1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for Freescale Fast Ethernet Controller, found on imx-series SoCs among 35 * others. Also works for the ENET Gigibit controller found on imx6 and imx28, 36 * but the driver doesn't currently use any of the ENET advanced features other 37 * than enabling gigabit. 38 * 39 * The interface name 'fec' is already taken by netgraph's Fast Etherchannel 40 * (netgraph/ng_fec.c), so we use 'ffec'. 41 * 42 * Requires an FDT entry with at least these properties: 43 * fec: ethernet@02188000 { 44 * compatible = "fsl,imxNN-fec"; 45 * reg = <0x02188000 0x4000>; 46 * interrupts = <150 151>; 47 * phy-mode = "rgmii"; 48 * phy-disable-preamble; // optional 49 * }; 50 * The second interrupt number is for IEEE-1588, and is not currently used; it 51 * need not be present. phy-mode must be one of: "mii", "rmii", "rgmii". 52 * There is also an optional property, phy-disable-preamble, which if present 53 * will disable the preamble bits, cutting the size of each mdio transaction 54 * (and thus the busy-wait time) in half. 55 */ 56 57 #include <sys/param.h> 58 #include <sys/systm.h> 59 #include <sys/bus.h> 60 #include <sys/endian.h> 61 #include <sys/kernel.h> 62 #include <sys/lock.h> 63 #include <sys/malloc.h> 64 #include <sys/mbuf.h> 65 #include <sys/module.h> 66 #include <sys/mutex.h> 67 #include <sys/rman.h> 68 #include <sys/socket.h> 69 #include <sys/sockio.h> 70 #include <sys/sysctl.h> 71 72 #include <machine/bus.h> 73 74 #include <net/bpf.h> 75 #include <net/if.h> 76 #include <net/ethernet.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_var.h> 81 #include <net/if_vlan_var.h> 82 83 #include <dev/fdt/fdt_common.h> 84 #include <dev/ffec/if_ffecreg.h> 85 #include <dev/ofw/ofw_bus.h> 86 #include <dev/ofw/ofw_bus_subr.h> 87 #include <dev/mii/mii.h> 88 #include <dev/mii/miivar.h> 89 #include <dev/mii/mii_fdt.h> 90 #include "miibus_if.h" 91 92 /* 93 * There are small differences in the hardware on various SoCs. Not every SoC 94 * we support has its own FECTYPE; most work as GENERIC and only the ones that 95 * need different handling get their own entry. In addition to the types in 96 * this list, there are some flags below that can be ORed into the upper bits. 97 */ 98 enum { 99 FECTYPE_NONE, 100 FECTYPE_GENERIC, 101 FECTYPE_IMX53, 102 FECTYPE_IMX6, /* imx6 and imx7 */ 103 FECTYPE_MVF, 104 }; 105 106 /* 107 * Flags that describe general differences between the FEC hardware in various 108 * SoCs. These are ORed into the FECTYPE enum values in the ofw_compat_data, so 109 * the low 8 bits are reserved for the type enum. In the softc, the type and 110 * flags are put into separate members, so that you don't need to mask the flags 111 * out of the type to compare it. 112 */ 113 #define FECTYPE_MASK 0x000000ff 114 #define FECFLAG_GBE (1 << 8) 115 #define FECFLAG_AVB (1 << 9) 116 #define FECFLAG_RACC (1 << 10) 117 118 /* 119 * Table of supported FDT compat strings and their associated FECTYPE values. 120 */ 121 static struct ofw_compat_data compat_data[] = { 122 {"fsl,imx51-fec", FECTYPE_GENERIC}, 123 {"fsl,imx53-fec", FECTYPE_IMX53}, 124 {"fsl,imx6q-fec", FECTYPE_IMX6 | FECFLAG_RACC | FECFLAG_GBE }, 125 {"fsl,imx6ul-fec", FECTYPE_IMX6 | FECFLAG_RACC }, 126 {"fsl,imx6sx-fec", FECTYPE_IMX6 | FECFLAG_RACC }, 127 {"fsl,imx7d-fec", FECTYPE_IMX6 | FECFLAG_RACC | FECFLAG_GBE | 128 FECFLAG_AVB }, 129 {"fsl,mvf600-fec", FECTYPE_MVF | FECFLAG_RACC }, 130 {"fsl,mvf-fec", FECTYPE_MVF}, 131 {NULL, FECTYPE_NONE}, 132 }; 133 134 /* 135 * Driver data and defines. 136 */ 137 #define RX_DESC_COUNT 64 138 #define RX_DESC_SIZE (sizeof(struct ffec_hwdesc) * RX_DESC_COUNT) 139 #define TX_DESC_COUNT 64 140 #define TX_DESC_SIZE (sizeof(struct ffec_hwdesc) * TX_DESC_COUNT) 141 142 #define WATCHDOG_TIMEOUT_SECS 5 143 144 #define MAX_IRQ_COUNT 3 145 146 struct ffec_bufmap { 147 struct mbuf *mbuf; 148 bus_dmamap_t map; 149 }; 150 151 struct ffec_softc { 152 device_t dev; 153 device_t miibus; 154 struct mii_data * mii_softc; 155 if_t ifp; 156 int if_flags; 157 struct mtx mtx; 158 struct resource *irq_res[MAX_IRQ_COUNT]; 159 struct resource *mem_res; 160 void * intr_cookie[MAX_IRQ_COUNT]; 161 struct callout ffec_callout; 162 mii_contype_t phy_conn_type; 163 uint32_t fecflags; 164 uint8_t fectype; 165 boolean_t link_is_up; 166 boolean_t is_attached; 167 boolean_t is_detaching; 168 int tx_watchdog_count; 169 int rxbuf_align; 170 int txbuf_align; 171 172 bus_dma_tag_t rxdesc_tag; 173 bus_dmamap_t rxdesc_map; 174 struct ffec_hwdesc *rxdesc_ring; 175 bus_addr_t rxdesc_ring_paddr; 176 bus_dma_tag_t rxbuf_tag; 177 struct ffec_bufmap rxbuf_map[RX_DESC_COUNT]; 178 uint32_t rx_idx; 179 180 bus_dma_tag_t txdesc_tag; 181 bus_dmamap_t txdesc_map; 182 struct ffec_hwdesc *txdesc_ring; 183 bus_addr_t txdesc_ring_paddr; 184 bus_dma_tag_t txbuf_tag; 185 struct ffec_bufmap txbuf_map[TX_DESC_COUNT]; 186 uint32_t tx_idx_head; 187 uint32_t tx_idx_tail; 188 int txcount; 189 }; 190 191 static struct resource_spec irq_res_spec[MAX_IRQ_COUNT + 1] = { 192 { SYS_RES_IRQ, 0, RF_ACTIVE }, 193 { SYS_RES_IRQ, 1, RF_ACTIVE | RF_OPTIONAL }, 194 { SYS_RES_IRQ, 2, RF_ACTIVE | RF_OPTIONAL }, 195 RESOURCE_SPEC_END 196 }; 197 198 #define FFEC_LOCK(sc) mtx_lock(&(sc)->mtx) 199 #define FFEC_UNLOCK(sc) mtx_unlock(&(sc)->mtx) 200 #define FFEC_LOCK_INIT(sc) mtx_init(&(sc)->mtx, \ 201 device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF) 202 #define FFEC_LOCK_DESTROY(sc) mtx_destroy(&(sc)->mtx); 203 #define FFEC_ASSERT_LOCKED(sc) mtx_assert(&(sc)->mtx, MA_OWNED); 204 #define FFEC_ASSERT_UNLOCKED(sc) mtx_assert(&(sc)->mtx, MA_NOTOWNED); 205 206 static void ffec_init_locked(struct ffec_softc *sc); 207 static void ffec_stop_locked(struct ffec_softc *sc); 208 static void ffec_txstart_locked(struct ffec_softc *sc); 209 static void ffec_txfinish_locked(struct ffec_softc *sc); 210 211 static inline uint16_t 212 RD2(struct ffec_softc *sc, bus_size_t off) 213 { 214 215 return (bus_read_2(sc->mem_res, off)); 216 } 217 218 static inline void 219 WR2(struct ffec_softc *sc, bus_size_t off, uint16_t val) 220 { 221 222 bus_write_2(sc->mem_res, off, val); 223 } 224 225 static inline uint32_t 226 RD4(struct ffec_softc *sc, bus_size_t off) 227 { 228 229 return (bus_read_4(sc->mem_res, off)); 230 } 231 232 static inline void 233 WR4(struct ffec_softc *sc, bus_size_t off, uint32_t val) 234 { 235 236 bus_write_4(sc->mem_res, off, val); 237 } 238 239 static inline uint32_t 240 next_rxidx(struct ffec_softc *sc, uint32_t curidx) 241 { 242 243 return ((curidx == RX_DESC_COUNT - 1) ? 0 : curidx + 1); 244 } 245 246 static inline uint32_t 247 next_txidx(struct ffec_softc *sc, uint32_t curidx) 248 { 249 250 return ((curidx == TX_DESC_COUNT - 1) ? 0 : curidx + 1); 251 } 252 253 static void 254 ffec_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 255 { 256 257 if (error != 0) 258 return; 259 *(bus_addr_t *)arg = segs[0].ds_addr; 260 } 261 262 static void 263 ffec_miigasket_setup(struct ffec_softc *sc) 264 { 265 uint32_t ifmode; 266 267 /* 268 * We only need the gasket for MII and RMII connections on certain SoCs. 269 */ 270 271 switch (sc->fectype) 272 { 273 case FECTYPE_IMX53: 274 break; 275 default: 276 return; 277 } 278 279 switch (sc->phy_conn_type) 280 { 281 case MII_CONTYPE_MII: 282 ifmode = 0; 283 break; 284 case MII_CONTYPE_RMII: 285 ifmode = FEC_MIIGSK_CFGR_IF_MODE_RMII; 286 break; 287 default: 288 return; 289 } 290 291 /* 292 * Disable the gasket, configure for either MII or RMII, then enable. 293 */ 294 295 WR2(sc, FEC_MIIGSK_ENR, 0); 296 while (RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY) 297 continue; 298 299 WR2(sc, FEC_MIIGSK_CFGR, ifmode); 300 301 WR2(sc, FEC_MIIGSK_ENR, FEC_MIIGSK_ENR_EN); 302 while (!(RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY)) 303 continue; 304 } 305 306 static boolean_t 307 ffec_miibus_iowait(struct ffec_softc *sc) 308 { 309 uint32_t timeout; 310 311 for (timeout = 10000; timeout != 0; --timeout) 312 if (RD4(sc, FEC_IER_REG) & FEC_IER_MII) 313 return (true); 314 315 return (false); 316 } 317 318 static int 319 ffec_miibus_readreg(device_t dev, int phy, int reg) 320 { 321 struct ffec_softc *sc; 322 int val; 323 324 sc = device_get_softc(dev); 325 326 WR4(sc, FEC_IER_REG, FEC_IER_MII); 327 328 WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_READ | 329 FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE | 330 ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) | 331 ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK)); 332 333 if (!ffec_miibus_iowait(sc)) { 334 device_printf(dev, "timeout waiting for mii read\n"); 335 return (-1); /* All-ones is a symptom of bad mdio. */ 336 } 337 338 val = RD4(sc, FEC_MMFR_REG) & FEC_MMFR_DATA_MASK; 339 340 return (val); 341 } 342 343 static int 344 ffec_miibus_writereg(device_t dev, int phy, int reg, int val) 345 { 346 struct ffec_softc *sc; 347 348 sc = device_get_softc(dev); 349 350 WR4(sc, FEC_IER_REG, FEC_IER_MII); 351 352 WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_WRITE | 353 FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE | 354 ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) | 355 ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK) | 356 (val & FEC_MMFR_DATA_MASK)); 357 358 if (!ffec_miibus_iowait(sc)) { 359 device_printf(dev, "timeout waiting for mii write\n"); 360 return (-1); 361 } 362 363 return (0); 364 } 365 366 static void 367 ffec_miibus_statchg(device_t dev) 368 { 369 struct ffec_softc *sc; 370 struct mii_data *mii; 371 uint32_t ecr, rcr, tcr; 372 373 /* 374 * Called by the MII bus driver when the PHY establishes link to set the 375 * MAC interface registers. 376 */ 377 378 sc = device_get_softc(dev); 379 380 FFEC_ASSERT_LOCKED(sc); 381 382 mii = sc->mii_softc; 383 384 if (mii->mii_media_status & IFM_ACTIVE) 385 sc->link_is_up = true; 386 else 387 sc->link_is_up = false; 388 389 ecr = RD4(sc, FEC_ECR_REG) & ~FEC_ECR_SPEED; 390 rcr = RD4(sc, FEC_RCR_REG) & ~(FEC_RCR_RMII_10T | FEC_RCR_RMII_MODE | 391 FEC_RCR_RGMII_EN | FEC_RCR_DRT | FEC_RCR_FCE); 392 tcr = RD4(sc, FEC_TCR_REG) & ~FEC_TCR_FDEN; 393 394 rcr |= FEC_RCR_MII_MODE; /* Must always be on even for R[G]MII. */ 395 switch (sc->phy_conn_type) { 396 case MII_CONTYPE_RMII: 397 rcr |= FEC_RCR_RMII_MODE; 398 break; 399 case MII_CONTYPE_RGMII: 400 case MII_CONTYPE_RGMII_ID: 401 case MII_CONTYPE_RGMII_RXID: 402 case MII_CONTYPE_RGMII_TXID: 403 rcr |= FEC_RCR_RGMII_EN; 404 break; 405 default: 406 break; 407 } 408 409 switch (IFM_SUBTYPE(mii->mii_media_active)) { 410 case IFM_1000_T: 411 case IFM_1000_SX: 412 ecr |= FEC_ECR_SPEED; 413 break; 414 case IFM_100_TX: 415 /* Not-FEC_ECR_SPEED + not-FEC_RCR_RMII_10T means 100TX */ 416 break; 417 case IFM_10_T: 418 rcr |= FEC_RCR_RMII_10T; 419 break; 420 case IFM_NONE: 421 sc->link_is_up = false; 422 return; 423 default: 424 sc->link_is_up = false; 425 device_printf(dev, "Unsupported media %u\n", 426 IFM_SUBTYPE(mii->mii_media_active)); 427 return; 428 } 429 430 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) 431 tcr |= FEC_TCR_FDEN; 432 else 433 rcr |= FEC_RCR_DRT; 434 435 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLOW) != 0) 436 rcr |= FEC_RCR_FCE; 437 438 WR4(sc, FEC_RCR_REG, rcr); 439 WR4(sc, FEC_TCR_REG, tcr); 440 WR4(sc, FEC_ECR_REG, ecr); 441 } 442 443 static void 444 ffec_media_status(if_t ifp, struct ifmediareq *ifmr) 445 { 446 struct ffec_softc *sc; 447 struct mii_data *mii; 448 449 450 sc = if_getsoftc(ifp); 451 mii = sc->mii_softc; 452 FFEC_LOCK(sc); 453 mii_pollstat(mii); 454 ifmr->ifm_active = mii->mii_media_active; 455 ifmr->ifm_status = mii->mii_media_status; 456 FFEC_UNLOCK(sc); 457 } 458 459 static int 460 ffec_media_change_locked(struct ffec_softc *sc) 461 { 462 463 return (mii_mediachg(sc->mii_softc)); 464 } 465 466 static int 467 ffec_media_change(if_t ifp) 468 { 469 struct ffec_softc *sc; 470 int error; 471 472 sc = if_getsoftc(ifp); 473 474 FFEC_LOCK(sc); 475 error = ffec_media_change_locked(sc); 476 FFEC_UNLOCK(sc); 477 return (error); 478 } 479 480 static void ffec_clear_stats(struct ffec_softc *sc) 481 { 482 uint32_t mibc; 483 484 mibc = RD4(sc, FEC_MIBC_REG); 485 486 /* 487 * On newer hardware the statistic regs are cleared by toggling a bit in 488 * the mib control register. On older hardware the clear procedure is 489 * to disable statistics collection, zero the regs, then re-enable. 490 */ 491 if (sc->fectype == FECTYPE_IMX6 || sc->fectype == FECTYPE_MVF) { 492 WR4(sc, FEC_MIBC_REG, mibc | FEC_MIBC_CLEAR); 493 WR4(sc, FEC_MIBC_REG, mibc & ~FEC_MIBC_CLEAR); 494 } else { 495 WR4(sc, FEC_MIBC_REG, mibc | FEC_MIBC_DIS); 496 497 WR4(sc, FEC_IEEE_R_DROP, 0); 498 WR4(sc, FEC_IEEE_R_MACERR, 0); 499 WR4(sc, FEC_RMON_R_CRC_ALIGN, 0); 500 WR4(sc, FEC_RMON_R_FRAG, 0); 501 WR4(sc, FEC_RMON_R_JAB, 0); 502 WR4(sc, FEC_RMON_R_MC_PKT, 0); 503 WR4(sc, FEC_RMON_R_OVERSIZE, 0); 504 WR4(sc, FEC_RMON_R_PACKETS, 0); 505 WR4(sc, FEC_RMON_R_UNDERSIZE, 0); 506 WR4(sc, FEC_RMON_T_COL, 0); 507 WR4(sc, FEC_RMON_T_CRC_ALIGN, 0); 508 WR4(sc, FEC_RMON_T_FRAG, 0); 509 WR4(sc, FEC_RMON_T_JAB, 0); 510 WR4(sc, FEC_RMON_T_MC_PKT, 0); 511 WR4(sc, FEC_RMON_T_OVERSIZE , 0); 512 WR4(sc, FEC_RMON_T_PACKETS, 0); 513 WR4(sc, FEC_RMON_T_UNDERSIZE, 0); 514 515 WR4(sc, FEC_MIBC_REG, mibc); 516 } 517 } 518 519 static void 520 ffec_harvest_stats(struct ffec_softc *sc) 521 { 522 if_t ifp; 523 524 ifp = sc->ifp; 525 526 /* 527 * - FEC_IEEE_R_DROP is "dropped due to invalid start frame delimiter" 528 * so it's really just another type of input error. 529 * - FEC_IEEE_R_MACERR is "no receive fifo space"; count as input drops. 530 */ 531 if_inc_counter(ifp, IFCOUNTER_IPACKETS, RD4(sc, FEC_RMON_R_PACKETS)); 532 if_inc_counter(ifp, IFCOUNTER_IMCASTS, RD4(sc, FEC_RMON_R_MC_PKT)); 533 if_inc_counter(ifp, IFCOUNTER_IERRORS, 534 RD4(sc, FEC_RMON_R_CRC_ALIGN) + RD4(sc, FEC_RMON_R_UNDERSIZE) + 535 RD4(sc, FEC_RMON_R_OVERSIZE) + RD4(sc, FEC_RMON_R_FRAG) + 536 RD4(sc, FEC_RMON_R_JAB) + RD4(sc, FEC_IEEE_R_DROP)); 537 538 if_inc_counter(ifp, IFCOUNTER_IQDROPS, RD4(sc, FEC_IEEE_R_MACERR)); 539 540 if_inc_counter(ifp, IFCOUNTER_OPACKETS, RD4(sc, FEC_RMON_T_PACKETS)); 541 if_inc_counter(ifp, IFCOUNTER_OMCASTS, RD4(sc, FEC_RMON_T_MC_PKT)); 542 if_inc_counter(ifp, IFCOUNTER_OERRORS, 543 RD4(sc, FEC_RMON_T_CRC_ALIGN) + RD4(sc, FEC_RMON_T_UNDERSIZE) + 544 RD4(sc, FEC_RMON_T_OVERSIZE) + RD4(sc, FEC_RMON_T_FRAG) + 545 RD4(sc, FEC_RMON_T_JAB)); 546 547 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, RD4(sc, FEC_RMON_T_COL)); 548 549 ffec_clear_stats(sc); 550 } 551 552 static void 553 ffec_tick(void *arg) 554 { 555 struct ffec_softc *sc; 556 if_t ifp; 557 int link_was_up; 558 559 sc = arg; 560 561 FFEC_ASSERT_LOCKED(sc); 562 563 ifp = sc->ifp; 564 565 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 566 return; 567 568 /* 569 * Typical tx watchdog. If this fires it indicates that we enqueued 570 * packets for output and never got a txdone interrupt for them. Maybe 571 * it's a missed interrupt somehow, just pretend we got one. 572 */ 573 if (sc->tx_watchdog_count > 0) { 574 if (--sc->tx_watchdog_count == 0) { 575 ffec_txfinish_locked(sc); 576 } 577 } 578 579 /* Gather stats from hardware counters. */ 580 ffec_harvest_stats(sc); 581 582 /* Check the media status. */ 583 link_was_up = sc->link_is_up; 584 mii_tick(sc->mii_softc); 585 if (sc->link_is_up && !link_was_up) 586 ffec_txstart_locked(sc); 587 588 /* Schedule another check one second from now. */ 589 callout_reset(&sc->ffec_callout, hz, ffec_tick, sc); 590 } 591 592 inline static uint32_t 593 ffec_setup_txdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr, 594 uint32_t len) 595 { 596 uint32_t nidx; 597 uint32_t flags; 598 599 nidx = next_txidx(sc, idx); 600 601 /* Addr/len 0 means we're clearing the descriptor after xmit done. */ 602 if (paddr == 0 || len == 0) { 603 flags = 0; 604 --sc->txcount; 605 } else { 606 flags = FEC_TXDESC_READY | FEC_TXDESC_L | FEC_TXDESC_TC; 607 ++sc->txcount; 608 } 609 if (nidx == 0) 610 flags |= FEC_TXDESC_WRAP; 611 612 /* 613 * The hardware requires 32-bit physical addresses. We set up the dma 614 * tag to indicate that, so the cast to uint32_t should never lose 615 * significant bits. 616 */ 617 sc->txdesc_ring[idx].buf_paddr = (uint32_t)paddr; 618 sc->txdesc_ring[idx].flags_len = flags | len; /* Must be set last! */ 619 620 return (nidx); 621 } 622 623 static int 624 ffec_setup_txbuf(struct ffec_softc *sc, int idx, struct mbuf **mp) 625 { 626 struct mbuf * m; 627 int error, nsegs; 628 struct bus_dma_segment seg; 629 630 if ((m = m_defrag(*mp, M_NOWAIT)) == NULL) 631 return (ENOMEM); 632 *mp = m; 633 634 error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map, 635 m, &seg, &nsegs, 0); 636 if (error != 0) { 637 return (ENOMEM); 638 } 639 bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map, 640 BUS_DMASYNC_PREWRITE); 641 642 sc->txbuf_map[idx].mbuf = m; 643 ffec_setup_txdesc(sc, idx, seg.ds_addr, seg.ds_len); 644 645 return (0); 646 647 } 648 649 static void 650 ffec_txstart_locked(struct ffec_softc *sc) 651 { 652 if_t ifp; 653 struct mbuf *m; 654 int enqueued; 655 656 FFEC_ASSERT_LOCKED(sc); 657 658 if (!sc->link_is_up) 659 return; 660 661 ifp = sc->ifp; 662 663 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) 664 return; 665 666 enqueued = 0; 667 668 for (;;) { 669 if (sc->txcount == (TX_DESC_COUNT-1)) { 670 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 671 break; 672 } 673 m = if_dequeue(ifp); 674 if (m == NULL) 675 break; 676 if (ffec_setup_txbuf(sc, sc->tx_idx_head, &m) != 0) { 677 if_sendq_prepend(ifp, m); 678 break; 679 } 680 BPF_MTAP(ifp, m); 681 sc->tx_idx_head = next_txidx(sc, sc->tx_idx_head); 682 ++enqueued; 683 } 684 685 if (enqueued != 0) { 686 bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREWRITE); 687 WR4(sc, FEC_TDAR_REG, FEC_TDAR_TDAR); 688 bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTWRITE); 689 sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS; 690 } 691 } 692 693 static void 694 ffec_txstart(if_t ifp) 695 { 696 struct ffec_softc *sc = if_getsoftc(ifp); 697 698 FFEC_LOCK(sc); 699 ffec_txstart_locked(sc); 700 FFEC_UNLOCK(sc); 701 } 702 703 static void 704 ffec_txfinish_locked(struct ffec_softc *sc) 705 { 706 if_t ifp; 707 struct ffec_hwdesc *desc; 708 struct ffec_bufmap *bmap; 709 boolean_t retired_buffer; 710 711 FFEC_ASSERT_LOCKED(sc); 712 713 /* XXX Can't set PRE|POST right now, but we need both. */ 714 bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREREAD); 715 bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTREAD); 716 ifp = sc->ifp; 717 retired_buffer = false; 718 while (sc->tx_idx_tail != sc->tx_idx_head) { 719 desc = &sc->txdesc_ring[sc->tx_idx_tail]; 720 if (desc->flags_len & FEC_TXDESC_READY) 721 break; 722 retired_buffer = true; 723 bmap = &sc->txbuf_map[sc->tx_idx_tail]; 724 bus_dmamap_sync(sc->txbuf_tag, bmap->map, 725 BUS_DMASYNC_POSTWRITE); 726 bus_dmamap_unload(sc->txbuf_tag, bmap->map); 727 m_freem(bmap->mbuf); 728 bmap->mbuf = NULL; 729 ffec_setup_txdesc(sc, sc->tx_idx_tail, 0, 0); 730 sc->tx_idx_tail = next_txidx(sc, sc->tx_idx_tail); 731 } 732 733 /* 734 * If we retired any buffers, there will be open tx slots available in 735 * the descriptor ring, go try to start some new output. 736 */ 737 if (retired_buffer) { 738 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 739 ffec_txstart_locked(sc); 740 } 741 742 /* If there are no buffers outstanding, muzzle the watchdog. */ 743 if (sc->tx_idx_tail == sc->tx_idx_head) { 744 sc->tx_watchdog_count = 0; 745 } 746 } 747 748 inline static uint32_t 749 ffec_setup_rxdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr) 750 { 751 uint32_t nidx; 752 753 /* 754 * The hardware requires 32-bit physical addresses. We set up the dma 755 * tag to indicate that, so the cast to uint32_t should never lose 756 * significant bits. 757 */ 758 nidx = next_rxidx(sc, idx); 759 sc->rxdesc_ring[idx].buf_paddr = (uint32_t)paddr; 760 sc->rxdesc_ring[idx].flags_len = FEC_RXDESC_EMPTY | 761 ((nidx == 0) ? FEC_RXDESC_WRAP : 0); 762 763 return (nidx); 764 } 765 766 static int 767 ffec_setup_rxbuf(struct ffec_softc *sc, int idx, struct mbuf * m) 768 { 769 int error, nsegs; 770 struct bus_dma_segment seg; 771 772 if (!(sc->fecflags & FECFLAG_RACC)) { 773 /* 774 * The RACC[SHIFT16] feature is not available. So, we need to 775 * leave at least ETHER_ALIGN bytes free at the beginning of the 776 * buffer to allow the data to be re-aligned after receiving it 777 * (by copying it backwards ETHER_ALIGN bytes in the same 778 * buffer). We also have to ensure that the beginning of the 779 * buffer is aligned to the hardware's requirements. 780 */ 781 m_adj(m, roundup(ETHER_ALIGN, sc->rxbuf_align)); 782 } 783 784 error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map, 785 m, &seg, &nsegs, 0); 786 if (error != 0) { 787 return (error); 788 } 789 790 bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map, 791 BUS_DMASYNC_PREREAD); 792 793 sc->rxbuf_map[idx].mbuf = m; 794 ffec_setup_rxdesc(sc, idx, seg.ds_addr); 795 796 return (0); 797 } 798 799 static struct mbuf * 800 ffec_alloc_mbufcl(struct ffec_softc *sc) 801 { 802 struct mbuf *m; 803 804 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 805 if (m != NULL) 806 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 807 808 return (m); 809 } 810 811 static void 812 ffec_rxfinish_onebuf(struct ffec_softc *sc, int len) 813 { 814 struct mbuf *m, *newmbuf; 815 struct ffec_bufmap *bmap; 816 uint8_t *dst, *src; 817 int error; 818 819 /* 820 * First try to get a new mbuf to plug into this slot in the rx ring. 821 * If that fails, drop the current packet and recycle the current 822 * mbuf, which is still mapped and loaded. 823 */ 824 if ((newmbuf = ffec_alloc_mbufcl(sc)) == NULL) { 825 if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, 1); 826 ffec_setup_rxdesc(sc, sc->rx_idx, 827 sc->rxdesc_ring[sc->rx_idx].buf_paddr); 828 return; 829 } 830 831 FFEC_UNLOCK(sc); 832 833 bmap = &sc->rxbuf_map[sc->rx_idx]; 834 len -= ETHER_CRC_LEN; 835 bus_dmamap_sync(sc->rxbuf_tag, bmap->map, BUS_DMASYNC_POSTREAD); 836 bus_dmamap_unload(sc->rxbuf_tag, bmap->map); 837 m = bmap->mbuf; 838 bmap->mbuf = NULL; 839 m->m_len = len; 840 m->m_pkthdr.len = len; 841 m->m_pkthdr.rcvif = sc->ifp; 842 843 /* 844 * Align the protocol headers in the receive buffer on a 32-bit 845 * boundary. Newer hardware does the alignment for us. On hardware 846 * that doesn't support this feature, we have to copy-align the data. 847 * 848 * XXX for older hardware, could we speed this up by copying just the 849 * protocol headers into their own small mbuf then chaining the cluster 850 * to it? That way we'd only need to copy like 64 bytes or whatever the 851 * biggest header is, instead of the whole 1530ish-byte frame. 852 */ 853 if (sc->fecflags & FECFLAG_RACC) { 854 m->m_data = mtod(m, uint8_t *) + 2; 855 } else { 856 src = mtod(m, uint8_t*); 857 dst = src - ETHER_ALIGN; 858 bcopy(src, dst, len); 859 m->m_data = dst; 860 } 861 if_input(sc->ifp, m); 862 863 FFEC_LOCK(sc); 864 865 if ((error = ffec_setup_rxbuf(sc, sc->rx_idx, newmbuf)) != 0) { 866 device_printf(sc->dev, "ffec_setup_rxbuf error %d\n", error); 867 /* XXX Now what? We've got a hole in the rx ring. */ 868 } 869 870 } 871 872 static void 873 ffec_rxfinish_locked(struct ffec_softc *sc) 874 { 875 struct ffec_hwdesc *desc; 876 int len; 877 boolean_t produced_empty_buffer; 878 879 FFEC_ASSERT_LOCKED(sc); 880 881 /* XXX Can't set PRE|POST right now, but we need both. */ 882 bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREREAD); 883 bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTREAD); 884 produced_empty_buffer = false; 885 for (;;) { 886 desc = &sc->rxdesc_ring[sc->rx_idx]; 887 if (desc->flags_len & FEC_RXDESC_EMPTY) 888 break; 889 produced_empty_buffer = true; 890 len = (desc->flags_len & FEC_RXDESC_LEN_MASK); 891 if (len < 64) { 892 /* 893 * Just recycle the descriptor and continue. . 894 */ 895 ffec_setup_rxdesc(sc, sc->rx_idx, 896 sc->rxdesc_ring[sc->rx_idx].buf_paddr); 897 } else if ((desc->flags_len & FEC_RXDESC_L) == 0) { 898 /* 899 * The entire frame is not in this buffer. Impossible. 900 * Recycle the descriptor and continue. 901 * 902 * XXX what's the right way to handle this? Probably we 903 * should stop/init the hardware because this should 904 * just really never happen when we have buffers bigger 905 * than the maximum frame size. 906 */ 907 device_printf(sc->dev, 908 "fec_rxfinish: received frame without LAST bit set"); 909 ffec_setup_rxdesc(sc, sc->rx_idx, 910 sc->rxdesc_ring[sc->rx_idx].buf_paddr); 911 } else if (desc->flags_len & FEC_RXDESC_ERROR_BITS) { 912 /* 913 * Something went wrong with receiving the frame, we 914 * don't care what (the hardware has counted the error 915 * in the stats registers already), we just reuse the 916 * same mbuf, which is still dma-mapped, by resetting 917 * the rx descriptor. 918 */ 919 ffec_setup_rxdesc(sc, sc->rx_idx, 920 sc->rxdesc_ring[sc->rx_idx].buf_paddr); 921 } else { 922 /* 923 * Normal case: a good frame all in one buffer. 924 */ 925 ffec_rxfinish_onebuf(sc, len); 926 } 927 sc->rx_idx = next_rxidx(sc, sc->rx_idx); 928 } 929 930 if (produced_empty_buffer) { 931 bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREWRITE); 932 WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR); 933 bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTWRITE); 934 } 935 } 936 937 static void 938 ffec_get_hwaddr(struct ffec_softc *sc, uint8_t *hwaddr) 939 { 940 uint32_t palr, paur, rnd; 941 942 /* 943 * Try to recover a MAC address from the running hardware. If there's 944 * something non-zero there, assume the bootloader did the right thing 945 * and just use it. 946 * 947 * Otherwise, set the address to a convenient locally assigned address, 948 * 'bsd' + random 24 low-order bits. 'b' is 0x62, which has the locally 949 * assigned bit set, and the broadcast/multicast bit clear. 950 */ 951 palr = RD4(sc, FEC_PALR_REG); 952 paur = RD4(sc, FEC_PAUR_REG) & FEC_PAUR_PADDR2_MASK; 953 if ((palr | paur) != 0) { 954 hwaddr[0] = palr >> 24; 955 hwaddr[1] = palr >> 16; 956 hwaddr[2] = palr >> 8; 957 hwaddr[3] = palr >> 0; 958 hwaddr[4] = paur >> 24; 959 hwaddr[5] = paur >> 16; 960 } else { 961 rnd = arc4random() & 0x00ffffff; 962 hwaddr[0] = 'b'; 963 hwaddr[1] = 's'; 964 hwaddr[2] = 'd'; 965 hwaddr[3] = rnd >> 16; 966 hwaddr[4] = rnd >> 8; 967 hwaddr[5] = rnd >> 0; 968 } 969 970 if (bootverbose) { 971 device_printf(sc->dev, 972 "MAC address %02x:%02x:%02x:%02x:%02x:%02x:\n", 973 hwaddr[0], hwaddr[1], hwaddr[2], 974 hwaddr[3], hwaddr[4], hwaddr[5]); 975 } 976 } 977 978 static u_int 979 ffec_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 980 { 981 uint64_t *ghash = arg; 982 uint32_t crc; 983 984 /* 6 bits from MSB in LE CRC32 are used for hash. */ 985 crc = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN); 986 *ghash |= 1LLU << (((uint8_t *)&crc)[3] >> 2); 987 988 return (1); 989 } 990 991 static void 992 ffec_setup_rxfilter(struct ffec_softc *sc) 993 { 994 if_t ifp; 995 uint8_t *eaddr; 996 uint64_t ghash, ihash; 997 998 FFEC_ASSERT_LOCKED(sc); 999 1000 ifp = sc->ifp; 1001 1002 /* 1003 * Set the multicast (group) filter hash. 1004 */ 1005 if ((if_getflags(ifp) & IFF_ALLMULTI)) 1006 ghash = 0xffffffffffffffffLLU; 1007 else { 1008 ghash = 0; 1009 if_foreach_llmaddr(ifp, ffec_hash_maddr, &ghash); 1010 } 1011 WR4(sc, FEC_GAUR_REG, (uint32_t)(ghash >> 32)); 1012 WR4(sc, FEC_GALR_REG, (uint32_t)ghash); 1013 1014 /* 1015 * Set the individual address filter hash. 1016 * 1017 * XXX Is 0 the right value when promiscuous is off? This hw feature 1018 * seems to support the concept of MAC address aliases, does such a 1019 * thing even exist? 1020 */ 1021 if ((if_getflags(ifp) & IFF_PROMISC)) 1022 ihash = 0xffffffffffffffffLLU; 1023 else { 1024 ihash = 0; 1025 } 1026 WR4(sc, FEC_IAUR_REG, (uint32_t)(ihash >> 32)); 1027 WR4(sc, FEC_IALR_REG, (uint32_t)ihash); 1028 1029 /* 1030 * Set the primary address. 1031 */ 1032 eaddr = if_getlladdr(ifp); 1033 WR4(sc, FEC_PALR_REG, (eaddr[0] << 24) | (eaddr[1] << 16) | 1034 (eaddr[2] << 8) | eaddr[3]); 1035 WR4(sc, FEC_PAUR_REG, (eaddr[4] << 24) | (eaddr[5] << 16)); 1036 } 1037 1038 static void 1039 ffec_stop_locked(struct ffec_softc *sc) 1040 { 1041 if_t ifp; 1042 struct ffec_hwdesc *desc; 1043 struct ffec_bufmap *bmap; 1044 int idx; 1045 1046 FFEC_ASSERT_LOCKED(sc); 1047 1048 ifp = sc->ifp; 1049 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); 1050 sc->tx_watchdog_count = 0; 1051 1052 /* 1053 * Stop the hardware, mask all interrupts, and clear all current 1054 * interrupt status bits. 1055 */ 1056 WR4(sc, FEC_ECR_REG, RD4(sc, FEC_ECR_REG) & ~FEC_ECR_ETHEREN); 1057 WR4(sc, FEC_IEM_REG, 0x00000000); 1058 WR4(sc, FEC_IER_REG, 0xffffffff); 1059 1060 /* 1061 * Stop the media-check callout. Do not use callout_drain() because 1062 * we're holding a mutex the callout acquires, and if it's currently 1063 * waiting to acquire it, we'd deadlock. If it is waiting now, the 1064 * ffec_tick() routine will return without doing anything when it sees 1065 * that IFF_DRV_RUNNING is not set, so avoiding callout_drain() is safe. 1066 */ 1067 callout_stop(&sc->ffec_callout); 1068 1069 /* 1070 * Discard all untransmitted buffers. Each buffer is simply freed; 1071 * it's as if the bits were transmitted and then lost on the wire. 1072 * 1073 * XXX Is this right? Or should we use IFQ_DRV_PREPEND() to put them 1074 * back on the queue for when we get restarted later? 1075 */ 1076 idx = sc->tx_idx_tail; 1077 while (idx != sc->tx_idx_head) { 1078 desc = &sc->txdesc_ring[idx]; 1079 bmap = &sc->txbuf_map[idx]; 1080 if (desc->buf_paddr != 0) { 1081 bus_dmamap_unload(sc->txbuf_tag, bmap->map); 1082 m_freem(bmap->mbuf); 1083 bmap->mbuf = NULL; 1084 ffec_setup_txdesc(sc, idx, 0, 0); 1085 } 1086 idx = next_txidx(sc, idx); 1087 } 1088 1089 /* 1090 * Discard all unprocessed receive buffers. This amounts to just 1091 * pretending that nothing ever got received into them. We reuse the 1092 * mbuf already mapped for each desc, simply turning the EMPTY flags 1093 * back on so they'll get reused when we start up again. 1094 */ 1095 for (idx = 0; idx < RX_DESC_COUNT; ++idx) { 1096 desc = &sc->rxdesc_ring[idx]; 1097 ffec_setup_rxdesc(sc, idx, desc->buf_paddr); 1098 } 1099 } 1100 1101 static void 1102 ffec_init_locked(struct ffec_softc *sc) 1103 { 1104 if_t ifp = sc->ifp; 1105 uint32_t maxbuf, maxfl, regval; 1106 1107 FFEC_ASSERT_LOCKED(sc); 1108 1109 /* 1110 * The hardware has a limit of 0x7ff as the max frame length (see 1111 * comments for MRBR below), and we use mbuf clusters as receive 1112 * buffers, and we currently are designed to receive an entire frame 1113 * into a single buffer. 1114 * 1115 * We start with a MCLBYTES-sized cluster, but we have to offset into 1116 * the buffer by ETHER_ALIGN to make room for post-receive re-alignment, 1117 * and then that value has to be rounded up to the hardware's DMA 1118 * alignment requirements, so all in all our buffer is that much smaller 1119 * than MCLBYTES. 1120 * 1121 * The resulting value is used as the frame truncation length and the 1122 * max buffer receive buffer size for now. It'll become more complex 1123 * when we support jumbo frames and receiving fragments of them into 1124 * separate buffers. 1125 */ 1126 maxbuf = MCLBYTES - roundup(ETHER_ALIGN, sc->rxbuf_align); 1127 maxfl = min(maxbuf, 0x7ff); 1128 1129 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 1130 return; 1131 1132 /* Mask all interrupts and clear all current interrupt status bits. */ 1133 WR4(sc, FEC_IEM_REG, 0x00000000); 1134 WR4(sc, FEC_IER_REG, 0xffffffff); 1135 1136 /* 1137 * Go set up palr/puar, galr/gaur, ialr/iaur. 1138 */ 1139 ffec_setup_rxfilter(sc); 1140 1141 /* 1142 * TFWR - Transmit FIFO watermark register. 1143 * 1144 * Set the transmit fifo watermark register to "store and forward" mode 1145 * and also set a threshold of 128 bytes in the fifo before transmission 1146 * of a frame begins (to avoid dma underruns). Recent FEC hardware 1147 * supports STRFWD and when that bit is set, the watermark level in the 1148 * low bits is ignored. Older hardware doesn't have STRFWD, but writing 1149 * to that bit is innocuous, and the TWFR bits get used instead. 1150 */ 1151 WR4(sc, FEC_TFWR_REG, FEC_TFWR_STRFWD | FEC_TFWR_TWFR_128BYTE); 1152 1153 /* RCR - Receive control register. 1154 * 1155 * Set max frame length + clean out anything left from u-boot. 1156 */ 1157 WR4(sc, FEC_RCR_REG, (maxfl << FEC_RCR_MAX_FL_SHIFT)); 1158 1159 /* 1160 * TCR - Transmit control register. 1161 * 1162 * Clean out anything left from u-boot. Any necessary values are set in 1163 * ffec_miibus_statchg() based on the media type. 1164 */ 1165 WR4(sc, FEC_TCR_REG, 0); 1166 1167 /* 1168 * OPD - Opcode/pause duration. 1169 * 1170 * XXX These magic numbers come from u-boot. 1171 */ 1172 WR4(sc, FEC_OPD_REG, 0x00010020); 1173 1174 /* 1175 * FRSR - Fifo receive start register. 1176 * 1177 * This register does not exist on imx6, it is present on earlier 1178 * hardware. The u-boot code sets this to a non-default value that's 32 1179 * bytes larger than the default, with no clue as to why. The default 1180 * value should work fine, so there's no code to init it here. 1181 */ 1182 1183 /* 1184 * MRBR - Max RX buffer size. 1185 * 1186 * Note: For hardware prior to imx6 this value cannot exceed 0x07ff, 1187 * but the datasheet says no such thing for imx6. On the imx6, setting 1188 * this to 2K without setting EN1588 resulted in a crazy runaway 1189 * receive loop in the hardware, where every rx descriptor in the ring 1190 * had its EMPTY flag cleared, no completion or error flags set, and a 1191 * length of zero. I think maybe you can only exceed it when EN1588 is 1192 * set, like maybe that's what enables jumbo frames, because in general 1193 * the EN1588 flag seems to be the "enable new stuff" vs. "be legacy- 1194 * compatible" flag. 1195 */ 1196 WR4(sc, FEC_MRBR_REG, maxfl << FEC_MRBR_R_BUF_SIZE_SHIFT); 1197 1198 /* 1199 * FTRL - Frame truncation length. 1200 * 1201 * Must be greater than or equal to the value set in FEC_RCR_MAXFL. 1202 */ 1203 WR4(sc, FEC_FTRL_REG, maxfl); 1204 1205 /* 1206 * RDSR / TDSR descriptor ring pointers. 1207 * 1208 * When we turn on ECR_ETHEREN at the end, the hardware zeroes its 1209 * internal current descriptor index values for both rings, so we zero 1210 * our index values as well. 1211 */ 1212 sc->rx_idx = 0; 1213 sc->tx_idx_head = sc->tx_idx_tail = 0; 1214 sc->txcount = 0; 1215 WR4(sc, FEC_RDSR_REG, sc->rxdesc_ring_paddr); 1216 WR4(sc, FEC_TDSR_REG, sc->txdesc_ring_paddr); 1217 1218 /* 1219 * EIM - interrupt mask register. 1220 * 1221 * We always enable the same set of interrupts while running; unlike 1222 * some drivers there's no need to change the mask on the fly depending 1223 * on what operations are in progress. 1224 */ 1225 WR4(sc, FEC_IEM_REG, FEC_IER_TXF | FEC_IER_RXF | FEC_IER_EBERR); 1226 1227 /* 1228 * MIBC - MIB control (hardware stats); clear all statistics regs, then 1229 * enable collection of statistics. 1230 */ 1231 regval = RD4(sc, FEC_MIBC_REG); 1232 WR4(sc, FEC_MIBC_REG, regval | FEC_MIBC_DIS); 1233 ffec_clear_stats(sc); 1234 WR4(sc, FEC_MIBC_REG, regval & ~FEC_MIBC_DIS); 1235 1236 if (sc->fecflags & FECFLAG_RACC) { 1237 /* 1238 * RACC - Receive Accelerator Function Configuration. 1239 */ 1240 regval = RD4(sc, FEC_RACC_REG); 1241 WR4(sc, FEC_RACC_REG, regval | FEC_RACC_SHIFT16); 1242 } 1243 1244 /* 1245 * ECR - Ethernet control register. 1246 * 1247 * This must happen after all the other config registers are set. If 1248 * we're running on little-endian hardware, also set the flag for byte- 1249 * swapping descriptor ring entries. This flag doesn't exist on older 1250 * hardware, but it can be safely set -- the bit position it occupies 1251 * was unused. 1252 */ 1253 regval = RD4(sc, FEC_ECR_REG); 1254 #if _BYTE_ORDER == _LITTLE_ENDIAN 1255 regval |= FEC_ECR_DBSWP; 1256 #endif 1257 regval |= FEC_ECR_ETHEREN; 1258 WR4(sc, FEC_ECR_REG, regval); 1259 1260 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 1261 1262 /* 1263 * Call mii_mediachg() which will call back into ffec_miibus_statchg() to 1264 * set up the remaining config registers based on the current media. 1265 */ 1266 mii_mediachg(sc->mii_softc); 1267 callout_reset(&sc->ffec_callout, hz, ffec_tick, sc); 1268 1269 /* 1270 * Tell the hardware that receive buffers are available. They were made 1271 * available in ffec_attach() or ffec_stop(). 1272 */ 1273 WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR); 1274 } 1275 1276 static void 1277 ffec_init(void *if_softc) 1278 { 1279 struct ffec_softc *sc = if_softc; 1280 1281 FFEC_LOCK(sc); 1282 ffec_init_locked(sc); 1283 FFEC_UNLOCK(sc); 1284 } 1285 1286 static void 1287 ffec_intr(void *arg) 1288 { 1289 struct ffec_softc *sc; 1290 uint32_t ier; 1291 1292 sc = arg; 1293 1294 FFEC_LOCK(sc); 1295 1296 ier = RD4(sc, FEC_IER_REG); 1297 1298 if (ier & FEC_IER_TXF) { 1299 WR4(sc, FEC_IER_REG, FEC_IER_TXF); 1300 ffec_txfinish_locked(sc); 1301 } 1302 1303 if (ier & FEC_IER_RXF) { 1304 WR4(sc, FEC_IER_REG, FEC_IER_RXF); 1305 ffec_rxfinish_locked(sc); 1306 } 1307 1308 /* 1309 * We actually don't care about most errors, because the hardware copes 1310 * with them just fine, discarding the incoming bad frame, or forcing a 1311 * bad CRC onto an outgoing bad frame, and counting the errors in the 1312 * stats registers. The one that really matters is EBERR (DMA bus 1313 * error) because the hardware automatically clears ECR[ETHEREN] and we 1314 * have to restart it here. It should never happen. 1315 */ 1316 if (ier & FEC_IER_EBERR) { 1317 WR4(sc, FEC_IER_REG, FEC_IER_EBERR); 1318 device_printf(sc->dev, 1319 "Ethernet DMA error, restarting controller.\n"); 1320 ffec_stop_locked(sc); 1321 ffec_init_locked(sc); 1322 } 1323 1324 FFEC_UNLOCK(sc); 1325 1326 } 1327 1328 static int 1329 ffec_ioctl(if_t ifp, u_long cmd, caddr_t data) 1330 { 1331 struct ffec_softc *sc; 1332 struct mii_data *mii; 1333 struct ifreq *ifr; 1334 int mask, error; 1335 1336 sc = if_getsoftc(ifp); 1337 ifr = (struct ifreq *)data; 1338 1339 error = 0; 1340 switch (cmd) { 1341 case SIOCSIFFLAGS: 1342 FFEC_LOCK(sc); 1343 if (if_getflags(ifp) & IFF_UP) { 1344 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 1345 if ((if_getflags(ifp) ^ sc->if_flags) & 1346 (IFF_PROMISC | IFF_ALLMULTI)) 1347 ffec_setup_rxfilter(sc); 1348 } else { 1349 if (!sc->is_detaching) 1350 ffec_init_locked(sc); 1351 } 1352 } else { 1353 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 1354 ffec_stop_locked(sc); 1355 } 1356 sc->if_flags = if_getflags(ifp); 1357 FFEC_UNLOCK(sc); 1358 break; 1359 1360 case SIOCADDMULTI: 1361 case SIOCDELMULTI: 1362 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 1363 FFEC_LOCK(sc); 1364 ffec_setup_rxfilter(sc); 1365 FFEC_UNLOCK(sc); 1366 } 1367 break; 1368 1369 case SIOCSIFMEDIA: 1370 case SIOCGIFMEDIA: 1371 mii = sc->mii_softc; 1372 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 1373 break; 1374 1375 case SIOCSIFCAP: 1376 mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap; 1377 if (mask & IFCAP_VLAN_MTU) { 1378 /* No work to do except acknowledge the change took. */ 1379 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 1380 } 1381 break; 1382 1383 default: 1384 error = ether_ioctl(ifp, cmd, data); 1385 break; 1386 } 1387 1388 return (error); 1389 } 1390 1391 static int 1392 ffec_detach(device_t dev) 1393 { 1394 struct ffec_softc *sc; 1395 bus_dmamap_t map; 1396 int idx, irq; 1397 1398 /* 1399 * NB: This function can be called internally to unwind a failure to 1400 * attach. Make sure a resource got allocated/created before destroying. 1401 */ 1402 1403 sc = device_get_softc(dev); 1404 1405 if (sc->is_attached) { 1406 FFEC_LOCK(sc); 1407 sc->is_detaching = true; 1408 ffec_stop_locked(sc); 1409 FFEC_UNLOCK(sc); 1410 callout_drain(&sc->ffec_callout); 1411 ether_ifdetach(sc->ifp); 1412 } 1413 1414 /* XXX no miibus detach? */ 1415 1416 /* Clean up RX DMA resources and free mbufs. */ 1417 for (idx = 0; idx < RX_DESC_COUNT; ++idx) { 1418 if ((map = sc->rxbuf_map[idx].map) != NULL) { 1419 bus_dmamap_unload(sc->rxbuf_tag, map); 1420 bus_dmamap_destroy(sc->rxbuf_tag, map); 1421 m_freem(sc->rxbuf_map[idx].mbuf); 1422 } 1423 } 1424 if (sc->rxbuf_tag != NULL) 1425 bus_dma_tag_destroy(sc->rxbuf_tag); 1426 if (sc->rxdesc_map != NULL) { 1427 bus_dmamap_unload(sc->rxdesc_tag, sc->rxdesc_map); 1428 bus_dmamem_free(sc->rxdesc_tag, sc->rxdesc_ring, 1429 sc->rxdesc_map); 1430 } 1431 if (sc->rxdesc_tag != NULL) 1432 bus_dma_tag_destroy(sc->rxdesc_tag); 1433 1434 /* Clean up TX DMA resources. */ 1435 for (idx = 0; idx < TX_DESC_COUNT; ++idx) { 1436 if ((map = sc->txbuf_map[idx].map) != NULL) { 1437 /* TX maps are already unloaded. */ 1438 bus_dmamap_destroy(sc->txbuf_tag, map); 1439 } 1440 } 1441 if (sc->txbuf_tag != NULL) 1442 bus_dma_tag_destroy(sc->txbuf_tag); 1443 if (sc->txdesc_map != NULL) { 1444 bus_dmamap_unload(sc->txdesc_tag, sc->txdesc_map); 1445 bus_dmamem_free(sc->txdesc_tag, sc->txdesc_ring, 1446 sc->txdesc_map); 1447 } 1448 if (sc->txdesc_tag != NULL) 1449 bus_dma_tag_destroy(sc->txdesc_tag); 1450 1451 /* Release bus resources. */ 1452 for (irq = 0; irq < MAX_IRQ_COUNT; ++irq) { 1453 if (sc->intr_cookie[irq] != NULL) { 1454 bus_teardown_intr(dev, sc->irq_res[irq], 1455 sc->intr_cookie[irq]); 1456 } 1457 } 1458 bus_release_resources(dev, irq_res_spec, sc->irq_res); 1459 1460 if (sc->mem_res != NULL) 1461 bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res); 1462 1463 FFEC_LOCK_DESTROY(sc); 1464 return (0); 1465 } 1466 1467 static int 1468 ffec_attach(device_t dev) 1469 { 1470 struct ffec_softc *sc; 1471 if_t ifp = NULL; 1472 struct mbuf *m; 1473 void *dummy; 1474 uintptr_t typeflags; 1475 phandle_t ofw_node; 1476 uint32_t idx, mscr; 1477 int error, phynum, rid, irq; 1478 uint8_t eaddr[ETHER_ADDR_LEN]; 1479 1480 sc = device_get_softc(dev); 1481 sc->dev = dev; 1482 1483 FFEC_LOCK_INIT(sc); 1484 1485 /* 1486 * There are differences in the implementation and features of the FEC 1487 * hardware on different SoCs, so figure out what type we are. 1488 */ 1489 typeflags = ofw_bus_search_compatible(dev, compat_data)->ocd_data; 1490 sc->fectype = (uint8_t)(typeflags & FECTYPE_MASK); 1491 sc->fecflags = (uint32_t)(typeflags & ~FECTYPE_MASK); 1492 1493 if (sc->fecflags & FECFLAG_AVB) { 1494 sc->rxbuf_align = 64; 1495 sc->txbuf_align = 1; 1496 } else { 1497 sc->rxbuf_align = 16; 1498 sc->txbuf_align = 16; 1499 } 1500 1501 /* 1502 * We have to be told what kind of electrical connection exists between 1503 * the MAC and PHY or we can't operate correctly. 1504 */ 1505 if ((ofw_node = ofw_bus_get_node(dev)) == -1) { 1506 device_printf(dev, "Impossible: Can't find ofw bus node\n"); 1507 error = ENXIO; 1508 goto out; 1509 } 1510 sc->phy_conn_type = mii_fdt_get_contype(ofw_node); 1511 if (sc->phy_conn_type == MII_CONTYPE_UNKNOWN) { 1512 device_printf(sc->dev, "No valid 'phy-mode' " 1513 "property found in FDT data for device.\n"); 1514 error = ENOATTR; 1515 goto out; 1516 } 1517 1518 callout_init_mtx(&sc->ffec_callout, &sc->mtx, 0); 1519 1520 /* Allocate bus resources for accessing the hardware. */ 1521 rid = 0; 1522 sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 1523 RF_ACTIVE); 1524 if (sc->mem_res == NULL) { 1525 device_printf(dev, "could not allocate memory resources.\n"); 1526 error = ENOMEM; 1527 goto out; 1528 } 1529 1530 error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res); 1531 if (error != 0) { 1532 device_printf(dev, "could not allocate interrupt resources\n"); 1533 goto out; 1534 } 1535 1536 /* 1537 * Set up TX descriptor ring, descriptors, and dma maps. 1538 */ 1539 error = bus_dma_tag_create( 1540 bus_get_dma_tag(dev), /* Parent tag. */ 1541 FEC_DESC_RING_ALIGN, 0, /* alignment, boundary */ 1542 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1543 BUS_SPACE_MAXADDR, /* highaddr */ 1544 NULL, NULL, /* filter, filterarg */ 1545 TX_DESC_SIZE, 1, /* maxsize, nsegments */ 1546 TX_DESC_SIZE, /* maxsegsize */ 1547 0, /* flags */ 1548 NULL, NULL, /* lockfunc, lockarg */ 1549 &sc->txdesc_tag); 1550 if (error != 0) { 1551 device_printf(sc->dev, 1552 "could not create TX ring DMA tag.\n"); 1553 goto out; 1554 } 1555 1556 error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring, 1557 BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->txdesc_map); 1558 if (error != 0) { 1559 device_printf(sc->dev, 1560 "could not allocate TX descriptor ring.\n"); 1561 goto out; 1562 } 1563 1564 error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map, sc->txdesc_ring, 1565 TX_DESC_SIZE, ffec_get1paddr, &sc->txdesc_ring_paddr, 0); 1566 if (error != 0) { 1567 device_printf(sc->dev, 1568 "could not load TX descriptor ring map.\n"); 1569 goto out; 1570 } 1571 1572 error = bus_dma_tag_create( 1573 bus_get_dma_tag(dev), /* Parent tag. */ 1574 sc->txbuf_align, 0, /* alignment, boundary */ 1575 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1576 BUS_SPACE_MAXADDR, /* highaddr */ 1577 NULL, NULL, /* filter, filterarg */ 1578 MCLBYTES, 1, /* maxsize, nsegments */ 1579 MCLBYTES, /* maxsegsize */ 1580 0, /* flags */ 1581 NULL, NULL, /* lockfunc, lockarg */ 1582 &sc->txbuf_tag); 1583 if (error != 0) { 1584 device_printf(sc->dev, 1585 "could not create TX ring DMA tag.\n"); 1586 goto out; 1587 } 1588 1589 for (idx = 0; idx < TX_DESC_COUNT; ++idx) { 1590 error = bus_dmamap_create(sc->txbuf_tag, 0, 1591 &sc->txbuf_map[idx].map); 1592 if (error != 0) { 1593 device_printf(sc->dev, 1594 "could not create TX buffer DMA map.\n"); 1595 goto out; 1596 } 1597 ffec_setup_txdesc(sc, idx, 0, 0); 1598 } 1599 1600 /* 1601 * Set up RX descriptor ring, descriptors, dma maps, and mbufs. 1602 */ 1603 error = bus_dma_tag_create( 1604 bus_get_dma_tag(dev), /* Parent tag. */ 1605 FEC_DESC_RING_ALIGN, 0, /* alignment, boundary */ 1606 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1607 BUS_SPACE_MAXADDR, /* highaddr */ 1608 NULL, NULL, /* filter, filterarg */ 1609 RX_DESC_SIZE, 1, /* maxsize, nsegments */ 1610 RX_DESC_SIZE, /* maxsegsize */ 1611 0, /* flags */ 1612 NULL, NULL, /* lockfunc, lockarg */ 1613 &sc->rxdesc_tag); 1614 if (error != 0) { 1615 device_printf(sc->dev, 1616 "could not create RX ring DMA tag.\n"); 1617 goto out; 1618 } 1619 1620 error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring, 1621 BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rxdesc_map); 1622 if (error != 0) { 1623 device_printf(sc->dev, 1624 "could not allocate RX descriptor ring.\n"); 1625 goto out; 1626 } 1627 1628 error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map, sc->rxdesc_ring, 1629 RX_DESC_SIZE, ffec_get1paddr, &sc->rxdesc_ring_paddr, 0); 1630 if (error != 0) { 1631 device_printf(sc->dev, 1632 "could not load RX descriptor ring map.\n"); 1633 goto out; 1634 } 1635 1636 error = bus_dma_tag_create( 1637 bus_get_dma_tag(dev), /* Parent tag. */ 1638 1, 0, /* alignment, boundary */ 1639 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1640 BUS_SPACE_MAXADDR, /* highaddr */ 1641 NULL, NULL, /* filter, filterarg */ 1642 MCLBYTES, 1, /* maxsize, nsegments */ 1643 MCLBYTES, /* maxsegsize */ 1644 0, /* flags */ 1645 NULL, NULL, /* lockfunc, lockarg */ 1646 &sc->rxbuf_tag); 1647 if (error != 0) { 1648 device_printf(sc->dev, 1649 "could not create RX buf DMA tag.\n"); 1650 goto out; 1651 } 1652 1653 for (idx = 0; idx < RX_DESC_COUNT; ++idx) { 1654 error = bus_dmamap_create(sc->rxbuf_tag, 0, 1655 &sc->rxbuf_map[idx].map); 1656 if (error != 0) { 1657 device_printf(sc->dev, 1658 "could not create RX buffer DMA map.\n"); 1659 goto out; 1660 } 1661 if ((m = ffec_alloc_mbufcl(sc)) == NULL) { 1662 device_printf(dev, "Could not alloc mbuf\n"); 1663 error = ENOMEM; 1664 goto out; 1665 } 1666 if ((error = ffec_setup_rxbuf(sc, idx, m)) != 0) { 1667 device_printf(sc->dev, 1668 "could not create new RX buffer.\n"); 1669 goto out; 1670 } 1671 } 1672 1673 /* Try to get the MAC address from the hardware before resetting it. */ 1674 ffec_get_hwaddr(sc, eaddr); 1675 1676 /* 1677 * Reset the hardware. Disables all interrupts. 1678 * 1679 * When the FEC is connected to the AXI bus (indicated by AVB flag), a 1680 * MAC reset while a bus transaction is pending can hang the bus. 1681 * Instead of resetting, turn off the ENABLE bit, which allows the 1682 * hardware to complete any in-progress transfers (appending a bad CRC 1683 * to any partial packet) and release the AXI bus. This could probably 1684 * be done unconditionally for all hardware variants, but that hasn't 1685 * been tested. 1686 */ 1687 if (sc->fecflags & FECFLAG_AVB) 1688 WR4(sc, FEC_ECR_REG, 0); 1689 else 1690 WR4(sc, FEC_ECR_REG, FEC_ECR_RESET); 1691 1692 /* Setup interrupt handler. */ 1693 for (irq = 0; irq < MAX_IRQ_COUNT; ++irq) { 1694 if (sc->irq_res[irq] != NULL) { 1695 error = bus_setup_intr(dev, sc->irq_res[irq], 1696 INTR_TYPE_NET | INTR_MPSAFE, NULL, ffec_intr, sc, 1697 &sc->intr_cookie[irq]); 1698 if (error != 0) { 1699 device_printf(dev, 1700 "could not setup interrupt handler.\n"); 1701 goto out; 1702 } 1703 } 1704 } 1705 1706 /* 1707 * Set up the PHY control register. 1708 * 1709 * Speed formula for ENET is md_clock = mac_clock / ((N + 1) * 2). 1710 * Speed formula for FEC is md_clock = mac_clock / (N * 2) 1711 * 1712 * XXX - Revisit this... 1713 * 1714 * For a Wandboard imx6 (ENET) I was originally using 4, but the uboot 1715 * code uses 10. Both values seem to work, but I suspect many modern 1716 * PHY parts can do mdio at speeds far above the standard 2.5 MHz. 1717 * 1718 * Different imx manuals use confusingly different terminology (things 1719 * like "system clock" and "internal module clock") with examples that 1720 * use frequencies that have nothing to do with ethernet, giving the 1721 * vague impression that maybe the clock in question is the periphclock 1722 * or something. In fact, on an imx53 development board (FEC), 1723 * measuring the mdio clock at the pin on the PHY and playing with 1724 * various divisors showed that the root speed was 66 MHz (clk_ipg_root 1725 * aka periphclock) and 13 was the right divisor. 1726 * 1727 * All in all, it seems likely that 13 is a safe divisor for now, 1728 * because if we really do need to base it on the peripheral clock 1729 * speed, then we need a platform-independent get-clock-freq API. 1730 */ 1731 mscr = 13 << FEC_MSCR_MII_SPEED_SHIFT; 1732 if (OF_hasprop(ofw_node, "phy-disable-preamble")) { 1733 mscr |= FEC_MSCR_DIS_PRE; 1734 if (bootverbose) 1735 device_printf(dev, "PHY preamble disabled\n"); 1736 } 1737 WR4(sc, FEC_MSCR_REG, mscr); 1738 1739 /* Set up the ethernet interface. */ 1740 sc->ifp = ifp = if_alloc(IFT_ETHER); 1741 1742 if_setsoftc(ifp, sc); 1743 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1744 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 1745 if_setcapabilities(ifp, IFCAP_VLAN_MTU); 1746 if_setcapenable(ifp, if_getcapabilities(ifp)); 1747 if_setstartfn(ifp, ffec_txstart); 1748 if_setioctlfn(ifp, ffec_ioctl); 1749 if_setinitfn(ifp, ffec_init); 1750 if_setsendqlen(ifp, TX_DESC_COUNT - 1); 1751 if_setsendqready(ifp); 1752 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 1753 1754 #if 0 /* XXX The hardware keeps stats we could use for these. */ 1755 if_setlinkmib(ifp, &sc->mibdata); 1756 if_setlinkmiblen(ifp, sizeof(sc->mibdata)); 1757 #endif 1758 1759 /* Set up the miigasket hardware (if any). */ 1760 ffec_miigasket_setup(sc); 1761 1762 /* Attach the mii driver. */ 1763 if (fdt_get_phyaddr(ofw_node, dev, &phynum, &dummy) != 0) { 1764 phynum = MII_PHY_ANY; 1765 } 1766 error = mii_attach(dev, &sc->miibus, ifp, ffec_media_change, 1767 ffec_media_status, BMSR_DEFCAPMASK, phynum, MII_OFFSET_ANY, 1768 (sc->fecflags & FECTYPE_MVF) ? MIIF_FORCEANEG : 0); 1769 if (error != 0) { 1770 device_printf(dev, "PHY attach failed\n"); 1771 goto out; 1772 } 1773 sc->mii_softc = device_get_softc(sc->miibus); 1774 1775 /* All ready to run, attach the ethernet interface. */ 1776 ether_ifattach(ifp, eaddr); 1777 sc->is_attached = true; 1778 1779 error = 0; 1780 out: 1781 1782 if (error != 0) 1783 ffec_detach(dev); 1784 1785 return (error); 1786 } 1787 1788 static int 1789 ffec_probe(device_t dev) 1790 { 1791 uintptr_t fectype; 1792 1793 if (!ofw_bus_status_okay(dev)) 1794 return (ENXIO); 1795 1796 fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data; 1797 if (fectype == FECTYPE_NONE) 1798 return (ENXIO); 1799 1800 device_set_desc(dev, (fectype & FECFLAG_GBE) ? 1801 "Freescale Gigabit Ethernet Controller" : 1802 "Freescale Fast Ethernet Controller"); 1803 1804 return (BUS_PROBE_DEFAULT); 1805 } 1806 1807 1808 static device_method_t ffec_methods[] = { 1809 /* Device interface. */ 1810 DEVMETHOD(device_probe, ffec_probe), 1811 DEVMETHOD(device_attach, ffec_attach), 1812 DEVMETHOD(device_detach, ffec_detach), 1813 1814 /* 1815 DEVMETHOD(device_shutdown, ffec_shutdown), 1816 DEVMETHOD(device_suspend, ffec_suspend), 1817 DEVMETHOD(device_resume, ffec_resume), 1818 */ 1819 1820 /* MII interface. */ 1821 DEVMETHOD(miibus_readreg, ffec_miibus_readreg), 1822 DEVMETHOD(miibus_writereg, ffec_miibus_writereg), 1823 DEVMETHOD(miibus_statchg, ffec_miibus_statchg), 1824 1825 DEVMETHOD_END 1826 }; 1827 1828 static driver_t ffec_driver = { 1829 "ffec", 1830 ffec_methods, 1831 sizeof(struct ffec_softc) 1832 }; 1833 1834 DRIVER_MODULE(ffec, simplebus, ffec_driver, 0, 0); 1835 DRIVER_MODULE(miibus, ffec, miibus_driver, 0, 0); 1836 1837 MODULE_DEPEND(ffec, ether, 1, 1, 1); 1838 MODULE_DEPEND(ffec, miibus, 1, 1, 1); 1839