xref: /freebsd/sys/dev/ffec/if_ffec.c (revision 5477372324b92240a96310ef2d45fa44ce8d0a93)
1 /*-
2  * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * Driver for Freescale Fast Ethernet Controller, found on imx-series SoCs among
33  * others.  Also works for the ENET Gigibit controller found on imx6 and imx28,
34  * but the driver doesn't currently use any of the ENET advanced features other
35  * than enabling gigabit.
36  *
37  * The interface name 'fec' is already taken by netgraph's Fast Etherchannel
38  * (netgraph/ng_fec.c), so we use 'ffec'.
39  *
40  * Requires an FDT entry with at least these properties:
41  *   fec: ethernet@02188000 {
42  *      compatible = "fsl,imxNN-fec";
43  *      reg = <0x02188000 0x4000>;
44  *      interrupts = <150 151>;
45  *      phy-mode = "rgmii";
46  *      phy-disable-preamble; // optional
47  *   };
48  * The second interrupt number is for IEEE-1588, and is not currently used; it
49  * need not be present.  phy-mode must be one of: "mii", "rmii", "rgmii".
50  * There is also an optional property, phy-disable-preamble, which if present
51  * will disable the preamble bits, cutting the size of each mdio transaction
52  * (and thus the busy-wait time) in half.
53  */
54 
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/bus.h>
58 #include <sys/endian.h>
59 #include <sys/kernel.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mbuf.h>
63 #include <sys/module.h>
64 #include <sys/mutex.h>
65 #include <sys/rman.h>
66 #include <sys/socket.h>
67 #include <sys/sockio.h>
68 #include <sys/sysctl.h>
69 
70 #include <machine/bus.h>
71 
72 #include <net/bpf.h>
73 #include <net/if.h>
74 #include <net/ethernet.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_types.h>
78 #include <net/if_var.h>
79 #include <net/if_vlan_var.h>
80 
81 #include <dev/fdt/fdt_common.h>
82 #include <dev/ffec/if_ffecreg.h>
83 #include <dev/ofw/ofw_bus.h>
84 #include <dev/ofw/ofw_bus_subr.h>
85 #include <dev/mii/mii.h>
86 #include <dev/mii/miivar.h>
87 #include "miibus_if.h"
88 
89 /*
90  * There are small differences in the hardware on various SoCs.  Not every SoC
91  * we support has its own FECTYPE; most work as GENERIC and only the ones that
92  * need different handling get their own entry.  In addition to the types in
93  * this list, there are some flags below that can be ORed into the upper bits.
94  */
95 enum {
96 	FECTYPE_NONE,
97 	FECTYPE_GENERIC,
98 	FECTYPE_IMX53,
99 	FECTYPE_IMX6,
100 	FECTYPE_MVF,
101 };
102 
103 /*
104  * Flags that describe general differences between the FEC hardware in various
105  * SoCs.  These are ORed into the FECTYPE enum values.
106  */
107 #define	FECTYPE_MASK		0x0000ffff
108 #define	FECFLAG_GBE		(0x0001 << 16)
109 
110 /*
111  * Table of supported FDT compat strings and their associated FECTYPE values.
112  */
113 static struct ofw_compat_data compat_data[] = {
114 	{"fsl,imx51-fec",	FECTYPE_GENERIC},
115 	{"fsl,imx53-fec",	FECTYPE_IMX53},
116 	{"fsl,imx6q-fec",	FECTYPE_IMX6 | FECFLAG_GBE},
117 	{"fsl,imx6ul-fec",	FECTYPE_IMX6},
118 	{"fsl,mvf600-fec",	FECTYPE_MVF},
119 	{"fsl,mvf-fec",		FECTYPE_MVF},
120 	{NULL,		 	FECTYPE_NONE},
121 };
122 
123 /*
124  * Driver data and defines.
125  */
126 #define	RX_DESC_COUNT	64
127 #define	RX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * RX_DESC_COUNT)
128 #define	TX_DESC_COUNT	64
129 #define	TX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * TX_DESC_COUNT)
130 
131 #define	WATCHDOG_TIMEOUT_SECS	5
132 #define	STATS_HARVEST_INTERVAL	3
133 
134 struct ffec_bufmap {
135 	struct mbuf	*mbuf;
136 	bus_dmamap_t	map;
137 };
138 
139 enum {
140 	PHY_CONN_UNKNOWN,
141 	PHY_CONN_MII,
142 	PHY_CONN_RMII,
143 	PHY_CONN_RGMII
144 };
145 
146 struct ffec_softc {
147 	device_t		dev;
148 	device_t		miibus;
149 	struct mii_data *	mii_softc;
150 	struct ifnet		*ifp;
151 	int			if_flags;
152 	struct mtx		mtx;
153 	struct resource		*irq_res;
154 	struct resource		*mem_res;
155 	void *			intr_cookie;
156 	struct callout		ffec_callout;
157 	uint8_t			phy_conn_type;
158 	uint8_t			fectype;
159 	boolean_t		link_is_up;
160 	boolean_t		is_attached;
161 	boolean_t		is_detaching;
162 	int			tx_watchdog_count;
163 	int			stats_harvest_count;
164 
165 	bus_dma_tag_t		rxdesc_tag;
166 	bus_dmamap_t		rxdesc_map;
167 	struct ffec_hwdesc	*rxdesc_ring;
168 	bus_addr_t		rxdesc_ring_paddr;
169 	bus_dma_tag_t		rxbuf_tag;
170 	struct ffec_bufmap	rxbuf_map[RX_DESC_COUNT];
171 	uint32_t		rx_idx;
172 
173 	bus_dma_tag_t		txdesc_tag;
174 	bus_dmamap_t		txdesc_map;
175 	struct ffec_hwdesc	*txdesc_ring;
176 	bus_addr_t		txdesc_ring_paddr;
177 	bus_dma_tag_t		txbuf_tag;
178 	struct ffec_bufmap	txbuf_map[TX_DESC_COUNT];
179 	uint32_t		tx_idx_head;
180 	uint32_t		tx_idx_tail;
181 	int			txcount;
182 };
183 
184 #define	FFEC_LOCK(sc)			mtx_lock(&(sc)->mtx)
185 #define	FFEC_UNLOCK(sc)			mtx_unlock(&(sc)->mtx)
186 #define	FFEC_LOCK_INIT(sc)		mtx_init(&(sc)->mtx, \
187 	    device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF)
188 #define	FFEC_LOCK_DESTROY(sc)		mtx_destroy(&(sc)->mtx);
189 #define	FFEC_ASSERT_LOCKED(sc)		mtx_assert(&(sc)->mtx, MA_OWNED);
190 #define	FFEC_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED);
191 
192 static void ffec_init_locked(struct ffec_softc *sc);
193 static void ffec_stop_locked(struct ffec_softc *sc);
194 static void ffec_txstart_locked(struct ffec_softc *sc);
195 static void ffec_txfinish_locked(struct ffec_softc *sc);
196 
197 static inline uint16_t
198 RD2(struct ffec_softc *sc, bus_size_t off)
199 {
200 
201 	return (bus_read_2(sc->mem_res, off));
202 }
203 
204 static inline void
205 WR2(struct ffec_softc *sc, bus_size_t off, uint16_t val)
206 {
207 
208 	bus_write_2(sc->mem_res, off, val);
209 }
210 
211 static inline uint32_t
212 RD4(struct ffec_softc *sc, bus_size_t off)
213 {
214 
215 	return (bus_read_4(sc->mem_res, off));
216 }
217 
218 static inline void
219 WR4(struct ffec_softc *sc, bus_size_t off, uint32_t val)
220 {
221 
222 	bus_write_4(sc->mem_res, off, val);
223 }
224 
225 static inline uint32_t
226 next_rxidx(struct ffec_softc *sc, uint32_t curidx)
227 {
228 
229 	return ((curidx == RX_DESC_COUNT - 1) ? 0 : curidx + 1);
230 }
231 
232 static inline uint32_t
233 next_txidx(struct ffec_softc *sc, uint32_t curidx)
234 {
235 
236 	return ((curidx == TX_DESC_COUNT - 1) ? 0 : curidx + 1);
237 }
238 
239 static void
240 ffec_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
241 {
242 
243 	if (error != 0)
244 		return;
245 	*(bus_addr_t *)arg = segs[0].ds_addr;
246 }
247 
248 static void
249 ffec_miigasket_setup(struct ffec_softc *sc)
250 {
251 	uint32_t ifmode;
252 
253 	/*
254 	 * We only need the gasket for MII and RMII connections on certain SoCs.
255 	 */
256 
257 	switch (sc->fectype & FECTYPE_MASK)
258 	{
259 	case FECTYPE_IMX53:
260 		break;
261 	default:
262 		return;
263 	}
264 
265 	switch (sc->phy_conn_type)
266 	{
267 	case PHY_CONN_MII:
268 		ifmode = 0;
269 		break;
270 	case PHY_CONN_RMII:
271 		ifmode = FEC_MIIGSK_CFGR_IF_MODE_RMII;
272 		break;
273 	default:
274 		return;
275 	}
276 
277 	/*
278 	 * Disable the gasket, configure for either MII or RMII, then enable.
279 	 */
280 
281 	WR2(sc, FEC_MIIGSK_ENR, 0);
282 	while (RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY)
283 		continue;
284 
285 	WR2(sc, FEC_MIIGSK_CFGR, ifmode);
286 
287 	WR2(sc, FEC_MIIGSK_ENR, FEC_MIIGSK_ENR_EN);
288 	while (!(RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY))
289 		continue;
290 }
291 
292 static boolean_t
293 ffec_miibus_iowait(struct ffec_softc *sc)
294 {
295 	uint32_t timeout;
296 
297 	for (timeout = 10000; timeout != 0; --timeout)
298 		if (RD4(sc, FEC_IER_REG) & FEC_IER_MII)
299 			return (true);
300 
301 	return (false);
302 }
303 
304 static int
305 ffec_miibus_readreg(device_t dev, int phy, int reg)
306 {
307 	struct ffec_softc *sc;
308 	int val;
309 
310 	sc = device_get_softc(dev);
311 
312 	WR4(sc, FEC_IER_REG, FEC_IER_MII);
313 
314 	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_READ |
315 	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
316 	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
317 	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK));
318 
319 	if (!ffec_miibus_iowait(sc)) {
320 		device_printf(dev, "timeout waiting for mii read\n");
321 		return (-1); /* All-ones is a symptom of bad mdio. */
322 	}
323 
324 	val = RD4(sc, FEC_MMFR_REG) & FEC_MMFR_DATA_MASK;
325 
326 	return (val);
327 }
328 
329 static int
330 ffec_miibus_writereg(device_t dev, int phy, int reg, int val)
331 {
332 	struct ffec_softc *sc;
333 
334 	sc = device_get_softc(dev);
335 
336 	WR4(sc, FEC_IER_REG, FEC_IER_MII);
337 
338 	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_WRITE |
339 	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
340 	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
341 	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK) |
342 	    (val & FEC_MMFR_DATA_MASK));
343 
344 	if (!ffec_miibus_iowait(sc)) {
345 		device_printf(dev, "timeout waiting for mii write\n");
346 		return (-1);
347 	}
348 
349 	return (0);
350 }
351 
352 static void
353 ffec_miibus_statchg(device_t dev)
354 {
355 	struct ffec_softc *sc;
356 	struct mii_data *mii;
357 	uint32_t ecr, rcr, tcr;
358 
359 	/*
360 	 * Called by the MII bus driver when the PHY establishes link to set the
361 	 * MAC interface registers.
362 	 */
363 
364 	sc = device_get_softc(dev);
365 
366 	FFEC_ASSERT_LOCKED(sc);
367 
368 	mii = sc->mii_softc;
369 
370 	if (mii->mii_media_status & IFM_ACTIVE)
371 		sc->link_is_up = true;
372 	else
373 		sc->link_is_up = false;
374 
375 	ecr = RD4(sc, FEC_ECR_REG) & ~FEC_ECR_SPEED;
376 	rcr = RD4(sc, FEC_RCR_REG) & ~(FEC_RCR_RMII_10T | FEC_RCR_RMII_MODE |
377 	    FEC_RCR_RGMII_EN | FEC_RCR_DRT | FEC_RCR_FCE);
378 	tcr = RD4(sc, FEC_TCR_REG) & ~FEC_TCR_FDEN;
379 
380 	rcr |= FEC_RCR_MII_MODE; /* Must always be on even for R[G]MII. */
381 	switch (sc->phy_conn_type) {
382 	case PHY_CONN_MII:
383 		break;
384 	case PHY_CONN_RMII:
385 		rcr |= FEC_RCR_RMII_MODE;
386 		break;
387 	case PHY_CONN_RGMII:
388 		rcr |= FEC_RCR_RGMII_EN;
389 		break;
390 	}
391 
392 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
393 	case IFM_1000_T:
394 	case IFM_1000_SX:
395 		ecr |= FEC_ECR_SPEED;
396 		break;
397 	case IFM_100_TX:
398 		/* Not-FEC_ECR_SPEED + not-FEC_RCR_RMII_10T means 100TX */
399 		break;
400 	case IFM_10_T:
401 		rcr |= FEC_RCR_RMII_10T;
402 		break;
403 	case IFM_NONE:
404 		sc->link_is_up = false;
405 		return;
406 	default:
407 		sc->link_is_up = false;
408 		device_printf(dev, "Unsupported media %u\n",
409 		    IFM_SUBTYPE(mii->mii_media_active));
410 		return;
411 	}
412 
413 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
414 		tcr |= FEC_TCR_FDEN;
415 	else
416 		rcr |= FEC_RCR_DRT;
417 
418 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLOW) != 0)
419 		rcr |= FEC_RCR_FCE;
420 
421 	WR4(sc, FEC_RCR_REG, rcr);
422 	WR4(sc, FEC_TCR_REG, tcr);
423 	WR4(sc, FEC_ECR_REG, ecr);
424 }
425 
426 static void
427 ffec_media_status(struct ifnet * ifp, struct ifmediareq *ifmr)
428 {
429 	struct ffec_softc *sc;
430 	struct mii_data *mii;
431 
432 
433 	sc = ifp->if_softc;
434 	mii = sc->mii_softc;
435 	FFEC_LOCK(sc);
436 	mii_pollstat(mii);
437 	ifmr->ifm_active = mii->mii_media_active;
438 	ifmr->ifm_status = mii->mii_media_status;
439 	FFEC_UNLOCK(sc);
440 }
441 
442 static int
443 ffec_media_change_locked(struct ffec_softc *sc)
444 {
445 
446 	return (mii_mediachg(sc->mii_softc));
447 }
448 
449 static int
450 ffec_media_change(struct ifnet * ifp)
451 {
452 	struct ffec_softc *sc;
453 	int error;
454 
455 	sc = ifp->if_softc;
456 
457 	FFEC_LOCK(sc);
458 	error = ffec_media_change_locked(sc);
459 	FFEC_UNLOCK(sc);
460 	return (error);
461 }
462 
463 static void ffec_clear_stats(struct ffec_softc *sc)
464 {
465 
466 	WR4(sc, FEC_RMON_R_PACKETS, 0);
467 	WR4(sc, FEC_RMON_R_MC_PKT, 0);
468 	WR4(sc, FEC_RMON_R_CRC_ALIGN, 0);
469 	WR4(sc, FEC_RMON_R_UNDERSIZE, 0);
470 	WR4(sc, FEC_RMON_R_OVERSIZE, 0);
471 	WR4(sc, FEC_RMON_R_FRAG, 0);
472 	WR4(sc, FEC_RMON_R_JAB, 0);
473 	WR4(sc, FEC_RMON_T_PACKETS, 0);
474 	WR4(sc, FEC_RMON_T_MC_PKT, 0);
475 	WR4(sc, FEC_RMON_T_CRC_ALIGN, 0);
476 	WR4(sc, FEC_RMON_T_UNDERSIZE, 0);
477 	WR4(sc, FEC_RMON_T_OVERSIZE , 0);
478 	WR4(sc, FEC_RMON_T_FRAG, 0);
479 	WR4(sc, FEC_RMON_T_JAB, 0);
480 	WR4(sc, FEC_RMON_T_COL, 0);
481 }
482 
483 static void
484 ffec_harvest_stats(struct ffec_softc *sc)
485 {
486 	struct ifnet *ifp;
487 
488 	/* We don't need to harvest too often. */
489 	if (++sc->stats_harvest_count < STATS_HARVEST_INTERVAL)
490 		return;
491 
492 	/*
493 	 * Try to avoid harvesting unless the IDLE flag is on, but if it has
494 	 * been too long just go ahead and do it anyway, the worst that'll
495 	 * happen is we'll lose a packet count or two as we clear at the end.
496 	 */
497 	if (sc->stats_harvest_count < (2 * STATS_HARVEST_INTERVAL) &&
498 	    ((RD4(sc, FEC_MIBC_REG) & FEC_MIBC_IDLE) == 0))
499 		return;
500 
501 	sc->stats_harvest_count = 0;
502 	ifp = sc->ifp;
503 
504 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, RD4(sc, FEC_RMON_R_PACKETS));
505 	if_inc_counter(ifp, IFCOUNTER_IMCASTS, RD4(sc, FEC_RMON_R_MC_PKT));
506 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
507 	    RD4(sc, FEC_RMON_R_CRC_ALIGN) + RD4(sc, FEC_RMON_R_UNDERSIZE) +
508 	    RD4(sc, FEC_RMON_R_OVERSIZE) + RD4(sc, FEC_RMON_R_FRAG) +
509 	    RD4(sc, FEC_RMON_R_JAB));
510 
511 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, RD4(sc, FEC_RMON_T_PACKETS));
512 	if_inc_counter(ifp, IFCOUNTER_OMCASTS, RD4(sc, FEC_RMON_T_MC_PKT));
513 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
514 	    RD4(sc, FEC_RMON_T_CRC_ALIGN) + RD4(sc, FEC_RMON_T_UNDERSIZE) +
515 	    RD4(sc, FEC_RMON_T_OVERSIZE) + RD4(sc, FEC_RMON_T_FRAG) +
516 	    RD4(sc, FEC_RMON_T_JAB));
517 
518 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, RD4(sc, FEC_RMON_T_COL));
519 
520 	ffec_clear_stats(sc);
521 }
522 
523 static void
524 ffec_tick(void *arg)
525 {
526 	struct ffec_softc *sc;
527 	struct ifnet *ifp;
528 	int link_was_up;
529 
530 	sc = arg;
531 
532 	FFEC_ASSERT_LOCKED(sc);
533 
534 	ifp = sc->ifp;
535 
536 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
537 	    return;
538 
539 	/*
540 	 * Typical tx watchdog.  If this fires it indicates that we enqueued
541 	 * packets for output and never got a txdone interrupt for them.  Maybe
542 	 * it's a missed interrupt somehow, just pretend we got one.
543 	 */
544 	if (sc->tx_watchdog_count > 0) {
545 		if (--sc->tx_watchdog_count == 0) {
546 			ffec_txfinish_locked(sc);
547 		}
548 	}
549 
550 	/* Gather stats from hardware counters. */
551 	ffec_harvest_stats(sc);
552 
553 	/* Check the media status. */
554 	link_was_up = sc->link_is_up;
555 	mii_tick(sc->mii_softc);
556 	if (sc->link_is_up && !link_was_up)
557 		ffec_txstart_locked(sc);
558 
559 	/* Schedule another check one second from now. */
560 	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
561 }
562 
563 inline static uint32_t
564 ffec_setup_txdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr,
565     uint32_t len)
566 {
567 	uint32_t nidx;
568 	uint32_t flags;
569 
570 	nidx = next_txidx(sc, idx);
571 
572 	/* Addr/len 0 means we're clearing the descriptor after xmit done. */
573 	if (paddr == 0 || len == 0) {
574 		flags = 0;
575 		--sc->txcount;
576 	} else {
577 		flags = FEC_TXDESC_READY | FEC_TXDESC_L | FEC_TXDESC_TC;
578 		++sc->txcount;
579 	}
580 	if (nidx == 0)
581 		flags |= FEC_TXDESC_WRAP;
582 
583 	/*
584 	 * The hardware requires 32-bit physical addresses.  We set up the dma
585 	 * tag to indicate that, so the cast to uint32_t should never lose
586 	 * significant bits.
587 	 */
588 	sc->txdesc_ring[idx].buf_paddr = (uint32_t)paddr;
589 	sc->txdesc_ring[idx].flags_len = flags | len; /* Must be set last! */
590 
591 	return (nidx);
592 }
593 
594 static int
595 ffec_setup_txbuf(struct ffec_softc *sc, int idx, struct mbuf **mp)
596 {
597 	struct mbuf * m;
598 	int error, nsegs;
599 	struct bus_dma_segment seg;
600 
601 	if ((m = m_defrag(*mp, M_NOWAIT)) == NULL)
602 		return (ENOMEM);
603 	*mp = m;
604 
605 	error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map,
606 	    m, &seg, &nsegs, 0);
607 	if (error != 0) {
608 		return (ENOMEM);
609 	}
610 	bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map,
611 	    BUS_DMASYNC_PREWRITE);
612 
613 	sc->txbuf_map[idx].mbuf = m;
614 	ffec_setup_txdesc(sc, idx, seg.ds_addr, seg.ds_len);
615 
616 	return (0);
617 
618 }
619 
620 static void
621 ffec_txstart_locked(struct ffec_softc *sc)
622 {
623 	struct ifnet *ifp;
624 	struct mbuf *m;
625 	int enqueued;
626 
627 	FFEC_ASSERT_LOCKED(sc);
628 
629 	if (!sc->link_is_up)
630 		return;
631 
632 	ifp = sc->ifp;
633 
634 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
635 		return;
636 
637 	enqueued = 0;
638 
639 	for (;;) {
640 		if (sc->txcount == (TX_DESC_COUNT-1)) {
641 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
642 			break;
643 		}
644 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
645 		if (m == NULL)
646 			break;
647 		if (ffec_setup_txbuf(sc, sc->tx_idx_head, &m) != 0) {
648 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
649 			break;
650 		}
651 		BPF_MTAP(ifp, m);
652 		sc->tx_idx_head = next_txidx(sc, sc->tx_idx_head);
653 		++enqueued;
654 	}
655 
656 	if (enqueued != 0) {
657 		bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREWRITE);
658 		WR4(sc, FEC_TDAR_REG, FEC_TDAR_TDAR);
659 		bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTWRITE);
660 		sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS;
661 	}
662 }
663 
664 static void
665 ffec_txstart(struct ifnet *ifp)
666 {
667 	struct ffec_softc *sc = ifp->if_softc;
668 
669 	FFEC_LOCK(sc);
670 	ffec_txstart_locked(sc);
671 	FFEC_UNLOCK(sc);
672 }
673 
674 static void
675 ffec_txfinish_locked(struct ffec_softc *sc)
676 {
677 	struct ifnet *ifp;
678 	struct ffec_hwdesc *desc;
679 	struct ffec_bufmap *bmap;
680 	boolean_t retired_buffer;
681 
682 	FFEC_ASSERT_LOCKED(sc);
683 
684 	/* XXX Can't set PRE|POST right now, but we need both. */
685 	bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREREAD);
686 	bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTREAD);
687 	ifp = sc->ifp;
688 	retired_buffer = false;
689 	while (sc->tx_idx_tail != sc->tx_idx_head) {
690 		desc = &sc->txdesc_ring[sc->tx_idx_tail];
691 		if (desc->flags_len & FEC_TXDESC_READY)
692 			break;
693 		retired_buffer = true;
694 		bmap = &sc->txbuf_map[sc->tx_idx_tail];
695 		bus_dmamap_sync(sc->txbuf_tag, bmap->map,
696 		    BUS_DMASYNC_POSTWRITE);
697 		bus_dmamap_unload(sc->txbuf_tag, bmap->map);
698 		m_freem(bmap->mbuf);
699 		bmap->mbuf = NULL;
700 		ffec_setup_txdesc(sc, sc->tx_idx_tail, 0, 0);
701 		sc->tx_idx_tail = next_txidx(sc, sc->tx_idx_tail);
702 	}
703 
704 	/*
705 	 * If we retired any buffers, there will be open tx slots available in
706 	 * the descriptor ring, go try to start some new output.
707 	 */
708 	if (retired_buffer) {
709 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
710 		ffec_txstart_locked(sc);
711 	}
712 
713 	/* If there are no buffers outstanding, muzzle the watchdog. */
714 	if (sc->tx_idx_tail == sc->tx_idx_head) {
715 		sc->tx_watchdog_count = 0;
716 	}
717 }
718 
719 inline static uint32_t
720 ffec_setup_rxdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr)
721 {
722 	uint32_t nidx;
723 
724 	/*
725 	 * The hardware requires 32-bit physical addresses.  We set up the dma
726 	 * tag to indicate that, so the cast to uint32_t should never lose
727 	 * significant bits.
728 	 */
729 	nidx = next_rxidx(sc, idx);
730 	sc->rxdesc_ring[idx].buf_paddr = (uint32_t)paddr;
731 	sc->rxdesc_ring[idx].flags_len = FEC_RXDESC_EMPTY |
732 		((nidx == 0) ? FEC_RXDESC_WRAP : 0);
733 
734 	return (nidx);
735 }
736 
737 static int
738 ffec_setup_rxbuf(struct ffec_softc *sc, int idx, struct mbuf * m)
739 {
740 	int error, nsegs;
741 	struct bus_dma_segment seg;
742 
743 	/*
744 	 * We need to leave at least ETHER_ALIGN bytes free at the beginning of
745 	 * the buffer to allow the data to be re-aligned after receiving it (by
746 	 * copying it backwards ETHER_ALIGN bytes in the same buffer).  We also
747 	 * have to ensure that the beginning of the buffer is aligned to the
748 	 * hardware's requirements.
749 	 */
750 	m_adj(m, roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN));
751 
752 	error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
753 	    m, &seg, &nsegs, 0);
754 	if (error != 0) {
755 		return (error);
756 	}
757 
758 	bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
759 	    BUS_DMASYNC_PREREAD);
760 
761 	sc->rxbuf_map[idx].mbuf = m;
762 	ffec_setup_rxdesc(sc, idx, seg.ds_addr);
763 
764 	return (0);
765 }
766 
767 static struct mbuf *
768 ffec_alloc_mbufcl(struct ffec_softc *sc)
769 {
770 	struct mbuf *m;
771 
772 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
773 	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
774 
775 	return (m);
776 }
777 
778 static void
779 ffec_rxfinish_onebuf(struct ffec_softc *sc, int len)
780 {
781 	struct mbuf *m, *newmbuf;
782 	struct ffec_bufmap *bmap;
783 	uint8_t *dst, *src;
784 	int error;
785 
786 	/*
787 	 *  First try to get a new mbuf to plug into this slot in the rx ring.
788 	 *  If that fails, drop the current packet and recycle the current
789 	 *  mbuf, which is still mapped and loaded.
790 	 */
791 	if ((newmbuf = ffec_alloc_mbufcl(sc)) == NULL) {
792 		if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, 1);
793 		ffec_setup_rxdesc(sc, sc->rx_idx,
794 		    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
795 		return;
796 	}
797 
798 	/*
799 	 *  Unfortunately, the protocol headers need to be aligned on a 32-bit
800 	 *  boundary for the upper layers.  The hardware requires receive
801 	 *  buffers to be 16-byte aligned.  The ethernet header is 14 bytes,
802 	 *  leaving the protocol header unaligned.  We used m_adj() after
803 	 *  allocating the buffer to leave empty space at the start of the
804 	 *  buffer, now we'll use the alignment agnostic bcopy() routine to
805 	 *  shuffle all the data backwards 2 bytes and adjust m_data.
806 	 *
807 	 *  XXX imx6 hardware is able to do this 2-byte alignment by setting the
808 	 *  SHIFT16 bit in the RACC register.  Older hardware doesn't have that
809 	 *  feature, but for them could we speed this up by copying just the
810 	 *  protocol headers into their own small mbuf then chaining the cluster
811 	 *  to it?  That way we'd only need to copy like 64 bytes or whatever
812 	 *  the biggest header is, instead of the whole 1530ish-byte frame.
813 	 */
814 
815 	FFEC_UNLOCK(sc);
816 
817 	bmap = &sc->rxbuf_map[sc->rx_idx];
818 	len -= ETHER_CRC_LEN;
819 	bus_dmamap_sync(sc->rxbuf_tag, bmap->map, BUS_DMASYNC_POSTREAD);
820 	bus_dmamap_unload(sc->rxbuf_tag, bmap->map);
821 	m = bmap->mbuf;
822 	bmap->mbuf = NULL;
823 	m->m_len = len;
824 	m->m_pkthdr.len = len;
825 	m->m_pkthdr.rcvif = sc->ifp;
826 
827 	src = mtod(m, uint8_t*);
828 	dst = src - ETHER_ALIGN;
829 	bcopy(src, dst, len);
830 	m->m_data = dst;
831 	sc->ifp->if_input(sc->ifp, m);
832 
833 	FFEC_LOCK(sc);
834 
835 	if ((error = ffec_setup_rxbuf(sc, sc->rx_idx, newmbuf)) != 0) {
836 		device_printf(sc->dev, "ffec_setup_rxbuf error %d\n", error);
837 		/* XXX Now what?  We've got a hole in the rx ring. */
838 	}
839 
840 }
841 
842 static void
843 ffec_rxfinish_locked(struct ffec_softc *sc)
844 {
845 	struct ffec_hwdesc *desc;
846 	int len;
847 	boolean_t produced_empty_buffer;
848 
849 	FFEC_ASSERT_LOCKED(sc);
850 
851 	/* XXX Can't set PRE|POST right now, but we need both. */
852 	bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREREAD);
853 	bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTREAD);
854 	produced_empty_buffer = false;
855 	for (;;) {
856 		desc = &sc->rxdesc_ring[sc->rx_idx];
857 		if (desc->flags_len & FEC_RXDESC_EMPTY)
858 			break;
859 		produced_empty_buffer = true;
860 		len = (desc->flags_len & FEC_RXDESC_LEN_MASK);
861 		if (len < 64) {
862 			/*
863 			 * Just recycle the descriptor and continue.           .
864 			 */
865 			ffec_setup_rxdesc(sc, sc->rx_idx,
866 			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
867 		} else if ((desc->flags_len & FEC_RXDESC_L) == 0) {
868 			/*
869 			 * The entire frame is not in this buffer.  Impossible.
870 			 * Recycle the descriptor and continue.
871 			 *
872 			 * XXX what's the right way to handle this? Probably we
873 			 * should stop/init the hardware because this should
874 			 * just really never happen when we have buffers bigger
875 			 * than the maximum frame size.
876 			 */
877 			device_printf(sc->dev,
878 			    "fec_rxfinish: received frame without LAST bit set");
879 			ffec_setup_rxdesc(sc, sc->rx_idx,
880 			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
881 		} else if (desc->flags_len & FEC_RXDESC_ERROR_BITS) {
882 			/*
883 			 *  Something went wrong with receiving the frame, we
884 			 *  don't care what (the hardware has counted the error
885 			 *  in the stats registers already), we just reuse the
886 			 *  same mbuf, which is still dma-mapped, by resetting
887 			 *  the rx descriptor.
888 			 */
889 			ffec_setup_rxdesc(sc, sc->rx_idx,
890 			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
891 		} else {
892 			/*
893 			 *  Normal case: a good frame all in one buffer.
894 			 */
895 			ffec_rxfinish_onebuf(sc, len);
896 		}
897 		sc->rx_idx = next_rxidx(sc, sc->rx_idx);
898 	}
899 
900 	if (produced_empty_buffer) {
901 		bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREWRITE);
902 		WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
903 		bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTWRITE);
904 	}
905 }
906 
907 static void
908 ffec_get_hwaddr(struct ffec_softc *sc, uint8_t *hwaddr)
909 {
910 	uint32_t palr, paur, rnd;
911 
912 	/*
913 	 * Try to recover a MAC address from the running hardware. If there's
914 	 * something non-zero there, assume the bootloader did the right thing
915 	 * and just use it.
916 	 *
917 	 * Otherwise, set the address to a convenient locally assigned address,
918 	 * 'bsd' + random 24 low-order bits.  'b' is 0x62, which has the locally
919 	 * assigned bit set, and the broadcast/multicast bit clear.
920 	 */
921 	palr = RD4(sc, FEC_PALR_REG);
922 	paur = RD4(sc, FEC_PAUR_REG) & FEC_PAUR_PADDR2_MASK;
923 	if ((palr | paur) != 0) {
924 		hwaddr[0] = palr >> 24;
925 		hwaddr[1] = palr >> 16;
926 		hwaddr[2] = palr >>  8;
927 		hwaddr[3] = palr >>  0;
928 		hwaddr[4] = paur >> 24;
929 		hwaddr[5] = paur >> 16;
930 	} else {
931 		rnd = arc4random() & 0x00ffffff;
932 		hwaddr[0] = 'b';
933 		hwaddr[1] = 's';
934 		hwaddr[2] = 'd';
935 		hwaddr[3] = rnd >> 16;
936 		hwaddr[4] = rnd >>  8;
937 		hwaddr[5] = rnd >>  0;
938 	}
939 
940 	if (bootverbose) {
941 		device_printf(sc->dev,
942 		    "MAC address %02x:%02x:%02x:%02x:%02x:%02x:\n",
943 		    hwaddr[0], hwaddr[1], hwaddr[2],
944 		    hwaddr[3], hwaddr[4], hwaddr[5]);
945 	}
946 }
947 
948 static void
949 ffec_setup_rxfilter(struct ffec_softc *sc)
950 {
951 	struct ifnet *ifp;
952 	struct ifmultiaddr *ifma;
953 	uint8_t *eaddr;
954 	uint32_t crc;
955 	uint64_t ghash, ihash;
956 
957 	FFEC_ASSERT_LOCKED(sc);
958 
959 	ifp = sc->ifp;
960 
961 	/*
962 	 * Set the multicast (group) filter hash.
963 	 */
964 	if ((ifp->if_flags & IFF_ALLMULTI))
965 		ghash = 0xffffffffffffffffLLU;
966 	else {
967 		ghash = 0;
968 		if_maddr_rlock(ifp);
969 		TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
970 			if (ifma->ifma_addr->sa_family != AF_LINK)
971 				continue;
972 			/* 6 bits from MSB in LE CRC32 are used for hash. */
973 			crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
974 			    ifma->ifma_addr), ETHER_ADDR_LEN);
975 			ghash |= 1LLU << (((uint8_t *)&crc)[3] >> 2);
976 		}
977 		if_maddr_runlock(ifp);
978 	}
979 	WR4(sc, FEC_GAUR_REG, (uint32_t)(ghash >> 32));
980 	WR4(sc, FEC_GALR_REG, (uint32_t)ghash);
981 
982 	/*
983 	 * Set the individual address filter hash.
984 	 *
985 	 * XXX Is 0 the right value when promiscuous is off?  This hw feature
986 	 * seems to support the concept of MAC address aliases, does such a
987 	 * thing even exist?
988 	 */
989 	if ((ifp->if_flags & IFF_PROMISC))
990 		ihash = 0xffffffffffffffffLLU;
991 	else {
992 		ihash = 0;
993 	}
994 	WR4(sc, FEC_IAUR_REG, (uint32_t)(ihash >> 32));
995 	WR4(sc, FEC_IALR_REG, (uint32_t)ihash);
996 
997 	/*
998 	 * Set the primary address.
999 	 */
1000 	eaddr = IF_LLADDR(ifp);
1001 	WR4(sc, FEC_PALR_REG, (eaddr[0] << 24) | (eaddr[1] << 16) |
1002 	    (eaddr[2] <<  8) | eaddr[3]);
1003 	WR4(sc, FEC_PAUR_REG, (eaddr[4] << 24) | (eaddr[5] << 16));
1004 }
1005 
1006 static void
1007 ffec_stop_locked(struct ffec_softc *sc)
1008 {
1009 	struct ifnet *ifp;
1010 	struct ffec_hwdesc *desc;
1011 	struct ffec_bufmap *bmap;
1012 	int idx;
1013 
1014 	FFEC_ASSERT_LOCKED(sc);
1015 
1016 	ifp = sc->ifp;
1017 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1018 	sc->tx_watchdog_count = 0;
1019 	sc->stats_harvest_count = 0;
1020 
1021 	/*
1022 	 * Stop the hardware, mask all interrupts, and clear all current
1023 	 * interrupt status bits.
1024 	 */
1025 	WR4(sc, FEC_ECR_REG, RD4(sc, FEC_ECR_REG) & ~FEC_ECR_ETHEREN);
1026 	WR4(sc, FEC_IEM_REG, 0x00000000);
1027 	WR4(sc, FEC_IER_REG, 0xffffffff);
1028 
1029 	/*
1030 	 * Stop the media-check callout.  Do not use callout_drain() because
1031 	 * we're holding a mutex the callout acquires, and if it's currently
1032 	 * waiting to acquire it, we'd deadlock.  If it is waiting now, the
1033 	 * ffec_tick() routine will return without doing anything when it sees
1034 	 * that IFF_DRV_RUNNING is not set, so avoiding callout_drain() is safe.
1035 	 */
1036 	callout_stop(&sc->ffec_callout);
1037 
1038 	/*
1039 	 * Discard all untransmitted buffers.  Each buffer is simply freed;
1040 	 * it's as if the bits were transmitted and then lost on the wire.
1041 	 *
1042 	 * XXX Is this right?  Or should we use IFQ_DRV_PREPEND() to put them
1043 	 * back on the queue for when we get restarted later?
1044 	 */
1045 	idx = sc->tx_idx_tail;
1046 	while (idx != sc->tx_idx_head) {
1047 		desc = &sc->txdesc_ring[idx];
1048 		bmap = &sc->txbuf_map[idx];
1049 		if (desc->buf_paddr != 0) {
1050 			bus_dmamap_unload(sc->txbuf_tag, bmap->map);
1051 			m_freem(bmap->mbuf);
1052 			bmap->mbuf = NULL;
1053 			ffec_setup_txdesc(sc, idx, 0, 0);
1054 		}
1055 		idx = next_txidx(sc, idx);
1056 	}
1057 
1058 	/*
1059 	 * Discard all unprocessed receive buffers.  This amounts to just
1060 	 * pretending that nothing ever got received into them.  We reuse the
1061 	 * mbuf already mapped for each desc, simply turning the EMPTY flags
1062 	 * back on so they'll get reused when we start up again.
1063 	 */
1064 	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1065 		desc = &sc->rxdesc_ring[idx];
1066 		ffec_setup_rxdesc(sc, idx, desc->buf_paddr);
1067 	}
1068 }
1069 
1070 static void
1071 ffec_init_locked(struct ffec_softc *sc)
1072 {
1073 	struct ifnet *ifp = sc->ifp;
1074 	uint32_t maxbuf, maxfl, regval;
1075 
1076 	FFEC_ASSERT_LOCKED(sc);
1077 
1078 	/*
1079 	 * The hardware has a limit of 0x7ff as the max frame length (see
1080 	 * comments for MRBR below), and we use mbuf clusters as receive
1081 	 * buffers, and we currently are designed to receive an entire frame
1082 	 * into a single buffer.
1083 	 *
1084 	 * We start with a MCLBYTES-sized cluster, but we have to offset into
1085 	 * the buffer by ETHER_ALIGN to make room for post-receive re-alignment,
1086 	 * and then that value has to be rounded up to the hardware's DMA
1087 	 * alignment requirements, so all in all our buffer is that much smaller
1088 	 * than MCLBYTES.
1089 	 *
1090 	 * The resulting value is used as the frame truncation length and the
1091 	 * max buffer receive buffer size for now.  It'll become more complex
1092 	 * when we support jumbo frames and receiving fragments of them into
1093 	 * separate buffers.
1094 	 */
1095 	maxbuf = MCLBYTES - roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN);
1096 	maxfl = min(maxbuf, 0x7ff);
1097 
1098 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1099 		return;
1100 
1101 	/* Mask all interrupts and clear all current interrupt status bits. */
1102 	WR4(sc, FEC_IEM_REG, 0x00000000);
1103 	WR4(sc, FEC_IER_REG, 0xffffffff);
1104 
1105 	/*
1106 	 * Go set up palr/puar, galr/gaur, ialr/iaur.
1107 	 */
1108 	ffec_setup_rxfilter(sc);
1109 
1110 	/*
1111 	 * TFWR - Transmit FIFO watermark register.
1112 	 *
1113 	 * Set the transmit fifo watermark register to "store and forward" mode
1114 	 * and also set a threshold of 128 bytes in the fifo before transmission
1115 	 * of a frame begins (to avoid dma underruns).  Recent FEC hardware
1116 	 * supports STRFWD and when that bit is set, the watermark level in the
1117 	 * low bits is ignored.  Older hardware doesn't have STRFWD, but writing
1118 	 * to that bit is innocuous, and the TWFR bits get used instead.
1119 	 */
1120 	WR4(sc, FEC_TFWR_REG, FEC_TFWR_STRFWD | FEC_TFWR_TWFR_128BYTE);
1121 
1122 	/* RCR - Receive control register.
1123 	 *
1124 	 * Set max frame length + clean out anything left from u-boot.
1125 	 */
1126 	WR4(sc, FEC_RCR_REG, (maxfl << FEC_RCR_MAX_FL_SHIFT));
1127 
1128 	/*
1129 	 * TCR - Transmit control register.
1130 	 *
1131 	 * Clean out anything left from u-boot.  Any necessary values are set in
1132 	 * ffec_miibus_statchg() based on the media type.
1133 	 */
1134 	WR4(sc, FEC_TCR_REG, 0);
1135 
1136 	/*
1137 	 * OPD - Opcode/pause duration.
1138 	 *
1139 	 * XXX These magic numbers come from u-boot.
1140 	 */
1141 	WR4(sc, FEC_OPD_REG, 0x00010020);
1142 
1143 	/*
1144 	 * FRSR - Fifo receive start register.
1145 	 *
1146 	 * This register does not exist on imx6, it is present on earlier
1147 	 * hardware. The u-boot code sets this to a non-default value that's 32
1148 	 * bytes larger than the default, with no clue as to why.  The default
1149 	 * value should work fine, so there's no code to init it here.
1150 	 */
1151 
1152 	/*
1153 	 *  MRBR - Max RX buffer size.
1154 	 *
1155 	 *  Note: For hardware prior to imx6 this value cannot exceed 0x07ff,
1156 	 *  but the datasheet says no such thing for imx6.  On the imx6, setting
1157 	 *  this to 2K without setting EN1588 resulted in a crazy runaway
1158 	 *  receive loop in the hardware, where every rx descriptor in the ring
1159 	 *  had its EMPTY flag cleared, no completion or error flags set, and a
1160 	 *  length of zero.  I think maybe you can only exceed it when EN1588 is
1161 	 *  set, like maybe that's what enables jumbo frames, because in general
1162 	 *  the EN1588 flag seems to be the "enable new stuff" vs. "be legacy-
1163 	 *  compatible" flag.
1164 	 */
1165 	WR4(sc, FEC_MRBR_REG, maxfl << FEC_MRBR_R_BUF_SIZE_SHIFT);
1166 
1167 	/*
1168 	 * FTRL - Frame truncation length.
1169 	 *
1170 	 * Must be greater than or equal to the value set in FEC_RCR_MAXFL.
1171 	 */
1172 	WR4(sc, FEC_FTRL_REG, maxfl);
1173 
1174 	/*
1175 	 * RDSR / TDSR descriptor ring pointers.
1176 	 *
1177 	 * When we turn on ECR_ETHEREN at the end, the hardware zeroes its
1178 	 * internal current descriptor index values for both rings, so we zero
1179 	 * our index values as well.
1180 	 */
1181 	sc->rx_idx = 0;
1182 	sc->tx_idx_head = sc->tx_idx_tail = 0;
1183 	sc->txcount = 0;
1184 	WR4(sc, FEC_RDSR_REG, sc->rxdesc_ring_paddr);
1185 	WR4(sc, FEC_TDSR_REG, sc->txdesc_ring_paddr);
1186 
1187 	/*
1188 	 * EIM - interrupt mask register.
1189 	 *
1190 	 * We always enable the same set of interrupts while running; unlike
1191 	 * some drivers there's no need to change the mask on the fly depending
1192 	 * on what operations are in progress.
1193 	 */
1194 	WR4(sc, FEC_IEM_REG, FEC_IER_TXF | FEC_IER_RXF | FEC_IER_EBERR);
1195 
1196 	/*
1197 	 * MIBC - MIB control (hardware stats).
1198 	 */
1199 	regval = RD4(sc, FEC_MIBC_REG);
1200 	WR4(sc, FEC_MIBC_REG, regval | FEC_MIBC_DIS);
1201 	ffec_clear_stats(sc);
1202 	WR4(sc, FEC_MIBC_REG, regval & ~FEC_MIBC_DIS);
1203 
1204 	/*
1205 	 * ECR - Ethernet control register.
1206 	 *
1207 	 * This must happen after all the other config registers are set.  If
1208 	 * we're running on little-endian hardware, also set the flag for byte-
1209 	 * swapping descriptor ring entries.  This flag doesn't exist on older
1210 	 * hardware, but it can be safely set -- the bit position it occupies
1211 	 * was unused.
1212 	 */
1213 	regval = RD4(sc, FEC_ECR_REG);
1214 #if _BYTE_ORDER == _LITTLE_ENDIAN
1215 	regval |= FEC_ECR_DBSWP;
1216 #endif
1217 	regval |= FEC_ECR_ETHEREN;
1218 	WR4(sc, FEC_ECR_REG, regval);
1219 
1220 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1221 
1222        /*
1223 	* Call mii_mediachg() which will call back into ffec_miibus_statchg() to
1224 	* set up the remaining config registers based on the current media.
1225 	*/
1226 	mii_mediachg(sc->mii_softc);
1227 	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
1228 
1229 	/*
1230 	 * Tell the hardware that receive buffers are available.  They were made
1231 	 * available in ffec_attach() or ffec_stop().
1232 	 */
1233 	WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
1234 }
1235 
1236 static void
1237 ffec_init(void *if_softc)
1238 {
1239 	struct ffec_softc *sc = if_softc;
1240 
1241 	FFEC_LOCK(sc);
1242 	ffec_init_locked(sc);
1243 	FFEC_UNLOCK(sc);
1244 }
1245 
1246 static void
1247 ffec_intr(void *arg)
1248 {
1249 	struct ffec_softc *sc;
1250 	uint32_t ier;
1251 
1252 	sc = arg;
1253 
1254 	FFEC_LOCK(sc);
1255 
1256 	ier = RD4(sc, FEC_IER_REG);
1257 
1258 	if (ier & FEC_IER_TXF) {
1259 		WR4(sc, FEC_IER_REG, FEC_IER_TXF);
1260 		ffec_txfinish_locked(sc);
1261 	}
1262 
1263 	if (ier & FEC_IER_RXF) {
1264 		WR4(sc, FEC_IER_REG, FEC_IER_RXF);
1265 		ffec_rxfinish_locked(sc);
1266 	}
1267 
1268 	/*
1269 	 * We actually don't care about most errors, because the hardware copes
1270 	 * with them just fine, discarding the incoming bad frame, or forcing a
1271 	 * bad CRC onto an outgoing bad frame, and counting the errors in the
1272 	 * stats registers.  The one that really matters is EBERR (DMA bus
1273 	 * error) because the hardware automatically clears ECR[ETHEREN] and we
1274 	 * have to restart it here.  It should never happen.
1275 	 */
1276 	if (ier & FEC_IER_EBERR) {
1277 		WR4(sc, FEC_IER_REG, FEC_IER_EBERR);
1278 		device_printf(sc->dev,
1279 		    "Ethernet DMA error, restarting controller.\n");
1280 		ffec_stop_locked(sc);
1281 		ffec_init_locked(sc);
1282 	}
1283 
1284 	FFEC_UNLOCK(sc);
1285 
1286 }
1287 
1288 static int
1289 ffec_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1290 {
1291 	struct ffec_softc *sc;
1292 	struct mii_data *mii;
1293 	struct ifreq *ifr;
1294 	int mask, error;
1295 
1296 	sc = ifp->if_softc;
1297 	ifr = (struct ifreq *)data;
1298 
1299 	error = 0;
1300 	switch (cmd) {
1301 	case SIOCSIFFLAGS:
1302 		FFEC_LOCK(sc);
1303 		if (ifp->if_flags & IFF_UP) {
1304 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1305 				if ((ifp->if_flags ^ sc->if_flags) &
1306 				    (IFF_PROMISC | IFF_ALLMULTI))
1307 					ffec_setup_rxfilter(sc);
1308 			} else {
1309 				if (!sc->is_detaching)
1310 					ffec_init_locked(sc);
1311 			}
1312 		} else {
1313 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1314 				ffec_stop_locked(sc);
1315 		}
1316 		sc->if_flags = ifp->if_flags;
1317 		FFEC_UNLOCK(sc);
1318 		break;
1319 
1320 	case SIOCADDMULTI:
1321 	case SIOCDELMULTI:
1322 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1323 			FFEC_LOCK(sc);
1324 			ffec_setup_rxfilter(sc);
1325 			FFEC_UNLOCK(sc);
1326 		}
1327 		break;
1328 
1329 	case SIOCSIFMEDIA:
1330 	case SIOCGIFMEDIA:
1331 		mii = sc->mii_softc;
1332 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1333 		break;
1334 
1335 	case SIOCSIFCAP:
1336 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
1337 		if (mask & IFCAP_VLAN_MTU) {
1338 			/* No work to do except acknowledge the change took. */
1339 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
1340 		}
1341 		break;
1342 
1343 	default:
1344 		error = ether_ioctl(ifp, cmd, data);
1345 		break;
1346 	}
1347 
1348 	return (error);
1349 }
1350 
1351 static int
1352 ffec_detach(device_t dev)
1353 {
1354 	struct ffec_softc *sc;
1355 	bus_dmamap_t map;
1356 	int idx;
1357 
1358 	/*
1359 	 * NB: This function can be called internally to unwind a failure to
1360 	 * attach. Make sure a resource got allocated/created before destroying.
1361 	 */
1362 
1363 	sc = device_get_softc(dev);
1364 
1365 	if (sc->is_attached) {
1366 		FFEC_LOCK(sc);
1367 		sc->is_detaching = true;
1368 		ffec_stop_locked(sc);
1369 		FFEC_UNLOCK(sc);
1370 		callout_drain(&sc->ffec_callout);
1371 		ether_ifdetach(sc->ifp);
1372 	}
1373 
1374 	/* XXX no miibus detach? */
1375 
1376 	/* Clean up RX DMA resources and free mbufs. */
1377 	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1378 		if ((map = sc->rxbuf_map[idx].map) != NULL) {
1379 			bus_dmamap_unload(sc->rxbuf_tag, map);
1380 			bus_dmamap_destroy(sc->rxbuf_tag, map);
1381 			m_freem(sc->rxbuf_map[idx].mbuf);
1382 		}
1383 	}
1384 	if (sc->rxbuf_tag != NULL)
1385 		bus_dma_tag_destroy(sc->rxbuf_tag);
1386 	if (sc->rxdesc_map != NULL) {
1387 		bus_dmamap_unload(sc->rxdesc_tag, sc->rxdesc_map);
1388 		bus_dmamap_destroy(sc->rxdesc_tag, sc->rxdesc_map);
1389 	}
1390 	if (sc->rxdesc_tag != NULL)
1391 	bus_dma_tag_destroy(sc->rxdesc_tag);
1392 
1393 	/* Clean up TX DMA resources. */
1394 	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1395 		if ((map = sc->txbuf_map[idx].map) != NULL) {
1396 			/* TX maps are already unloaded. */
1397 			bus_dmamap_destroy(sc->txbuf_tag, map);
1398 		}
1399 	}
1400 	if (sc->txbuf_tag != NULL)
1401 		bus_dma_tag_destroy(sc->txbuf_tag);
1402 	if (sc->txdesc_map != NULL) {
1403 		bus_dmamap_unload(sc->txdesc_tag, sc->txdesc_map);
1404 		bus_dmamap_destroy(sc->txdesc_tag, sc->txdesc_map);
1405 	}
1406 	if (sc->txdesc_tag != NULL)
1407 	bus_dma_tag_destroy(sc->txdesc_tag);
1408 
1409 	/* Release bus resources. */
1410 	if (sc->intr_cookie)
1411 		bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
1412 
1413 	if (sc->irq_res != NULL)
1414 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
1415 
1416 	if (sc->mem_res != NULL)
1417 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
1418 
1419 	FFEC_LOCK_DESTROY(sc);
1420 	return (0);
1421 }
1422 
1423 static int
1424 ffec_attach(device_t dev)
1425 {
1426 	struct ffec_softc *sc;
1427 	struct ifnet *ifp = NULL;
1428 	struct mbuf *m;
1429 	void *dummy;
1430 	phandle_t ofw_node;
1431 	int error, phynum, rid;
1432 	uint8_t eaddr[ETHER_ADDR_LEN];
1433 	char phy_conn_name[32];
1434 	uint32_t idx, mscr;
1435 
1436 	sc = device_get_softc(dev);
1437 	sc->dev = dev;
1438 
1439 	FFEC_LOCK_INIT(sc);
1440 
1441 	/*
1442 	 * There are differences in the implementation and features of the FEC
1443 	 * hardware on different SoCs, so figure out what type we are.
1444 	 */
1445 	sc->fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1446 
1447 	/*
1448 	 * We have to be told what kind of electrical connection exists between
1449 	 * the MAC and PHY or we can't operate correctly.
1450 	 */
1451 	if ((ofw_node = ofw_bus_get_node(dev)) == -1) {
1452 		device_printf(dev, "Impossible: Can't find ofw bus node\n");
1453 		error = ENXIO;
1454 		goto out;
1455 	}
1456 	if (OF_searchprop(ofw_node, "phy-mode",
1457 	    phy_conn_name, sizeof(phy_conn_name)) != -1) {
1458 		if (strcasecmp(phy_conn_name, "mii") == 0)
1459 			sc->phy_conn_type = PHY_CONN_MII;
1460 		else if (strcasecmp(phy_conn_name, "rmii") == 0)
1461 			sc->phy_conn_type = PHY_CONN_RMII;
1462 		else if (strcasecmp(phy_conn_name, "rgmii") == 0)
1463 			sc->phy_conn_type = PHY_CONN_RGMII;
1464 	}
1465 	if (sc->phy_conn_type == PHY_CONN_UNKNOWN) {
1466 		device_printf(sc->dev, "No valid 'phy-mode' "
1467 		    "property found in FDT data for device.\n");
1468 		error = ENOATTR;
1469 		goto out;
1470 	}
1471 
1472 	callout_init_mtx(&sc->ffec_callout, &sc->mtx, 0);
1473 
1474 	/* Allocate bus resources for accessing the hardware. */
1475 	rid = 0;
1476 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1477 	    RF_ACTIVE);
1478 	if (sc->mem_res == NULL) {
1479 		device_printf(dev, "could not allocate memory resources.\n");
1480 		error = ENOMEM;
1481 		goto out;
1482 	}
1483 	rid = 0;
1484 	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1485 	    RF_ACTIVE);
1486 	if (sc->irq_res == NULL) {
1487 		device_printf(dev, "could not allocate interrupt resources.\n");
1488 		error = ENOMEM;
1489 		goto out;
1490 	}
1491 
1492 	/*
1493 	 * Set up TX descriptor ring, descriptors, and dma maps.
1494 	 */
1495 	error = bus_dma_tag_create(
1496 	    bus_get_dma_tag(dev),	/* Parent tag. */
1497 	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1498 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1499 	    BUS_SPACE_MAXADDR,		/* highaddr */
1500 	    NULL, NULL,			/* filter, filterarg */
1501 	    TX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1502 	    TX_DESC_SIZE,		/* maxsegsize */
1503 	    0,				/* flags */
1504 	    NULL, NULL,			/* lockfunc, lockarg */
1505 	    &sc->txdesc_tag);
1506 	if (error != 0) {
1507 		device_printf(sc->dev,
1508 		    "could not create TX ring DMA tag.\n");
1509 		goto out;
1510 	}
1511 
1512 	error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring,
1513 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->txdesc_map);
1514 	if (error != 0) {
1515 		device_printf(sc->dev,
1516 		    "could not allocate TX descriptor ring.\n");
1517 		goto out;
1518 	}
1519 
1520 	error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map, sc->txdesc_ring,
1521 	    TX_DESC_SIZE, ffec_get1paddr, &sc->txdesc_ring_paddr, 0);
1522 	if (error != 0) {
1523 		device_printf(sc->dev,
1524 		    "could not load TX descriptor ring map.\n");
1525 		goto out;
1526 	}
1527 
1528 	error = bus_dma_tag_create(
1529 	    bus_get_dma_tag(dev),	/* Parent tag. */
1530 	    FEC_TXBUF_ALIGN, 0,		/* alignment, boundary */
1531 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1532 	    BUS_SPACE_MAXADDR,		/* highaddr */
1533 	    NULL, NULL,			/* filter, filterarg */
1534 	    MCLBYTES, 1, 		/* maxsize, nsegments */
1535 	    MCLBYTES,			/* maxsegsize */
1536 	    0,				/* flags */
1537 	    NULL, NULL,			/* lockfunc, lockarg */
1538 	    &sc->txbuf_tag);
1539 	if (error != 0) {
1540 		device_printf(sc->dev,
1541 		    "could not create TX ring DMA tag.\n");
1542 		goto out;
1543 	}
1544 
1545 	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1546 		error = bus_dmamap_create(sc->txbuf_tag, 0,
1547 		    &sc->txbuf_map[idx].map);
1548 		if (error != 0) {
1549 			device_printf(sc->dev,
1550 			    "could not create TX buffer DMA map.\n");
1551 			goto out;
1552 		}
1553 		ffec_setup_txdesc(sc, idx, 0, 0);
1554 	}
1555 
1556 	/*
1557 	 * Set up RX descriptor ring, descriptors, dma maps, and mbufs.
1558 	 */
1559 	error = bus_dma_tag_create(
1560 	    bus_get_dma_tag(dev),	/* Parent tag. */
1561 	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1562 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1563 	    BUS_SPACE_MAXADDR,		/* highaddr */
1564 	    NULL, NULL,			/* filter, filterarg */
1565 	    RX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1566 	    RX_DESC_SIZE,		/* maxsegsize */
1567 	    0,				/* flags */
1568 	    NULL, NULL,			/* lockfunc, lockarg */
1569 	    &sc->rxdesc_tag);
1570 	if (error != 0) {
1571 		device_printf(sc->dev,
1572 		    "could not create RX ring DMA tag.\n");
1573 		goto out;
1574 	}
1575 
1576 	error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring,
1577 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rxdesc_map);
1578 	if (error != 0) {
1579 		device_printf(sc->dev,
1580 		    "could not allocate RX descriptor ring.\n");
1581 		goto out;
1582 	}
1583 
1584 	error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map, sc->rxdesc_ring,
1585 	    RX_DESC_SIZE, ffec_get1paddr, &sc->rxdesc_ring_paddr, 0);
1586 	if (error != 0) {
1587 		device_printf(sc->dev,
1588 		    "could not load RX descriptor ring map.\n");
1589 		goto out;
1590 	}
1591 
1592 	error = bus_dma_tag_create(
1593 	    bus_get_dma_tag(dev),	/* Parent tag. */
1594 	    1, 0,			/* alignment, boundary */
1595 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1596 	    BUS_SPACE_MAXADDR,		/* highaddr */
1597 	    NULL, NULL,			/* filter, filterarg */
1598 	    MCLBYTES, 1, 		/* maxsize, nsegments */
1599 	    MCLBYTES,			/* maxsegsize */
1600 	    0,				/* flags */
1601 	    NULL, NULL,			/* lockfunc, lockarg */
1602 	    &sc->rxbuf_tag);
1603 	if (error != 0) {
1604 		device_printf(sc->dev,
1605 		    "could not create RX buf DMA tag.\n");
1606 		goto out;
1607 	}
1608 
1609 	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1610 		error = bus_dmamap_create(sc->rxbuf_tag, 0,
1611 		    &sc->rxbuf_map[idx].map);
1612 		if (error != 0) {
1613 			device_printf(sc->dev,
1614 			    "could not create RX buffer DMA map.\n");
1615 			goto out;
1616 		}
1617 		if ((m = ffec_alloc_mbufcl(sc)) == NULL) {
1618 			device_printf(dev, "Could not alloc mbuf\n");
1619 			error = ENOMEM;
1620 			goto out;
1621 		}
1622 		if ((error = ffec_setup_rxbuf(sc, idx, m)) != 0) {
1623 			device_printf(sc->dev,
1624 			    "could not create new RX buffer.\n");
1625 			goto out;
1626 		}
1627 	}
1628 
1629 	/* Try to get the MAC address from the hardware before resetting it. */
1630 	ffec_get_hwaddr(sc, eaddr);
1631 
1632 	/* Reset the hardware.  Disables all interrupts. */
1633 	WR4(sc, FEC_ECR_REG, FEC_ECR_RESET);
1634 
1635 	/* Setup interrupt handler. */
1636 	error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE,
1637 	    NULL, ffec_intr, sc, &sc->intr_cookie);
1638 	if (error != 0) {
1639 		device_printf(dev, "could not setup interrupt handler.\n");
1640 		goto out;
1641 	}
1642 
1643 	/*
1644 	 * Set up the PHY control register.
1645 	 *
1646 	 * Speed formula for ENET is md_clock = mac_clock / ((N + 1) * 2).
1647 	 * Speed formula for FEC is  md_clock = mac_clock / (N * 2)
1648 	 *
1649 	 * XXX - Revisit this...
1650 	 *
1651 	 * For a Wandboard imx6 (ENET) I was originally using 4, but the uboot
1652 	 * code uses 10.  Both values seem to work, but I suspect many modern
1653 	 * PHY parts can do mdio at speeds far above the standard 2.5 MHz.
1654 	 *
1655 	 * Different imx manuals use confusingly different terminology (things
1656 	 * like "system clock" and "internal module clock") with examples that
1657 	 * use frequencies that have nothing to do with ethernet, giving the
1658 	 * vague impression that maybe the clock in question is the periphclock
1659 	 * or something.  In fact, on an imx53 development board (FEC),
1660 	 * measuring the mdio clock at the pin on the PHY and playing with
1661 	 * various divisors showed that the root speed was 66 MHz (clk_ipg_root
1662 	 * aka periphclock) and 13 was the right divisor.
1663 	 *
1664 	 * All in all, it seems likely that 13 is a safe divisor for now,
1665 	 * because if we really do need to base it on the peripheral clock
1666 	 * speed, then we need a platform-independant get-clock-freq API.
1667 	 */
1668 	mscr = 13 << FEC_MSCR_MII_SPEED_SHIFT;
1669 	if (OF_hasprop(ofw_node, "phy-disable-preamble")) {
1670 		mscr |= FEC_MSCR_DIS_PRE;
1671 		if (bootverbose)
1672 			device_printf(dev, "PHY preamble disabled\n");
1673 	}
1674 	WR4(sc, FEC_MSCR_REG, mscr);
1675 
1676 	/* Set up the ethernet interface. */
1677 	sc->ifp = ifp = if_alloc(IFT_ETHER);
1678 
1679 	ifp->if_softc = sc;
1680 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1681 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1682 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1683 	ifp->if_capenable = ifp->if_capabilities;
1684 	ifp->if_start = ffec_txstart;
1685 	ifp->if_ioctl = ffec_ioctl;
1686 	ifp->if_init = ffec_init;
1687 	IFQ_SET_MAXLEN(&ifp->if_snd, TX_DESC_COUNT - 1);
1688 	ifp->if_snd.ifq_drv_maxlen = TX_DESC_COUNT - 1;
1689 	IFQ_SET_READY(&ifp->if_snd);
1690 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1691 
1692 #if 0 /* XXX The hardware keeps stats we could use for these. */
1693 	ifp->if_linkmib = &sc->mibdata;
1694 	ifp->if_linkmiblen = sizeof(sc->mibdata);
1695 #endif
1696 
1697 	/* Set up the miigasket hardware (if any). */
1698 	ffec_miigasket_setup(sc);
1699 
1700 	/* Attach the mii driver. */
1701 	if (fdt_get_phyaddr(ofw_node, dev, &phynum, &dummy) != 0) {
1702 		phynum = MII_PHY_ANY;
1703 	}
1704 	error = mii_attach(dev, &sc->miibus, ifp, ffec_media_change,
1705 	    ffec_media_status, BMSR_DEFCAPMASK, phynum, MII_OFFSET_ANY,
1706 	    (sc->fectype & FECTYPE_MVF) ? MIIF_FORCEANEG : 0);
1707 	if (error != 0) {
1708 		device_printf(dev, "PHY attach failed\n");
1709 		goto out;
1710 	}
1711 	sc->mii_softc = device_get_softc(sc->miibus);
1712 
1713 	/* All ready to run, attach the ethernet interface. */
1714 	ether_ifattach(ifp, eaddr);
1715 	sc->is_attached = true;
1716 
1717 	error = 0;
1718 out:
1719 
1720 	if (error != 0)
1721 		ffec_detach(dev);
1722 
1723 	return (error);
1724 }
1725 
1726 static int
1727 ffec_probe(device_t dev)
1728 {
1729 	uintptr_t fectype;
1730 
1731 	if (!ofw_bus_status_okay(dev))
1732 		return (ENXIO);
1733 
1734 	fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1735 	if (fectype == FECTYPE_NONE)
1736 		return (ENXIO);
1737 
1738 	device_set_desc(dev, (fectype & FECFLAG_GBE) ?
1739 	    "Freescale Gigabit Ethernet Controller" :
1740 	    "Freescale Fast Ethernet Controller");
1741 
1742 	return (BUS_PROBE_DEFAULT);
1743 }
1744 
1745 
1746 static device_method_t ffec_methods[] = {
1747 	/* Device interface. */
1748 	DEVMETHOD(device_probe,		ffec_probe),
1749 	DEVMETHOD(device_attach,	ffec_attach),
1750 	DEVMETHOD(device_detach,	ffec_detach),
1751 
1752 /*
1753 	DEVMETHOD(device_shutdown,	ffec_shutdown),
1754 	DEVMETHOD(device_suspend,	ffec_suspend),
1755 	DEVMETHOD(device_resume,	ffec_resume),
1756 */
1757 
1758 	/* MII interface. */
1759 	DEVMETHOD(miibus_readreg,	ffec_miibus_readreg),
1760 	DEVMETHOD(miibus_writereg,	ffec_miibus_writereg),
1761 	DEVMETHOD(miibus_statchg,	ffec_miibus_statchg),
1762 
1763 	DEVMETHOD_END
1764 };
1765 
1766 static driver_t ffec_driver = {
1767 	"ffec",
1768 	ffec_methods,
1769 	sizeof(struct ffec_softc)
1770 };
1771 
1772 static devclass_t ffec_devclass;
1773 
1774 DRIVER_MODULE(ffec, simplebus, ffec_driver, ffec_devclass, 0, 0);
1775 DRIVER_MODULE(miibus, ffec, miibus_driver, miibus_devclass, 0, 0);
1776 
1777 MODULE_DEPEND(ffec, ether, 1, 1, 1);
1778 MODULE_DEPEND(ffec, miibus, 1, 1, 1);
1779