xref: /freebsd/sys/dev/fdt/fdt_common.c (revision bbb29a3c0f2c4565eff6fda70426807b6ed97f8b)
1 /*-
2  * Copyright (c) 2009-2014 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * This software was developed by Andrew Turner under sponsorship from
6  * the FreeBSD Foundation.
7  * This software was developed by Semihalf under sponsorship from
8  * the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/module.h>
39 #include <sys/bus.h>
40 #include <sys/limits.h>
41 
42 #include <machine/resource.h>
43 
44 #include <dev/fdt/fdt_common.h>
45 #include <dev/ofw/ofw_bus.h>
46 #include <dev/ofw/ofw_bus_subr.h>
47 #include <dev/ofw/openfirm.h>
48 
49 #include "ofw_bus_if.h"
50 
51 #ifdef DEBUG
52 #define debugf(fmt, args...) do { printf("%s(): ", __func__);	\
53     printf(fmt,##args); } while (0)
54 #else
55 #define debugf(fmt, args...)
56 #endif
57 
58 #define FDT_COMPAT_LEN	255
59 #define FDT_TYPE_LEN	64
60 
61 #define FDT_REG_CELLS	4
62 
63 vm_paddr_t fdt_immr_pa;
64 vm_offset_t fdt_immr_va;
65 vm_offset_t fdt_immr_size;
66 
67 struct fdt_ic_list fdt_ic_list_head = SLIST_HEAD_INITIALIZER(fdt_ic_list_head);
68 
69 static int
70 fdt_get_range_by_busaddr(phandle_t node, u_long addr, u_long *base,
71     u_long *size)
72 {
73 	pcell_t ranges[32], *rangesptr;
74 	pcell_t addr_cells, size_cells, par_addr_cells;
75 	u_long bus_addr, par_bus_addr, pbase, psize;
76 	int err, i, len, tuple_size, tuples;
77 
78 	if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
79 		return (ENXIO);
80 	/*
81 	 * Process 'ranges' property.
82 	 */
83 	par_addr_cells = fdt_parent_addr_cells(node);
84 	if (par_addr_cells > 2) {
85 		return (ERANGE);
86 	}
87 
88 	len = OF_getproplen(node, "ranges");
89 	if (len < 0)
90 		return (-1);
91 	if (len > sizeof(ranges))
92 		return (ENOMEM);
93 	if (len == 0) {
94 		*base = 0;
95 		*size = ULONG_MAX;
96 		return (0);
97 	}
98 
99 	if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0)
100 		return (EINVAL);
101 
102 	tuple_size = addr_cells + par_addr_cells + size_cells;
103 	tuples = len / (tuple_size * sizeof(cell_t));
104 
105 	if (fdt_ranges_verify(ranges, tuples, par_addr_cells,
106 	    addr_cells, size_cells)) {
107 		return (ERANGE);
108 	}
109 	*base = 0;
110 	*size = 0;
111 
112 	for (i = 0; i < tuples; i++) {
113 		rangesptr = &ranges[i * tuple_size];
114 
115 		bus_addr = fdt_data_get((void *)rangesptr, addr_cells);
116 		if (bus_addr != addr)
117 			continue;
118 		rangesptr += addr_cells;
119 
120 		par_bus_addr = fdt_data_get((void *)rangesptr, par_addr_cells);
121 		rangesptr += par_addr_cells;
122 
123 		err = fdt_get_range_by_busaddr(OF_parent(node), par_bus_addr,
124 		    &pbase, &psize);
125 		if (err > 0)
126 			return (err);
127 		if (err == 0)
128 			*base = pbase;
129 		else
130 			*base = par_bus_addr;
131 
132 		*size = fdt_data_get((void *)rangesptr, size_cells);
133 
134 		return (0);
135 	}
136 
137 	return (EINVAL);
138 }
139 
140 int
141 fdt_get_range(phandle_t node, int range_id, u_long *base, u_long *size)
142 {
143 	pcell_t ranges[6], *rangesptr;
144 	pcell_t addr_cells, size_cells, par_addr_cells;
145 	u_long par_bus_addr, pbase, psize;
146 	int err, len, tuple_size, tuples;
147 
148 	if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
149 		return (ENXIO);
150 	/*
151 	 * Process 'ranges' property.
152 	 */
153 	par_addr_cells = fdt_parent_addr_cells(node);
154 	if (par_addr_cells > 2)
155 		return (ERANGE);
156 
157 	len = OF_getproplen(node, "ranges");
158 	if (len > sizeof(ranges))
159 		return (ENOMEM);
160 	if (len == 0) {
161 		*base = 0;
162 		*size = ULONG_MAX;
163 		return (0);
164 	}
165 
166 	if (!(range_id < len))
167 		return (ERANGE);
168 
169 	if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0)
170 		return (EINVAL);
171 
172 	tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells +
173 	    size_cells);
174 	tuples = len / tuple_size;
175 
176 	if (fdt_ranges_verify(ranges, tuples, par_addr_cells,
177 	    addr_cells, size_cells)) {
178 		return (ERANGE);
179 	}
180 	*base = 0;
181 	*size = 0;
182 	rangesptr = &ranges[range_id];
183 
184 	*base = fdt_data_get((void *)rangesptr, addr_cells);
185 	rangesptr += addr_cells;
186 
187 	par_bus_addr = fdt_data_get((void *)rangesptr, par_addr_cells);
188 	rangesptr += par_addr_cells;
189 
190 	err = fdt_get_range_by_busaddr(OF_parent(node), par_bus_addr,
191 	   &pbase, &psize);
192 	if (err == 0)
193 		*base += pbase;
194 	else
195 		*base += par_bus_addr;
196 
197 	*size = fdt_data_get((void *)rangesptr, size_cells);
198 	return (0);
199 }
200 
201 int
202 fdt_immr_addr(vm_offset_t immr_va)
203 {
204 	phandle_t node;
205 	u_long base, size;
206 	int r;
207 
208 	/*
209 	 * Try to access the SOC node directly i.e. through /aliases/.
210 	 */
211 	if ((node = OF_finddevice("soc")) != 0)
212 		if (fdt_is_compatible_strict(node, "simple-bus"))
213 			goto moveon;
214 	/*
215 	 * Find the node the long way.
216 	 */
217 	if ((node = OF_finddevice("/")) == 0)
218 		return (ENXIO);
219 
220 	if ((node = fdt_find_compatible(node, "simple-bus", 1)) == 0)
221 		return (ENXIO);
222 
223 moveon:
224 	if ((r = fdt_get_range(node, 0, &base, &size)) == 0) {
225 		fdt_immr_pa = base;
226 		fdt_immr_va = immr_va;
227 		fdt_immr_size = size;
228 	}
229 
230 	return (r);
231 }
232 
233 /*
234  * This routine is an early-usage version of the ofw_bus_is_compatible() when
235  * the ofw_bus I/F is not available (like early console routines and similar).
236  * Note the buffer has to be on the stack since malloc() is usually not
237  * available in such cases either.
238  */
239 int
240 fdt_is_compatible(phandle_t node, const char *compatstr)
241 {
242 	char buf[FDT_COMPAT_LEN];
243 	char *compat;
244 	int len, onelen, l, rv;
245 
246 	if ((len = OF_getproplen(node, "compatible")) <= 0)
247 		return (0);
248 
249 	compat = (char *)&buf;
250 	bzero(compat, FDT_COMPAT_LEN);
251 
252 	if (OF_getprop(node, "compatible", compat, FDT_COMPAT_LEN) < 0)
253 		return (0);
254 
255 	onelen = strlen(compatstr);
256 	rv = 0;
257 	while (len > 0) {
258 		if (strncasecmp(compat, compatstr, onelen) == 0) {
259 			/* Found it. */
260 			rv = 1;
261 			break;
262 		}
263 		/* Slide to the next sub-string. */
264 		l = strlen(compat) + 1;
265 		compat += l;
266 		len -= l;
267 	}
268 
269 	return (rv);
270 }
271 
272 int
273 fdt_is_compatible_strict(phandle_t node, const char *compatible)
274 {
275 	char compat[FDT_COMPAT_LEN];
276 
277 	if (OF_getproplen(node, "compatible") <= 0)
278 		return (0);
279 
280 	if (OF_getprop(node, "compatible", compat, FDT_COMPAT_LEN) < 0)
281 		return (0);
282 
283 	if (strncasecmp(compat, compatible, FDT_COMPAT_LEN) == 0)
284 		/* This fits. */
285 		return (1);
286 
287 	return (0);
288 }
289 
290 phandle_t
291 fdt_find_compatible(phandle_t start, const char *compat, int strict)
292 {
293 	phandle_t child;
294 
295 	/*
296 	 * Traverse all children of 'start' node, and find first with
297 	 * matching 'compatible' property.
298 	 */
299 	for (child = OF_child(start); child != 0; child = OF_peer(child))
300 		if (fdt_is_compatible(child, compat)) {
301 			if (strict)
302 				if (!fdt_is_compatible_strict(child, compat))
303 					continue;
304 			return (child);
305 		}
306 	return (0);
307 }
308 
309 phandle_t
310 fdt_depth_search_compatible(phandle_t start, const char *compat, int strict)
311 {
312 	phandle_t child, node;
313 
314 	/*
315 	 * Depth-search all descendants of 'start' node, and find first with
316 	 * matching 'compatible' property.
317 	 */
318 	for (node = OF_child(start); node != 0; node = OF_peer(node)) {
319 		if (fdt_is_compatible(node, compat) &&
320 		    (strict == 0 || fdt_is_compatible_strict(node, compat))) {
321 			return (node);
322 		}
323 		child = fdt_depth_search_compatible(node, compat, strict);
324 		if (child != 0)
325 			return (child);
326 	}
327 	return (0);
328 }
329 
330 int
331 fdt_is_enabled(phandle_t node)
332 {
333 	char *stat;
334 	int ena, len;
335 
336 	len = OF_getprop_alloc(node, "status", sizeof(char),
337 	    (void **)&stat);
338 
339 	if (len <= 0)
340 		/* It is OK if no 'status' property. */
341 		return (1);
342 
343 	/* Anything other than 'okay' means disabled. */
344 	ena = 0;
345 	if (strncmp((char *)stat, "okay", len) == 0)
346 		ena = 1;
347 
348 	free(stat, M_OFWPROP);
349 	return (ena);
350 }
351 
352 int
353 fdt_is_type(phandle_t node, const char *typestr)
354 {
355 	char type[FDT_TYPE_LEN];
356 
357 	if (OF_getproplen(node, "device_type") <= 0)
358 		return (0);
359 
360 	if (OF_getprop(node, "device_type", type, FDT_TYPE_LEN) < 0)
361 		return (0);
362 
363 	if (strncasecmp(type, typestr, FDT_TYPE_LEN) == 0)
364 		/* This fits. */
365 		return (1);
366 
367 	return (0);
368 }
369 
370 int
371 fdt_parent_addr_cells(phandle_t node)
372 {
373 	pcell_t addr_cells;
374 
375 	/* Find out #address-cells of the superior bus. */
376 	if (OF_searchprop(OF_parent(node), "#address-cells", &addr_cells,
377 	    sizeof(addr_cells)) <= 0)
378 		return (2);
379 
380 	return ((int)fdt32_to_cpu(addr_cells));
381 }
382 
383 int
384 fdt_data_verify(void *data, int cells)
385 {
386 	uint64_t d64;
387 
388 	if (cells > 1) {
389 		d64 = fdt64_to_cpu(*((uint64_t *)data));
390 		if (((d64 >> 32) & 0xffffffffull) != 0 || cells > 2)
391 			return (ERANGE);
392 	}
393 
394 	return (0);
395 }
396 
397 int
398 fdt_pm_is_enabled(phandle_t node)
399 {
400 	int ret;
401 
402 	ret = 1;
403 
404 #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
405 	ret = fdt_pm(node);
406 #endif
407 	return (ret);
408 }
409 
410 u_long
411 fdt_data_get(void *data, int cells)
412 {
413 
414 	if (cells == 1)
415 		return (fdt32_to_cpu(*((uint32_t *)data)));
416 
417 	return (fdt64_to_cpu(*((uint64_t *)data)));
418 }
419 
420 int
421 fdt_addrsize_cells(phandle_t node, int *addr_cells, int *size_cells)
422 {
423 	pcell_t cell;
424 	int cell_size;
425 
426 	/*
427 	 * Retrieve #{address,size}-cells.
428 	 */
429 	cell_size = sizeof(cell);
430 	if (OF_getprop(node, "#address-cells", &cell, cell_size) < cell_size)
431 		cell = 2;
432 	*addr_cells = fdt32_to_cpu((int)cell);
433 
434 	if (OF_getprop(node, "#size-cells", &cell, cell_size) < cell_size)
435 		cell = 1;
436 	*size_cells = fdt32_to_cpu((int)cell);
437 
438 	if (*addr_cells > 3 || *size_cells > 2)
439 		return (ERANGE);
440 	return (0);
441 }
442 
443 int
444 fdt_ranges_verify(pcell_t *ranges, int tuples, int par_addr_cells,
445     int this_addr_cells, int this_size_cells)
446 {
447 	int i, rv, ulsz;
448 
449 	if (par_addr_cells > 2 || this_addr_cells > 2 || this_size_cells > 2)
450 		return (ERANGE);
451 
452 	/*
453 	 * This is the max size the resource manager can handle for addresses
454 	 * and sizes.
455 	 */
456 	ulsz = sizeof(u_long);
457 	if (par_addr_cells <= ulsz && this_addr_cells <= ulsz &&
458 	    this_size_cells <= ulsz)
459 		/* We can handle everything */
460 		return (0);
461 
462 	rv = 0;
463 	for (i = 0; i < tuples; i++) {
464 
465 		if (fdt_data_verify((void *)ranges, par_addr_cells))
466 			goto err;
467 		ranges += par_addr_cells;
468 
469 		if (fdt_data_verify((void *)ranges, this_addr_cells))
470 			goto err;
471 		ranges += this_addr_cells;
472 
473 		if (fdt_data_verify((void *)ranges, this_size_cells))
474 			goto err;
475 		ranges += this_size_cells;
476 	}
477 
478 	return (0);
479 
480 err:
481 	debugf("using address range >%d-bit not supported\n", ulsz * 8);
482 	return (ERANGE);
483 }
484 
485 int
486 fdt_data_to_res(pcell_t *data, int addr_cells, int size_cells, u_long *start,
487     u_long *count)
488 {
489 
490 	/* Address portion. */
491 	if (fdt_data_verify((void *)data, addr_cells))
492 		return (ERANGE);
493 
494 	*start = fdt_data_get((void *)data, addr_cells);
495 	data += addr_cells;
496 
497 	/* Size portion. */
498 	if (fdt_data_verify((void *)data, size_cells))
499 		return (ERANGE);
500 
501 	*count = fdt_data_get((void *)data, size_cells);
502 	return (0);
503 }
504 
505 int
506 fdt_regsize(phandle_t node, u_long *base, u_long *size)
507 {
508 	pcell_t reg[4];
509 	int addr_cells, len, size_cells;
510 
511 	if (fdt_addrsize_cells(OF_parent(node), &addr_cells, &size_cells))
512 		return (ENXIO);
513 
514 	if ((sizeof(pcell_t) * (addr_cells + size_cells)) > sizeof(reg))
515 		return (ENOMEM);
516 
517 	len = OF_getprop(node, "reg", &reg, sizeof(reg));
518 	if (len <= 0)
519 		return (EINVAL);
520 
521 	*base = fdt_data_get(&reg[0], addr_cells);
522 	*size = fdt_data_get(&reg[addr_cells], size_cells);
523 	return (0);
524 }
525 
526 int
527 fdt_reg_to_rl(phandle_t node, struct resource_list *rl)
528 {
529 	u_long end, count, start;
530 	pcell_t *reg, *regptr;
531 	pcell_t addr_cells, size_cells;
532 	int tuple_size, tuples;
533 	int i, rv;
534 	long busaddr, bussize;
535 
536 	if (fdt_addrsize_cells(OF_parent(node), &addr_cells, &size_cells) != 0)
537 		return (ENXIO);
538 	if (fdt_get_range(OF_parent(node), 0, &busaddr, &bussize)) {
539 		busaddr = 0;
540 		bussize = 0;
541 	}
542 
543 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
544 	tuples = OF_getprop_alloc(node, "reg", tuple_size, (void **)&reg);
545 	debugf("addr_cells = %d, size_cells = %d\n", addr_cells, size_cells);
546 	debugf("tuples = %d, tuple size = %d\n", tuples, tuple_size);
547 	if (tuples <= 0)
548 		/* No 'reg' property in this node. */
549 		return (0);
550 
551 	regptr = reg;
552 	for (i = 0; i < tuples; i++) {
553 
554 		rv = fdt_data_to_res(reg, addr_cells, size_cells, &start,
555 		    &count);
556 		if (rv != 0) {
557 			resource_list_free(rl);
558 			goto out;
559 		}
560 		reg += addr_cells + size_cells;
561 
562 		/* Calculate address range relative to base. */
563 		start += busaddr;
564 		end = start + count - 1;
565 
566 		debugf("reg addr start = %lx, end = %lx, count = %lx\n", start,
567 		    end, count);
568 
569 		resource_list_add(rl, SYS_RES_MEMORY, i, start, end,
570 		    count);
571 	}
572 	rv = 0;
573 
574 out:
575 	free(regptr, M_OFWPROP);
576 	return (rv);
577 }
578 
579 int
580 fdt_get_phyaddr(phandle_t node, device_t dev, int *phy_addr, void **phy_sc)
581 {
582 	phandle_t phy_node;
583 	pcell_t phy_handle, phy_reg;
584 	uint32_t i;
585 	device_t parent, child;
586 
587 	if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
588 	    sizeof(phy_handle)) <= 0)
589 		return (ENXIO);
590 
591 	phy_node = OF_node_from_xref(phy_handle);
592 
593 	if (OF_getprop(phy_node, "reg", (void *)&phy_reg,
594 	    sizeof(phy_reg)) <= 0)
595 		return (ENXIO);
596 
597 	*phy_addr = fdt32_to_cpu(phy_reg);
598 
599 	/*
600 	 * Search for softc used to communicate with phy.
601 	 */
602 
603 	/*
604 	 * Step 1: Search for ancestor of the phy-node with a "phy-handle"
605 	 * property set.
606 	 */
607 	phy_node = OF_parent(phy_node);
608 	while (phy_node != 0) {
609 		if (OF_getprop(phy_node, "phy-handle", (void *)&phy_handle,
610 		    sizeof(phy_handle)) > 0)
611 			break;
612 		phy_node = OF_parent(phy_node);
613 	}
614 	if (phy_node == 0)
615 		return (ENXIO);
616 
617 	/*
618 	 * Step 2: For each device with the same parent and name as ours
619 	 * compare its node with the one found in step 1, ancestor of phy
620 	 * node (stored in phy_node).
621 	 */
622 	parent = device_get_parent(dev);
623 	i = 0;
624 	child = device_find_child(parent, device_get_name(dev), i);
625 	while (child != NULL) {
626 		if (ofw_bus_get_node(child) == phy_node)
627 			break;
628 		i++;
629 		child = device_find_child(parent, device_get_name(dev), i);
630 	}
631 	if (child == NULL)
632 		return (ENXIO);
633 
634 	/*
635 	 * Use softc of the device found.
636 	 */
637 	*phy_sc = (void *)device_get_softc(child);
638 
639 	return (0);
640 }
641 
642 int
643 fdt_get_reserved_regions(struct mem_region *mr, int *mrcnt)
644 {
645 	pcell_t reserve[FDT_REG_CELLS * FDT_MEM_REGIONS];
646 	pcell_t *reservep;
647 	phandle_t memory, root;
648 	uint32_t memory_size;
649 	int addr_cells, size_cells;
650 	int i, max_size, res_len, rv, tuple_size, tuples;
651 
652 	max_size = sizeof(reserve);
653 	root = OF_finddevice("/");
654 	memory = OF_finddevice("/memory");
655 	if (memory == -1) {
656 		rv = ENXIO;
657 		goto out;
658 	}
659 
660 	if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells,
661 	    &size_cells)) != 0)
662 		goto out;
663 
664 	if (addr_cells > 2) {
665 		rv = ERANGE;
666 		goto out;
667 	}
668 
669 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
670 
671 	res_len = OF_getproplen(root, "memreserve");
672 	if (res_len <= 0 || res_len > sizeof(reserve)) {
673 		rv = ERANGE;
674 		goto out;
675 	}
676 
677 	if (OF_getprop(root, "memreserve", reserve, res_len) <= 0) {
678 		rv = ENXIO;
679 		goto out;
680 	}
681 
682 	memory_size = 0;
683 	tuples = res_len / tuple_size;
684 	reservep = (pcell_t *)&reserve;
685 	for (i = 0; i < tuples; i++) {
686 
687 		rv = fdt_data_to_res(reservep, addr_cells, size_cells,
688 			(u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size);
689 
690 		if (rv != 0)
691 			goto out;
692 
693 		reservep += addr_cells + size_cells;
694 	}
695 
696 	*mrcnt = i;
697 	rv = 0;
698 out:
699 	return (rv);
700 }
701 
702 int
703 fdt_get_mem_regions(struct mem_region *mr, int *mrcnt, uint32_t *memsize)
704 {
705 	pcell_t reg[FDT_REG_CELLS * FDT_MEM_REGIONS];
706 	pcell_t *regp;
707 	phandle_t memory;
708 	uint32_t memory_size;
709 	int addr_cells, size_cells;
710 	int i, max_size, reg_len, rv, tuple_size, tuples;
711 
712 	max_size = sizeof(reg);
713 	memory = OF_finddevice("/memory");
714 	if (memory == -1) {
715 		rv = ENXIO;
716 		goto out;
717 	}
718 
719 	if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells,
720 	    &size_cells)) != 0)
721 		goto out;
722 
723 	if (addr_cells > 2) {
724 		rv = ERANGE;
725 		goto out;
726 	}
727 
728 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
729 	reg_len = OF_getproplen(memory, "reg");
730 	if (reg_len <= 0 || reg_len > sizeof(reg)) {
731 		rv = ERANGE;
732 		goto out;
733 	}
734 
735 	if (OF_getprop(memory, "reg", reg, reg_len) <= 0) {
736 		rv = ENXIO;
737 		goto out;
738 	}
739 
740 	memory_size = 0;
741 	tuples = reg_len / tuple_size;
742 	regp = (pcell_t *)&reg;
743 	for (i = 0; i < tuples; i++) {
744 
745 		rv = fdt_data_to_res(regp, addr_cells, size_cells,
746 			(u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size);
747 
748 		if (rv != 0)
749 			goto out;
750 
751 		regp += addr_cells + size_cells;
752 		memory_size += mr[i].mr_size;
753 	}
754 
755 	if (memory_size == 0) {
756 		rv = ERANGE;
757 		goto out;
758 	}
759 
760 	*mrcnt = i;
761 	*memsize = memory_size;
762 	rv = 0;
763 out:
764 	return (rv);
765 }
766 
767 int
768 fdt_get_unit(device_t dev)
769 {
770 	const char * name;
771 
772 	name = ofw_bus_get_name(dev);
773 	name = strchr(name, '@') + 1;
774 
775 	return (strtol(name,NULL,0));
776 }
777