	}
580 	if (nidx == 0)
581 		flags |= FEC_TXDESC_WRAP;
582 
583 	/*
584 	 * The hardware requires 32-bit physical addresses.  We set up the dma
585 	 * tag to indicate that, so the cast to uint32_t should never lose
586 	 * significant bits.
587 	 */
588 	sc->txdesc_ring[idx].buf_paddr = (uint32_t)paddr;
589 	sc->txdesc_ring[idx].flags_len = flags | len; /* Must be set last! */
590 
591 	return (nidx);
592 }
593 
594 static int
595 ffec_setup_txbuf(struct ffec_softc *sc, int idx, struct mbuf **mp)
596 {
597 	struct mbuf * m;
598 	int error, nsegs;
599 	struct bus_dma_segment seg;
600 
601 	if ((m = m_defrag(*mp, M_NOWAIT)) == NULL)
602 		return (ENOMEM);
603 	*mp = m;
604 
605 	error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map,
606 	    m, &seg, &nsegs, 0);
607 	if (error != 0) {
608 		return (ENOMEM);
609 	}
610 	bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map,
611 	    BUS_DMASYNC_PREWRITE);
612 
613 	sc->txbuf_map[idx].mbuf = m;
614 	ffec_setup_txdesc(sc, idx, seg.ds_addr, seg.ds_len);
615 
616 	return (0);
617 
618 }
619 
620 static void
621 ffec_txstart_locked(struct ffec_softc *sc)
622 {
623 	struct ifnet *ifp;
624 	struct mbuf *m;
625 	int enqueued;
626 
627 	FFEC_ASSERT_LOCKED(sc);
628 
629 	if (!sc->link_is_up)
630 		return;
631 
632 	ifp = sc->ifp;
633 
634 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
635 		return;
636 
637 	enqueued = 0;
638 
639 	for (;;) {
640 		if (sc->txcount == (TX_DESC_COUNT-1)) {
641 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
642 			break;
643 		}
644 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
645 		if (m == NULL)
646 			break;
647 		if (ffec_setup_txbuf(sc, sc->tx_idx_head, &m) != 0) {
648 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
649 			break;
650 		}
651 		BPF_MTAP(ifp, m);
652 		sc->tx_idx_head = next_txidx(sc, sc->tx_idx_head);
653 		++enqueued;
654 	}
655 
656 	if (enqueued != 0) {
657 		WR4(sc, FEC_TDAR_REG, FEC_TDAR_TDAR);
658 		sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS;
659 	}
660 }
661 
662 static void
663 ffec_txstart(struct ifnet *ifp)
664 {
665 	struct ffec_softc *sc = ifp->if_softc;
666 
667 	FFEC_LOCK(sc);
668 	ffec_txstart_locked(sc);
669 	FFEC_UNLOCK(sc);
670 }
671 
672 static void
673 ffec_txfinish_locked(struct ffec_softc *sc)
674 {
675 	struct ifnet *ifp;
676 	struct ffec_hwdesc *desc;
677 	struct ffec_bufmap *bmap;
678 	boolean_t retired_buffer;
679 
680 	FFEC_ASSERT_LOCKED(sc);
681 
682 	ifp = sc->ifp;
683 	retired_buffer = false;
684 	while (sc->tx_idx_tail != sc->tx_idx_head) {
685 		desc = &sc->txdesc_ring[sc->tx_idx_tail];
686 		if (desc->flags_len & FEC_TXDESC_READY)
687 			break;
688 		retired_buffer = true;
689 		bmap = &sc->txbuf_map[sc->tx_idx_tail];
690 		bus_dmamap_sync(sc->txbuf_tag, bmap->map,
691 		    BUS_DMASYNC_POSTWRITE);
692 		bus_dmamap_unload(sc->txbuf_tag, bmap->map);
693 		m_freem(bmap->mbuf);
694 		bmap->mbuf = NULL;
695 		ffec_setup_txdesc(sc, sc->tx_idx_tail, 0, 0);
696 		sc->tx_idx_tail = next_txidx(sc, sc->tx_idx_tail);
697 	}
698 
699 	/*
700 	 * If we retired any buffers, there will be open tx slots available in
701 	 * the descriptor ring, go try to start some new output.
702 	 */
703 	if (retired_buffer) {
704 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
705 		ffec_txstart_locked(sc);
706 	}
707 
708 	/* If there are no buffers outstanding, muzzle the watchdog. */
709 	if (sc->tx_idx_tail == sc->tx_idx_head) {
710 		sc->tx_watchdog_count = 0;
711 	}
712 }
713 
714 inline static uint32_t
715 ffec_setup_rxdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr)
716 {
717 	uint32_t nidx;
718 
719 	/*
720 	 * The hardware requires 32-bit physical addresses.  We set up the dma
721 	 * tag to indicate that, so the cast to uint32_t should never lose
722 	 * significant bits.
723 	 */
724 	nidx = next_rxidx(sc, idx);
725 	sc->rxdesc_ring[idx].buf_paddr = (uint32_t)paddr;
726 	sc->rxdesc_ring[idx].flags_len = FEC_RXDESC_EMPTY |
727 		((nidx == 0) ? FEC_RXDESC_WRAP : 0);
728 
729 	return (nidx);
730 }
731 
732 static int
733 ffec_setup_rxbuf(struct ffec_softc *sc, int idx, struct mbuf * m)
734 {
735 	int error, nsegs;
736 	struct bus_dma_segment seg;
737 
738 	/*
739 	 * We need to leave at least ETHER_ALIGN bytes free at the beginning of
740 	 * the buffer to allow the data to be re-aligned after receiving it (by
741 	 * copying it backwards ETHER_ALIGN bytes in the same buffer).  We also
742 	 * have to ensure that the beginning of the buffer is aligned to the
743 	 * hardware's requirements.
744 	 */
745 	m_adj(m, roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN));
746 
747 	error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
748 	    m, &seg, &nsegs, 0);
749 	if (error != 0) {
750 		return (error);
751 	}
752 
753 	bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
754 	    BUS_DMASYNC_PREREAD);
755 
756 	sc->rxbuf_map[idx].mbuf = m;
757 	ffec_setup_rxdesc(sc, idx, seg.ds_addr);
758 
759 	return (0);
760 }
761 
762 static struct mbuf *
763 ffec_alloc_mbufcl(struct ffec_softc *sc)
764 {
765 	struct mbuf *m;
766 
767 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
768 	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
769 
770 	return (m);
771 }
772 
773 static void
774 ffec_rxfinish_onebuf(struct ffec_softc *sc, int len)
775 {
776 	struct mbuf *m, *newmbuf;
777 	struct ffec_bufmap *bmap;
778 	uint8_t *dst, *src;
779 	int error;
780 
781 	/*
782 	 *  First try to get a new mbuf to plug into this slot in the rx ring.
783 	 *  If that fails, drop the current packet and recycle the current
784 	 *  mbuf, which is still mapped and loaded.
785 	 */
786 	if ((newmbuf = ffec_alloc_mbufcl(sc)) == NULL) {
787 		++sc->ifp->if_iqdrops;
788 		ffec_setup_rxdesc(sc, sc->rx_idx,
789 		    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
790 		return;
791 	}
792 
793 	/*
794 	 *  Unfortunately, the protocol headers need to be aligned on a 32-bit
795 	 *  boundary for the upper layers.  The hardware requires receive
796 	 *  buffers to be 16-byte aligned.  The ethernet header is 14 bytes,
797 	 *  leaving the protocol header unaligned.  We used m_adj() after
798 	 *  allocating the buffer to leave empty space at the start of the
799 	 *  buffer, now we'll use the alignment agnostic bcopy() routine to
800 	 *  shuffle all the data backwards 2 bytes and adjust m_data.
801 	 *
802 	 *  XXX imx6 hardware is able to do this 2-byte alignment by setting the
803 	 *  SHIFT16 bit in the RACC register.  Older hardware doesn't have that
804 	 *  feature, but for them could we speed this up by copying just the
805 	 *  protocol headers into their own small mbuf then chaining the cluster
806 	 *  to it?  That way we'd only need to copy like 64 bytes or whatever
807 	 *  the biggest header is, instead of the whole 1530ish-byte frame.
808 	 */
809 
810 	FFEC_UNLOCK(sc);
811 
812 	bmap = &sc->rxbuf_map[sc->rx_idx];
813 	len -= ETHER_CRC_LEN;
814 	bus_dmamap_sync(sc->rxbuf_tag, bmap->map, BUS_DMASYNC_POSTREAD);
815 	bus_dmamap_unload(sc->rxbuf_tag, bmap->map);
816 	m = bmap->mbuf;
817 	bmap->mbuf = NULL;
818 	m->m_len = len;
819 	m->m_pkthdr.len = len;
820 	m->m_pkthdr.rcvif = sc->ifp;
821 
822 	src = mtod(m, uint8_t*);
823 	dst = src - ETHER_ALIGN;
824 	bcopy(src, dst, len);
825 	m->m_data = dst;
826 	sc->ifp->if_input(sc->ifp, m);
827 
828 	FFEC_LOCK(sc);
829 
830 	if ((error = ffec_setup_rxbuf(sc, sc->rx_idx, newmbuf)) != 0) {
831 		device_printf(sc->dev, "ffec_setup_rxbuf error %d\n", error);
832 		/* XXX Now what?  We've got a hole in the rx ring. */
833 	}
834 
835 }
836 
837 static void
838 ffec_rxfinish_locked(struct ffec_softc *sc)
839 {
840 	struct ffec_hwdesc *desc;
841 	int len;
842 	boolean_t produced_empty_buffer;
843 
844 	FFEC_ASSERT_LOCKED(sc);
845 
846 	produced_empty_buffer = false;
847 	for (;;) {
848 		desc = &sc->rxdesc_ring[sc->rx_idx];
849 		if (desc->flags_len & FEC_RXDESC_EMPTY)
850 			break;
851 		produced_empty_buffer = true;
852 		len = (desc->flags_len & FEC_RXDESC_LEN_MASK);
853 		if (len < 64) {
854 			/*
855 			 * Just recycle the descriptor and continue.           .
856 			 */
857 			ffec_setup_rxdesc(sc, sc->rx_idx,
858 			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
859 		} else if ((desc->flags_len & FEC_RXDESC_L) == 0) {
860 			/*
861 			 * The entire frame is not in this buffer.  Impossible.
862 			 * Recycle the descriptor and continue.
863 			 *
864 			 * XXX what's the right way to handle this? Probably we
865 			 * should stop/init the hardware because this should
866 			 * just really never happen when we have buffers bigger
867 			 * than the maximum frame size.
868 			 */
869 			device_printf(sc->dev,
870 			    "fec_rxfinish: received frame without LAST bit set");
871 			ffec_setup_rxdesc(sc, sc->rx_idx,
872 			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
873 		} else if (desc->flags_len & FEC_RXDESC_ERROR_BITS) {
874 			/*
875 			 *  Something went wrong with receiving the frame, we
876 			 *  don't care what (the hardware has counted the error
877 			 *  in the stats registers already), we just reuse the
878 			 *  same mbuf, which is still dma-mapped, by resetting
879 			 *  the rx descriptor.
880 			 */
881 			ffec_setup_rxdesc(sc, sc->rx_idx,
882 			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
883 		} else {
884 			/*
885 			 *  Normal case: a good frame all in one buffer.
886 			 */
887 			ffec_rxfinish_onebuf(sc, len);
888 		}
889 		sc->rx_idx = next_rxidx(sc, sc->rx_idx);
890 	}
891 
892 	if (produced_empty_buffer) {
893 		WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
894 	}
895 }
896 
897 static void
898 ffec_get_hwaddr(struct ffec_softc *sc, uint8_t *hwaddr)
899 {
900 	uint32_t palr, paur, rnd;
901 
902 	/*
903 	 * Try to recover a MAC address from the running hardware. If there's
904 	 * something non-zero there, assume the bootloader did the right thing
905 	 * and just use it.
906 	 *
907 	 * Otherwise, set the address to a convenient locally assigned address,
908 	 * 'bsd' + random 24 low-order bits.  'b' is 0x62, which has the locally
909 	 * assigned bit set, and the broadcast/multicast bit clear.
910 	 */
911 	palr = RD4(sc, FEC_PALR_REG);
912 	paur = RD4(sc, FEC_PAUR_REG) & FEC_PAUR_PADDR2_MASK;
913 	if ((palr | paur) != 0) {
914 		hwaddr[0] = palr >> 24;
915 		hwaddr[1] = palr >> 16;
916 		hwaddr[2] = palr >>  8;
917 		hwaddr[3] = palr >>  0;
918 		hwaddr[4] = paur >> 24;
919 		hwaddr[5] = paur >> 16;
920 	} else {
921 		rnd = arc4random() & 0x00ffffff;
922 		hwaddr[0] = 'b';
923 		hwaddr[1] = 's';
924 		hwaddr[2] = 'd';
925 		hwaddr[3] = rnd >> 16;
926 		hwaddr[4] = rnd >>  8;
927 		hwaddr[5] = rnd >>  0;
928 	}
929 
930 	if (bootverbose) {
931 		device_printf(sc->dev,
932 		    "MAC address %02x:%02x:%02x:%02x:%02x:%02x:\n",
933 		    hwaddr[0], hwaddr[1], hwaddr[2],
934 		    hwaddr[3], hwaddr[4], hwaddr[5]);
935 	}
936 }
937 
938 static void
939 ffec_setup_rxfilter(struct ffec_softc *sc)
940 {
941 	struct ifnet *ifp;
942 	struct ifmultiaddr *ifma;
943 	uint8_t *eaddr;
944 	uint32_t crc;
945 	uint64_t ghash, ihash;
946 
947 	FFEC_ASSERT_LOCKED(sc);
948 
949 	ifp = sc->ifp;
950 
951 	/*
952 	 * Set the multicast (group) filter hash.
953 	 */
954 	if ((ifp->if_flags & IFF_ALLMULTI))
955 		ghash = 0xffffffffffffffffLLU;
956 	else {
957 		ghash = 0;
958 		if_maddr_rlock(ifp);
959 		TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
960 			if (ifma->ifma_addr->sa_family != AF_LINK)
961 				continue;
962 			/* 6 bits from MSB in LE CRC32 are used for hash. */
963 			crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
964 			    ifma->ifma_addr), ETHER_ADDR_LEN);
965 			ghash |= 1LLU << (((uint8_t *)&crc)[3] >> 2);
966 		}
967 		if_maddr_runlock(ifp);
968 	}
969 	WR4(sc, FEC_GAUR_REG, (uint32_t)(ghash >> 32));
970 	WR4(sc, FEC_GALR_REG, (uint32_t)ghash);
971 
972 	/*
973 	 * Set the individual address filter hash.
974 	 *
975 	 * XXX Is 0 the right value when promiscuous is off?  This hw feature
976 	 * seems to support the concept of MAC address aliases, does such a
977 	 * thing even exist?
978 	 */
979 	if ((ifp->if_flags & IFF_PROMISC))
980 		ihash = 0xffffffffffffffffLLU;
981 	else {
982 		ihash = 0;
983 	}
984 	WR4(sc, FEC_IAUR_REG, (uint32_t)(ihash >> 32));
985 	WR4(sc, FEC_IALR_REG, (uint32_t)ihash);
986 
987 	/*
988 	 * Set the primary address.
989 	 */
990 	eaddr = IF_LLADDR(ifp);
991 	WR4(sc, FEC_PALR_REG, (eaddr[0] << 24) | (eaddr[1] << 16) |
992 	    (eaddr[2] <<  8) | eaddr[3]);
993 	WR4(sc, FEC_PAUR_REG, (eaddr[4] << 24) | (eaddr[5] << 16));
994 }
995 
996 static void
997 ffec_stop_locked(struct ffec_softc *sc)
998 {
999 	struct ifnet *ifp;
1000 	struct ffec_hwdesc *desc;
1001 	struct ffec_bufmap *bmap;
1002 	int idx;
1003 
1004 	FFEC_ASSERT_LOCKED(sc);
1005 
1006 	ifp = sc->ifp;
1007 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1008 	sc->tx_watchdog_count = 0;
1009 	sc->stats_harvest_count = 0;
1010 
1011 	/*
1012 	 * Stop the hardware, mask all interrupts, and clear all current
1013 	 * interrupt status bits.
1014 	 */
1015 	WR4(sc, FEC_ECR_REG, RD4(sc, FEC_ECR_REG) & ~FEC_ECR_ETHEREN);
1016 	WR4(sc, FEC_IEM_REG, 0x00000000);
1017 	WR4(sc, FEC_IER_REG, 0xffffffff);
1018 
1019 	/*
1020 	 * Stop the media-check callout.  Do not use callout_drain() because
1021 	 * we're holding a mutex the callout acquires, and if it's currently
1022 	 * waiting to acquire it, we'd deadlock.  If it is waiting now, the
1023 	 * ffec_tick() routine will return without doing anything when it sees
1024 	 * that IFF_DRV_RUNNING is not set, so avoiding callout_drain() is safe.
1025 	 */
1026 	callout_stop(&sc->ffec_callout);
1027 
1028 	/*
1029 	 * Discard all untransmitted buffers.  Each buffer is simply freed;
1030 	 * it's as if the bits were transmitted and then lost on the wire.
1031 	 *
1032 	 * XXX Is this right?  Or should we use IFQ_DRV_PREPEND() to put them
1033 	 * back on the queue for when we get restarted later?
1034 	 */
1035 	idx = sc->tx_idx_tail;
1036 	while (idx != sc->tx_idx_head) {
1037 		desc = &sc->txdesc_ring[idx];
1038 		bmap = &sc->txbuf_map[idx];
1039 		if (desc->buf_paddr != 0) {
1040 			bus_dmamap_unload(sc->txbuf_tag, bmap->map);
1041 			m_freem(bmap->mbuf);
1042 			bmap->mbuf = NULL;
1043 			ffec_setup_txdesc(sc, idx, 0, 0);
1044 		}
1045 		idx = next_txidx(sc, idx);
1046 	}
1047 
1048 	/*
1049 	 * Discard all unprocessed receive buffers.  This amounts to just
1050 	 * pretending that nothing ever got received into them.  We reuse the
1051 	 * mbuf already mapped for each desc, simply turning the EMPTY flags
1052 	 * back on so they'll get reused when we start up again.
1053 	 */
1054 	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1055 		desc = &sc->rxdesc_ring[idx];
1056 		ffec_setup_rxdesc(sc, idx, desc->buf_paddr);
1057 	}
1058 }
1059 
1060 static void
1061 ffec_init_locked(struct ffec_softc *sc)
1062 {
1063 	struct ifnet *ifp = sc->ifp;
1064 	uint32_t maxbuf, maxfl, regval;
1065 
1066 	FFEC_ASSERT_LOCKED(sc);
1067 
1068 	/*
1069 	 * The hardware has a limit of 0x7ff as the max frame length (see
1070 	 * comments for MRBR below), and we use mbuf clusters as receive
1071 	 * buffers, and we currently are designed to receive an entire frame
1072 	 * into a single buffer.
1073 	 *
1074 	 * We start with a MCLBYTES-sized cluster, but we have to offset into
1075 	 * the buffer by ETHER_ALIGN to make room for post-receive re-alignment,
1076 	 * and then that value has to be rounded up to the hardware's DMA
1077 	 * alignment requirements, so all in all our buffer is that much smaller
1078 	 * than MCLBYTES.
1079 	 *
1080 	 * The resulting value is used as the frame truncation length and the
1081 	 * max buffer receive buffer size for now.  It'll become more complex
1082 	 * when we support jumbo frames and receiving fragments of them into
1083 	 * separate buffers.
1084 	 */
1085 	maxbuf = MCLBYTES - roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN);
1086 	maxfl = min(maxbuf, 0x7ff);
1087 
1088 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1089 		return;
1090 
1091 	/* Mask all interrupts and clear all current interrupt status bits. */
1092 	WR4(sc, FEC_IEM_REG, 0x00000000);
1093 	WR4(sc, FEC_IER_REG, 0xffffffff);
1094 
1095 	/*
1096 	 * Go set up palr/puar, galr/gaur, ialr/iaur.
1097 	 */
1098 	ffec_setup_rxfilter(sc);
1099 
1100 	/*
1101 	 * TFWR - Transmit FIFO watermark register.
1102 	 *
1103 	 * Set the transmit fifo watermark register to "store and forward" mode
1104 	 * and also set a threshold of 128 bytes in the fifo before transmission
1105 	 * of a frame begins (to avoid dma underruns).  Recent FEC hardware
1106 	 * supports STRFWD and when that bit is set, the watermark level in the
1107 	 * low bits is ignored.  Older hardware doesn't have STRFWD, but writing
1108 	 * to that bit is innocuous, and the TWFR bits get used instead.
1109 	 */
1110 	WR4(sc, FEC_TFWR_REG, FEC_TFWR_STRFWD | FEC_TFWR_TWFR_128BYTE);
1111 
1112 	/* RCR - Receive control register.
1113 	 *
1114 	 * Set max frame length + clean out anything left from u-boot.
1115 	 */
1116 	WR4(sc, FEC_RCR_REG, (maxfl << FEC_RCR_MAX_FL_SHIFT));
1117 
1118 	/*
1119 	 * TCR - Transmit control register.
1120 	 *
1121 	 * Clean out anything left from u-boot.  Any necessary values are set in
1122 	 * ffec_miibus_statchg() based on the media type.
1123 	 */
1124 	WR4(sc, FEC_TCR_REG, 0);
1125 
1126 	/*
1127 	 * OPD - Opcode/pause duration.
1128 	 *
1129 	 * XXX These magic numbers come from u-boot.
1130 	 */
1131 	WR4(sc, FEC_OPD_REG, 0x00010020);
1132 
1133 	/*
1134 	 * FRSR - Fifo receive start register.
1135 	 *
1136 	 * This register does not exist on imx6, it is present on earlier
1137 	 * hardware. The u-boot code sets this to a non-default value that's 32
1138 	 * bytes larger than the default, with no clue as to why.  The default
1139 	 * value should work fine, so there's no code to init it here.
1140 	 */
1141 
1142 	/*
1143 	 *  MRBR - Max RX buffer size.
1144 	 *
1145 	 *  Note: For hardware prior to imx6 this value cannot exceed 0x07ff,
1146 	 *  but the datasheet says no such thing for imx6.  On the imx6, setting
1147 	 *  this to 2K without setting EN1588 resulted in a crazy runaway
1148 	 *  receive loop in the hardware, where every rx descriptor in the ring
1149 	 *  had its EMPTY flag cleared, no completion or error flags set, and a
1150 	 *  length of zero.  I think maybe you can only exceed it when EN1588 is
1151 	 *  set, like maybe that's what enables jumbo frames, because in general
1152 	 *  the EN1588 flag seems to be the "enable new stuff" vs. "be legacy-
1153 	 *  compatible" flag.
1154 	 */
1155 	WR4(sc, FEC_MRBR_REG, maxfl << FEC_MRBR_R_BUF_SIZE_SHIFT);
1156 
1157 	/*
1158 	 * FTRL - Frame truncation length.
1159 	 *
1160 	 * Must be greater than or equal to the value set in FEC_RCR_MAXFL.
1161 	 */
1162 	WR4(sc, FEC_FTRL_REG, maxfl);
1163 
1164 	/*
1165 	 * RDSR / TDSR descriptor ring pointers.
1166 	 *
1167 	 * When we turn on ECR_ETHEREN at the end, the hardware zeroes its
1168 	 * internal current descriptor index values for both rings, so we zero
1169 	 * our index values as well.
1170 	 */
1171 	sc->rx_idx = 0;
1172 	sc->tx_idx_head = sc->tx_idx_tail = 0;
1173 	sc->txcount = 0;
1174 	WR4(sc, FEC_RDSR_REG, sc->rxdesc_ring_paddr);
1175 	WR4(sc, FEC_TDSR_REG, sc->txdesc_ring_paddr);
1176 
1177 	/*
1178 	 * EIM - interrupt mask register.
1179 	 *
1180 	 * We always enable the same set of interrupts while running; unlike
1181 	 * some drivers there's no need to change the mask on the fly depending
1182 	 * on what operations are in progress.
1183 	 */
1184 	WR4(sc, FEC_IEM_REG, FEC_IER_TXF | FEC_IER_RXF | FEC_IER_EBERR);
1185 
1186 	/*
1187 	 * MIBC - MIB control (hardware stats).
1188 	 */
1189 	regval = RD4(sc, FEC_MIBC_REG);
1190 	WR4(sc, FEC_MIBC_REG, regval | FEC_MIBC_DIS);
1191 	ffec_clear_stats(sc);
1192 	WR4(sc, FEC_MIBC_REG, regval & ~FEC_MIBC_DIS);
1193 
1194 	/*
1195 	 * ECR - Ethernet control register.
1196 	 *
1197 	 * This must happen after all the other config registers are set.  If
1198 	 * we're running on little-endian hardware, also set the flag for byte-
1199 	 * swapping descriptor ring entries.  This flag doesn't exist on older
1200 	 * hardware, but it can be safely set -- the bit position it occupies
1201 	 * was unused.
1202 	 */
1203 	regval = RD4(sc, FEC_ECR_REG);
1204 #if _BYTE_ORDER == _LITTLE_ENDIAN
1205 	regval |= FEC_ECR_DBSWP;
1206 #endif
1207 	regval |= FEC_ECR_ETHEREN;
1208 	WR4(sc, FEC_ECR_REG, regval);
1209 
1210 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1211 
1212        /*
1213 	* Call mii_mediachg() which will call back into ffec_miibus_statchg() to
1214 	* set up the remaining config registers based on the current media.
1215 	*/
1216 	mii_mediachg(sc->mii_softc);
1217 	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
1218 
1219 	/*
1220 	 * Tell the hardware that receive buffers are available.  They were made
1221 	 * available in ffec_attach() or ffec_stop().
1222 	 */
1223 	WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
1224 }
1225 
1226 static void
1227 ffec_init(void *if_softc)
1228 {
1229 	struct ffec_softc *sc = if_softc;
1230 
1231 	FFEC_LOCK(sc);
1232 	ffec_init_locked(sc);
1233 	FFEC_UNLOCK(sc);
1234 }
1235 
1236 static void
1237 ffec_intr(void *arg)
1238 {
1239 	struct ffec_softc *sc;
1240 	uint32_t ier;
1241 
1242 	sc = arg;
1243 
1244 	FFEC_LOCK(sc);
1245 
1246 	ier = RD4(sc, FEC_IER_REG);
1247 
1248 	if (ier & FEC_IER_TXF) {
1249 		WR4(sc, FEC_IER_REG, FEC_IER_TXF);
1250 		ffec_txfinish_locked(sc);
1251 	}
1252 
1253 	if (ier & FEC_IER_RXF) {
1254 		WR4(sc, FEC_IER_REG, FEC_IER_RXF);
1255 		ffec_rxfinish_locked(sc);
1256 	}
1257 
1258 	/*
1259 	 * We actually don't care about most errors, because the hardware copes
1260 	 * with them just fine, discarding the incoming bad frame, or forcing a
1261 	 * bad CRC onto an outgoing bad frame, and counting the errors in the
1262 	 * stats registers.  The one that really matters is EBERR (DMA bus
1263 	 * error) because the hardware automatically clears ECR[ETHEREN] and we
1264 	 * have to restart it here.  It should never happen.
1265 	 */
1266 	if (ier & FEC_IER_EBERR) {
1267 		WR4(sc, FEC_IER_REG, FEC_IER_EBERR);
1268 		device_printf(sc->dev,
1269 		    "Ethernet DMA error, restarting controller.\n");
1270 		ffec_stop_locked(sc);
1271 		ffec_init_locked(sc);
1272 	}
1273 
1274 	FFEC_UNLOCK(sc);
1275 
1276 }
1277 
1278 static int
1279 ffec_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1280 {
1281 	struct ffec_softc *sc;
1282 	struct mii_data *mii;
1283 	struct ifreq *ifr;
1284 	int mask, error;
1285 
1286 	sc = ifp->if_softc;
1287 	ifr = (struct ifreq *)data;
1288 
1289 	error = 0;
1290 	switch (cmd) {
1291 	case SIOCSIFFLAGS:
1292 		FFEC_LOCK(sc);
1293 		if (ifp->if_flags & IFF_UP) {
1294 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1295 				if ((ifp->if_flags ^ sc->if_flags) &
1296 				    (IFF_PROMISC | IFF_ALLMULTI))
1297 					ffec_setup_rxfilter(sc);
1298 			} else {
1299 				if (!sc->is_detaching)
1300 					ffec_init_locked(sc);
1301 			}
1302 		} else {
1303 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1304 				ffec_stop_locked(sc);
1305 		}
1306 		sc->if_flags = ifp->if_flags;
1307 		FFEC_UNLOCK(sc);
1308 		break;
1309 
1310 	case SIOCADDMULTI:
1311 	case SIOCDELMULTI:
1312 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1313 			FFEC_LOCK(sc);
1314 			ffec_setup_rxfilter(sc);
1315 			FFEC_UNLOCK(sc);
1316 		}
1317 		break;
1318 
1319 	case SIOCSIFMEDIA:
1320 	case SIOCGIFMEDIA:
1321 		mii = sc->mii_softc;
1322 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1323 		break;
1324 
1325 	case SIOCSIFCAP:
1326 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
1327 		if (mask & IFCAP_VLAN_MTU) {
1328 			/* No work to do except acknowledge the change took. */
1329 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
1330 		}
1331 		break;
1332 
1333 	default:
1334 		error = ether_ioctl(ifp, cmd, data);
1335 		break;
1336 	}
1337 
1338 	return (error);
1339 }
1340 
1341 static int
1342 ffec_detach(device_t dev)
1343 {
1344 	struct ffec_softc *sc;
1345 	bus_dmamap_t map;
1346 	int idx;
1347 
1348 	/*
1349 	 * NB: This function can be called internally to unwind a failure to
1350 	 * attach. Make sure a resource got allocated/created before destroying.
1351 	 */
1352 
1353 	sc = device_get_softc(dev);
1354 
1355 	if (sc->is_attached) {
1356 		FFEC_LOCK(sc);
1357 		sc->is_detaching = true;
1358 		ffec_stop_locked(sc);
1359 		FFEC_UNLOCK(sc);
1360 		callout_drain(&sc->ffec_callout);
1361 		ether_ifdetach(sc->ifp);
1362 	}
1363 
1364 	/* XXX no miibus detach? */
1365 
1366 	/* Clean up RX DMA resources and free mbufs. */
1367 	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1368 		if ((map = sc->rxbuf_map[idx].map) != NULL) {
1369 			bus_dmamap_unload(sc->rxbuf_tag, map);
1370 			bus_dmamap_destroy(sc->rxbuf_tag, map);
1371 			m_freem(sc->rxbuf_map[idx].mbuf);
1372 		}
1373 	}
1374 	if (sc->rxbuf_tag != NULL)
1375 		bus_dma_tag_destroy(sc->rxbuf_tag);
1376 	if (sc->rxdesc_map != NULL) {
1377 		bus_dmamap_unload(sc->rxdesc_tag, sc->rxdesc_map);
1378 		bus_dmamap_destroy(sc->rxdesc_tag, sc->rxdesc_map);
1379 	}
1380 	if (sc->rxdesc_tag != NULL)
1381 	bus_dma_tag_destroy(sc->rxdesc_tag);
1382 
1383 	/* Clean up TX DMA resources. */
1384 	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1385 		if ((map = sc->txbuf_map[idx].map) != NULL) {
1386 			/* TX maps are already unloaded. */
1387 			bus_dmamap_destroy(sc->txbuf_tag, map);
1388 		}
1389 	}
1390 	if (sc->txbuf_tag != NULL)
1391 		bus_dma_tag_destroy(sc->txbuf_tag);
1392 	if (sc->txdesc_map != NULL) {
1393 		bus_dmamap_unload(sc->txdesc_tag, sc->txdesc_map);
1394 		bus_dmamap_destroy(sc->txdesc_tag, sc->txdesc_map);
1395 	}
1396 	if (sc->txdesc_tag != NULL)
1397 	bus_dma_tag_destroy(sc->txdesc_tag);
1398 
1399 	/* Release bus resources. */
1400 	if (sc->intr_cookie)
1401 		bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
1402 
1403 	if (sc->irq_res != NULL)
1404 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
1405 
1406 	if (sc->mem_res != NULL)
1407 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
1408 
1409 	FFEC_LOCK_DESTROY(sc);
1410 	return (0);
1411 }
1412 
1413 static int
1414 ffec_attach(device_t dev)
1415 {
1416 	struct ffec_softc *sc;
1417 	struct ifnet *ifp = NULL;
1418 	struct mbuf *m;
1419 	phandle_t ofw_node;
1420 	int error, rid;
1421 	uint8_t eaddr[ETHER_ADDR_LEN];
1422 	char phy_conn_name[32];
1423 	uint32_t idx, mscr;
1424 
1425 	sc = device_get_softc(dev);
1426 	sc->dev = dev;
1427 
1428 	FFEC_LOCK_INIT(sc);
1429 
1430 	/*
1431 	 * There are differences in the implementation and features of the FEC
1432 	 * hardware on different SoCs, so figure out what type we are.
1433 	 */
1434 	sc->fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1435 
1436 	/*
1437 	 * We have to be told what kind of electrical connection exists between
1438 	 * the MAC and PHY or we can't operate correctly.
1439 	 */
1440 	if ((ofw_node = ofw_bus_get_node(dev)) == -1) {
1441 		device_printf(dev, "Impossible: Can't find ofw bus node\n");
1442 		error = ENXIO;
1443 		goto out;
1444 	}
1445 	if (OF_searchprop(ofw_node, "phy-mode",
1446 	    phy_conn_name, sizeof(phy_conn_name)) != -1) {
1447 		if (strcasecmp(phy_conn_name, "mii") == 0)
1448 			sc->phy_conn_type = PHY_CONN_MII;
1449 		else if (strcasecmp(phy_conn_name, "rmii") == 0)
1450 			sc->phy_conn_type = PHY_CONN_RMII;
1451 		else if (strcasecmp(phy_conn_name, "rgmii") == 0)
1452 			sc->phy_conn_type = PHY_CONN_RGMII;
1453 	}
1454 	if (sc->phy_conn_type == PHY_CONN_UNKNOWN) {
1455 		device_printf(sc->dev, "No valid 'phy-mode' "
1456 		    "property found in FDT data for device.\n");
1457 		error = ENOATTR;
1458 		goto out;
1459 	}
1460 
1461 	callout_init_mtx(&sc->ffec_callout, &sc->mtx, 0);
1462 
1463 	/* Allocate bus resources for accessing the hardware. */
1464 	rid = 0;
1465 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1466 	    RF_ACTIVE);
1467 	if (sc->mem_res == NULL) {
1468 		device_printf(dev, "could not allocate memory resources.\n");
1469 		error = ENOMEM;
1470 		goto out;
1471 	}
1472 	rid = 0;
1473 	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1474 	    RF_ACTIVE);
1475 	if (sc->irq_res == NULL) {
1476 		device_printf(dev, "could not allocate interrupt resources.\n");
1477 		error = ENOMEM;
1478 		goto out;
1479 	}
1480 
1481 	/*
1482 	 * Set up TX descriptor ring, descriptors, and dma maps.
1483 	 */
1484 	error = bus_dma_tag_create(
1485 	    bus_get_dma_tag(dev),	/* Parent tag. */
1486 	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1487 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1488 	    BUS_SPACE_MAXADDR,		/* highaddr */
1489 	    NULL, NULL,			/* filter, filterarg */
1490 	    TX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1491 	    TX_DESC_SIZE,		/* maxsegsize */
1492 	    0,				/* flags */
1493 	    NULL, NULL,			/* lockfunc, lockarg */
1494 	    &sc->txdesc_tag);
1495 	if (error != 0) {
1496 		device_printf(sc->dev,
1497 		    "could not create TX ring DMA tag.\n");
1498 		goto out;
1499 	}
1500 
1501 	error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring,
1502 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->txdesc_map);
1503 	if (error != 0) {
1504 		device_printf(sc->dev,
1505 		    "could not allocate TX descriptor ring.\n");
1506 		goto out;
1507 	}
1508 
1509 	error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map, sc->txdesc_ring,
1510 	    TX_DESC_SIZE, ffec_get1paddr, &sc->txdesc_ring_paddr, 0);
1511 	if (error != 0) {
1512 		device_printf(sc->dev,
1513 		    "could not load TX descriptor ring map.\n");
1514 		goto out;
1515 	}
1516 
1517 	error = bus_dma_tag_create(
1518 	    bus_get_dma_tag(dev),	/* Parent tag. */
1519 	    FEC_TXBUF_ALIGN, 0,		/* alignment, boundary */
1520 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1521 	    BUS_SPACE_MAXADDR,		/* highaddr */
1522 	    NULL, NULL,			/* filter, filterarg */
1523 	    MCLBYTES, 1, 		/* maxsize, nsegments */
1524 	    MCLBYTES,			/* maxsegsize */
1525 	    0,				/* flags */
1526 	    NULL, NULL,			/* lockfunc, lockarg */
1527 	    &sc->txbuf_tag);
1528 	if (error != 0) {
1529 		device_printf(sc->dev,
1530 		    "could not create TX ring DMA tag.\n");
1531 		goto out;
1532 	}
1533 
1534 	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1535 		error = bus_dmamap_create(sc->txbuf_tag, 0,
1536 		    &sc->txbuf_map[idx].map);
1537 		if (error != 0) {
1538 			device_printf(sc->dev,
1539 			    "could not create TX buffer DMA map.\n");
1540 			goto out;
1541 		}
1542 		ffec_setup_txdesc(sc, idx, 0, 0);
1543 	}
1544 
1545 	/*
1546 	 * Set up RX descriptor ring, descriptors, dma maps, and mbufs.
1547 	 */
1548 	error = bus_dma_tag_create(
1549 	    bus_get_dma_tag(dev),	/* Parent tag. */
1550 	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1551 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1552 	    BUS_SPACE_MAXADDR,		/* highaddr */
1553 	    NULL, NULL,			/* filter, filterarg */
1554 	    RX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1555 	    RX_DESC_SIZE,		/* maxsegsize */
1556 	    0,				/* flags */
1557 	    NULL, NULL,			/* lockfunc, lockarg */
1558 	    &sc->rxdesc_tag);
1559 	if (error != 0) {
1560 		device_printf(sc->dev,
1561 		    "could not create RX ring DMA tag.\n");
1562 		goto out;
1563 	}
1564 
1565 	error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring,
1566 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rxdesc_map);
1567 	if (error != 0) {
1568 		device_printf(sc->dev,
1569 		    "could not allocate RX descriptor ring.\n");
1570 		goto out;
1571 	}
1572 
1573 	error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map, sc->rxdesc_ring,
1574 	    RX_DESC_SIZE, ffec_get1paddr, &sc->rxdesc_ring_paddr, 0);
1575 	if (error != 0) {
1576 		device_printf(sc->dev,
1577 		    "could not load RX descriptor ring map.\n");
1578 		goto out;
1579 	}
1580 
1581 	error = bus_dma_tag_create(
1582 	    bus_get_dma_tag(dev),	/* Parent tag. */
1583 	    1, 0,			/* alignment, boundary */
1584 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1585 	    BUS_SPACE_MAXADDR,		/* highaddr */
1586 	    NULL, NULL,			/* filter, filterarg */
1587 	    MCLBYTES, 1, 		/* maxsize, nsegments */
1588 	    MCLBYTES,			/* maxsegsize */
1589 	    0,				/* flags */
1590 	    NULL, NULL,			/* lockfunc, lockarg */
1591 	    &sc->rxbuf_tag);
1592 	if (error != 0) {
1593 		device_printf(sc->dev,
1594 		    "could not create RX buf DMA tag.\n");
1595 		goto out;
1596 	}
1597 
1598 	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1599 		error = bus_dmamap_create(sc->rxbuf_tag, 0,
1600 		    &sc->rxbuf_map[idx].map);
1601 		if (error != 0) {
1602 			device_printf(sc->dev,
1603 			    "could not create RX buffer DMA map.\n");
1604 			goto out;
1605 		}
1606 		if ((m = ffec_alloc_mbufcl(sc)) == NULL) {
1607 			device_printf(dev, "Could not alloc mbuf\n");
1608 			error = ENOMEM;
1609 			goto out;
1610 		}
1611 		if ((error = ffec_setup_rxbuf(sc, idx, m)) != 0) {
1612 			device_printf(sc->dev,
1613 			    "could not create new RX buffer.\n");
1614 			goto out;
1615 		}
1616 	}
1617 
1618 	/* Try to get the MAC address from the hardware before resetting it. */
1619 	ffec_get_hwaddr(sc, eaddr);
1620 
1621 	/* Reset the hardware.  Disables all interrupts. */
1622 	WR4(sc, FEC_ECR_REG, FEC_ECR_RESET);
1623 
1624 	/* Setup interrupt handler. */
1625 	error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE,
1626 	    NULL, ffec_intr, sc, &sc->intr_cookie);
1627 	if (error != 0) {
1628 		device_printf(dev, "could not setup interrupt handler.\n");
1629 		goto out;
1630 	}
1631 
1632 	/*
1633 	 * Set up the PHY control register.
1634 	 *
1635 	 * Speed formula for ENET is md_clock = mac_clock / ((N + 1) * 2).
1636 	 * Speed formula for FEC is  md_clock = mac_clock / (N * 2)
1637 	 *
1638 	 * XXX - Revisit this...
1639 	 *
1640 	 * For a Wandboard imx6 (ENET) I was originally using 4, but the uboot
1641 	 * code uses 10.  Both values seem to work, but I suspect many modern
1642 	 * PHY parts can do mdio at speeds far above the standard 2.5 MHz.
1643 	 *
1644 	 * Different imx manuals use confusingly different terminology (things
1645 	 * like "system clock" and "internal module clock") with examples that
1646 	 * use frequencies that have nothing to do with ethernet, giving the
1647 	 * vague impression that maybe the clock in question is the periphclock
1648 	 * or something.  In fact, on an imx53 development board (FEC),
1649 	 * measuring the mdio clock at the pin on the PHY and playing with
1650 	 * various divisors showed that the root speed was 66 MHz (clk_ipg_root
1651 	 * aka periphclock) and 13 was the right divisor.
1652 	 *
1653 	 * All in all, it seems likely that 13 is a safe divisor for now,
1654 	 * because if we really do need to base it on the peripheral clock
1655 	 * speed, then we need a platform-independant get-clock-freq API.
1656 	 */
1657 	mscr = 13 << FEC_MSCR_MII_SPEED_SHIFT;
1658 	if (OF_hasprop(ofw_node, "phy-disable-preamble")) {
1659 		mscr |= FEC_MSCR_DIS_PRE;
1660 		if (bootverbose)
1661 			device_printf(dev, "PHY preamble disabled\n");
1662 	}
1663 	WR4(sc, FEC_MSCR_REG, mscr);
1664 
1665 	/* Set up the ethernet interface. */
1666 	sc->ifp = ifp = if_alloc(IFT_ETHER);
1667 
1668 	ifp->if_softc = sc;
1669 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1670 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1671 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1672 	ifp->if_capenable = ifp->if_capabilities;
1673 	ifp->if_start = ffec_txstart;
1674 	ifp->if_ioctl = ffec_ioctl;
1675 	ifp->if_init = ffec_init;
1676 	IFQ_SET_MAXLEN(&ifp->if_snd, TX_DESC_COUNT - 1);
1677 	ifp->if_snd.ifq_drv_maxlen = TX_DESC_COUNT - 1;
1678 	IFQ_SET_READY(&ifp->if_snd);
1679 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1680 
1681 #if 0 /* XXX The hardware keeps stats we could use for these. */
1682 	ifp->if_linkmib = &sc->mibdata;
1683 	ifp->if_linkmiblen = sizeof(sc->mibdata);
1684 #endif
1685 
1686 	/* Set up the miigasket hardware (if any). */
1687 	ffec_miigasket_setup(sc);
1688 
1689 	/* Attach the mii driver. */
1690 	error = mii_attach(dev, &sc->miibus, ifp, ffec_media_change,
1691 	    ffec_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
1692 	    (sc->fectype & FECTYPE_MVF) ? MIIF_FORCEANEG : 0);
1693 	if (error != 0) {
1694 		device_printf(dev, "PHY attach failed\n");
1695 		goto out;
1696 	}
1697 	sc->mii_softc = device_get_softc(sc->miibus);
1698 
1699 	/* All ready to run, attach the ethernet interface. */
1700 	ether_ifattach(ifp, eaddr);
1701 	sc->is_attached = true;
1702 
1703 	error = 0;
1704 out:
1705 
1706 	if (error != 0)
1707 		ffec_detach(dev);
1708 
1709 	return (error);
1710 }
1711 
1712 static int
1713 ffec_probe(device_t dev)
1714 {
1715 	uintptr_t fectype;
1716 
1717 	if (!ofw_bus_status_okay(dev))
1718 		return (ENXIO);
1719 
1720 	fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1721 	if (fectype == FECTYPE_NONE)
1722 		return (ENXIO);
1723 
1724 	device_set_desc(dev, (fectype & FECFLAG_GBE) ?
1725 	    "Freescale Gigabit Ethernet Controller" :
1726 	    "Freescale Fast Ethernet Controller");
1727 
1728 	return (BUS_PROBE_DEFAULT);
1729 }
1730 
1731 
1732 static device_method_t ffec_methods[] = {
1733 	/* Device interface. */
1734 	DEVMETHOD(device_probe,		ffec_probe),
1735 	DEVMETHOD(device_attach,	ffec_attach),
1736 	DEVMETHOD(device_detach,	ffec_detach),
1737 
1738 /*
1739 	DEVMETHOD(device_shutdown,	ffec_shutdown),
1740 	DEVMETHOD(device_suspend,	ffec_suspend),
1741 	DEVMETHOD(device_resume,	ffec_resume),
1742 */
1743 
1744 	/* MII interface. */
1745 	DEVMETHOD(miibus_readreg,	ffec_miibus_readreg),
1746 	DEVMETHOD(miibus_writereg,	ffec_miibus_writereg),
1747 	DEVMETHOD(miibus_statchg,	ffec_miibus_statchg),
1748 
1749 	DEVMETHOD_END
1750 };
1751 
1752 static driver_t ffec_driver = {
1753 	"ffec",
1754 	ffec_methods,
1755 	sizeof(struct ffec_softc)
1756 };
1757 
1758 static devclass_t ffec_devclass;
1759 
1760 DRIVER_MODULE(ffec, simplebus, ffec_driver, ffec_devclass, 0, 0);
1761 DRIVER_MODULE(miibus, ffec, miibus_driver, miibus_devclass, 0, 0);
1762 
1763 MODULE_DEPEND(ffec, ether, 1, 1, 1);
1764 MODULE_DEPEND(ffec, miibus, 1, 1, 1);
1765