xref: /freebsd/sys/dev/ffec/if_ffec.c (revision 90b5fc95832da64a5f56295e687379732c33718f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for Freescale Fast Ethernet Controller, found on imx-series SoCs among
35  * others.  Also works for the ENET Gigibit controller found on imx6 and imx28,
36  * but the driver doesn't currently use any of the ENET advanced features other
37  * than enabling gigabit.
38  *
39  * The interface name 'fec' is already taken by netgraph's Fast Etherchannel
40  * (netgraph/ng_fec.c), so we use 'ffec'.
41  *
42  * Requires an FDT entry with at least these properties:
43  *   fec: ethernet@02188000 {
44  *      compatible = "fsl,imxNN-fec";
45  *      reg = <0x02188000 0x4000>;
46  *      interrupts = <150 151>;
47  *      phy-mode = "rgmii";
48  *      phy-disable-preamble; // optional
49  *   };
50  * The second interrupt number is for IEEE-1588, and is not currently used; it
51  * need not be present.  phy-mode must be one of: "mii", "rmii", "rgmii".
52  * There is also an optional property, phy-disable-preamble, which if present
53  * will disable the preamble bits, cutting the size of each mdio transaction
54  * (and thus the busy-wait time) in half.
55  */
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/bus.h>
60 #include <sys/endian.h>
61 #include <sys/kernel.h>
62 #include <sys/lock.h>
63 #include <sys/malloc.h>
64 #include <sys/mbuf.h>
65 #include <sys/module.h>
66 #include <sys/mutex.h>
67 #include <sys/rman.h>
68 #include <sys/socket.h>
69 #include <sys/sockio.h>
70 #include <sys/sysctl.h>
71 
72 #include <machine/bus.h>
73 
74 #include <net/bpf.h>
75 #include <net/if.h>
76 #include <net/ethernet.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_var.h>
81 #include <net/if_vlan_var.h>
82 
83 #include <dev/fdt/fdt_common.h>
84 #include <dev/ffec/if_ffecreg.h>
85 #include <dev/ofw/ofw_bus.h>
86 #include <dev/ofw/ofw_bus_subr.h>
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89 #include <dev/mii/mii_fdt.h>
90 #include "miibus_if.h"
91 
92 /*
93  * There are small differences in the hardware on various SoCs.  Not every SoC
94  * we support has its own FECTYPE; most work as GENERIC and only the ones that
95  * need different handling get their own entry.  In addition to the types in
96  * this list, there are some flags below that can be ORed into the upper bits.
97  */
98 enum {
99 	FECTYPE_NONE,
100 	FECTYPE_GENERIC,
101 	FECTYPE_IMX53,
102 	FECTYPE_IMX6,	/* imx6 and imx7 */
103 	FECTYPE_MVF,
104 };
105 
106 /*
107  * Flags that describe general differences between the FEC hardware in various
108  * SoCs.  These are ORed into the FECTYPE enum values in the ofw_compat_data, so
109  * the low 8 bits are reserved for the type enum.  In the softc, the type and
110  * flags are put into separate members, so that you don't need to mask the flags
111  * out of the type to compare it.
112  */
113 #define	FECTYPE_MASK		0x000000ff
114 #define	FECFLAG_GBE		(1 <<  8)
115 #define	FECFLAG_AVB		(1 <<  9)
116 #define	FECFLAG_RACC		(1 << 10)
117 
118 /*
119  * Table of supported FDT compat strings and their associated FECTYPE values.
120  */
121 static struct ofw_compat_data compat_data[] = {
122 	{"fsl,imx51-fec",	FECTYPE_GENERIC},
123 	{"fsl,imx53-fec",	FECTYPE_IMX53},
124 	{"fsl,imx6q-fec",	FECTYPE_IMX6 | FECFLAG_RACC | FECFLAG_GBE },
125 	{"fsl,imx6ul-fec",	FECTYPE_IMX6 | FECFLAG_RACC },
126 	{"fsl,imx6sx-fec",      FECTYPE_IMX6 | FECFLAG_RACC },
127 	{"fsl,imx7d-fec",	FECTYPE_IMX6 | FECFLAG_RACC | FECFLAG_GBE |
128 				FECFLAG_AVB },
129 	{"fsl,mvf600-fec",	FECTYPE_MVF  | FECFLAG_RACC },
130 	{"fsl,mvf-fec",		FECTYPE_MVF},
131 	{NULL,		 	FECTYPE_NONE},
132 };
133 
134 /*
135  * Driver data and defines.
136  */
137 #define	RX_DESC_COUNT	64
138 #define	RX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * RX_DESC_COUNT)
139 #define	TX_DESC_COUNT	64
140 #define	TX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * TX_DESC_COUNT)
141 
142 #define	WATCHDOG_TIMEOUT_SECS	5
143 
144 #define	MAX_IRQ_COUNT 3
145 
146 struct ffec_bufmap {
147 	struct mbuf	*mbuf;
148 	bus_dmamap_t	map;
149 };
150 
151 struct ffec_softc {
152 	device_t		dev;
153 	device_t		miibus;
154 	struct mii_data *	mii_softc;
155 	struct ifnet		*ifp;
156 	int			if_flags;
157 	struct mtx		mtx;
158 	struct resource		*irq_res[MAX_IRQ_COUNT];
159 	struct resource		*mem_res;
160 	void *			intr_cookie[MAX_IRQ_COUNT];
161 	struct callout		ffec_callout;
162 	mii_contype_t		phy_conn_type;
163 	uint32_t		fecflags;
164 	uint8_t			fectype;
165 	boolean_t		link_is_up;
166 	boolean_t		is_attached;
167 	boolean_t		is_detaching;
168 	int			tx_watchdog_count;
169 	int			rxbuf_align;
170 	int			txbuf_align;
171 
172 	bus_dma_tag_t		rxdesc_tag;
173 	bus_dmamap_t		rxdesc_map;
174 	struct ffec_hwdesc	*rxdesc_ring;
175 	bus_addr_t		rxdesc_ring_paddr;
176 	bus_dma_tag_t		rxbuf_tag;
177 	struct ffec_bufmap	rxbuf_map[RX_DESC_COUNT];
178 	uint32_t		rx_idx;
179 
180 	bus_dma_tag_t		txdesc_tag;
181 	bus_dmamap_t		txdesc_map;
182 	struct ffec_hwdesc	*txdesc_ring;
183 	bus_addr_t		txdesc_ring_paddr;
184 	bus_dma_tag_t		txbuf_tag;
185 	struct ffec_bufmap	txbuf_map[TX_DESC_COUNT];
186 	uint32_t		tx_idx_head;
187 	uint32_t		tx_idx_tail;
188 	int			txcount;
189 };
190 
191 static struct resource_spec irq_res_spec[MAX_IRQ_COUNT + 1] = {
192 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
193 	{ SYS_RES_IRQ,		1,	RF_ACTIVE | RF_OPTIONAL },
194 	{ SYS_RES_IRQ,		2,	RF_ACTIVE | RF_OPTIONAL },
195 	RESOURCE_SPEC_END
196 };
197 
198 #define	FFEC_LOCK(sc)			mtx_lock(&(sc)->mtx)
199 #define	FFEC_UNLOCK(sc)			mtx_unlock(&(sc)->mtx)
200 #define	FFEC_LOCK_INIT(sc)		mtx_init(&(sc)->mtx, \
201 	    device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF)
202 #define	FFEC_LOCK_DESTROY(sc)		mtx_destroy(&(sc)->mtx);
203 #define	FFEC_ASSERT_LOCKED(sc)		mtx_assert(&(sc)->mtx, MA_OWNED);
204 #define	FFEC_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED);
205 
206 static void ffec_init_locked(struct ffec_softc *sc);
207 static void ffec_stop_locked(struct ffec_softc *sc);
208 static void ffec_txstart_locked(struct ffec_softc *sc);
209 static void ffec_txfinish_locked(struct ffec_softc *sc);
210 
211 static inline uint16_t
212 RD2(struct ffec_softc *sc, bus_size_t off)
213 {
214 
215 	return (bus_read_2(sc->mem_res, off));
216 }
217 
218 static inline void
219 WR2(struct ffec_softc *sc, bus_size_t off, uint16_t val)
220 {
221 
222 	bus_write_2(sc->mem_res, off, val);
223 }
224 
225 static inline uint32_t
226 RD4(struct ffec_softc *sc, bus_size_t off)
227 {
228 
229 	return (bus_read_4(sc->mem_res, off));
230 }
231 
232 static inline void
233 WR4(struct ffec_softc *sc, bus_size_t off, uint32_t val)
234 {
235 
236 	bus_write_4(sc->mem_res, off, val);
237 }
238 
239 static inline uint32_t
240 next_rxidx(struct ffec_softc *sc, uint32_t curidx)
241 {
242 
243 	return ((curidx == RX_DESC_COUNT - 1) ? 0 : curidx + 1);
244 }
245 
246 static inline uint32_t
247 next_txidx(struct ffec_softc *sc, uint32_t curidx)
248 {
249 
250 	return ((curidx == TX_DESC_COUNT - 1) ? 0 : curidx + 1);
251 }
252 
253 static void
254 ffec_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
255 {
256 
257 	if (error != 0)
258 		return;
259 	*(bus_addr_t *)arg = segs[0].ds_addr;
260 }
261 
262 static void
263 ffec_miigasket_setup(struct ffec_softc *sc)
264 {
265 	uint32_t ifmode;
266 
267 	/*
268 	 * We only need the gasket for MII and RMII connections on certain SoCs.
269 	 */
270 
271 	switch (sc->fectype)
272 	{
273 	case FECTYPE_IMX53:
274 		break;
275 	default:
276 		return;
277 	}
278 
279 	switch (sc->phy_conn_type)
280 	{
281 	case MII_CONTYPE_MII:
282 		ifmode = 0;
283 		break;
284 	case MII_CONTYPE_RMII:
285 		ifmode = FEC_MIIGSK_CFGR_IF_MODE_RMII;
286 		break;
287 	default:
288 		return;
289 	}
290 
291 	/*
292 	 * Disable the gasket, configure for either MII or RMII, then enable.
293 	 */
294 
295 	WR2(sc, FEC_MIIGSK_ENR, 0);
296 	while (RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY)
297 		continue;
298 
299 	WR2(sc, FEC_MIIGSK_CFGR, ifmode);
300 
301 	WR2(sc, FEC_MIIGSK_ENR, FEC_MIIGSK_ENR_EN);
302 	while (!(RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY))
303 		continue;
304 }
305 
306 static boolean_t
307 ffec_miibus_iowait(struct ffec_softc *sc)
308 {
309 	uint32_t timeout;
310 
311 	for (timeout = 10000; timeout != 0; --timeout)
312 		if (RD4(sc, FEC_IER_REG) & FEC_IER_MII)
313 			return (true);
314 
315 	return (false);
316 }
317 
318 static int
319 ffec_miibus_readreg(device_t dev, int phy, int reg)
320 {
321 	struct ffec_softc *sc;
322 	int val;
323 
324 	sc = device_get_softc(dev);
325 
326 	WR4(sc, FEC_IER_REG, FEC_IER_MII);
327 
328 	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_READ |
329 	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
330 	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
331 	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK));
332 
333 	if (!ffec_miibus_iowait(sc)) {
334 		device_printf(dev, "timeout waiting for mii read\n");
335 		return (-1); /* All-ones is a symptom of bad mdio. */
336 	}
337 
338 	val = RD4(sc, FEC_MMFR_REG) & FEC_MMFR_DATA_MASK;
339 
340 	return (val);
341 }
342 
343 static int
344 ffec_miibus_writereg(device_t dev, int phy, int reg, int val)
345 {
346 	struct ffec_softc *sc;
347 
348 	sc = device_get_softc(dev);
349 
350 	WR4(sc, FEC_IER_REG, FEC_IER_MII);
351 
352 	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_WRITE |
353 	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
354 	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
355 	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK) |
356 	    (val & FEC_MMFR_DATA_MASK));
357 
358 	if (!ffec_miibus_iowait(sc)) {
359 		device_printf(dev, "timeout waiting for mii write\n");
360 		return (-1);
361 	}
362 
363 	return (0);
364 }
365 
366 static void
367 ffec_miibus_statchg(device_t dev)
368 {
369 	struct ffec_softc *sc;
370 	struct mii_data *mii;
371 	uint32_t ecr, rcr, tcr;
372 
373 	/*
374 	 * Called by the MII bus driver when the PHY establishes link to set the
375 	 * MAC interface registers.
376 	 */
377 
378 	sc = device_get_softc(dev);
379 
380 	FFEC_ASSERT_LOCKED(sc);
381 
382 	mii = sc->mii_softc;
383 
384 	if (mii->mii_media_status & IFM_ACTIVE)
385 		sc->link_is_up = true;
386 	else
387 		sc->link_is_up = false;
388 
389 	ecr = RD4(sc, FEC_ECR_REG) & ~FEC_ECR_SPEED;
390 	rcr = RD4(sc, FEC_RCR_REG) & ~(FEC_RCR_RMII_10T | FEC_RCR_RMII_MODE |
391 	    FEC_RCR_RGMII_EN | FEC_RCR_DRT | FEC_RCR_FCE);
392 	tcr = RD4(sc, FEC_TCR_REG) & ~FEC_TCR_FDEN;
393 
394 	rcr |= FEC_RCR_MII_MODE; /* Must always be on even for R[G]MII. */
395 	switch (sc->phy_conn_type) {
396 	case MII_CONTYPE_RMII:
397 		rcr |= FEC_RCR_RMII_MODE;
398 		break;
399 	case MII_CONTYPE_RGMII:
400 	case MII_CONTYPE_RGMII_ID:
401 	case MII_CONTYPE_RGMII_RXID:
402 	case MII_CONTYPE_RGMII_TXID:
403 		rcr |= FEC_RCR_RGMII_EN;
404 		break;
405 	default:
406 		break;
407 	}
408 
409 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
410 	case IFM_1000_T:
411 	case IFM_1000_SX:
412 		ecr |= FEC_ECR_SPEED;
413 		break;
414 	case IFM_100_TX:
415 		/* Not-FEC_ECR_SPEED + not-FEC_RCR_RMII_10T means 100TX */
416 		break;
417 	case IFM_10_T:
418 		rcr |= FEC_RCR_RMII_10T;
419 		break;
420 	case IFM_NONE:
421 		sc->link_is_up = false;
422 		return;
423 	default:
424 		sc->link_is_up = false;
425 		device_printf(dev, "Unsupported media %u\n",
426 		    IFM_SUBTYPE(mii->mii_media_active));
427 		return;
428 	}
429 
430 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
431 		tcr |= FEC_TCR_FDEN;
432 	else
433 		rcr |= FEC_RCR_DRT;
434 
435 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLOW) != 0)
436 		rcr |= FEC_RCR_FCE;
437 
438 	WR4(sc, FEC_RCR_REG, rcr);
439 	WR4(sc, FEC_TCR_REG, tcr);
440 	WR4(sc, FEC_ECR_REG, ecr);
441 }
442 
443 static void
444 ffec_media_status(struct ifnet * ifp, struct ifmediareq *ifmr)
445 {
446 	struct ffec_softc *sc;
447 	struct mii_data *mii;
448 
449 
450 	sc = ifp->if_softc;
451 	mii = sc->mii_softc;
452 	FFEC_LOCK(sc);
453 	mii_pollstat(mii);
454 	ifmr->ifm_active = mii->mii_media_active;
455 	ifmr->ifm_status = mii->mii_media_status;
456 	FFEC_UNLOCK(sc);
457 }
458 
459 static int
460 ffec_media_change_locked(struct ffec_softc *sc)
461 {
462 
463 	return (mii_mediachg(sc->mii_softc));
464 }
465 
466 static int
467 ffec_media_change(struct ifnet * ifp)
468 {
469 	struct ffec_softc *sc;
470 	int error;
471 
472 	sc = ifp->if_softc;
473 
474 	FFEC_LOCK(sc);
475 	error = ffec_media_change_locked(sc);
476 	FFEC_UNLOCK(sc);
477 	return (error);
478 }
479 
480 static void ffec_clear_stats(struct ffec_softc *sc)
481 {
482 	uint32_t mibc;
483 
484 	mibc = RD4(sc, FEC_MIBC_REG);
485 
486 	/*
487 	 * On newer hardware the statistic regs are cleared by toggling a bit in
488 	 * the mib control register.  On older hardware the clear procedure is
489 	 * to disable statistics collection, zero the regs, then re-enable.
490 	 */
491 	if (sc->fectype == FECTYPE_IMX6 || sc->fectype == FECTYPE_MVF) {
492 		WR4(sc, FEC_MIBC_REG, mibc | FEC_MIBC_CLEAR);
493 		WR4(sc, FEC_MIBC_REG, mibc & ~FEC_MIBC_CLEAR);
494 	} else {
495 		WR4(sc, FEC_MIBC_REG, mibc | FEC_MIBC_DIS);
496 
497 		WR4(sc, FEC_IEEE_R_DROP, 0);
498 		WR4(sc, FEC_IEEE_R_MACERR, 0);
499 		WR4(sc, FEC_RMON_R_CRC_ALIGN, 0);
500 		WR4(sc, FEC_RMON_R_FRAG, 0);
501 		WR4(sc, FEC_RMON_R_JAB, 0);
502 		WR4(sc, FEC_RMON_R_MC_PKT, 0);
503 		WR4(sc, FEC_RMON_R_OVERSIZE, 0);
504 		WR4(sc, FEC_RMON_R_PACKETS, 0);
505 		WR4(sc, FEC_RMON_R_UNDERSIZE, 0);
506 		WR4(sc, FEC_RMON_T_COL, 0);
507 		WR4(sc, FEC_RMON_T_CRC_ALIGN, 0);
508 		WR4(sc, FEC_RMON_T_FRAG, 0);
509 		WR4(sc, FEC_RMON_T_JAB, 0);
510 		WR4(sc, FEC_RMON_T_MC_PKT, 0);
511 		WR4(sc, FEC_RMON_T_OVERSIZE , 0);
512 		WR4(sc, FEC_RMON_T_PACKETS, 0);
513 		WR4(sc, FEC_RMON_T_UNDERSIZE, 0);
514 
515 		WR4(sc, FEC_MIBC_REG, mibc);
516 	}
517 }
518 
519 static void
520 ffec_harvest_stats(struct ffec_softc *sc)
521 {
522 	struct ifnet *ifp;
523 
524 	ifp = sc->ifp;
525 
526 	/*
527 	 * - FEC_IEEE_R_DROP is "dropped due to invalid start frame delimiter"
528 	 *   so it's really just another type of input error.
529 	 * - FEC_IEEE_R_MACERR is "no receive fifo space"; count as input drops.
530 	 */
531 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, RD4(sc, FEC_RMON_R_PACKETS));
532 	if_inc_counter(ifp, IFCOUNTER_IMCASTS, RD4(sc, FEC_RMON_R_MC_PKT));
533 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
534 	    RD4(sc, FEC_RMON_R_CRC_ALIGN) + RD4(sc, FEC_RMON_R_UNDERSIZE) +
535 	    RD4(sc, FEC_RMON_R_OVERSIZE) + RD4(sc, FEC_RMON_R_FRAG) +
536 	    RD4(sc, FEC_RMON_R_JAB) + RD4(sc, FEC_IEEE_R_DROP));
537 
538 	if_inc_counter(ifp, IFCOUNTER_IQDROPS, RD4(sc, FEC_IEEE_R_MACERR));
539 
540 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, RD4(sc, FEC_RMON_T_PACKETS));
541 	if_inc_counter(ifp, IFCOUNTER_OMCASTS, RD4(sc, FEC_RMON_T_MC_PKT));
542 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
543 	    RD4(sc, FEC_RMON_T_CRC_ALIGN) + RD4(sc, FEC_RMON_T_UNDERSIZE) +
544 	    RD4(sc, FEC_RMON_T_OVERSIZE) + RD4(sc, FEC_RMON_T_FRAG) +
545 	    RD4(sc, FEC_RMON_T_JAB));
546 
547 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, RD4(sc, FEC_RMON_T_COL));
548 
549 	ffec_clear_stats(sc);
550 }
551 
552 static void
553 ffec_tick(void *arg)
554 {
555 	struct ffec_softc *sc;
556 	struct ifnet *ifp;
557 	int link_was_up;
558 
559 	sc = arg;
560 
561 	FFEC_ASSERT_LOCKED(sc);
562 
563 	ifp = sc->ifp;
564 
565 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
566 	    return;
567 
568 	/*
569 	 * Typical tx watchdog.  If this fires it indicates that we enqueued
570 	 * packets for output and never got a txdone interrupt for them.  Maybe
571 	 * it's a missed interrupt somehow, just pretend we got one.
572 	 */
573 	if (sc->tx_watchdog_count > 0) {
574 		if (--sc->tx_watchdog_count == 0) {
575 			ffec_txfinish_locked(sc);
576 		}
577 	}
578 
579 	/* Gather stats from hardware counters. */
580 	ffec_harvest_stats(sc);
581 
582 	/* Check the media status. */
583 	link_was_up = sc->link_is_up;
584 	mii_tick(sc->mii_softc);
585 	if (sc->link_is_up && !link_was_up)
586 		ffec_txstart_locked(sc);
587 
588 	/* Schedule another check one second from now. */
589 	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
590 }
591 
592 inline static uint32_t
593 ffec_setup_txdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr,
594     uint32_t len)
595 {
596 	uint32_t nidx;
597 	uint32_t flags;
598 
599 	nidx = next_txidx(sc, idx);
600 
601 	/* Addr/len 0 means we're clearing the descriptor after xmit done. */
602 	if (paddr == 0 || len == 0) {
603 		flags = 0;
604 		--sc->txcount;
605 	} else {
606 		flags = FEC_TXDESC_READY | FEC_TXDESC_L | FEC_TXDESC_TC;
607 		++sc->txcount;
608 	}
609 	if (nidx == 0)
610 		flags |= FEC_TXDESC_WRAP;
611 
612 	/*
613 	 * The hardware requires 32-bit physical addresses.  We set up the dma
614 	 * tag to indicate that, so the cast to uint32_t should never lose
615 	 * significant bits.
616 	 */
617 	sc->txdesc_ring[idx].buf_paddr = (uint32_t)paddr;
618 	sc->txdesc_ring[idx].flags_len = flags | len; /* Must be set last! */
619 
620 	return (nidx);
621 }
622 
623 static int
624 ffec_setup_txbuf(struct ffec_softc *sc, int idx, struct mbuf **mp)
625 {
626 	struct mbuf * m;
627 	int error, nsegs;
628 	struct bus_dma_segment seg;
629 
630 	if ((m = m_defrag(*mp, M_NOWAIT)) == NULL)
631 		return (ENOMEM);
632 	*mp = m;
633 
634 	error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map,
635 	    m, &seg, &nsegs, 0);
636 	if (error != 0) {
637 		return (ENOMEM);
638 	}
639 	bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map,
640 	    BUS_DMASYNC_PREWRITE);
641 
642 	sc->txbuf_map[idx].mbuf = m;
643 	ffec_setup_txdesc(sc, idx, seg.ds_addr, seg.ds_len);
644 
645 	return (0);
646 
647 }
648 
649 static void
650 ffec_txstart_locked(struct ffec_softc *sc)
651 {
652 	struct ifnet *ifp;
653 	struct mbuf *m;
654 	int enqueued;
655 
656 	FFEC_ASSERT_LOCKED(sc);
657 
658 	if (!sc->link_is_up)
659 		return;
660 
661 	ifp = sc->ifp;
662 
663 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
664 		return;
665 
666 	enqueued = 0;
667 
668 	for (;;) {
669 		if (sc->txcount == (TX_DESC_COUNT-1)) {
670 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
671 			break;
672 		}
673 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
674 		if (m == NULL)
675 			break;
676 		if (ffec_setup_txbuf(sc, sc->tx_idx_head, &m) != 0) {
677 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
678 			break;
679 		}
680 		BPF_MTAP(ifp, m);
681 		sc->tx_idx_head = next_txidx(sc, sc->tx_idx_head);
682 		++enqueued;
683 	}
684 
685 	if (enqueued != 0) {
686 		bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREWRITE);
687 		WR4(sc, FEC_TDAR_REG, FEC_TDAR_TDAR);
688 		bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTWRITE);
689 		sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS;
690 	}
691 }
692 
693 static void
694 ffec_txstart(struct ifnet *ifp)
695 {
696 	struct ffec_softc *sc = ifp->if_softc;
697 
698 	FFEC_LOCK(sc);
699 	ffec_txstart_locked(sc);
700 	FFEC_UNLOCK(sc);
701 }
702 
703 static void
704 ffec_txfinish_locked(struct ffec_softc *sc)
705 {
706 	struct ifnet *ifp;
707 	struct ffec_hwdesc *desc;
708 	struct ffec_bufmap *bmap;
709 	boolean_t retired_buffer;
710 
711 	FFEC_ASSERT_LOCKED(sc);
712 
713 	/* XXX Can't set PRE|POST right now, but we need both. */
714 	bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREREAD);
715 	bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTREAD);
716 	ifp = sc->ifp;
717 	retired_buffer = false;
718 	while (sc->tx_idx_tail != sc->tx_idx_head) {
719 		desc = &sc->txdesc_ring[sc->tx_idx_tail];
720 		if (desc->flags_len & FEC_TXDESC_READY)
721 			break;
722 		retired_buffer = true;
723 		bmap = &sc->txbuf_map[sc->tx_idx_tail];
724 		bus_dmamap_sync(sc->txbuf_tag, bmap->map,
725 		    BUS_DMASYNC_POSTWRITE);
726 		bus_dmamap_unload(sc->txbuf_tag, bmap->map);
727 		m_freem(bmap->mbuf);
728 		bmap->mbuf = NULL;
729 		ffec_setup_txdesc(sc, sc->tx_idx_tail, 0, 0);
730 		sc->tx_idx_tail = next_txidx(sc, sc->tx_idx_tail);
731 	}
732 
733 	/*
734 	 * If we retired any buffers, there will be open tx slots available in
735 	 * the descriptor ring, go try to start some new output.
736 	 */
737 	if (retired_buffer) {
738 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
739 		ffec_txstart_locked(sc);
740 	}
741 
742 	/* If there are no buffers outstanding, muzzle the watchdog. */
743 	if (sc->tx_idx_tail == sc->tx_idx_head) {
744 		sc->tx_watchdog_count = 0;
745 	}
746 }
747 
748 inline static uint32_t
749 ffec_setup_rxdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr)
750 {
751 	uint32_t nidx;
752 
753 	/*
754 	 * The hardware requires 32-bit physical addresses.  We set up the dma
755 	 * tag to indicate that, so the cast to uint32_t should never lose
756 	 * significant bits.
757 	 */
758 	nidx = next_rxidx(sc, idx);
759 	sc->rxdesc_ring[idx].buf_paddr = (uint32_t)paddr;
760 	sc->rxdesc_ring[idx].flags_len = FEC_RXDESC_EMPTY |
761 		((nidx == 0) ? FEC_RXDESC_WRAP : 0);
762 
763 	return (nidx);
764 }
765 
766 static int
767 ffec_setup_rxbuf(struct ffec_softc *sc, int idx, struct mbuf * m)
768 {
769 	int error, nsegs;
770 	struct bus_dma_segment seg;
771 
772 	if (!(sc->fecflags & FECFLAG_RACC)) {
773 		/*
774 		 * The RACC[SHIFT16] feature is not available.  So, we need to
775 		 * leave at least ETHER_ALIGN bytes free at the beginning of the
776 		 * buffer to allow the data to be re-aligned after receiving it
777 		 * (by copying it backwards ETHER_ALIGN bytes in the same
778 		 * buffer).  We also have to ensure that the beginning of the
779 		 * buffer is aligned to the hardware's requirements.
780 		 */
781 		m_adj(m, roundup(ETHER_ALIGN, sc->rxbuf_align));
782 	}
783 
784 	error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
785 	    m, &seg, &nsegs, 0);
786 	if (error != 0) {
787 		return (error);
788 	}
789 
790 	bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
791 	    BUS_DMASYNC_PREREAD);
792 
793 	sc->rxbuf_map[idx].mbuf = m;
794 	ffec_setup_rxdesc(sc, idx, seg.ds_addr);
795 
796 	return (0);
797 }
798 
799 static struct mbuf *
800 ffec_alloc_mbufcl(struct ffec_softc *sc)
801 {
802 	struct mbuf *m;
803 
804 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
805 	if (m != NULL)
806 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
807 
808 	return (m);
809 }
810 
811 static void
812 ffec_rxfinish_onebuf(struct ffec_softc *sc, int len)
813 {
814 	struct mbuf *m, *newmbuf;
815 	struct ffec_bufmap *bmap;
816 	uint8_t *dst, *src;
817 	int error;
818 
819 	/*
820 	 *  First try to get a new mbuf to plug into this slot in the rx ring.
821 	 *  If that fails, drop the current packet and recycle the current
822 	 *  mbuf, which is still mapped and loaded.
823 	 */
824 	if ((newmbuf = ffec_alloc_mbufcl(sc)) == NULL) {
825 		if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, 1);
826 		ffec_setup_rxdesc(sc, sc->rx_idx,
827 		    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
828 		return;
829 	}
830 
831 	FFEC_UNLOCK(sc);
832 
833 	bmap = &sc->rxbuf_map[sc->rx_idx];
834 	len -= ETHER_CRC_LEN;
835 	bus_dmamap_sync(sc->rxbuf_tag, bmap->map, BUS_DMASYNC_POSTREAD);
836 	bus_dmamap_unload(sc->rxbuf_tag, bmap->map);
837 	m = bmap->mbuf;
838 	bmap->mbuf = NULL;
839 	m->m_len = len;
840 	m->m_pkthdr.len = len;
841 	m->m_pkthdr.rcvif = sc->ifp;
842 
843 	/*
844 	 * Align the protocol headers in the receive buffer on a 32-bit
845 	 * boundary.  Newer hardware does the alignment for us.  On hardware
846 	 * that doesn't support this feature, we have to copy-align the data.
847 	 *
848 	 *  XXX for older hardware, could we speed this up by copying just the
849 	 *  protocol headers into their own small mbuf then chaining the cluster
850 	 *  to it? That way we'd only need to copy like 64 bytes or whatever the
851 	 *  biggest header is, instead of the whole 1530ish-byte frame.
852 	 */
853 	if (sc->fecflags & FECFLAG_RACC) {
854 		m->m_data = mtod(m, uint8_t *) + 2;
855 	} else {
856 		src = mtod(m, uint8_t*);
857 		dst = src - ETHER_ALIGN;
858 		bcopy(src, dst, len);
859 		m->m_data = dst;
860 	}
861 	sc->ifp->if_input(sc->ifp, m);
862 
863 	FFEC_LOCK(sc);
864 
865 	if ((error = ffec_setup_rxbuf(sc, sc->rx_idx, newmbuf)) != 0) {
866 		device_printf(sc->dev, "ffec_setup_rxbuf error %d\n", error);
867 		/* XXX Now what?  We've got a hole in the rx ring. */
868 	}
869 
870 }
871 
872 static void
873 ffec_rxfinish_locked(struct ffec_softc *sc)
874 {
875 	struct ffec_hwdesc *desc;
876 	int len;
877 	boolean_t produced_empty_buffer;
878 
879 	FFEC_ASSERT_LOCKED(sc);
880 
881 	/* XXX Can't set PRE|POST right now, but we need both. */
882 	bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREREAD);
883 	bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTREAD);
884 	produced_empty_buffer = false;
885 	for (;;) {
886 		desc = &sc->rxdesc_ring[sc->rx_idx];
887 		if (desc->flags_len & FEC_RXDESC_EMPTY)
888 			break;
889 		produced_empty_buffer = true;
890 		len = (desc->flags_len & FEC_RXDESC_LEN_MASK);
891 		if (len < 64) {
892 			/*
893 			 * Just recycle the descriptor and continue.           .
894 			 */
895 			ffec_setup_rxdesc(sc, sc->rx_idx,
896 			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
897 		} else if ((desc->flags_len & FEC_RXDESC_L) == 0) {
898 			/*
899 			 * The entire frame is not in this buffer.  Impossible.
900 			 * Recycle the descriptor and continue.
901 			 *
902 			 * XXX what's the right way to handle this? Probably we
903 			 * should stop/init the hardware because this should
904 			 * just really never happen when we have buffers bigger
905 			 * than the maximum frame size.
906 			 */
907 			device_printf(sc->dev,
908 			    "fec_rxfinish: received frame without LAST bit set");
909 			ffec_setup_rxdesc(sc, sc->rx_idx,
910 			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
911 		} else if (desc->flags_len & FEC_RXDESC_ERROR_BITS) {
912 			/*
913 			 *  Something went wrong with receiving the frame, we
914 			 *  don't care what (the hardware has counted the error
915 			 *  in the stats registers already), we just reuse the
916 			 *  same mbuf, which is still dma-mapped, by resetting
917 			 *  the rx descriptor.
918 			 */
919 			ffec_setup_rxdesc(sc, sc->rx_idx,
920 			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
921 		} else {
922 			/*
923 			 *  Normal case: a good frame all in one buffer.
924 			 */
925 			ffec_rxfinish_onebuf(sc, len);
926 		}
927 		sc->rx_idx = next_rxidx(sc, sc->rx_idx);
928 	}
929 
930 	if (produced_empty_buffer) {
931 		bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREWRITE);
932 		WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
933 		bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTWRITE);
934 	}
935 }
936 
937 static void
938 ffec_get_hwaddr(struct ffec_softc *sc, uint8_t *hwaddr)
939 {
940 	uint32_t palr, paur, rnd;
941 
942 	/*
943 	 * Try to recover a MAC address from the running hardware. If there's
944 	 * something non-zero there, assume the bootloader did the right thing
945 	 * and just use it.
946 	 *
947 	 * Otherwise, set the address to a convenient locally assigned address,
948 	 * 'bsd' + random 24 low-order bits.  'b' is 0x62, which has the locally
949 	 * assigned bit set, and the broadcast/multicast bit clear.
950 	 */
951 	palr = RD4(sc, FEC_PALR_REG);
952 	paur = RD4(sc, FEC_PAUR_REG) & FEC_PAUR_PADDR2_MASK;
953 	if ((palr | paur) != 0) {
954 		hwaddr[0] = palr >> 24;
955 		hwaddr[1] = palr >> 16;
956 		hwaddr[2] = palr >>  8;
957 		hwaddr[3] = palr >>  0;
958 		hwaddr[4] = paur >> 24;
959 		hwaddr[5] = paur >> 16;
960 	} else {
961 		rnd = arc4random() & 0x00ffffff;
962 		hwaddr[0] = 'b';
963 		hwaddr[1] = 's';
964 		hwaddr[2] = 'd';
965 		hwaddr[3] = rnd >> 16;
966 		hwaddr[4] = rnd >>  8;
967 		hwaddr[5] = rnd >>  0;
968 	}
969 
970 	if (bootverbose) {
971 		device_printf(sc->dev,
972 		    "MAC address %02x:%02x:%02x:%02x:%02x:%02x:\n",
973 		    hwaddr[0], hwaddr[1], hwaddr[2],
974 		    hwaddr[3], hwaddr[4], hwaddr[5]);
975 	}
976 }
977 
978 static u_int
979 ffec_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
980 {
981 	uint64_t *ghash = arg;
982 	uint32_t crc;
983 
984 	/* 6 bits from MSB in LE CRC32 are used for hash. */
985 	crc = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN);
986 	*ghash |= 1LLU << (((uint8_t *)&crc)[3] >> 2);
987 
988 	return (1);
989 }
990 
991 static void
992 ffec_setup_rxfilter(struct ffec_softc *sc)
993 {
994 	struct ifnet *ifp;
995 	uint8_t *eaddr;
996 	uint64_t ghash, ihash;
997 
998 	FFEC_ASSERT_LOCKED(sc);
999 
1000 	ifp = sc->ifp;
1001 
1002 	/*
1003 	 * Set the multicast (group) filter hash.
1004 	 */
1005 	if ((ifp->if_flags & IFF_ALLMULTI))
1006 		ghash = 0xffffffffffffffffLLU;
1007 	else {
1008 		ghash = 0;
1009 		if_foreach_llmaddr(ifp, ffec_hash_maddr, &ghash);
1010 	}
1011 	WR4(sc, FEC_GAUR_REG, (uint32_t)(ghash >> 32));
1012 	WR4(sc, FEC_GALR_REG, (uint32_t)ghash);
1013 
1014 	/*
1015 	 * Set the individual address filter hash.
1016 	 *
1017 	 * XXX Is 0 the right value when promiscuous is off?  This hw feature
1018 	 * seems to support the concept of MAC address aliases, does such a
1019 	 * thing even exist?
1020 	 */
1021 	if ((ifp->if_flags & IFF_PROMISC))
1022 		ihash = 0xffffffffffffffffLLU;
1023 	else {
1024 		ihash = 0;
1025 	}
1026 	WR4(sc, FEC_IAUR_REG, (uint32_t)(ihash >> 32));
1027 	WR4(sc, FEC_IALR_REG, (uint32_t)ihash);
1028 
1029 	/*
1030 	 * Set the primary address.
1031 	 */
1032 	eaddr = IF_LLADDR(ifp);
1033 	WR4(sc, FEC_PALR_REG, (eaddr[0] << 24) | (eaddr[1] << 16) |
1034 	    (eaddr[2] <<  8) | eaddr[3]);
1035 	WR4(sc, FEC_PAUR_REG, (eaddr[4] << 24) | (eaddr[5] << 16));
1036 }
1037 
1038 static void
1039 ffec_stop_locked(struct ffec_softc *sc)
1040 {
1041 	struct ifnet *ifp;
1042 	struct ffec_hwdesc *desc;
1043 	struct ffec_bufmap *bmap;
1044 	int idx;
1045 
1046 	FFEC_ASSERT_LOCKED(sc);
1047 
1048 	ifp = sc->ifp;
1049 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1050 	sc->tx_watchdog_count = 0;
1051 
1052 	/*
1053 	 * Stop the hardware, mask all interrupts, and clear all current
1054 	 * interrupt status bits.
1055 	 */
1056 	WR4(sc, FEC_ECR_REG, RD4(sc, FEC_ECR_REG) & ~FEC_ECR_ETHEREN);
1057 	WR4(sc, FEC_IEM_REG, 0x00000000);
1058 	WR4(sc, FEC_IER_REG, 0xffffffff);
1059 
1060 	/*
1061 	 * Stop the media-check callout.  Do not use callout_drain() because
1062 	 * we're holding a mutex the callout acquires, and if it's currently
1063 	 * waiting to acquire it, we'd deadlock.  If it is waiting now, the
1064 	 * ffec_tick() routine will return without doing anything when it sees
1065 	 * that IFF_DRV_RUNNING is not set, so avoiding callout_drain() is safe.
1066 	 */
1067 	callout_stop(&sc->ffec_callout);
1068 
1069 	/*
1070 	 * Discard all untransmitted buffers.  Each buffer is simply freed;
1071 	 * it's as if the bits were transmitted and then lost on the wire.
1072 	 *
1073 	 * XXX Is this right?  Or should we use IFQ_DRV_PREPEND() to put them
1074 	 * back on the queue for when we get restarted later?
1075 	 */
1076 	idx = sc->tx_idx_tail;
1077 	while (idx != sc->tx_idx_head) {
1078 		desc = &sc->txdesc_ring[idx];
1079 		bmap = &sc->txbuf_map[idx];
1080 		if (desc->buf_paddr != 0) {
1081 			bus_dmamap_unload(sc->txbuf_tag, bmap->map);
1082 			m_freem(bmap->mbuf);
1083 			bmap->mbuf = NULL;
1084 			ffec_setup_txdesc(sc, idx, 0, 0);
1085 		}
1086 		idx = next_txidx(sc, idx);
1087 	}
1088 
1089 	/*
1090 	 * Discard all unprocessed receive buffers.  This amounts to just
1091 	 * pretending that nothing ever got received into them.  We reuse the
1092 	 * mbuf already mapped for each desc, simply turning the EMPTY flags
1093 	 * back on so they'll get reused when we start up again.
1094 	 */
1095 	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1096 		desc = &sc->rxdesc_ring[idx];
1097 		ffec_setup_rxdesc(sc, idx, desc->buf_paddr);
1098 	}
1099 }
1100 
1101 static void
1102 ffec_init_locked(struct ffec_softc *sc)
1103 {
1104 	struct ifnet *ifp = sc->ifp;
1105 	uint32_t maxbuf, maxfl, regval;
1106 
1107 	FFEC_ASSERT_LOCKED(sc);
1108 
1109 	/*
1110 	 * The hardware has a limit of 0x7ff as the max frame length (see
1111 	 * comments for MRBR below), and we use mbuf clusters as receive
1112 	 * buffers, and we currently are designed to receive an entire frame
1113 	 * into a single buffer.
1114 	 *
1115 	 * We start with a MCLBYTES-sized cluster, but we have to offset into
1116 	 * the buffer by ETHER_ALIGN to make room for post-receive re-alignment,
1117 	 * and then that value has to be rounded up to the hardware's DMA
1118 	 * alignment requirements, so all in all our buffer is that much smaller
1119 	 * than MCLBYTES.
1120 	 *
1121 	 * The resulting value is used as the frame truncation length and the
1122 	 * max buffer receive buffer size for now.  It'll become more complex
1123 	 * when we support jumbo frames and receiving fragments of them into
1124 	 * separate buffers.
1125 	 */
1126 	maxbuf = MCLBYTES - roundup(ETHER_ALIGN, sc->rxbuf_align);
1127 	maxfl = min(maxbuf, 0x7ff);
1128 
1129 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1130 		return;
1131 
1132 	/* Mask all interrupts and clear all current interrupt status bits. */
1133 	WR4(sc, FEC_IEM_REG, 0x00000000);
1134 	WR4(sc, FEC_IER_REG, 0xffffffff);
1135 
1136 	/*
1137 	 * Go set up palr/puar, galr/gaur, ialr/iaur.
1138 	 */
1139 	ffec_setup_rxfilter(sc);
1140 
1141 	/*
1142 	 * TFWR - Transmit FIFO watermark register.
1143 	 *
1144 	 * Set the transmit fifo watermark register to "store and forward" mode
1145 	 * and also set a threshold of 128 bytes in the fifo before transmission
1146 	 * of a frame begins (to avoid dma underruns).  Recent FEC hardware
1147 	 * supports STRFWD and when that bit is set, the watermark level in the
1148 	 * low bits is ignored.  Older hardware doesn't have STRFWD, but writing
1149 	 * to that bit is innocuous, and the TWFR bits get used instead.
1150 	 */
1151 	WR4(sc, FEC_TFWR_REG, FEC_TFWR_STRFWD | FEC_TFWR_TWFR_128BYTE);
1152 
1153 	/* RCR - Receive control register.
1154 	 *
1155 	 * Set max frame length + clean out anything left from u-boot.
1156 	 */
1157 	WR4(sc, FEC_RCR_REG, (maxfl << FEC_RCR_MAX_FL_SHIFT));
1158 
1159 	/*
1160 	 * TCR - Transmit control register.
1161 	 *
1162 	 * Clean out anything left from u-boot.  Any necessary values are set in
1163 	 * ffec_miibus_statchg() based on the media type.
1164 	 */
1165 	WR4(sc, FEC_TCR_REG, 0);
1166 
1167 	/*
1168 	 * OPD - Opcode/pause duration.
1169 	 *
1170 	 * XXX These magic numbers come from u-boot.
1171 	 */
1172 	WR4(sc, FEC_OPD_REG, 0x00010020);
1173 
1174 	/*
1175 	 * FRSR - Fifo receive start register.
1176 	 *
1177 	 * This register does not exist on imx6, it is present on earlier
1178 	 * hardware. The u-boot code sets this to a non-default value that's 32
1179 	 * bytes larger than the default, with no clue as to why.  The default
1180 	 * value should work fine, so there's no code to init it here.
1181 	 */
1182 
1183 	/*
1184 	 *  MRBR - Max RX buffer size.
1185 	 *
1186 	 *  Note: For hardware prior to imx6 this value cannot exceed 0x07ff,
1187 	 *  but the datasheet says no such thing for imx6.  On the imx6, setting
1188 	 *  this to 2K without setting EN1588 resulted in a crazy runaway
1189 	 *  receive loop in the hardware, where every rx descriptor in the ring
1190 	 *  had its EMPTY flag cleared, no completion or error flags set, and a
1191 	 *  length of zero.  I think maybe you can only exceed it when EN1588 is
1192 	 *  set, like maybe that's what enables jumbo frames, because in general
1193 	 *  the EN1588 flag seems to be the "enable new stuff" vs. "be legacy-
1194 	 *  compatible" flag.
1195 	 */
1196 	WR4(sc, FEC_MRBR_REG, maxfl << FEC_MRBR_R_BUF_SIZE_SHIFT);
1197 
1198 	/*
1199 	 * FTRL - Frame truncation length.
1200 	 *
1201 	 * Must be greater than or equal to the value set in FEC_RCR_MAXFL.
1202 	 */
1203 	WR4(sc, FEC_FTRL_REG, maxfl);
1204 
1205 	/*
1206 	 * RDSR / TDSR descriptor ring pointers.
1207 	 *
1208 	 * When we turn on ECR_ETHEREN at the end, the hardware zeroes its
1209 	 * internal current descriptor index values for both rings, so we zero
1210 	 * our index values as well.
1211 	 */
1212 	sc->rx_idx = 0;
1213 	sc->tx_idx_head = sc->tx_idx_tail = 0;
1214 	sc->txcount = 0;
1215 	WR4(sc, FEC_RDSR_REG, sc->rxdesc_ring_paddr);
1216 	WR4(sc, FEC_TDSR_REG, sc->txdesc_ring_paddr);
1217 
1218 	/*
1219 	 * EIM - interrupt mask register.
1220 	 *
1221 	 * We always enable the same set of interrupts while running; unlike
1222 	 * some drivers there's no need to change the mask on the fly depending
1223 	 * on what operations are in progress.
1224 	 */
1225 	WR4(sc, FEC_IEM_REG, FEC_IER_TXF | FEC_IER_RXF | FEC_IER_EBERR);
1226 
1227 	/*
1228 	 * MIBC - MIB control (hardware stats); clear all statistics regs, then
1229 	 * enable collection of statistics.
1230 	 */
1231 	regval = RD4(sc, FEC_MIBC_REG);
1232 	WR4(sc, FEC_MIBC_REG, regval | FEC_MIBC_DIS);
1233 	ffec_clear_stats(sc);
1234 	WR4(sc, FEC_MIBC_REG, regval & ~FEC_MIBC_DIS);
1235 
1236 	if (sc->fecflags & FECFLAG_RACC) {
1237 		/*
1238 		 * RACC - Receive Accelerator Function Configuration.
1239 		 */
1240 		regval = RD4(sc, FEC_RACC_REG);
1241 		WR4(sc, FEC_RACC_REG, regval | FEC_RACC_SHIFT16);
1242 	}
1243 
1244 	/*
1245 	 * ECR - Ethernet control register.
1246 	 *
1247 	 * This must happen after all the other config registers are set.  If
1248 	 * we're running on little-endian hardware, also set the flag for byte-
1249 	 * swapping descriptor ring entries.  This flag doesn't exist on older
1250 	 * hardware, but it can be safely set -- the bit position it occupies
1251 	 * was unused.
1252 	 */
1253 	regval = RD4(sc, FEC_ECR_REG);
1254 #if _BYTE_ORDER == _LITTLE_ENDIAN
1255 	regval |= FEC_ECR_DBSWP;
1256 #endif
1257 	regval |= FEC_ECR_ETHEREN;
1258 	WR4(sc, FEC_ECR_REG, regval);
1259 
1260 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1261 
1262        /*
1263 	* Call mii_mediachg() which will call back into ffec_miibus_statchg() to
1264 	* set up the remaining config registers based on the current media.
1265 	*/
1266 	mii_mediachg(sc->mii_softc);
1267 	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
1268 
1269 	/*
1270 	 * Tell the hardware that receive buffers are available.  They were made
1271 	 * available in ffec_attach() or ffec_stop().
1272 	 */
1273 	WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
1274 }
1275 
1276 static void
1277 ffec_init(void *if_softc)
1278 {
1279 	struct ffec_softc *sc = if_softc;
1280 
1281 	FFEC_LOCK(sc);
1282 	ffec_init_locked(sc);
1283 	FFEC_UNLOCK(sc);
1284 }
1285 
1286 static void
1287 ffec_intr(void *arg)
1288 {
1289 	struct ffec_softc *sc;
1290 	uint32_t ier;
1291 
1292 	sc = arg;
1293 
1294 	FFEC_LOCK(sc);
1295 
1296 	ier = RD4(sc, FEC_IER_REG);
1297 
1298 	if (ier & FEC_IER_TXF) {
1299 		WR4(sc, FEC_IER_REG, FEC_IER_TXF);
1300 		ffec_txfinish_locked(sc);
1301 	}
1302 
1303 	if (ier & FEC_IER_RXF) {
1304 		WR4(sc, FEC_IER_REG, FEC_IER_RXF);
1305 		ffec_rxfinish_locked(sc);
1306 	}
1307 
1308 	/*
1309 	 * We actually don't care about most errors, because the hardware copes
1310 	 * with them just fine, discarding the incoming bad frame, or forcing a
1311 	 * bad CRC onto an outgoing bad frame, and counting the errors in the
1312 	 * stats registers.  The one that really matters is EBERR (DMA bus
1313 	 * error) because the hardware automatically clears ECR[ETHEREN] and we
1314 	 * have to restart it here.  It should never happen.
1315 	 */
1316 	if (ier & FEC_IER_EBERR) {
1317 		WR4(sc, FEC_IER_REG, FEC_IER_EBERR);
1318 		device_printf(sc->dev,
1319 		    "Ethernet DMA error, restarting controller.\n");
1320 		ffec_stop_locked(sc);
1321 		ffec_init_locked(sc);
1322 	}
1323 
1324 	FFEC_UNLOCK(sc);
1325 
1326 }
1327 
1328 static int
1329 ffec_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1330 {
1331 	struct ffec_softc *sc;
1332 	struct mii_data *mii;
1333 	struct ifreq *ifr;
1334 	int mask, error;
1335 
1336 	sc = ifp->if_softc;
1337 	ifr = (struct ifreq *)data;
1338 
1339 	error = 0;
1340 	switch (cmd) {
1341 	case SIOCSIFFLAGS:
1342 		FFEC_LOCK(sc);
1343 		if (ifp->if_flags & IFF_UP) {
1344 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1345 				if ((ifp->if_flags ^ sc->if_flags) &
1346 				    (IFF_PROMISC | IFF_ALLMULTI))
1347 					ffec_setup_rxfilter(sc);
1348 			} else {
1349 				if (!sc->is_detaching)
1350 					ffec_init_locked(sc);
1351 			}
1352 		} else {
1353 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1354 				ffec_stop_locked(sc);
1355 		}
1356 		sc->if_flags = ifp->if_flags;
1357 		FFEC_UNLOCK(sc);
1358 		break;
1359 
1360 	case SIOCADDMULTI:
1361 	case SIOCDELMULTI:
1362 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1363 			FFEC_LOCK(sc);
1364 			ffec_setup_rxfilter(sc);
1365 			FFEC_UNLOCK(sc);
1366 		}
1367 		break;
1368 
1369 	case SIOCSIFMEDIA:
1370 	case SIOCGIFMEDIA:
1371 		mii = sc->mii_softc;
1372 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1373 		break;
1374 
1375 	case SIOCSIFCAP:
1376 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
1377 		if (mask & IFCAP_VLAN_MTU) {
1378 			/* No work to do except acknowledge the change took. */
1379 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
1380 		}
1381 		break;
1382 
1383 	default:
1384 		error = ether_ioctl(ifp, cmd, data);
1385 		break;
1386 	}
1387 
1388 	return (error);
1389 }
1390 
1391 static int
1392 ffec_detach(device_t dev)
1393 {
1394 	struct ffec_softc *sc;
1395 	bus_dmamap_t map;
1396 	int idx, irq;
1397 
1398 	/*
1399 	 * NB: This function can be called internally to unwind a failure to
1400 	 * attach. Make sure a resource got allocated/created before destroying.
1401 	 */
1402 
1403 	sc = device_get_softc(dev);
1404 
1405 	if (sc->is_attached) {
1406 		FFEC_LOCK(sc);
1407 		sc->is_detaching = true;
1408 		ffec_stop_locked(sc);
1409 		FFEC_UNLOCK(sc);
1410 		callout_drain(&sc->ffec_callout);
1411 		ether_ifdetach(sc->ifp);
1412 	}
1413 
1414 	/* XXX no miibus detach? */
1415 
1416 	/* Clean up RX DMA resources and free mbufs. */
1417 	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1418 		if ((map = sc->rxbuf_map[idx].map) != NULL) {
1419 			bus_dmamap_unload(sc->rxbuf_tag, map);
1420 			bus_dmamap_destroy(sc->rxbuf_tag, map);
1421 			m_freem(sc->rxbuf_map[idx].mbuf);
1422 		}
1423 	}
1424 	if (sc->rxbuf_tag != NULL)
1425 		bus_dma_tag_destroy(sc->rxbuf_tag);
1426 	if (sc->rxdesc_map != NULL) {
1427 		bus_dmamap_unload(sc->rxdesc_tag, sc->rxdesc_map);
1428 		bus_dmamap_destroy(sc->rxdesc_tag, sc->rxdesc_map);
1429 	}
1430 	if (sc->rxdesc_tag != NULL)
1431 	bus_dma_tag_destroy(sc->rxdesc_tag);
1432 
1433 	/* Clean up TX DMA resources. */
1434 	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1435 		if ((map = sc->txbuf_map[idx].map) != NULL) {
1436 			/* TX maps are already unloaded. */
1437 			bus_dmamap_destroy(sc->txbuf_tag, map);
1438 		}
1439 	}
1440 	if (sc->txbuf_tag != NULL)
1441 		bus_dma_tag_destroy(sc->txbuf_tag);
1442 	if (sc->txdesc_map != NULL) {
1443 		bus_dmamap_unload(sc->txdesc_tag, sc->txdesc_map);
1444 		bus_dmamap_destroy(sc->txdesc_tag, sc->txdesc_map);
1445 	}
1446 	if (sc->txdesc_tag != NULL)
1447 		bus_dma_tag_destroy(sc->txdesc_tag);
1448 
1449 	/* Release bus resources. */
1450 	for (irq = 0; irq < MAX_IRQ_COUNT; ++irq) {
1451 		if (sc->intr_cookie[irq] != NULL) {
1452 			bus_teardown_intr(dev, sc->irq_res[irq],
1453 			    sc->intr_cookie[irq]);
1454 		}
1455 	}
1456 	bus_release_resources(dev, irq_res_spec, sc->irq_res);
1457 
1458 	if (sc->mem_res != NULL)
1459 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
1460 
1461 	FFEC_LOCK_DESTROY(sc);
1462 	return (0);
1463 }
1464 
1465 static int
1466 ffec_attach(device_t dev)
1467 {
1468 	struct ffec_softc *sc;
1469 	struct ifnet *ifp = NULL;
1470 	struct mbuf *m;
1471 	void *dummy;
1472 	uintptr_t typeflags;
1473 	phandle_t ofw_node;
1474 	uint32_t idx, mscr;
1475 	int error, phynum, rid, irq;
1476 	uint8_t eaddr[ETHER_ADDR_LEN];
1477 
1478 	sc = device_get_softc(dev);
1479 	sc->dev = dev;
1480 
1481 	FFEC_LOCK_INIT(sc);
1482 
1483 	/*
1484 	 * There are differences in the implementation and features of the FEC
1485 	 * hardware on different SoCs, so figure out what type we are.
1486 	 */
1487 	typeflags = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1488 	sc->fectype = (uint8_t)(typeflags & FECTYPE_MASK);
1489 	sc->fecflags = (uint32_t)(typeflags & ~FECTYPE_MASK);
1490 
1491 	if (sc->fecflags & FECFLAG_AVB) {
1492 		sc->rxbuf_align = 64;
1493 		sc->txbuf_align = 1;
1494 	} else {
1495 		sc->rxbuf_align = 16;
1496 		sc->txbuf_align = 16;
1497 	}
1498 
1499 	/*
1500 	 * We have to be told what kind of electrical connection exists between
1501 	 * the MAC and PHY or we can't operate correctly.
1502 	 */
1503 	if ((ofw_node = ofw_bus_get_node(dev)) == -1) {
1504 		device_printf(dev, "Impossible: Can't find ofw bus node\n");
1505 		error = ENXIO;
1506 		goto out;
1507 	}
1508 	sc->phy_conn_type = mii_fdt_get_contype(ofw_node);
1509 	if (sc->phy_conn_type == MII_CONTYPE_UNKNOWN) {
1510 		device_printf(sc->dev, "No valid 'phy-mode' "
1511 		    "property found in FDT data for device.\n");
1512 		error = ENOATTR;
1513 		goto out;
1514 	}
1515 
1516 	callout_init_mtx(&sc->ffec_callout, &sc->mtx, 0);
1517 
1518 	/* Allocate bus resources for accessing the hardware. */
1519 	rid = 0;
1520 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1521 	    RF_ACTIVE);
1522 	if (sc->mem_res == NULL) {
1523 		device_printf(dev, "could not allocate memory resources.\n");
1524 		error = ENOMEM;
1525 		goto out;
1526 	}
1527 
1528 	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
1529 	if (error != 0) {
1530 		device_printf(dev, "could not allocate interrupt resources\n");
1531 		goto out;
1532 	}
1533 
1534 	/*
1535 	 * Set up TX descriptor ring, descriptors, and dma maps.
1536 	 */
1537 	error = bus_dma_tag_create(
1538 	    bus_get_dma_tag(dev),	/* Parent tag. */
1539 	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1540 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1541 	    BUS_SPACE_MAXADDR,		/* highaddr */
1542 	    NULL, NULL,			/* filter, filterarg */
1543 	    TX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1544 	    TX_DESC_SIZE,		/* maxsegsize */
1545 	    0,				/* flags */
1546 	    NULL, NULL,			/* lockfunc, lockarg */
1547 	    &sc->txdesc_tag);
1548 	if (error != 0) {
1549 		device_printf(sc->dev,
1550 		    "could not create TX ring DMA tag.\n");
1551 		goto out;
1552 	}
1553 
1554 	error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring,
1555 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->txdesc_map);
1556 	if (error != 0) {
1557 		device_printf(sc->dev,
1558 		    "could not allocate TX descriptor ring.\n");
1559 		goto out;
1560 	}
1561 
1562 	error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map, sc->txdesc_ring,
1563 	    TX_DESC_SIZE, ffec_get1paddr, &sc->txdesc_ring_paddr, 0);
1564 	if (error != 0) {
1565 		device_printf(sc->dev,
1566 		    "could not load TX descriptor ring map.\n");
1567 		goto out;
1568 	}
1569 
1570 	error = bus_dma_tag_create(
1571 	    bus_get_dma_tag(dev),	/* Parent tag. */
1572 	    sc->txbuf_align, 0,		/* alignment, boundary */
1573 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1574 	    BUS_SPACE_MAXADDR,		/* highaddr */
1575 	    NULL, NULL,			/* filter, filterarg */
1576 	    MCLBYTES, 1, 		/* maxsize, nsegments */
1577 	    MCLBYTES,			/* maxsegsize */
1578 	    0,				/* flags */
1579 	    NULL, NULL,			/* lockfunc, lockarg */
1580 	    &sc->txbuf_tag);
1581 	if (error != 0) {
1582 		device_printf(sc->dev,
1583 		    "could not create TX ring DMA tag.\n");
1584 		goto out;
1585 	}
1586 
1587 	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1588 		error = bus_dmamap_create(sc->txbuf_tag, 0,
1589 		    &sc->txbuf_map[idx].map);
1590 		if (error != 0) {
1591 			device_printf(sc->dev,
1592 			    "could not create TX buffer DMA map.\n");
1593 			goto out;
1594 		}
1595 		ffec_setup_txdesc(sc, idx, 0, 0);
1596 	}
1597 
1598 	/*
1599 	 * Set up RX descriptor ring, descriptors, dma maps, and mbufs.
1600 	 */
1601 	error = bus_dma_tag_create(
1602 	    bus_get_dma_tag(dev),	/* Parent tag. */
1603 	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1604 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1605 	    BUS_SPACE_MAXADDR,		/* highaddr */
1606 	    NULL, NULL,			/* filter, filterarg */
1607 	    RX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1608 	    RX_DESC_SIZE,		/* maxsegsize */
1609 	    0,				/* flags */
1610 	    NULL, NULL,			/* lockfunc, lockarg */
1611 	    &sc->rxdesc_tag);
1612 	if (error != 0) {
1613 		device_printf(sc->dev,
1614 		    "could not create RX ring DMA tag.\n");
1615 		goto out;
1616 	}
1617 
1618 	error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring,
1619 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rxdesc_map);
1620 	if (error != 0) {
1621 		device_printf(sc->dev,
1622 		    "could not allocate RX descriptor ring.\n");
1623 		goto out;
1624 	}
1625 
1626 	error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map, sc->rxdesc_ring,
1627 	    RX_DESC_SIZE, ffec_get1paddr, &sc->rxdesc_ring_paddr, 0);
1628 	if (error != 0) {
1629 		device_printf(sc->dev,
1630 		    "could not load RX descriptor ring map.\n");
1631 		goto out;
1632 	}
1633 
1634 	error = bus_dma_tag_create(
1635 	    bus_get_dma_tag(dev),	/* Parent tag. */
1636 	    1, 0,			/* alignment, boundary */
1637 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1638 	    BUS_SPACE_MAXADDR,		/* highaddr */
1639 	    NULL, NULL,			/* filter, filterarg */
1640 	    MCLBYTES, 1, 		/* maxsize, nsegments */
1641 	    MCLBYTES,			/* maxsegsize */
1642 	    0,				/* flags */
1643 	    NULL, NULL,			/* lockfunc, lockarg */
1644 	    &sc->rxbuf_tag);
1645 	if (error != 0) {
1646 		device_printf(sc->dev,
1647 		    "could not create RX buf DMA tag.\n");
1648 		goto out;
1649 	}
1650 
1651 	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1652 		error = bus_dmamap_create(sc->rxbuf_tag, 0,
1653 		    &sc->rxbuf_map[idx].map);
1654 		if (error != 0) {
1655 			device_printf(sc->dev,
1656 			    "could not create RX buffer DMA map.\n");
1657 			goto out;
1658 		}
1659 		if ((m = ffec_alloc_mbufcl(sc)) == NULL) {
1660 			device_printf(dev, "Could not alloc mbuf\n");
1661 			error = ENOMEM;
1662 			goto out;
1663 		}
1664 		if ((error = ffec_setup_rxbuf(sc, idx, m)) != 0) {
1665 			device_printf(sc->dev,
1666 			    "could not create new RX buffer.\n");
1667 			goto out;
1668 		}
1669 	}
1670 
1671 	/* Try to get the MAC address from the hardware before resetting it. */
1672 	ffec_get_hwaddr(sc, eaddr);
1673 
1674 	/*
1675 	 * Reset the hardware.  Disables all interrupts.
1676 	 *
1677 	 * When the FEC is connected to the AXI bus (indicated by AVB flag), a
1678 	 * MAC reset while a bus transaction is pending can hang the bus.
1679 	 * Instead of resetting, turn off the ENABLE bit, which allows the
1680 	 * hardware to complete any in-progress transfers (appending a bad CRC
1681 	 * to any partial packet) and release the AXI bus.  This could probably
1682 	 * be done unconditionally for all hardware variants, but that hasn't
1683 	 * been tested.
1684 	 */
1685 	if (sc->fecflags & FECFLAG_AVB)
1686 		WR4(sc, FEC_ECR_REG, 0);
1687 	else
1688 		WR4(sc, FEC_ECR_REG, FEC_ECR_RESET);
1689 
1690 	/* Setup interrupt handler. */
1691 	for (irq = 0; irq < MAX_IRQ_COUNT; ++irq) {
1692 		if (sc->irq_res[irq] != NULL) {
1693 			error = bus_setup_intr(dev, sc->irq_res[irq],
1694 			    INTR_TYPE_NET | INTR_MPSAFE, NULL, ffec_intr, sc,
1695 			    &sc->intr_cookie[irq]);
1696 			if (error != 0) {
1697 				device_printf(dev,
1698 				    "could not setup interrupt handler.\n");
1699 				goto out;
1700 			}
1701 		}
1702 	}
1703 
1704 	/*
1705 	 * Set up the PHY control register.
1706 	 *
1707 	 * Speed formula for ENET is md_clock = mac_clock / ((N + 1) * 2).
1708 	 * Speed formula for FEC is  md_clock = mac_clock / (N * 2)
1709 	 *
1710 	 * XXX - Revisit this...
1711 	 *
1712 	 * For a Wandboard imx6 (ENET) I was originally using 4, but the uboot
1713 	 * code uses 10.  Both values seem to work, but I suspect many modern
1714 	 * PHY parts can do mdio at speeds far above the standard 2.5 MHz.
1715 	 *
1716 	 * Different imx manuals use confusingly different terminology (things
1717 	 * like "system clock" and "internal module clock") with examples that
1718 	 * use frequencies that have nothing to do with ethernet, giving the
1719 	 * vague impression that maybe the clock in question is the periphclock
1720 	 * or something.  In fact, on an imx53 development board (FEC),
1721 	 * measuring the mdio clock at the pin on the PHY and playing with
1722 	 * various divisors showed that the root speed was 66 MHz (clk_ipg_root
1723 	 * aka periphclock) and 13 was the right divisor.
1724 	 *
1725 	 * All in all, it seems likely that 13 is a safe divisor for now,
1726 	 * because if we really do need to base it on the peripheral clock
1727 	 * speed, then we need a platform-independant get-clock-freq API.
1728 	 */
1729 	mscr = 13 << FEC_MSCR_MII_SPEED_SHIFT;
1730 	if (OF_hasprop(ofw_node, "phy-disable-preamble")) {
1731 		mscr |= FEC_MSCR_DIS_PRE;
1732 		if (bootverbose)
1733 			device_printf(dev, "PHY preamble disabled\n");
1734 	}
1735 	WR4(sc, FEC_MSCR_REG, mscr);
1736 
1737 	/* Set up the ethernet interface. */
1738 	sc->ifp = ifp = if_alloc(IFT_ETHER);
1739 
1740 	ifp->if_softc = sc;
1741 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1742 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1743 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1744 	ifp->if_capenable = ifp->if_capabilities;
1745 	ifp->if_start = ffec_txstart;
1746 	ifp->if_ioctl = ffec_ioctl;
1747 	ifp->if_init = ffec_init;
1748 	IFQ_SET_MAXLEN(&ifp->if_snd, TX_DESC_COUNT - 1);
1749 	ifp->if_snd.ifq_drv_maxlen = TX_DESC_COUNT - 1;
1750 	IFQ_SET_READY(&ifp->if_snd);
1751 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1752 
1753 #if 0 /* XXX The hardware keeps stats we could use for these. */
1754 	ifp->if_linkmib = &sc->mibdata;
1755 	ifp->if_linkmiblen = sizeof(sc->mibdata);
1756 #endif
1757 
1758 	/* Set up the miigasket hardware (if any). */
1759 	ffec_miigasket_setup(sc);
1760 
1761 	/* Attach the mii driver. */
1762 	if (fdt_get_phyaddr(ofw_node, dev, &phynum, &dummy) != 0) {
1763 		phynum = MII_PHY_ANY;
1764 	}
1765 	error = mii_attach(dev, &sc->miibus, ifp, ffec_media_change,
1766 	    ffec_media_status, BMSR_DEFCAPMASK, phynum, MII_OFFSET_ANY,
1767 	    (sc->fecflags & FECTYPE_MVF) ? MIIF_FORCEANEG : 0);
1768 	if (error != 0) {
1769 		device_printf(dev, "PHY attach failed\n");
1770 		goto out;
1771 	}
1772 	sc->mii_softc = device_get_softc(sc->miibus);
1773 
1774 	/* All ready to run, attach the ethernet interface. */
1775 	ether_ifattach(ifp, eaddr);
1776 	sc->is_attached = true;
1777 
1778 	error = 0;
1779 out:
1780 
1781 	if (error != 0)
1782 		ffec_detach(dev);
1783 
1784 	return (error);
1785 }
1786 
1787 static int
1788 ffec_probe(device_t dev)
1789 {
1790 	uintptr_t fectype;
1791 
1792 	if (!ofw_bus_status_okay(dev))
1793 		return (ENXIO);
1794 
1795 	fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1796 	if (fectype == FECTYPE_NONE)
1797 		return (ENXIO);
1798 
1799 	device_set_desc(dev, (fectype & FECFLAG_GBE) ?
1800 	    "Freescale Gigabit Ethernet Controller" :
1801 	    "Freescale Fast Ethernet Controller");
1802 
1803 	return (BUS_PROBE_DEFAULT);
1804 }
1805 
1806 
1807 static device_method_t ffec_methods[] = {
1808 	/* Device interface. */
1809 	DEVMETHOD(device_probe,		ffec_probe),
1810 	DEVMETHOD(device_attach,	ffec_attach),
1811 	DEVMETHOD(device_detach,	ffec_detach),
1812 
1813 /*
1814 	DEVMETHOD(device_shutdown,	ffec_shutdown),
1815 	DEVMETHOD(device_suspend,	ffec_suspend),
1816 	DEVMETHOD(device_resume,	ffec_resume),
1817 */
1818 
1819 	/* MII interface. */
1820 	DEVMETHOD(miibus_readreg,	ffec_miibus_readreg),
1821 	DEVMETHOD(miibus_writereg,	ffec_miibus_writereg),
1822 	DEVMETHOD(miibus_statchg,	ffec_miibus_statchg),
1823 
1824 	DEVMETHOD_END
1825 };
1826 
1827 static driver_t ffec_driver = {
1828 	"ffec",
1829 	ffec_methods,
1830 	sizeof(struct ffec_softc)
1831 };
1832 
1833 static devclass_t ffec_devclass;
1834 
1835 DRIVER_MODULE(ffec, simplebus, ffec_driver, ffec_devclass, 0, 0);
1836 DRIVER_MODULE(miibus, ffec, miibus_driver, miibus_devclass, 0, 0);
1837 
1838 MODULE_DEPEND(ffec, ether, 1, 1, 1);
1839 MODULE_DEPEND(ffec, miibus, 1, 1, 1);
1840