xref: /freebsd/sys/dev/fdt/fdt_common.c (revision eb9da1ada8b6b2c74378a5c17029ec5a7fb199e6)
1 /*-
2  * Copyright (c) 2009-2014 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * This software was developed by Andrew Turner under sponsorship from
6  * the FreeBSD Foundation.
7  * This software was developed by Semihalf under sponsorship from
8  * the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/module.h>
39 #include <sys/bus.h>
40 #include <sys/limits.h>
41 #include <sys/sysctl.h>
42 
43 #include <machine/resource.h>
44 
45 #include <dev/fdt/fdt_common.h>
46 #include <dev/ofw/ofw_bus.h>
47 #include <dev/ofw/ofw_bus_subr.h>
48 #include <dev/ofw/openfirm.h>
49 
50 #include "ofw_bus_if.h"
51 
52 #ifdef DEBUG
53 #define debugf(fmt, args...) do { printf("%s(): ", __func__);	\
54     printf(fmt,##args); } while (0)
55 #else
56 #define debugf(fmt, args...)
57 #endif
58 
59 #define FDT_COMPAT_LEN	255
60 #define FDT_TYPE_LEN	64
61 
62 #define FDT_REG_CELLS	4
63 
64 SYSCTL_NODE(_hw, OID_AUTO, fdt, CTLFLAG_RD, 0, "Flattened Device Tree");
65 
66 vm_paddr_t fdt_immr_pa;
67 vm_offset_t fdt_immr_va;
68 vm_offset_t fdt_immr_size;
69 
70 struct fdt_ic_list fdt_ic_list_head = SLIST_HEAD_INITIALIZER(fdt_ic_list_head);
71 
72 static int
73 fdt_get_range_by_busaddr(phandle_t node, u_long addr, u_long *base,
74     u_long *size)
75 {
76 	pcell_t ranges[32], *rangesptr;
77 	pcell_t addr_cells, size_cells, par_addr_cells;
78 	u_long bus_addr, par_bus_addr, pbase, psize;
79 	int err, i, len, tuple_size, tuples;
80 
81 	if (node == 0) {
82 		*base = 0;
83 		*size = ULONG_MAX;
84 		return (0);
85 	}
86 
87 	if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
88 		return (ENXIO);
89 	/*
90 	 * Process 'ranges' property.
91 	 */
92 	par_addr_cells = fdt_parent_addr_cells(node);
93 	if (par_addr_cells > 2) {
94 		return (ERANGE);
95 	}
96 
97 	len = OF_getproplen(node, "ranges");
98 	if (len < 0)
99 		return (-1);
100 	if (len > sizeof(ranges))
101 		return (ENOMEM);
102 	if (len == 0) {
103 		return (fdt_get_range_by_busaddr(OF_parent(node), addr,
104 		    base, size));
105 	}
106 
107 	if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0)
108 		return (EINVAL);
109 
110 	tuple_size = addr_cells + par_addr_cells + size_cells;
111 	tuples = len / (tuple_size * sizeof(cell_t));
112 
113 	if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2)
114 		return (ERANGE);
115 
116 	*base = 0;
117 	*size = 0;
118 
119 	for (i = 0; i < tuples; i++) {
120 		rangesptr = &ranges[i * tuple_size];
121 
122 		bus_addr = fdt_data_get((void *)rangesptr, addr_cells);
123 		if (bus_addr != addr)
124 			continue;
125 		rangesptr += addr_cells;
126 
127 		par_bus_addr = fdt_data_get((void *)rangesptr, par_addr_cells);
128 		rangesptr += par_addr_cells;
129 
130 		err = fdt_get_range_by_busaddr(OF_parent(node), par_bus_addr,
131 		    &pbase, &psize);
132 		if (err > 0)
133 			return (err);
134 		if (err == 0)
135 			*base = pbase;
136 		else
137 			*base = par_bus_addr;
138 
139 		*size = fdt_data_get((void *)rangesptr, size_cells);
140 
141 		return (0);
142 	}
143 
144 	return (EINVAL);
145 }
146 
147 int
148 fdt_get_range(phandle_t node, int range_id, u_long *base, u_long *size)
149 {
150 	pcell_t ranges[6], *rangesptr;
151 	pcell_t addr_cells, size_cells, par_addr_cells;
152 	u_long par_bus_addr, pbase, psize;
153 	int err, len, tuple_size, tuples;
154 
155 	if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
156 		return (ENXIO);
157 	/*
158 	 * Process 'ranges' property.
159 	 */
160 	par_addr_cells = fdt_parent_addr_cells(node);
161 	if (par_addr_cells > 2)
162 		return (ERANGE);
163 
164 	len = OF_getproplen(node, "ranges");
165 	if (len > sizeof(ranges))
166 		return (ENOMEM);
167 	if (len == 0) {
168 		*base = 0;
169 		*size = ULONG_MAX;
170 		return (0);
171 	}
172 
173 	if (!(range_id < len))
174 		return (ERANGE);
175 
176 	if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0)
177 		return (EINVAL);
178 
179 	tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells +
180 	    size_cells);
181 	tuples = len / tuple_size;
182 
183 	if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2)
184 		return (ERANGE);
185 
186 	*base = 0;
187 	*size = 0;
188 	rangesptr = &ranges[range_id];
189 
190 	*base = fdt_data_get((void *)rangesptr, addr_cells);
191 	rangesptr += addr_cells;
192 
193 	par_bus_addr = fdt_data_get((void *)rangesptr, par_addr_cells);
194 	rangesptr += par_addr_cells;
195 
196 	err = fdt_get_range_by_busaddr(OF_parent(node), par_bus_addr,
197 	   &pbase, &psize);
198 	if (err == 0)
199 		*base += pbase;
200 	else
201 		*base += par_bus_addr;
202 
203 	*size = fdt_data_get((void *)rangesptr, size_cells);
204 	return (0);
205 }
206 
207 int
208 fdt_immr_addr(vm_offset_t immr_va)
209 {
210 	phandle_t node;
211 	u_long base, size;
212 	int r;
213 
214 	/*
215 	 * Try to access the SOC node directly i.e. through /aliases/.
216 	 */
217 	if ((node = OF_finddevice("soc")) != 0)
218 		if (fdt_is_compatible(node, "simple-bus"))
219 			goto moveon;
220 	/*
221 	 * Find the node the long way.
222 	 */
223 	if ((node = OF_finddevice("/")) == 0)
224 		return (ENXIO);
225 
226 	if ((node = fdt_find_compatible(node, "simple-bus", 0)) == 0)
227 		return (ENXIO);
228 
229 moveon:
230 	if ((r = fdt_get_range(node, 0, &base, &size)) == 0) {
231 		fdt_immr_pa = base;
232 		fdt_immr_va = immr_va;
233 		fdt_immr_size = size;
234 	}
235 
236 	return (r);
237 }
238 
239 /*
240  * This routine is an early-usage version of the ofw_bus_is_compatible() when
241  * the ofw_bus I/F is not available (like early console routines and similar).
242  * Note the buffer has to be on the stack since malloc() is usually not
243  * available in such cases either.
244  */
245 int
246 fdt_is_compatible(phandle_t node, const char *compatstr)
247 {
248 	char buf[FDT_COMPAT_LEN];
249 	char *compat;
250 	int len, onelen, l, rv;
251 
252 	if ((len = OF_getproplen(node, "compatible")) <= 0)
253 		return (0);
254 
255 	compat = (char *)&buf;
256 	bzero(compat, FDT_COMPAT_LEN);
257 
258 	if (OF_getprop(node, "compatible", compat, FDT_COMPAT_LEN) < 0)
259 		return (0);
260 
261 	onelen = strlen(compatstr);
262 	rv = 0;
263 	while (len > 0) {
264 		if (strncasecmp(compat, compatstr, onelen) == 0) {
265 			/* Found it. */
266 			rv = 1;
267 			break;
268 		}
269 		/* Slide to the next sub-string. */
270 		l = strlen(compat) + 1;
271 		compat += l;
272 		len -= l;
273 	}
274 
275 	return (rv);
276 }
277 
278 int
279 fdt_is_compatible_strict(phandle_t node, const char *compatible)
280 {
281 	char compat[FDT_COMPAT_LEN];
282 
283 	if (OF_getproplen(node, "compatible") <= 0)
284 		return (0);
285 
286 	if (OF_getprop(node, "compatible", compat, FDT_COMPAT_LEN) < 0)
287 		return (0);
288 
289 	if (strncasecmp(compat, compatible, FDT_COMPAT_LEN) == 0)
290 		/* This fits. */
291 		return (1);
292 
293 	return (0);
294 }
295 
296 phandle_t
297 fdt_find_compatible(phandle_t start, const char *compat, int strict)
298 {
299 	phandle_t child;
300 
301 	/*
302 	 * Traverse all children of 'start' node, and find first with
303 	 * matching 'compatible' property.
304 	 */
305 	for (child = OF_child(start); child != 0; child = OF_peer(child))
306 		if (fdt_is_compatible(child, compat)) {
307 			if (strict)
308 				if (!fdt_is_compatible_strict(child, compat))
309 					continue;
310 			return (child);
311 		}
312 	return (0);
313 }
314 
315 phandle_t
316 fdt_depth_search_compatible(phandle_t start, const char *compat, int strict)
317 {
318 	phandle_t child, node;
319 
320 	/*
321 	 * Depth-search all descendants of 'start' node, and find first with
322 	 * matching 'compatible' property.
323 	 */
324 	for (node = OF_child(start); node != 0; node = OF_peer(node)) {
325 		if (fdt_is_compatible(node, compat) &&
326 		    (strict == 0 || fdt_is_compatible_strict(node, compat))) {
327 			return (node);
328 		}
329 		child = fdt_depth_search_compatible(node, compat, strict);
330 		if (child != 0)
331 			return (child);
332 	}
333 	return (0);
334 }
335 
336 int
337 fdt_is_enabled(phandle_t node)
338 {
339 	char *stat;
340 	int ena, len;
341 
342 	len = OF_getprop_alloc(node, "status", sizeof(char),
343 	    (void **)&stat);
344 
345 	if (len <= 0)
346 		/* It is OK if no 'status' property. */
347 		return (1);
348 
349 	/* Anything other than 'okay' means disabled. */
350 	ena = 0;
351 	if (strncmp((char *)stat, "okay", len) == 0)
352 		ena = 1;
353 
354 	OF_prop_free(stat);
355 	return (ena);
356 }
357 
358 int
359 fdt_is_type(phandle_t node, const char *typestr)
360 {
361 	char type[FDT_TYPE_LEN];
362 
363 	if (OF_getproplen(node, "device_type") <= 0)
364 		return (0);
365 
366 	if (OF_getprop(node, "device_type", type, FDT_TYPE_LEN) < 0)
367 		return (0);
368 
369 	if (strncasecmp(type, typestr, FDT_TYPE_LEN) == 0)
370 		/* This fits. */
371 		return (1);
372 
373 	return (0);
374 }
375 
376 int
377 fdt_parent_addr_cells(phandle_t node)
378 {
379 	pcell_t addr_cells;
380 
381 	/* Find out #address-cells of the superior bus. */
382 	if (OF_searchprop(OF_parent(node), "#address-cells", &addr_cells,
383 	    sizeof(addr_cells)) <= 0)
384 		return (2);
385 
386 	return ((int)fdt32_to_cpu(addr_cells));
387 }
388 
389 int
390 fdt_pm_is_enabled(phandle_t node)
391 {
392 	int ret;
393 
394 	ret = 1;
395 
396 #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
397 	ret = fdt_pm(node);
398 #endif
399 	return (ret);
400 }
401 
402 u_long
403 fdt_data_get(void *data, int cells)
404 {
405 
406 	if (cells == 1)
407 		return (fdt32_to_cpu(*((uint32_t *)data)));
408 
409 	return (fdt64_to_cpu(*((uint64_t *)data)));
410 }
411 
412 int
413 fdt_addrsize_cells(phandle_t node, int *addr_cells, int *size_cells)
414 {
415 	pcell_t cell;
416 	int cell_size;
417 
418 	/*
419 	 * Retrieve #{address,size}-cells.
420 	 */
421 	cell_size = sizeof(cell);
422 	if (OF_getprop(node, "#address-cells", &cell, cell_size) < cell_size)
423 		cell = 2;
424 	*addr_cells = fdt32_to_cpu((int)cell);
425 
426 	if (OF_getprop(node, "#size-cells", &cell, cell_size) < cell_size)
427 		cell = 1;
428 	*size_cells = fdt32_to_cpu((int)cell);
429 
430 	if (*addr_cells > 3 || *size_cells > 2)
431 		return (ERANGE);
432 	return (0);
433 }
434 
435 int
436 fdt_data_to_res(pcell_t *data, int addr_cells, int size_cells, u_long *start,
437     u_long *count)
438 {
439 
440 	/* Address portion. */
441 	if (addr_cells > 2)
442 		return (ERANGE);
443 
444 	*start = fdt_data_get((void *)data, addr_cells);
445 	data += addr_cells;
446 
447 	/* Size portion. */
448 	if (size_cells > 2)
449 		return (ERANGE);
450 
451 	*count = fdt_data_get((void *)data, size_cells);
452 	return (0);
453 }
454 
455 int
456 fdt_regsize(phandle_t node, u_long *base, u_long *size)
457 {
458 	pcell_t reg[4];
459 	int addr_cells, len, size_cells;
460 
461 	if (fdt_addrsize_cells(OF_parent(node), &addr_cells, &size_cells))
462 		return (ENXIO);
463 
464 	if ((sizeof(pcell_t) * (addr_cells + size_cells)) > sizeof(reg))
465 		return (ENOMEM);
466 
467 	len = OF_getprop(node, "reg", &reg, sizeof(reg));
468 	if (len <= 0)
469 		return (EINVAL);
470 
471 	*base = fdt_data_get(&reg[0], addr_cells);
472 	*size = fdt_data_get(&reg[addr_cells], size_cells);
473 	return (0);
474 }
475 
476 int
477 fdt_reg_to_rl(phandle_t node, struct resource_list *rl)
478 {
479 	u_long end, count, start;
480 	pcell_t *reg, *regptr;
481 	pcell_t addr_cells, size_cells;
482 	int tuple_size, tuples;
483 	int i, rv;
484 	long busaddr, bussize;
485 
486 	if (fdt_addrsize_cells(OF_parent(node), &addr_cells, &size_cells) != 0)
487 		return (ENXIO);
488 	if (fdt_get_range(OF_parent(node), 0, &busaddr, &bussize)) {
489 		busaddr = 0;
490 		bussize = 0;
491 	}
492 
493 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
494 	tuples = OF_getprop_alloc(node, "reg", tuple_size, (void **)&reg);
495 	debugf("addr_cells = %d, size_cells = %d\n", addr_cells, size_cells);
496 	debugf("tuples = %d, tuple size = %d\n", tuples, tuple_size);
497 	if (tuples <= 0)
498 		/* No 'reg' property in this node. */
499 		return (0);
500 
501 	regptr = reg;
502 	for (i = 0; i < tuples; i++) {
503 
504 		rv = fdt_data_to_res(reg, addr_cells, size_cells, &start,
505 		    &count);
506 		if (rv != 0) {
507 			resource_list_free(rl);
508 			goto out;
509 		}
510 		reg += addr_cells + size_cells;
511 
512 		/* Calculate address range relative to base. */
513 		start += busaddr;
514 		end = start + count - 1;
515 
516 		debugf("reg addr start = %lx, end = %lx, count = %lx\n", start,
517 		    end, count);
518 
519 		resource_list_add(rl, SYS_RES_MEMORY, i, start, end,
520 		    count);
521 	}
522 	rv = 0;
523 
524 out:
525 	OF_prop_free(regptr);
526 	return (rv);
527 }
528 
529 int
530 fdt_get_phyaddr(phandle_t node, device_t dev, int *phy_addr, void **phy_sc)
531 {
532 	phandle_t phy_node;
533 	pcell_t phy_handle, phy_reg;
534 	uint32_t i;
535 	device_t parent, child;
536 
537 	if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
538 	    sizeof(phy_handle)) <= 0)
539 		return (ENXIO);
540 
541 	phy_node = OF_node_from_xref(phy_handle);
542 
543 	if (OF_getprop(phy_node, "reg", (void *)&phy_reg,
544 	    sizeof(phy_reg)) <= 0)
545 		return (ENXIO);
546 
547 	*phy_addr = fdt32_to_cpu(phy_reg);
548 
549 	/*
550 	 * Search for softc used to communicate with phy.
551 	 */
552 
553 	/*
554 	 * Step 1: Search for ancestor of the phy-node with a "phy-handle"
555 	 * property set.
556 	 */
557 	phy_node = OF_parent(phy_node);
558 	while (phy_node != 0) {
559 		if (OF_getprop(phy_node, "phy-handle", (void *)&phy_handle,
560 		    sizeof(phy_handle)) > 0)
561 			break;
562 		phy_node = OF_parent(phy_node);
563 	}
564 	if (phy_node == 0)
565 		return (ENXIO);
566 
567 	/*
568 	 * Step 2: For each device with the same parent and name as ours
569 	 * compare its node with the one found in step 1, ancestor of phy
570 	 * node (stored in phy_node).
571 	 */
572 	parent = device_get_parent(dev);
573 	i = 0;
574 	child = device_find_child(parent, device_get_name(dev), i);
575 	while (child != NULL) {
576 		if (ofw_bus_get_node(child) == phy_node)
577 			break;
578 		i++;
579 		child = device_find_child(parent, device_get_name(dev), i);
580 	}
581 	if (child == NULL)
582 		return (ENXIO);
583 
584 	/*
585 	 * Use softc of the device found.
586 	 */
587 	*phy_sc = (void *)device_get_softc(child);
588 
589 	return (0);
590 }
591 
592 int
593 fdt_get_reserved_regions(struct mem_region *mr, int *mrcnt)
594 {
595 	pcell_t reserve[FDT_REG_CELLS * FDT_MEM_REGIONS];
596 	pcell_t *reservep;
597 	phandle_t memory, root;
598 	uint32_t memory_size;
599 	int addr_cells, size_cells;
600 	int i, max_size, res_len, rv, tuple_size, tuples;
601 
602 	max_size = sizeof(reserve);
603 	root = OF_finddevice("/");
604 	memory = OF_finddevice("/memory");
605 	if (memory == -1) {
606 		rv = ENXIO;
607 		goto out;
608 	}
609 
610 	if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells,
611 	    &size_cells)) != 0)
612 		goto out;
613 
614 	if (addr_cells > 2) {
615 		rv = ERANGE;
616 		goto out;
617 	}
618 
619 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
620 
621 	res_len = OF_getproplen(root, "memreserve");
622 	if (res_len <= 0 || res_len > sizeof(reserve)) {
623 		rv = ERANGE;
624 		goto out;
625 	}
626 
627 	if (OF_getprop(root, "memreserve", reserve, res_len) <= 0) {
628 		rv = ENXIO;
629 		goto out;
630 	}
631 
632 	memory_size = 0;
633 	tuples = res_len / tuple_size;
634 	reservep = (pcell_t *)&reserve;
635 	for (i = 0; i < tuples; i++) {
636 
637 		rv = fdt_data_to_res(reservep, addr_cells, size_cells,
638 			(u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size);
639 
640 		if (rv != 0)
641 			goto out;
642 
643 		reservep += addr_cells + size_cells;
644 	}
645 
646 	*mrcnt = i;
647 	rv = 0;
648 out:
649 	return (rv);
650 }
651 
652 int
653 fdt_get_mem_regions(struct mem_region *mr, int *mrcnt, uint64_t *memsize)
654 {
655 	pcell_t reg[FDT_REG_CELLS * FDT_MEM_REGIONS];
656 	pcell_t *regp;
657 	phandle_t memory;
658 	uint64_t memory_size;
659 	int addr_cells, size_cells;
660 	int i, max_size, reg_len, rv, tuple_size, tuples;
661 
662 	max_size = sizeof(reg);
663 	memory = OF_finddevice("/memory");
664 	if (memory == -1) {
665 		rv = ENXIO;
666 		goto out;
667 	}
668 
669 	if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells,
670 	    &size_cells)) != 0)
671 		goto out;
672 
673 	if (addr_cells > 2) {
674 		rv = ERANGE;
675 		goto out;
676 	}
677 
678 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
679 	reg_len = OF_getproplen(memory, "reg");
680 	if (reg_len <= 0 || reg_len > sizeof(reg)) {
681 		rv = ERANGE;
682 		goto out;
683 	}
684 
685 	if (OF_getprop(memory, "reg", reg, reg_len) <= 0) {
686 		rv = ENXIO;
687 		goto out;
688 	}
689 
690 	memory_size = 0;
691 	tuples = reg_len / tuple_size;
692 	regp = (pcell_t *)&reg;
693 	for (i = 0; i < tuples; i++) {
694 
695 		rv = fdt_data_to_res(regp, addr_cells, size_cells,
696 			(u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size);
697 
698 		if (rv != 0)
699 			goto out;
700 
701 		regp += addr_cells + size_cells;
702 		memory_size += mr[i].mr_size;
703 	}
704 
705 	if (memory_size == 0) {
706 		rv = ERANGE;
707 		goto out;
708 	}
709 
710 	*mrcnt = i;
711 	if (memsize != NULL)
712 		*memsize = memory_size;
713 	rv = 0;
714 out:
715 	return (rv);
716 }
717 
718 int
719 fdt_get_unit(device_t dev)
720 {
721 	const char * name;
722 
723 	name = ofw_bus_get_name(dev);
724 	name = strchr(name, '@') + 1;
725 
726 	return (strtol(name,NULL,0));
727 }
728 
729 int
730 fdt_get_chosen_bootargs(char *bootargs, size_t max_size)
731 {
732 	phandle_t chosen;
733 
734 	chosen = OF_finddevice("/chosen");
735 	if (chosen == -1)
736 		return (ENXIO);
737 	if (OF_getprop(chosen, "bootargs", bootargs, max_size) == -1)
738 		return (ENXIO);
739 	return (0);
740 }
741