1 /*- 2 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 /* 32 * Driver for Freescale Fast Ethernet Controller, found on imx-series SoCs among 33 * others. Also works for the ENET Gigibit controller found on imx6 and imx28, 34 * but the driver doesn't currently use any of the ENET advanced features other 35 * than enabling gigabit. 36 * 37 * The interface name 'fec' is already taken by netgraph's Fast Etherchannel 38 * (netgraph/ng_fec.c), so we use 'ffec'. 39 * 40 * Requires an FDT entry with at least these properties: 41 * fec: ethernet@02188000 { 42 * compatible = "fsl,imxNN-fec"; 43 * reg = <0x02188000 0x4000>; 44 * interrupts = <150 151>; 45 * phy-mode = "rgmii"; 46 * phy-disable-preamble; // optional 47 * }; 48 * The second interrupt number is for IEEE-1588, and is not currently used; it 49 * need not be present. phy-mode must be one of: "mii", "rmii", "rgmii". 50 * There is also an optional property, phy-disable-preamble, which if present 51 * will disable the preamble bits, cutting the size of each mdio transaction 52 * (and thus the busy-wait time) in half. 53 */ 54 55 #include <sys/param.h> 56 #include <sys/systm.h> 57 #include <sys/bus.h> 58 #include <sys/endian.h> 59 #include <sys/kernel.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/mbuf.h> 63 #include <sys/module.h> 64 #include <sys/mutex.h> 65 #include <sys/rman.h> 66 #include <sys/socket.h> 67 #include <sys/sockio.h> 68 #include <sys/sysctl.h> 69 70 #include <machine/bus.h> 71 72 #include <net/bpf.h> 73 #include <net/if.h> 74 #include <net/ethernet.h> 75 #include <net/if_dl.h> 76 #include <net/if_media.h> 77 #include <net/if_types.h> 78 #include <net/if_var.h> 79 #include <net/if_vlan_var.h> 80 81 #include <dev/ffec/if_ffecreg.h> 82 #include <dev/ofw/ofw_bus.h> 83 #include <dev/ofw/ofw_bus_subr.h> 84 #include <dev/mii/mii.h> 85 #include <dev/mii/miivar.h> 86 #include "miibus_if.h" 87 88 /* 89 * There are small differences in the hardware on various SoCs. Not every SoC 90 * we support has its own FECTYPE; most work as GENERIC and only the ones that 91 * need different handling get their own entry. In addition to the types in 92 * this list, there are some flags below that can be ORed into the upper bits. 93 */ 94 enum { 95 FECTYPE_NONE, 96 FECTYPE_GENERIC, 97 FECTYPE_IMX53, 98 FECTYPE_IMX6, 99 FECTYPE_MVF, 100 }; 101 102 /* 103 * Flags that describe general differences between the FEC hardware in various 104 * SoCs. These are ORed into the FECTYPE enum values. 105 */ 106 #define FECTYPE_MASK 0x0000ffff 107 #define FECFLAG_GBE (0x0001 << 16) 108 109 /* 110 * Table of supported FDT compat strings and their associated FECTYPE values. 111 */ 112 static struct ofw_compat_data compat_data[] = { 113 {"fsl,imx51-fec", FECTYPE_GENERIC}, 114 {"fsl,imx53-fec", FECTYPE_IMX53}, 115 {"fsl,imx6q-fec", FECTYPE_IMX6 | FECFLAG_GBE}, 116 {"fsl,mvf600-fec", FECTYPE_MVF}, 117 {"fsl,mvf-fec", FECTYPE_MVF}, 118 {NULL, FECTYPE_NONE}, 119 }; 120 121 /* 122 * Driver data and defines. 123 */ 124 #define RX_DESC_COUNT 64 125 #define RX_DESC_SIZE (sizeof(struct ffec_hwdesc) * RX_DESC_COUNT) 126 #define TX_DESC_COUNT 64 127 #define TX_DESC_SIZE (sizeof(struct ffec_hwdesc) * TX_DESC_COUNT) 128 129 #define WATCHDOG_TIMEOUT_SECS 5 130 #define STATS_HARVEST_INTERVAL 3 131 132 struct ffec_bufmap { 133 struct mbuf *mbuf; 134 bus_dmamap_t map; 135 }; 136 137 enum { 138 PHY_CONN_UNKNOWN, 139 PHY_CONN_MII, 140 PHY_CONN_RMII, 141 PHY_CONN_RGMII 142 }; 143 144 struct ffec_softc { 145 device_t dev; 146 device_t miibus; 147 struct mii_data * mii_softc; 148 struct ifnet *ifp; 149 int if_flags; 150 struct mtx mtx; 151 struct resource *irq_res; 152 struct resource *mem_res; 153 void * intr_cookie; 154 struct callout ffec_callout; 155 uint8_t phy_conn_type; 156 uint8_t fectype; 157 boolean_t link_is_up; 158 boolean_t is_attached; 159 boolean_t is_detaching; 160 int tx_watchdog_count; 161 int stats_harvest_count; 162 163 bus_dma_tag_t rxdesc_tag; 164 bus_dmamap_t rxdesc_map; 165 struct ffec_hwdesc *rxdesc_ring; 166 bus_addr_t rxdesc_ring_paddr; 167 bus_dma_tag_t rxbuf_tag; 168 struct ffec_bufmap rxbuf_map[RX_DESC_COUNT]; 169 uint32_t rx_idx; 170 171 bus_dma_tag_t txdesc_tag; 172 bus_dmamap_t txdesc_map; 173 struct ffec_hwdesc *txdesc_ring; 174 bus_addr_t txdesc_ring_paddr; 175 bus_dma_tag_t txbuf_tag; 176 struct ffec_bufmap txbuf_map[TX_DESC_COUNT]; 177 uint32_t tx_idx_head; 178 uint32_t tx_idx_tail; 179 int txcount; 180 }; 181 182 #define FFEC_LOCK(sc) mtx_lock(&(sc)->mtx) 183 #define FFEC_UNLOCK(sc) mtx_unlock(&(sc)->mtx) 184 #define FFEC_LOCK_INIT(sc) mtx_init(&(sc)->mtx, \ 185 device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF) 186 #define FFEC_LOCK_DESTROY(sc) mtx_destroy(&(sc)->mtx); 187 #define FFEC_ASSERT_LOCKED(sc) mtx_assert(&(sc)->mtx, MA_OWNED); 188 #define FFEC_ASSERT_UNLOCKED(sc) mtx_assert(&(sc)->mtx, MA_NOTOWNED); 189 190 static void ffec_init_locked(struct ffec_softc *sc); 191 static void ffec_stop_locked(struct ffec_softc *sc); 192 static void ffec_txstart_locked(struct ffec_softc *sc); 193 static void ffec_txfinish_locked(struct ffec_softc *sc); 194 195 static inline uint16_t 196 RD2(struct ffec_softc *sc, bus_size_t off) 197 { 198 199 return (bus_read_2(sc->mem_res, off)); 200 } 201 202 static inline void 203 WR2(struct ffec_softc *sc, bus_size_t off, uint16_t val) 204 { 205 206 bus_write_2(sc->mem_res, off, val); 207 } 208 209 static inline uint32_t 210 RD4(struct ffec_softc *sc, bus_size_t off) 211 { 212 213 return (bus_read_4(sc->mem_res, off)); 214 } 215 216 static inline void 217 WR4(struct ffec_softc *sc, bus_size_t off, uint32_t val) 218 { 219 220 bus_write_4(sc->mem_res, off, val); 221 } 222 223 static inline uint32_t 224 next_rxidx(struct ffec_softc *sc, uint32_t curidx) 225 { 226 227 return ((curidx == RX_DESC_COUNT - 1) ? 0 : curidx + 1); 228 } 229 230 static inline uint32_t 231 next_txidx(struct ffec_softc *sc, uint32_t curidx) 232 { 233 234 return ((curidx == TX_DESC_COUNT - 1) ? 0 : curidx + 1); 235 } 236 237 static void 238 ffec_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 239 { 240 241 if (error != 0) 242 return; 243 *(bus_addr_t *)arg = segs[0].ds_addr; 244 } 245 246 static void 247 ffec_miigasket_setup(struct ffec_softc *sc) 248 { 249 uint32_t ifmode; 250 251 /* 252 * We only need the gasket for MII and RMII connections on certain SoCs. 253 */ 254 255 switch (sc->fectype & FECTYPE_MASK) 256 { 257 case FECTYPE_IMX53: 258 break; 259 default: 260 return; 261 } 262 263 switch (sc->phy_conn_type) 264 { 265 case PHY_CONN_MII: 266 ifmode = 0; 267 break; 268 case PHY_CONN_RMII: 269 ifmode = FEC_MIIGSK_CFGR_IF_MODE_RMII; 270 break; 271 default: 272 return; 273 } 274 275 /* 276 * Disable the gasket, configure for either MII or RMII, then enable. 277 */ 278 279 WR2(sc, FEC_MIIGSK_ENR, 0); 280 while (RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY) 281 continue; 282 283 WR2(sc, FEC_MIIGSK_CFGR, ifmode); 284 285 WR2(sc, FEC_MIIGSK_ENR, FEC_MIIGSK_ENR_EN); 286 while (!(RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY)) 287 continue; 288 } 289 290 static boolean_t 291 ffec_miibus_iowait(struct ffec_softc *sc) 292 { 293 uint32_t timeout; 294 295 for (timeout = 10000; timeout != 0; --timeout) 296 if (RD4(sc, FEC_IER_REG) & FEC_IER_MII) 297 return (true); 298 299 return (false); 300 } 301 302 static int 303 ffec_miibus_readreg(device_t dev, int phy, int reg) 304 { 305 struct ffec_softc *sc; 306 int val; 307 308 sc = device_get_softc(dev); 309 310 WR4(sc, FEC_IER_REG, FEC_IER_MII); 311 312 WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_READ | 313 FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE | 314 ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) | 315 ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK)); 316 317 if (!ffec_miibus_iowait(sc)) { 318 device_printf(dev, "timeout waiting for mii read\n"); 319 return (-1); /* All-ones is a symptom of bad mdio. */ 320 } 321 322 val = RD4(sc, FEC_MMFR_REG) & FEC_MMFR_DATA_MASK; 323 324 return (val); 325 } 326 327 static int 328 ffec_miibus_writereg(device_t dev, int phy, int reg, int val) 329 { 330 struct ffec_softc *sc; 331 332 sc = device_get_softc(dev); 333 334 WR4(sc, FEC_IER_REG, FEC_IER_MII); 335 336 WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_WRITE | 337 FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE | 338 ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) | 339 ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK) | 340 (val & FEC_MMFR_DATA_MASK)); 341 342 if (!ffec_miibus_iowait(sc)) { 343 device_printf(dev, "timeout waiting for mii write\n"); 344 return (-1); 345 } 346 347 return (0); 348 } 349 350 static void 351 ffec_miibus_statchg(device_t dev) 352 { 353 struct ffec_softc *sc; 354 struct mii_data *mii; 355 uint32_t ecr, rcr, tcr; 356 357 /* 358 * Called by the MII bus driver when the PHY establishes link to set the 359 * MAC interface registers. 360 */ 361 362 sc = device_get_softc(dev); 363 364 FFEC_ASSERT_LOCKED(sc); 365 366 mii = sc->mii_softc; 367 368 if (mii->mii_media_status & IFM_ACTIVE) 369 sc->link_is_up = true; 370 else 371 sc->link_is_up = false; 372 373 ecr = RD4(sc, FEC_ECR_REG) & ~FEC_ECR_SPEED; 374 rcr = RD4(sc, FEC_RCR_REG) & ~(FEC_RCR_RMII_10T | FEC_RCR_RMII_MODE | 375 FEC_RCR_RGMII_EN | FEC_RCR_DRT | FEC_RCR_FCE); 376 tcr = RD4(sc, FEC_TCR_REG) & ~FEC_TCR_FDEN; 377 378 rcr |= FEC_RCR_MII_MODE; /* Must always be on even for R[G]MII. */ 379 switch (sc->phy_conn_type) { 380 case PHY_CONN_MII: 381 break; 382 case PHY_CONN_RMII: 383 rcr |= FEC_RCR_RMII_MODE; 384 break; 385 case PHY_CONN_RGMII: 386 rcr |= FEC_RCR_RGMII_EN; 387 break; 388 } 389 390 switch (IFM_SUBTYPE(mii->mii_media_active)) { 391 case IFM_1000_T: 392 case IFM_1000_SX: 393 ecr |= FEC_ECR_SPEED; 394 break; 395 case IFM_100_TX: 396 /* Not-FEC_ECR_SPEED + not-FEC_RCR_RMII_10T means 100TX */ 397 break; 398 case IFM_10_T: 399 rcr |= FEC_RCR_RMII_10T; 400 break; 401 case IFM_NONE: 402 sc->link_is_up = false; 403 return; 404 default: 405 sc->link_is_up = false; 406 device_printf(dev, "Unsupported media %u\n", 407 IFM_SUBTYPE(mii->mii_media_active)); 408 return; 409 } 410 411 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) 412 tcr |= FEC_TCR_FDEN; 413 else 414 rcr |= FEC_RCR_DRT; 415 416 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLOW) != 0) 417 rcr |= FEC_RCR_FCE; 418 419 WR4(sc, FEC_RCR_REG, rcr); 420 WR4(sc, FEC_TCR_REG, tcr); 421 WR4(sc, FEC_ECR_REG, ecr); 422 } 423 424 static void 425 ffec_media_status(struct ifnet * ifp, struct ifmediareq *ifmr) 426 { 427 struct ffec_softc *sc; 428 struct mii_data *mii; 429 430 431 sc = ifp->if_softc; 432 mii = sc->mii_softc; 433 FFEC_LOCK(sc); 434 mii_pollstat(mii); 435 ifmr->ifm_active = mii->mii_media_active; 436 ifmr->ifm_status = mii->mii_media_status; 437 FFEC_UNLOCK(sc); 438 } 439 440 static int 441 ffec_media_change_locked(struct ffec_softc *sc) 442 { 443 444 return (mii_mediachg(sc->mii_softc)); 445 } 446 447 static int 448 ffec_media_change(struct ifnet * ifp) 449 { 450 struct ffec_softc *sc; 451 int error; 452 453 sc = ifp->if_softc; 454 455 FFEC_LOCK(sc); 456 error = ffec_media_change_locked(sc); 457 FFEC_UNLOCK(sc); 458 return (error); 459 } 460 461 static void ffec_clear_stats(struct ffec_softc *sc) 462 { 463 464 WR4(sc, FEC_RMON_R_PACKETS, 0); 465 WR4(sc, FEC_RMON_R_MC_PKT, 0); 466 WR4(sc, FEC_RMON_R_CRC_ALIGN, 0); 467 WR4(sc, FEC_RMON_R_UNDERSIZE, 0); 468 WR4(sc, FEC_RMON_R_OVERSIZE, 0); 469 WR4(sc, FEC_RMON_R_FRAG, 0); 470 WR4(sc, FEC_RMON_R_JAB, 0); 471 WR4(sc, FEC_RMON_T_PACKETS, 0); 472 WR4(sc, FEC_RMON_T_MC_PKT, 0); 473 WR4(sc, FEC_RMON_T_CRC_ALIGN, 0); 474 WR4(sc, FEC_RMON_T_UNDERSIZE, 0); 475 WR4(sc, FEC_RMON_T_OVERSIZE , 0); 476 WR4(sc, FEC_RMON_T_FRAG, 0); 477 WR4(sc, FEC_RMON_T_JAB, 0); 478 WR4(sc, FEC_RMON_T_COL, 0); 479 } 480 481 static void 482 ffec_harvest_stats(struct ffec_softc *sc) 483 { 484 struct ifnet *ifp; 485 486 /* We don't need to harvest too often. */ 487 if (++sc->stats_harvest_count < STATS_HARVEST_INTERVAL) 488 return; 489 490 /* 491 * Try to avoid harvesting unless the IDLE flag is on, but if it has 492 * been too long just go ahead and do it anyway, the worst that'll 493 * happen is we'll lose a packet count or two as we clear at the end. 494 */ 495 if (sc->stats_harvest_count < (2 * STATS_HARVEST_INTERVAL) && 496 ((RD4(sc, FEC_MIBC_REG) & FEC_MIBC_IDLE) == 0)) 497 return; 498 499 sc->stats_harvest_count = 0; 500 ifp = sc->ifp; 501 502 if_inc_counter(ifp, IFCOUNTER_IPACKETS, RD4(sc, FEC_RMON_R_PACKETS)); 503 if_inc_counter(ifp, IFCOUNTER_IMCASTS, RD4(sc, FEC_RMON_R_MC_PKT)); 504 if_inc_counter(ifp, IFCOUNTER_IERRORS, 505 RD4(sc, FEC_RMON_R_CRC_ALIGN) + RD4(sc, FEC_RMON_R_UNDERSIZE) + 506 RD4(sc, FEC_RMON_R_OVERSIZE) + RD4(sc, FEC_RMON_R_FRAG) + 507 RD4(sc, FEC_RMON_R_JAB)); 508 509 if_inc_counter(ifp, IFCOUNTER_OPACKETS, RD4(sc, FEC_RMON_T_PACKETS)); 510 if_inc_counter(ifp, IFCOUNTER_OMCASTS, RD4(sc, FEC_RMON_T_MC_PKT)); 511 if_inc_counter(ifp, IFCOUNTER_OERRORS, 512 RD4(sc, FEC_RMON_T_CRC_ALIGN) + RD4(sc, FEC_RMON_T_UNDERSIZE) + 513 RD4(sc, FEC_RMON_T_OVERSIZE) + RD4(sc, FEC_RMON_T_FRAG) + 514 RD4(sc, FEC_RMON_T_JAB)); 515 516 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, RD4(sc, FEC_RMON_T_COL)); 517 518 ffec_clear_stats(sc); 519 } 520 521 static void 522 ffec_tick(void *arg) 523 { 524 struct ffec_softc *sc; 525 struct ifnet *ifp; 526 int link_was_up; 527 528 sc = arg; 529 530 FFEC_ASSERT_LOCKED(sc); 531 532 ifp = sc->ifp; 533 534 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 535 return; 536 537 /* 538 * Typical tx watchdog. If this fires it indicates that we enqueued 539 * packets for output and never got a txdone interrupt for them. Maybe 540 * it's a missed interrupt somehow, just pretend we got one. 541 */ 542 if (sc->tx_watchdog_count > 0) { 543 if (--sc->tx_watchdog_count == 0) { 544 ffec_txfinish_locked(sc); 545 } 546 } 547 548 /* Gather stats from hardware counters. */ 549 ffec_harvest_stats(sc); 550 551 /* Check the media status. */ 552 link_was_up = sc->link_is_up; 553 mii_tick(sc->mii_softc); 554 if (sc->link_is_up && !link_was_up) 555 ffec_txstart_locked(sc); 556 557 /* Schedule another check one second from now. */ 558 callout_reset(&sc->ffec_callout, hz, ffec_tick, sc); 559 } 560 561 inline static uint32_t 562 ffec_setup_txdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr, 563 uint32_t len) 564 { 565 uint32_t nidx; 566 uint32_t flags; 567 568 nidx = next_txidx(sc, idx); 569 570 /* Addr/len 0 means we're clearing the descriptor after xmit done. */ 571 if (paddr == 0 || len == 0) { 572 flags = 0; 573 --sc->txcount; 574 } else { 575 flags = FEC_TXDESC_READY | FEC_TXDESC_L | FEC_TXDESC_TC; 576 ++sc->txcount; 577 } 578 if (nidx == 0) 579 flags |= FEC_TXDESC_WRAP; 580 581 /* 582 * The hardware requires 32-bit physical addresses. We set up the dma 583 * tag to indicate that, so the cast to uint32_t should never lose 584 * significant bits. 585 */ 586 sc->txdesc_ring[idx].buf_paddr = (uint32_t)paddr; 587 sc->txdesc_ring[idx].flags_len = flags | len; /* Must be set last! */ 588 589 return (nidx); 590 } 591 592 static int 593 ffec_setup_txbuf(struct ffec_softc *sc, int idx, struct mbuf **mp) 594 { 595 struct mbuf * m; 596 int error, nsegs; 597 struct bus_dma_segment seg; 598 599 if ((m = m_defrag(*mp, M_NOWAIT)) == NULL) 600 return (ENOMEM); 601 *mp = m; 602 603 error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map, 604 m, &seg, &nsegs, 0); 605 if (error != 0) { 606 return (ENOMEM); 607 } 608 bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map, 609 BUS_DMASYNC_PREWRITE); 610 611 sc->txbuf_map[idx].mbuf = m; 612 ffec_setup_txdesc(sc, idx, seg.ds_addr, seg.ds_len); 613 614 return (0); 615 616 } 617 618 static void 619 ffec_txstart_locked(struct ffec_softc *sc) 620 { 621 struct ifnet *ifp; 622 struct mbuf *m; 623 int enqueued; 624 625 FFEC_ASSERT_LOCKED(sc); 626 627 if (!sc->link_is_up) 628 return; 629 630 ifp = sc->ifp; 631 632 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) 633 return; 634 635 enqueued = 0; 636 637 for (;;) { 638 if (sc->txcount == (TX_DESC_COUNT-1)) { 639 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 640 break; 641 } 642 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 643 if (m == NULL) 644 break; 645 if (ffec_setup_txbuf(sc, sc->tx_idx_head, &m) != 0) { 646 IFQ_DRV_PREPEND(&ifp->if_snd, m); 647 break; 648 } 649 BPF_MTAP(ifp, m); 650 sc->tx_idx_head = next_txidx(sc, sc->tx_idx_head); 651 ++enqueued; 652 } 653 654 if (enqueued != 0) { 655 bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREWRITE); 656 WR4(sc, FEC_TDAR_REG, FEC_TDAR_TDAR); 657 bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTWRITE); 658 sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS; 659 } 660 } 661 662 static void 663 ffec_txstart(struct ifnet *ifp) 664 { 665 struct ffec_softc *sc = ifp->if_softc; 666 667 FFEC_LOCK(sc); 668 ffec_txstart_locked(sc); 669 FFEC_UNLOCK(sc); 670 } 671 672 static void 673 ffec_txfinish_locked(struct ffec_softc *sc) 674 { 675 struct ifnet *ifp; 676 struct ffec_hwdesc *desc; 677 struct ffec_bufmap *bmap; 678 boolean_t retired_buffer; 679 680 FFEC_ASSERT_LOCKED(sc); 681 682 /* XXX Can't set PRE|POST right now, but we need both. */ 683 bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREREAD); 684 bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTREAD); 685 ifp = sc->ifp; 686 retired_buffer = false; 687 while (sc->tx_idx_tail != sc->tx_idx_head) { 688 desc = &sc->txdesc_ring[sc->tx_idx_tail]; 689 if (desc->flags_len & FEC_TXDESC_READY) 690 break; 691 retired_buffer = true; 692 bmap = &sc->txbuf_map[sc->tx_idx_tail]; 693 bus_dmamap_sync(sc->txbuf_tag, bmap->map, 694 BUS_DMASYNC_POSTWRITE); 695 bus_dmamap_unload(sc->txbuf_tag, bmap->map); 696 m_freem(bmap->mbuf); 697 bmap->mbuf = NULL; 698 ffec_setup_txdesc(sc, sc->tx_idx_tail, 0, 0); 699 sc->tx_idx_tail = next_txidx(sc, sc->tx_idx_tail); 700 } 701 702 /* 703 * If we retired any buffers, there will be open tx slots available in 704 * the descriptor ring, go try to start some new output. 705 */ 706 if (retired_buffer) { 707 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 708 ffec_txstart_locked(sc); 709 } 710 711 /* If there are no buffers outstanding, muzzle the watchdog. */ 712 if (sc->tx_idx_tail == sc->tx_idx_head) { 713 sc->tx_watchdog_count = 0; 714 } 715 } 716 717 inline static uint32_t 718 ffec_setup_rxdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr) 719 { 720 uint32_t nidx; 721 722 /* 723 * The hardware requires 32-bit physical addresses. We set up the dma 724 * tag to indicate that, so the cast to uint32_t should never lose 725 * significant bits. 726 */ 727 nidx = next_rxidx(sc, idx); 728 sc->rxdesc_ring[idx].buf_paddr = (uint32_t)paddr; 729 sc->rxdesc_ring[idx].flags_len = FEC_RXDESC_EMPTY | 730 ((nidx == 0) ? FEC_RXDESC_WRAP : 0); 731 732 return (nidx); 733 } 734 735 static int 736 ffec_setup_rxbuf(struct ffec_softc *sc, int idx, struct mbuf * m) 737 { 738 int error, nsegs; 739 struct bus_dma_segment seg; 740 741 /* 742 * We need to leave at least ETHER_ALIGN bytes free at the beginning of 743 * the buffer to allow the data to be re-aligned after receiving it (by 744 * copying it backwards ETHER_ALIGN bytes in the same buffer). We also 745 * have to ensure that the beginning of the buffer is aligned to the 746 * hardware's requirements. 747 */ 748 m_adj(m, roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN)); 749 750 error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map, 751 m, &seg, &nsegs, 0); 752 if (error != 0) { 753 return (error); 754 } 755 756 bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map, 757 BUS_DMASYNC_PREREAD); 758 759 sc->rxbuf_map[idx].mbuf = m; 760 ffec_setup_rxdesc(sc, idx, seg.ds_addr); 761 762 return (0); 763 } 764 765 static struct mbuf * 766 ffec_alloc_mbufcl(struct ffec_softc *sc) 767 { 768 struct mbuf *m; 769 770 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 771 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 772 773 return (m); 774 } 775 776 static void 777 ffec_rxfinish_onebuf(struct ffec_softc *sc, int len) 778 { 779 struct mbuf *m, *newmbuf; 780 struct ffec_bufmap *bmap; 781 uint8_t *dst, *src; 782 int error; 783 784 /* 785 * First try to get a new mbuf to plug into this slot in the rx ring. 786 * If that fails, drop the current packet and recycle the current 787 * mbuf, which is still mapped and loaded. 788 */ 789 if ((newmbuf = ffec_alloc_mbufcl(sc)) == NULL) { 790 if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, 1); 791 ffec_setup_rxdesc(sc, sc->rx_idx, 792 sc->rxdesc_ring[sc->rx_idx].buf_paddr); 793 return; 794 } 795 796 /* 797 * Unfortunately, the protocol headers need to be aligned on a 32-bit 798 * boundary for the upper layers. The hardware requires receive 799 * buffers to be 16-byte aligned. The ethernet header is 14 bytes, 800 * leaving the protocol header unaligned. We used m_adj() after 801 * allocating the buffer to leave empty space at the start of the 802 * buffer, now we'll use the alignment agnostic bcopy() routine to 803 * shuffle all the data backwards 2 bytes and adjust m_data. 804 * 805 * XXX imx6 hardware is able to do this 2-byte alignment by setting the 806 * SHIFT16 bit in the RACC register. Older hardware doesn't have that 807 * feature, but for them could we speed this up by copying just the 808 * protocol headers into their own small mbuf then chaining the cluster 809 * to it? That way we'd only need to copy like 64 bytes or whatever 810 * the biggest header is, instead of the whole 1530ish-byte frame. 811 */ 812 813 FFEC_UNLOCK(sc); 814 815 bmap = &sc->rxbuf_map[sc->rx_idx]; 816 len -= ETHER_CRC_LEN; 817 bus_dmamap_sync(sc->rxbuf_tag, bmap->map, BUS_DMASYNC_POSTREAD); 818 bus_dmamap_unload(sc->rxbuf_tag, bmap->map); 819 m = bmap->mbuf; 820 bmap->mbuf = NULL; 821 m->m_len = len; 822 m->m_pkthdr.len = len; 823 m->m_pkthdr.rcvif = sc->ifp; 824 825 src = mtod(m, uint8_t*); 826 dst = src - ETHER_ALIGN; 827 bcopy(src, dst, len); 828 m->m_data = dst; 829 sc->ifp->if_input(sc->ifp, m); 830 831 FFEC_LOCK(sc); 832 833 if ((error = ffec_setup_rxbuf(sc, sc->rx_idx, newmbuf)) != 0) { 834 device_printf(sc->dev, "ffec_setup_rxbuf error %d\n", error); 835 /* XXX Now what? We've got a hole in the rx ring. */ 836 } 837 838 } 839 840 static void 841 ffec_rxfinish_locked(struct ffec_softc *sc) 842 { 843 struct ffec_hwdesc *desc; 844 int len; 845 boolean_t produced_empty_buffer; 846 847 FFEC_ASSERT_LOCKED(sc); 848 849 /* XXX Can't set PRE|POST right now, but we need both. */ 850 bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREREAD); 851 bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTREAD); 852 produced_empty_buffer = false; 853 for (;;) { 854 desc = &sc->rxdesc_ring[sc->rx_idx]; 855 if (desc->flags_len & FEC_RXDESC_EMPTY) 856 break; 857 produced_empty_buffer = true; 858 len = (desc->flags_len & FEC_RXDESC_LEN_MASK); 859 if (len < 64) { 860 /* 861 * Just recycle the descriptor and continue. . 862 */ 863 ffec_setup_rxdesc(sc, sc->rx_idx, 864 sc->rxdesc_ring[sc->rx_idx].buf_paddr); 865 } else if ((desc->flags_len & FEC_RXDESC_L) == 0) { 866 /* 867 * The entire frame is not in this buffer. Impossible. 868 * Recycle the descriptor and continue. 869 * 870 * XXX what's the right way to handle this? Probably we 871 * should stop/init the hardware because this should 872 * just really never happen when we have buffers bigger 873 * than the maximum frame size. 874 */ 875 device_printf(sc->dev, 876 "fec_rxfinish: received frame without LAST bit set"); 877 ffec_setup_rxdesc(sc, sc->rx_idx, 878 sc->rxdesc_ring[sc->rx_idx].buf_paddr); 879 } else if (desc->flags_len & FEC_RXDESC_ERROR_BITS) { 880 /* 881 * Something went wrong with receiving the frame, we 882 * don't care what (the hardware has counted the error 883 * in the stats registers already), we just reuse the 884 * same mbuf, which is still dma-mapped, by resetting 885 * the rx descriptor. 886 */ 887 ffec_setup_rxdesc(sc, sc->rx_idx, 888 sc->rxdesc_ring[sc->rx_idx].buf_paddr); 889 } else { 890 /* 891 * Normal case: a good frame all in one buffer. 892 */ 893 ffec_rxfinish_onebuf(sc, len); 894 } 895 sc->rx_idx = next_rxidx(sc, sc->rx_idx); 896 } 897 898 if (produced_empty_buffer) { 899 bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREWRITE); 900 WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR); 901 bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTWRITE); 902 } 903 } 904 905 static void 906 ffec_get_hwaddr(struct ffec_softc *sc, uint8_t *hwaddr) 907 { 908 uint32_t palr, paur, rnd; 909 910 /* 911 * Try to recover a MAC address from the running hardware. If there's 912 * something non-zero there, assume the bootloader did the right thing 913 * and just use it. 914 * 915 * Otherwise, set the address to a convenient locally assigned address, 916 * 'bsd' + random 24 low-order bits. 'b' is 0x62, which has the locally 917 * assigned bit set, and the broadcast/multicast bit clear. 918 */ 919 palr = RD4(sc, FEC_PALR_REG); 920 paur = RD4(sc, FEC_PAUR_REG) & FEC_PAUR_PADDR2_MASK; 921 if ((palr | paur) != 0) { 922 hwaddr[0] = palr >> 24; 923 hwaddr[1] = palr >> 16; 924 hwaddr[2] = palr >> 8; 925 hwaddr[3] = palr >> 0; 926 hwaddr[4] = paur >> 24; 927 hwaddr[5] = paur >> 16; 928 } else { 929 rnd = arc4random() & 0x00ffffff; 930 hwaddr[0] = 'b'; 931 hwaddr[1] = 's'; 932 hwaddr[2] = 'd'; 933 hwaddr[3] = rnd >> 16; 934 hwaddr[4] = rnd >> 8; 935 hwaddr[5] = rnd >> 0; 936 } 937 938 if (bootverbose) { 939 device_printf(sc->dev, 940 "MAC address %02x:%02x:%02x:%02x:%02x:%02x:\n", 941 hwaddr[0], hwaddr[1], hwaddr[2], 942 hwaddr[3], hwaddr[4], hwaddr[5]); 943 } 944 } 945 946 static void 947 ffec_setup_rxfilter(struct ffec_softc *sc) 948 { 949 struct ifnet *ifp; 950 struct ifmultiaddr *ifma; 951 uint8_t *eaddr; 952 uint32_t crc; 953 uint64_t ghash, ihash; 954 955 FFEC_ASSERT_LOCKED(sc); 956 957 ifp = sc->ifp; 958 959 /* 960 * Set the multicast (group) filter hash. 961 */ 962 if ((ifp->if_flags & IFF_ALLMULTI)) 963 ghash = 0xffffffffffffffffLLU; 964 else { 965 ghash = 0; 966 if_maddr_rlock(ifp); 967 TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) { 968 if (ifma->ifma_addr->sa_family != AF_LINK) 969 continue; 970 /* 6 bits from MSB in LE CRC32 are used for hash. */ 971 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *) 972 ifma->ifma_addr), ETHER_ADDR_LEN); 973 ghash |= 1LLU << (((uint8_t *)&crc)[3] >> 2); 974 } 975 if_maddr_runlock(ifp); 976 } 977 WR4(sc, FEC_GAUR_REG, (uint32_t)(ghash >> 32)); 978 WR4(sc, FEC_GALR_REG, (uint32_t)ghash); 979 980 /* 981 * Set the individual address filter hash. 982 * 983 * XXX Is 0 the right value when promiscuous is off? This hw feature 984 * seems to support the concept of MAC address aliases, does such a 985 * thing even exist? 986 */ 987 if ((ifp->if_flags & IFF_PROMISC)) 988 ihash = 0xffffffffffffffffLLU; 989 else { 990 ihash = 0; 991 } 992 WR4(sc, FEC_IAUR_REG, (uint32_t)(ihash >> 32)); 993 WR4(sc, FEC_IALR_REG, (uint32_t)ihash); 994 995 /* 996 * Set the primary address. 997 */ 998 eaddr = IF_LLADDR(ifp); 999 WR4(sc, FEC_PALR_REG, (eaddr[0] << 24) | (eaddr[1] << 16) | 1000 (eaddr[2] << 8) | eaddr[3]); 1001 WR4(sc, FEC_PAUR_REG, (eaddr[4] << 24) | (eaddr[5] << 16)); 1002 } 1003 1004 static void 1005 ffec_stop_locked(struct ffec_softc *sc) 1006 { 1007 struct ifnet *ifp; 1008 struct ffec_hwdesc *desc; 1009 struct ffec_bufmap *bmap; 1010 int idx; 1011 1012 FFEC_ASSERT_LOCKED(sc); 1013 1014 ifp = sc->ifp; 1015 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1016 sc->tx_watchdog_count = 0; 1017 sc->stats_harvest_count = 0; 1018 1019 /* 1020 * Stop the hardware, mask all interrupts, and clear all current 1021 * interrupt status bits. 1022 */ 1023 WR4(sc, FEC_ECR_REG, RD4(sc, FEC_ECR_REG) & ~FEC_ECR_ETHEREN); 1024 WR4(sc, FEC_IEM_REG, 0x00000000); 1025 WR4(sc, FEC_IER_REG, 0xffffffff); 1026 1027 /* 1028 * Stop the media-check callout. Do not use callout_drain() because 1029 * we're holding a mutex the callout acquires, and if it's currently 1030 * waiting to acquire it, we'd deadlock. If it is waiting now, the 1031 * ffec_tick() routine will return without doing anything when it sees 1032 * that IFF_DRV_RUNNING is not set, so avoiding callout_drain() is safe. 1033 */ 1034 callout_stop(&sc->ffec_callout); 1035 1036 /* 1037 * Discard all untransmitted buffers. Each buffer is simply freed; 1038 * it's as if the bits were transmitted and then lost on the wire. 1039 * 1040 * XXX Is this right? Or should we use IFQ_DRV_PREPEND() to put them 1041 * back on the queue for when we get restarted later? 1042 */ 1043 idx = sc->tx_idx_tail; 1044 while (idx != sc->tx_idx_head) { 1045 desc = &sc->txdesc_ring[idx]; 1046 bmap = &sc->txbuf_map[idx]; 1047 if (desc->buf_paddr != 0) { 1048 bus_dmamap_unload(sc->txbuf_tag, bmap->map); 1049 m_freem(bmap->mbuf); 1050 bmap->mbuf = NULL; 1051 ffec_setup_txdesc(sc, idx, 0, 0); 1052 } 1053 idx = next_txidx(sc, idx); 1054 } 1055 1056 /* 1057 * Discard all unprocessed receive buffers. This amounts to just 1058 * pretending that nothing ever got received into them. We reuse the 1059 * mbuf already mapped for each desc, simply turning the EMPTY flags 1060 * back on so they'll get reused when we start up again. 1061 */ 1062 for (idx = 0; idx < RX_DESC_COUNT; ++idx) { 1063 desc = &sc->rxdesc_ring[idx]; 1064 ffec_setup_rxdesc(sc, idx, desc->buf_paddr); 1065 } 1066 } 1067 1068 static void 1069 ffec_init_locked(struct ffec_softc *sc) 1070 { 1071 struct ifnet *ifp = sc->ifp; 1072 uint32_t maxbuf, maxfl, regval; 1073 1074 FFEC_ASSERT_LOCKED(sc); 1075 1076 /* 1077 * The hardware has a limit of 0x7ff as the max frame length (see 1078 * comments for MRBR below), and we use mbuf clusters as receive 1079 * buffers, and we currently are designed to receive an entire frame 1080 * into a single buffer. 1081 * 1082 * We start with a MCLBYTES-sized cluster, but we have to offset into 1083 * the buffer by ETHER_ALIGN to make room for post-receive re-alignment, 1084 * and then that value has to be rounded up to the hardware's DMA 1085 * alignment requirements, so all in all our buffer is that much smaller 1086 * than MCLBYTES. 1087 * 1088 * The resulting value is used as the frame truncation length and the 1089 * max buffer receive buffer size for now. It'll become more complex 1090 * when we support jumbo frames and receiving fragments of them into 1091 * separate buffers. 1092 */ 1093 maxbuf = MCLBYTES - roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN); 1094 maxfl = min(maxbuf, 0x7ff); 1095 1096 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1097 return; 1098 1099 /* Mask all interrupts and clear all current interrupt status bits. */ 1100 WR4(sc, FEC_IEM_REG, 0x00000000); 1101 WR4(sc, FEC_IER_REG, 0xffffffff); 1102 1103 /* 1104 * Go set up palr/puar, galr/gaur, ialr/iaur. 1105 */ 1106 ffec_setup_rxfilter(sc); 1107 1108 /* 1109 * TFWR - Transmit FIFO watermark register. 1110 * 1111 * Set the transmit fifo watermark register to "store and forward" mode 1112 * and also set a threshold of 128 bytes in the fifo before transmission 1113 * of a frame begins (to avoid dma underruns). Recent FEC hardware 1114 * supports STRFWD and when that bit is set, the watermark level in the 1115 * low bits is ignored. Older hardware doesn't have STRFWD, but writing 1116 * to that bit is innocuous, and the TWFR bits get used instead. 1117 */ 1118 WR4(sc, FEC_TFWR_REG, FEC_TFWR_STRFWD | FEC_TFWR_TWFR_128BYTE); 1119 1120 /* RCR - Receive control register. 1121 * 1122 * Set max frame length + clean out anything left from u-boot. 1123 */ 1124 WR4(sc, FEC_RCR_REG, (maxfl << FEC_RCR_MAX_FL_SHIFT)); 1125 1126 /* 1127 * TCR - Transmit control register. 1128 * 1129 * Clean out anything left from u-boot. Any necessary values are set in 1130 * ffec_miibus_statchg() based on the media type. 1131 */ 1132 WR4(sc, FEC_TCR_REG, 0); 1133 1134 /* 1135 * OPD - Opcode/pause duration. 1136 * 1137 * XXX These magic numbers come from u-boot. 1138 */ 1139 WR4(sc, FEC_OPD_REG, 0x00010020); 1140 1141 /* 1142 * FRSR - Fifo receive start register. 1143 * 1144 * This register does not exist on imx6, it is present on earlier 1145 * hardware. The u-boot code sets this to a non-default value that's 32 1146 * bytes larger than the default, with no clue as to why. The default 1147 * value should work fine, so there's no code to init it here. 1148 */ 1149 1150 /* 1151 * MRBR - Max RX buffer size. 1152 * 1153 * Note: For hardware prior to imx6 this value cannot exceed 0x07ff, 1154 * but the datasheet says no such thing for imx6. On the imx6, setting 1155 * this to 2K without setting EN1588 resulted in a crazy runaway 1156 * receive loop in the hardware, where every rx descriptor in the ring 1157 * had its EMPTY flag cleared, no completion or error flags set, and a 1158 * length of zero. I think maybe you can only exceed it when EN1588 is 1159 * set, like maybe that's what enables jumbo frames, because in general 1160 * the EN1588 flag seems to be the "enable new stuff" vs. "be legacy- 1161 * compatible" flag. 1162 */ 1163 WR4(sc, FEC_MRBR_REG, maxfl << FEC_MRBR_R_BUF_SIZE_SHIFT); 1164 1165 /* 1166 * FTRL - Frame truncation length. 1167 * 1168 * Must be greater than or equal to the value set in FEC_RCR_MAXFL. 1169 */ 1170 WR4(sc, FEC_FTRL_REG, maxfl); 1171 1172 /* 1173 * RDSR / TDSR descriptor ring pointers. 1174 * 1175 * When we turn on ECR_ETHEREN at the end, the hardware zeroes its 1176 * internal current descriptor index values for both rings, so we zero 1177 * our index values as well. 1178 */ 1179 sc->rx_idx = 0; 1180 sc->tx_idx_head = sc->tx_idx_tail = 0; 1181 sc->txcount = 0; 1182 WR4(sc, FEC_RDSR_REG, sc->rxdesc_ring_paddr); 1183 WR4(sc, FEC_TDSR_REG, sc->txdesc_ring_paddr); 1184 1185 /* 1186 * EIM - interrupt mask register. 1187 * 1188 * We always enable the same set of interrupts while running; unlike 1189 * some drivers there's no need to change the mask on the fly depending 1190 * on what operations are in progress. 1191 */ 1192 WR4(sc, FEC_IEM_REG, FEC_IER_TXF | FEC_IER_RXF | FEC_IER_EBERR); 1193 1194 /* 1195 * MIBC - MIB control (hardware stats). 1196 */ 1197 regval = RD4(sc, FEC_MIBC_REG); 1198 WR4(sc, FEC_MIBC_REG, regval | FEC_MIBC_DIS); 1199 ffec_clear_stats(sc); 1200 WR4(sc, FEC_MIBC_REG, regval & ~FEC_MIBC_DIS); 1201 1202 /* 1203 * ECR - Ethernet control register. 1204 * 1205 * This must happen after all the other config registers are set. If 1206 * we're running on little-endian hardware, also set the flag for byte- 1207 * swapping descriptor ring entries. This flag doesn't exist on older 1208 * hardware, but it can be safely set -- the bit position it occupies 1209 * was unused. 1210 */ 1211 regval = RD4(sc, FEC_ECR_REG); 1212 #if _BYTE_ORDER == _LITTLE_ENDIAN 1213 regval |= FEC_ECR_DBSWP; 1214 #endif 1215 regval |= FEC_ECR_ETHEREN; 1216 WR4(sc, FEC_ECR_REG, regval); 1217 1218 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1219 1220 /* 1221 * Call mii_mediachg() which will call back into ffec_miibus_statchg() to 1222 * set up the remaining config registers based on the current media. 1223 */ 1224 mii_mediachg(sc->mii_softc); 1225 callout_reset(&sc->ffec_callout, hz, ffec_tick, sc); 1226 1227 /* 1228 * Tell the hardware that receive buffers are available. They were made 1229 * available in ffec_attach() or ffec_stop(). 1230 */ 1231 WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR); 1232 } 1233 1234 static void 1235 ffec_init(void *if_softc) 1236 { 1237 struct ffec_softc *sc = if_softc; 1238 1239 FFEC_LOCK(sc); 1240 ffec_init_locked(sc); 1241 FFEC_UNLOCK(sc); 1242 } 1243 1244 static void 1245 ffec_intr(void *arg) 1246 { 1247 struct ffec_softc *sc; 1248 uint32_t ier; 1249 1250 sc = arg; 1251 1252 FFEC_LOCK(sc); 1253 1254 ier = RD4(sc, FEC_IER_REG); 1255 1256 if (ier & FEC_IER_TXF) { 1257 WR4(sc, FEC_IER_REG, FEC_IER_TXF); 1258 ffec_txfinish_locked(sc); 1259 } 1260 1261 if (ier & FEC_IER_RXF) { 1262 WR4(sc, FEC_IER_REG, FEC_IER_RXF); 1263 ffec_rxfinish_locked(sc); 1264 } 1265 1266 /* 1267 * We actually don't care about most errors, because the hardware copes 1268 * with them just fine, discarding the incoming bad frame, or forcing a 1269 * bad CRC onto an outgoing bad frame, and counting the errors in the 1270 * stats registers. The one that really matters is EBERR (DMA bus 1271 * error) because the hardware automatically clears ECR[ETHEREN] and we 1272 * have to restart it here. It should never happen. 1273 */ 1274 if (ier & FEC_IER_EBERR) { 1275 WR4(sc, FEC_IER_REG, FEC_IER_EBERR); 1276 device_printf(sc->dev, 1277 "Ethernet DMA error, restarting controller.\n"); 1278 ffec_stop_locked(sc); 1279 ffec_init_locked(sc); 1280 } 1281 1282 FFEC_UNLOCK(sc); 1283 1284 } 1285 1286 static int 1287 ffec_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1288 { 1289 struct ffec_softc *sc; 1290 struct mii_data *mii; 1291 struct ifreq *ifr; 1292 int mask, error; 1293 1294 sc = ifp->if_softc; 1295 ifr = (struct ifreq *)data; 1296 1297 error = 0; 1298 switch (cmd) { 1299 case SIOCSIFFLAGS: 1300 FFEC_LOCK(sc); 1301 if (ifp->if_flags & IFF_UP) { 1302 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1303 if ((ifp->if_flags ^ sc->if_flags) & 1304 (IFF_PROMISC | IFF_ALLMULTI)) 1305 ffec_setup_rxfilter(sc); 1306 } else { 1307 if (!sc->is_detaching) 1308 ffec_init_locked(sc); 1309 } 1310 } else { 1311 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1312 ffec_stop_locked(sc); 1313 } 1314 sc->if_flags = ifp->if_flags; 1315 FFEC_UNLOCK(sc); 1316 break; 1317 1318 case SIOCADDMULTI: 1319 case SIOCDELMULTI: 1320 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1321 FFEC_LOCK(sc); 1322 ffec_setup_rxfilter(sc); 1323 FFEC_UNLOCK(sc); 1324 } 1325 break; 1326 1327 case SIOCSIFMEDIA: 1328 case SIOCGIFMEDIA: 1329 mii = sc->mii_softc; 1330 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 1331 break; 1332 1333 case SIOCSIFCAP: 1334 mask = ifp->if_capenable ^ ifr->ifr_reqcap; 1335 if (mask & IFCAP_VLAN_MTU) { 1336 /* No work to do except acknowledge the change took. */ 1337 ifp->if_capenable ^= IFCAP_VLAN_MTU; 1338 } 1339 break; 1340 1341 default: 1342 error = ether_ioctl(ifp, cmd, data); 1343 break; 1344 } 1345 1346 return (error); 1347 } 1348 1349 static int 1350 ffec_detach(device_t dev) 1351 { 1352 struct ffec_softc *sc; 1353 bus_dmamap_t map; 1354 int idx; 1355 1356 /* 1357 * NB: This function can be called internally to unwind a failure to 1358 * attach. Make sure a resource got allocated/created before destroying. 1359 */ 1360 1361 sc = device_get_softc(dev); 1362 1363 if (sc->is_attached) { 1364 FFEC_LOCK(sc); 1365 sc->is_detaching = true; 1366 ffec_stop_locked(sc); 1367 FFEC_UNLOCK(sc); 1368 callout_drain(&sc->ffec_callout); 1369 ether_ifdetach(sc->ifp); 1370 } 1371 1372 /* XXX no miibus detach? */ 1373 1374 /* Clean up RX DMA resources and free mbufs. */ 1375 for (idx = 0; idx < RX_DESC_COUNT; ++idx) { 1376 if ((map = sc->rxbuf_map[idx].map) != NULL) { 1377 bus_dmamap_unload(sc->rxbuf_tag, map); 1378 bus_dmamap_destroy(sc->rxbuf_tag, map); 1379 m_freem(sc->rxbuf_map[idx].mbuf); 1380 } 1381 } 1382 if (sc->rxbuf_tag != NULL) 1383 bus_dma_tag_destroy(sc->rxbuf_tag); 1384 if (sc->rxdesc_map != NULL) { 1385 bus_dmamap_unload(sc->rxdesc_tag, sc->rxdesc_map); 1386 bus_dmamap_destroy(sc->rxdesc_tag, sc->rxdesc_map); 1387 } 1388 if (sc->rxdesc_tag != NULL) 1389 bus_dma_tag_destroy(sc->rxdesc_tag); 1390 1391 /* Clean up TX DMA resources. */ 1392 for (idx = 0; idx < TX_DESC_COUNT; ++idx) { 1393 if ((map = sc->txbuf_map[idx].map) != NULL) { 1394 /* TX maps are already unloaded. */ 1395 bus_dmamap_destroy(sc->txbuf_tag, map); 1396 } 1397 } 1398 if (sc->txbuf_tag != NULL) 1399 bus_dma_tag_destroy(sc->txbuf_tag); 1400 if (sc->txdesc_map != NULL) { 1401 bus_dmamap_unload(sc->txdesc_tag, sc->txdesc_map); 1402 bus_dmamap_destroy(sc->txdesc_tag, sc->txdesc_map); 1403 } 1404 if (sc->txdesc_tag != NULL) 1405 bus_dma_tag_destroy(sc->txdesc_tag); 1406 1407 /* Release bus resources. */ 1408 if (sc->intr_cookie) 1409 bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie); 1410 1411 if (sc->irq_res != NULL) 1412 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res); 1413 1414 if (sc->mem_res != NULL) 1415 bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res); 1416 1417 FFEC_LOCK_DESTROY(sc); 1418 return (0); 1419 } 1420 1421 static int 1422 ffec_attach(device_t dev) 1423 { 1424 struct ffec_softc *sc; 1425 struct ifnet *ifp = NULL; 1426 struct mbuf *m; 1427 phandle_t ofw_node; 1428 int error, rid; 1429 uint8_t eaddr[ETHER_ADDR_LEN]; 1430 char phy_conn_name[32]; 1431 uint32_t idx, mscr; 1432 1433 sc = device_get_softc(dev); 1434 sc->dev = dev; 1435 1436 FFEC_LOCK_INIT(sc); 1437 1438 /* 1439 * There are differences in the implementation and features of the FEC 1440 * hardware on different SoCs, so figure out what type we are. 1441 */ 1442 sc->fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data; 1443 1444 /* 1445 * We have to be told what kind of electrical connection exists between 1446 * the MAC and PHY or we can't operate correctly. 1447 */ 1448 if ((ofw_node = ofw_bus_get_node(dev)) == -1) { 1449 device_printf(dev, "Impossible: Can't find ofw bus node\n"); 1450 error = ENXIO; 1451 goto out; 1452 } 1453 if (OF_searchprop(ofw_node, "phy-mode", 1454 phy_conn_name, sizeof(phy_conn_name)) != -1) { 1455 if (strcasecmp(phy_conn_name, "mii") == 0) 1456 sc->phy_conn_type = PHY_CONN_MII; 1457 else if (strcasecmp(phy_conn_name, "rmii") == 0) 1458 sc->phy_conn_type = PHY_CONN_RMII; 1459 else if (strcasecmp(phy_conn_name, "rgmii") == 0) 1460 sc->phy_conn_type = PHY_CONN_RGMII; 1461 } 1462 if (sc->phy_conn_type == PHY_CONN_UNKNOWN) { 1463 device_printf(sc->dev, "No valid 'phy-mode' " 1464 "property found in FDT data for device.\n"); 1465 error = ENOATTR; 1466 goto out; 1467 } 1468 1469 callout_init_mtx(&sc->ffec_callout, &sc->mtx, 0); 1470 1471 /* Allocate bus resources for accessing the hardware. */ 1472 rid = 0; 1473 sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 1474 RF_ACTIVE); 1475 if (sc->mem_res == NULL) { 1476 device_printf(dev, "could not allocate memory resources.\n"); 1477 error = ENOMEM; 1478 goto out; 1479 } 1480 rid = 0; 1481 sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 1482 RF_ACTIVE); 1483 if (sc->irq_res == NULL) { 1484 device_printf(dev, "could not allocate interrupt resources.\n"); 1485 error = ENOMEM; 1486 goto out; 1487 } 1488 1489 /* 1490 * Set up TX descriptor ring, descriptors, and dma maps. 1491 */ 1492 error = bus_dma_tag_create( 1493 bus_get_dma_tag(dev), /* Parent tag. */ 1494 FEC_DESC_RING_ALIGN, 0, /* alignment, boundary */ 1495 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1496 BUS_SPACE_MAXADDR, /* highaddr */ 1497 NULL, NULL, /* filter, filterarg */ 1498 TX_DESC_SIZE, 1, /* maxsize, nsegments */ 1499 TX_DESC_SIZE, /* maxsegsize */ 1500 0, /* flags */ 1501 NULL, NULL, /* lockfunc, lockarg */ 1502 &sc->txdesc_tag); 1503 if (error != 0) { 1504 device_printf(sc->dev, 1505 "could not create TX ring DMA tag.\n"); 1506 goto out; 1507 } 1508 1509 error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring, 1510 BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->txdesc_map); 1511 if (error != 0) { 1512 device_printf(sc->dev, 1513 "could not allocate TX descriptor ring.\n"); 1514 goto out; 1515 } 1516 1517 error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map, sc->txdesc_ring, 1518 TX_DESC_SIZE, ffec_get1paddr, &sc->txdesc_ring_paddr, 0); 1519 if (error != 0) { 1520 device_printf(sc->dev, 1521 "could not load TX descriptor ring map.\n"); 1522 goto out; 1523 } 1524 1525 error = bus_dma_tag_create( 1526 bus_get_dma_tag(dev), /* Parent tag. */ 1527 FEC_TXBUF_ALIGN, 0, /* alignment, boundary */ 1528 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1529 BUS_SPACE_MAXADDR, /* highaddr */ 1530 NULL, NULL, /* filter, filterarg */ 1531 MCLBYTES, 1, /* maxsize, nsegments */ 1532 MCLBYTES, /* maxsegsize */ 1533 0, /* flags */ 1534 NULL, NULL, /* lockfunc, lockarg */ 1535 &sc->txbuf_tag); 1536 if (error != 0) { 1537 device_printf(sc->dev, 1538 "could not create TX ring DMA tag.\n"); 1539 goto out; 1540 } 1541 1542 for (idx = 0; idx < TX_DESC_COUNT; ++idx) { 1543 error = bus_dmamap_create(sc->txbuf_tag, 0, 1544 &sc->txbuf_map[idx].map); 1545 if (error != 0) { 1546 device_printf(sc->dev, 1547 "could not create TX buffer DMA map.\n"); 1548 goto out; 1549 } 1550 ffec_setup_txdesc(sc, idx, 0, 0); 1551 } 1552 1553 /* 1554 * Set up RX descriptor ring, descriptors, dma maps, and mbufs. 1555 */ 1556 error = bus_dma_tag_create( 1557 bus_get_dma_tag(dev), /* Parent tag. */ 1558 FEC_DESC_RING_ALIGN, 0, /* alignment, boundary */ 1559 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1560 BUS_SPACE_MAXADDR, /* highaddr */ 1561 NULL, NULL, /* filter, filterarg */ 1562 RX_DESC_SIZE, 1, /* maxsize, nsegments */ 1563 RX_DESC_SIZE, /* maxsegsize */ 1564 0, /* flags */ 1565 NULL, NULL, /* lockfunc, lockarg */ 1566 &sc->rxdesc_tag); 1567 if (error != 0) { 1568 device_printf(sc->dev, 1569 "could not create RX ring DMA tag.\n"); 1570 goto out; 1571 } 1572 1573 error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring, 1574 BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rxdesc_map); 1575 if (error != 0) { 1576 device_printf(sc->dev, 1577 "could not allocate RX descriptor ring.\n"); 1578 goto out; 1579 } 1580 1581 error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map, sc->rxdesc_ring, 1582 RX_DESC_SIZE, ffec_get1paddr, &sc->rxdesc_ring_paddr, 0); 1583 if (error != 0) { 1584 device_printf(sc->dev, 1585 "could not load RX descriptor ring map.\n"); 1586 goto out; 1587 } 1588 1589 error = bus_dma_tag_create( 1590 bus_get_dma_tag(dev), /* Parent tag. */ 1591 1, 0, /* alignment, boundary */ 1592 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1593 BUS_SPACE_MAXADDR, /* highaddr */ 1594 NULL, NULL, /* filter, filterarg */ 1595 MCLBYTES, 1, /* maxsize, nsegments */ 1596 MCLBYTES, /* maxsegsize */ 1597 0, /* flags */ 1598 NULL, NULL, /* lockfunc, lockarg */ 1599 &sc->rxbuf_tag); 1600 if (error != 0) { 1601 device_printf(sc->dev, 1602 "could not create RX buf DMA tag.\n"); 1603 goto out; 1604 } 1605 1606 for (idx = 0; idx < RX_DESC_COUNT; ++idx) { 1607 error = bus_dmamap_create(sc->rxbuf_tag, 0, 1608 &sc->rxbuf_map[idx].map); 1609 if (error != 0) { 1610 device_printf(sc->dev, 1611 "could not create RX buffer DMA map.\n"); 1612 goto out; 1613 } 1614 if ((m = ffec_alloc_mbufcl(sc)) == NULL) { 1615 device_printf(dev, "Could not alloc mbuf\n"); 1616 error = ENOMEM; 1617 goto out; 1618 } 1619 if ((error = ffec_setup_rxbuf(sc, idx, m)) != 0) { 1620 device_printf(sc->dev, 1621 "could not create new RX buffer.\n"); 1622 goto out; 1623 } 1624 } 1625 1626 /* Try to get the MAC address from the hardware before resetting it. */ 1627 ffec_get_hwaddr(sc, eaddr); 1628 1629 /* Reset the hardware. Disables all interrupts. */ 1630 WR4(sc, FEC_ECR_REG, FEC_ECR_RESET); 1631 1632 /* Setup interrupt handler. */ 1633 error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE, 1634 NULL, ffec_intr, sc, &sc->intr_cookie); 1635 if (error != 0) { 1636 device_printf(dev, "could not setup interrupt handler.\n"); 1637 goto out; 1638 } 1639 1640 /* 1641 * Set up the PHY control register. 1642 * 1643 * Speed formula for ENET is md_clock = mac_clock / ((N + 1) * 2). 1644 * Speed formula for FEC is md_clock = mac_clock / (N * 2) 1645 * 1646 * XXX - Revisit this... 1647 * 1648 * For a Wandboard imx6 (ENET) I was originally using 4, but the uboot 1649 * code uses 10. Both values seem to work, but I suspect many modern 1650 * PHY parts can do mdio at speeds far above the standard 2.5 MHz. 1651 * 1652 * Different imx manuals use confusingly different terminology (things 1653 * like "system clock" and "internal module clock") with examples that 1654 * use frequencies that have nothing to do with ethernet, giving the 1655 * vague impression that maybe the clock in question is the periphclock 1656 * or something. In fact, on an imx53 development board (FEC), 1657 * measuring the mdio clock at the pin on the PHY and playing with 1658 * various divisors showed that the root speed was 66 MHz (clk_ipg_root 1659 * aka periphclock) and 13 was the right divisor. 1660 * 1661 * All in all, it seems likely that 13 is a safe divisor for now, 1662 * because if we really do need to base it on the peripheral clock 1663 * speed, then we need a platform-independant get-clock-freq API. 1664 */ 1665 mscr = 13 << FEC_MSCR_MII_SPEED_SHIFT; 1666 if (OF_hasprop(ofw_node, "phy-disable-preamble")) { 1667 mscr |= FEC_MSCR_DIS_PRE; 1668 if (bootverbose) 1669 device_printf(dev, "PHY preamble disabled\n"); 1670 } 1671 WR4(sc, FEC_MSCR_REG, mscr); 1672 1673 /* Set up the ethernet interface. */ 1674 sc->ifp = ifp = if_alloc(IFT_ETHER); 1675 1676 ifp->if_softc = sc; 1677 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1678 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1679 ifp->if_capabilities = IFCAP_VLAN_MTU; 1680 ifp->if_capenable = ifp->if_capabilities; 1681 ifp->if_start = ffec_txstart; 1682 ifp->if_ioctl = ffec_ioctl; 1683 ifp->if_init = ffec_init; 1684 IFQ_SET_MAXLEN(&ifp->if_snd, TX_DESC_COUNT - 1); 1685 ifp->if_snd.ifq_drv_maxlen = TX_DESC_COUNT - 1; 1686 IFQ_SET_READY(&ifp->if_snd); 1687 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 1688 1689 #if 0 /* XXX The hardware keeps stats we could use for these. */ 1690 ifp->if_linkmib = &sc->mibdata; 1691 ifp->if_linkmiblen = sizeof(sc->mibdata); 1692 #endif 1693 1694 /* Set up the miigasket hardware (if any). */ 1695 ffec_miigasket_setup(sc); 1696 1697 /* Attach the mii driver. */ 1698 error = mii_attach(dev, &sc->miibus, ifp, ffec_media_change, 1699 ffec_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 1700 (sc->fectype & FECTYPE_MVF) ? MIIF_FORCEANEG : 0); 1701 if (error != 0) { 1702 device_printf(dev, "PHY attach failed\n"); 1703 goto out; 1704 } 1705 sc->mii_softc = device_get_softc(sc->miibus); 1706 1707 /* All ready to run, attach the ethernet interface. */ 1708 ether_ifattach(ifp, eaddr); 1709 sc->is_attached = true; 1710 1711 error = 0; 1712 out: 1713 1714 if (error != 0) 1715 ffec_detach(dev); 1716 1717 return (error); 1718 } 1719 1720 static int 1721 ffec_probe(device_t dev) 1722 { 1723 uintptr_t fectype; 1724 1725 if (!ofw_bus_status_okay(dev)) 1726 return (ENXIO); 1727 1728 fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data; 1729 if (fectype == FECTYPE_NONE) 1730 return (ENXIO); 1731 1732 device_set_desc(dev, (fectype & FECFLAG_GBE) ? 1733 "Freescale Gigabit Ethernet Controller" : 1734 "Freescale Fast Ethernet Controller"); 1735 1736 return (BUS_PROBE_DEFAULT); 1737 } 1738 1739 1740 static device_method_t ffec_methods[] = { 1741 /* Device interface. */ 1742 DEVMETHOD(device_probe, ffec_probe), 1743 DEVMETHOD(device_attach, ffec_attach), 1744 DEVMETHOD(device_detach, ffec_detach), 1745 1746 /* 1747 DEVMETHOD(device_shutdown, ffec_shutdown), 1748 DEVMETHOD(device_suspend, ffec_suspend), 1749 DEVMETHOD(device_resume, ffec_resume), 1750 */ 1751 1752 /* MII interface. */ 1753 DEVMETHOD(miibus_readreg, ffec_miibus_readreg), 1754 DEVMETHOD(miibus_writereg, ffec_miibus_writereg), 1755 DEVMETHOD(miibus_statchg, ffec_miibus_statchg), 1756 1757 DEVMETHOD_END 1758 }; 1759 1760 static driver_t ffec_driver = { 1761 "ffec", 1762 ffec_methods, 1763 sizeof(struct ffec_softc) 1764 }; 1765 1766 static devclass_t ffec_devclass; 1767 1768 DRIVER_MODULE(ffec, simplebus, ffec_driver, ffec_devclass, 0, 0); 1769 DRIVER_MODULE(miibus, ffec, miibus_driver, miibus_devclass, 0, 0); 1770 1771 MODULE_DEPEND(ffec, ether, 1, 1, 1); 1772 MODULE_DEPEND(ffec, miibus, 1, 1, 1); 1773