xref: /freebsd/sys/dev/fdt/fdt_common.c (revision 6d732c66bca5da4d261577aad2c8ea84519b0bea)
1 /*-
2  * Copyright (c) 2009-2010 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * This software was developed by Semihalf under sponsorship from
6  * the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/bus.h>
38 #include <sys/limits.h>
39 
40 #include <machine/resource.h>
41 
42 #include <dev/fdt/fdt_common.h>
43 #include <dev/ofw/ofw_bus.h>
44 #include <dev/ofw/ofw_bus_subr.h>
45 #include <dev/ofw/openfirm.h>
46 
47 #include "ofw_bus_if.h"
48 
49 #ifdef DEBUG
50 #define debugf(fmt, args...) do { printf("%s(): ", __func__);	\
51     printf(fmt,##args); } while (0)
52 #else
53 #define debugf(fmt, args...)
54 #endif
55 
56 #define FDT_COMPAT_LEN	255
57 #define FDT_TYPE_LEN	64
58 
59 #define FDT_REG_CELLS	4
60 
61 vm_paddr_t fdt_immr_pa;
62 vm_offset_t fdt_immr_va;
63 vm_offset_t fdt_immr_size;
64 
65 struct fdt_ic_list fdt_ic_list_head = SLIST_HEAD_INITIALIZER(fdt_ic_list_head);
66 
67 int
68 fdt_get_range(phandle_t node, int range_id, u_long *base, u_long *size)
69 {
70 	pcell_t ranges[6], *rangesptr;
71 	pcell_t addr_cells, size_cells, par_addr_cells;
72 	int len, tuple_size, tuples;
73 
74 	if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
75 		return (ENXIO);
76 	/*
77 	 * Process 'ranges' property.
78 	 */
79 	par_addr_cells = fdt_parent_addr_cells(node);
80 	if (par_addr_cells > 2)
81 		return (ERANGE);
82 
83 	len = OF_getproplen(node, "ranges");
84 	if (len > sizeof(ranges))
85 		return (ENOMEM);
86 	if (len == 0) {
87 		*base = 0;
88 		*size = ULONG_MAX;
89 		return (0);
90 	}
91 
92 	if (!(range_id < len))
93 		return (ERANGE);
94 
95 	if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0)
96 		return (EINVAL);
97 
98 	tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells +
99 	    size_cells);
100 	tuples = len / tuple_size;
101 
102 	if (fdt_ranges_verify(ranges, tuples, par_addr_cells,
103 	    addr_cells, size_cells)) {
104 		return (ERANGE);
105 	}
106 	*base = 0;
107 	*size = 0;
108 	rangesptr = &ranges[range_id];
109 
110 	*base = fdt_data_get((void *)rangesptr, addr_cells);
111 	rangesptr += addr_cells;
112 	*base += fdt_data_get((void *)rangesptr, par_addr_cells);
113 	rangesptr += par_addr_cells;
114 	*size = fdt_data_get((void *)rangesptr, size_cells);
115 	return (0);
116 }
117 
118 int
119 fdt_immr_addr(vm_offset_t immr_va)
120 {
121 	phandle_t node;
122 	u_long base, size;
123 	int r;
124 
125 	/*
126 	 * Try to access the SOC node directly i.e. through /aliases/.
127 	 */
128 	if ((node = OF_finddevice("soc")) != 0)
129 		if (fdt_is_compatible_strict(node, "simple-bus"))
130 			goto moveon;
131 	/*
132 	 * Find the node the long way.
133 	 */
134 	if ((node = OF_finddevice("/")) == 0)
135 		return (ENXIO);
136 
137 	if ((node = fdt_find_compatible(node, "simple-bus", 1)) == 0)
138 		return (ENXIO);
139 
140 moveon:
141 	if ((r = fdt_get_range(node, 0, &base, &size)) == 0) {
142 		fdt_immr_pa = base;
143 		fdt_immr_va = immr_va;
144 		fdt_immr_size = size;
145 	}
146 
147 	return (r);
148 }
149 
150 /*
151  * This routine is an early-usage version of the ofw_bus_is_compatible() when
152  * the ofw_bus I/F is not available (like early console routines and similar).
153  * Note the buffer has to be on the stack since malloc() is usually not
154  * available in such cases either.
155  */
156 int
157 fdt_is_compatible(phandle_t node, const char *compatstr)
158 {
159 	char buf[FDT_COMPAT_LEN];
160 	char *compat;
161 	int len, onelen, l, rv;
162 
163 	if ((len = OF_getproplen(node, "compatible")) <= 0)
164 		return (0);
165 
166 	compat = (char *)&buf;
167 	bzero(compat, FDT_COMPAT_LEN);
168 
169 	if (OF_getprop(node, "compatible", compat, FDT_COMPAT_LEN) < 0)
170 		return (0);
171 
172 	onelen = strlen(compatstr);
173 	rv = 0;
174 	while (len > 0) {
175 		if (strncasecmp(compat, compatstr, onelen) == 0) {
176 			/* Found it. */
177 			rv = 1;
178 			break;
179 		}
180 		/* Slide to the next sub-string. */
181 		l = strlen(compat) + 1;
182 		compat += l;
183 		len -= l;
184 	}
185 
186 	return (rv);
187 }
188 
189 int
190 fdt_is_compatible_strict(phandle_t node, const char *compatible)
191 {
192 	char compat[FDT_COMPAT_LEN];
193 
194 	if (OF_getproplen(node, "compatible") <= 0)
195 		return (0);
196 
197 	if (OF_getprop(node, "compatible", compat, FDT_COMPAT_LEN) < 0)
198 		return (0);
199 
200 	if (strncasecmp(compat, compatible, FDT_COMPAT_LEN) == 0)
201 		/* This fits. */
202 		return (1);
203 
204 	return (0);
205 }
206 
207 phandle_t
208 fdt_find_compatible(phandle_t start, const char *compat, int strict)
209 {
210 	phandle_t child;
211 
212 	/*
213 	 * Traverse all children of 'start' node, and find first with
214 	 * matching 'compatible' property.
215 	 */
216 	for (child = OF_child(start); child != 0; child = OF_peer(child))
217 		if (fdt_is_compatible(child, compat)) {
218 			if (strict)
219 				if (!fdt_is_compatible_strict(child, compat))
220 					continue;
221 			return (child);
222 		}
223 	return (0);
224 }
225 
226 int
227 fdt_is_enabled(phandle_t node)
228 {
229 	char *stat;
230 	int ena, len;
231 
232 	len = OF_getprop_alloc(node, "status", sizeof(char),
233 	    (void **)&stat);
234 
235 	if (len <= 0)
236 		/* It is OK if no 'status' property. */
237 		return (1);
238 
239 	/* Anything other than 'okay' means disabled. */
240 	ena = 0;
241 	if (strncmp((char *)stat, "okay", len) == 0)
242 		ena = 1;
243 
244 	free(stat, M_OFWPROP);
245 	return (ena);
246 }
247 
248 int
249 fdt_is_type(phandle_t node, const char *typestr)
250 {
251 	char type[FDT_TYPE_LEN];
252 
253 	if (OF_getproplen(node, "device_type") <= 0)
254 		return (0);
255 
256 	if (OF_getprop(node, "device_type", type, FDT_TYPE_LEN) < 0)
257 		return (0);
258 
259 	if (strncasecmp(type, typestr, FDT_TYPE_LEN) == 0)
260 		/* This fits. */
261 		return (1);
262 
263 	return (0);
264 }
265 
266 int
267 fdt_parent_addr_cells(phandle_t node)
268 {
269 	pcell_t addr_cells;
270 
271 	/* Find out #address-cells of the superior bus. */
272 	if (OF_searchprop(OF_parent(node), "#address-cells", &addr_cells,
273 	    sizeof(addr_cells)) <= 0)
274 		addr_cells = 2;
275 
276 	return ((int)fdt32_to_cpu(addr_cells));
277 }
278 
279 int
280 fdt_data_verify(void *data, int cells)
281 {
282 	uint64_t d64;
283 
284 	if (cells > 1) {
285 		d64 = fdt64_to_cpu(*((uint64_t *)data));
286 		if (((d64 >> 32) & 0xffffffffull) != 0 || cells > 2)
287 			return (ERANGE);
288 	}
289 
290 	return (0);
291 }
292 
293 int
294 fdt_pm_is_enabled(phandle_t node)
295 {
296 	int ret;
297 
298 	ret = 1;
299 
300 #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
301 	ret = fdt_pm(node);
302 #endif
303 	return (ret);
304 }
305 
306 u_long
307 fdt_data_get(void *data, int cells)
308 {
309 
310 	if (cells == 1)
311 		return (fdt32_to_cpu(*((uint32_t *)data)));
312 
313 	return (fdt64_to_cpu(*((uint64_t *)data)));
314 }
315 
316 int
317 fdt_addrsize_cells(phandle_t node, int *addr_cells, int *size_cells)
318 {
319 	pcell_t cell;
320 	int cell_size;
321 
322 	/*
323 	 * Retrieve #{address,size}-cells.
324 	 */
325 	cell_size = sizeof(cell);
326 	if (OF_getprop(node, "#address-cells", &cell, cell_size) < cell_size)
327 		cell = 2;
328 	*addr_cells = fdt32_to_cpu((int)cell);
329 
330 	if (OF_getprop(node, "#size-cells", &cell, cell_size) < cell_size)
331 		cell = 1;
332 	*size_cells = fdt32_to_cpu((int)cell);
333 
334 	if (*addr_cells > 3 || *size_cells > 2)
335 		return (ERANGE);
336 	return (0);
337 }
338 
339 int
340 fdt_ranges_verify(pcell_t *ranges, int tuples, int par_addr_cells,
341     int this_addr_cells, int this_size_cells)
342 {
343 	int i, rv, ulsz;
344 
345 	if (par_addr_cells > 2 || this_addr_cells > 2 || this_size_cells > 2)
346 		return (ERANGE);
347 
348 	/*
349 	 * This is the max size the resource manager can handle for addresses
350 	 * and sizes.
351 	 */
352 	ulsz = sizeof(u_long);
353 	if (par_addr_cells <= ulsz && this_addr_cells <= ulsz &&
354 	    this_size_cells <= ulsz)
355 		/* We can handle everything */
356 		return (0);
357 
358 	rv = 0;
359 	for (i = 0; i < tuples; i++) {
360 
361 		if (fdt_data_verify((void *)ranges, par_addr_cells))
362 			goto err;
363 		ranges += par_addr_cells;
364 
365 		if (fdt_data_verify((void *)ranges, this_addr_cells))
366 			goto err;
367 		ranges += this_addr_cells;
368 
369 		if (fdt_data_verify((void *)ranges, this_size_cells))
370 			goto err;
371 		ranges += this_size_cells;
372 	}
373 
374 	return (0);
375 
376 err:
377 	debugf("using address range >%d-bit not supported\n", ulsz * 8);
378 	return (ERANGE);
379 }
380 
381 int
382 fdt_data_to_res(pcell_t *data, int addr_cells, int size_cells, u_long *start,
383     u_long *count)
384 {
385 
386 	/* Address portion. */
387 	if (fdt_data_verify((void *)data, addr_cells))
388 		return (ERANGE);
389 
390 	*start = fdt_data_get((void *)data, addr_cells);
391 	data += addr_cells;
392 
393 	/* Size portion. */
394 	if (fdt_data_verify((void *)data, size_cells))
395 		return (ERANGE);
396 
397 	*count = fdt_data_get((void *)data, size_cells);
398 	return (0);
399 }
400 
401 int
402 fdt_regsize(phandle_t node, u_long *base, u_long *size)
403 {
404 	pcell_t reg[4];
405 	int addr_cells, len, size_cells;
406 
407 	if (fdt_addrsize_cells(OF_parent(node), &addr_cells, &size_cells))
408 		return (ENXIO);
409 
410 	if ((sizeof(pcell_t) * (addr_cells + size_cells)) > sizeof(reg))
411 		return (ENOMEM);
412 
413 	len = OF_getprop(node, "reg", &reg, sizeof(reg));
414 	if (len <= 0)
415 		return (EINVAL);
416 
417 	*base = fdt_data_get(&reg[0], addr_cells);
418 	*size = fdt_data_get(&reg[addr_cells], size_cells);
419 	return (0);
420 }
421 
422 int
423 fdt_reg_to_rl(phandle_t node, struct resource_list *rl)
424 {
425 	u_long end, count, start;
426 	pcell_t *reg, *regptr;
427 	pcell_t addr_cells, size_cells;
428 	int tuple_size, tuples;
429 	int i, rv;
430 	long busaddr, bussize;
431 
432 	if (fdt_addrsize_cells(OF_parent(node), &addr_cells, &size_cells) != 0)
433 		return (ENXIO);
434 	if (fdt_get_range(OF_parent(node), 0, &busaddr, &bussize)) {
435 		busaddr = 0;
436 		bussize = 0;
437 	}
438 
439 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
440 	tuples = OF_getprop_alloc(node, "reg", tuple_size, (void **)&reg);
441 	debugf("addr_cells = %d, size_cells = %d\n", addr_cells, size_cells);
442 	debugf("tuples = %d, tuple size = %d\n", tuples, tuple_size);
443 	if (tuples <= 0)
444 		/* No 'reg' property in this node. */
445 		return (0);
446 
447 	regptr = reg;
448 	for (i = 0; i < tuples; i++) {
449 
450 		rv = fdt_data_to_res(reg, addr_cells, size_cells, &start,
451 		    &count);
452 		if (rv != 0) {
453 			resource_list_free(rl);
454 			goto out;
455 		}
456 		reg += addr_cells + size_cells;
457 
458 		/* Calculate address range relative to base. */
459 		start += busaddr;
460 		end = start + count - 1;
461 
462 		debugf("reg addr start = %lx, end = %lx, count = %lx\n", start,
463 		    end, count);
464 
465 		resource_list_add(rl, SYS_RES_MEMORY, i, start, end,
466 		    count);
467 	}
468 	rv = 0;
469 
470 out:
471 	free(regptr, M_OFWPROP);
472 	return (rv);
473 }
474 
475 int
476 fdt_intr_to_rl(device_t dev, phandle_t node, struct resource_list *rl,
477     struct fdt_sense_level *intr_sl)
478 {
479 	phandle_t iparent;
480 	uint32_t *intr, icells;
481 	int nintr, i, k;
482 
483 	nintr = OF_getencprop_alloc(node, "interrupts",  sizeof(*intr),
484 	    (void **)&intr);
485 	if (nintr > 0) {
486 		iparent = 0;
487 		OF_searchencprop(node, "interrupt-parent", &iparent,
488 		    sizeof(iparent));
489 		OF_searchencprop(OF_xref_phandle(iparent), "#interrupt-cells",
490 		    &icells, sizeof(icells));
491 		for (i = 0, k = 0; i < nintr; i += icells, k++) {
492 			intr[i] = ofw_bus_map_intr(dev, iparent, intr[i]);
493 			resource_list_add(rl, SYS_RES_IRQ, k, intr[i], intr[i],
494 			    1);
495 			if (icells > 1)
496 				ofw_bus_config_intr(dev, intr[i], intr[i+1]);
497 		}
498 		free(intr, M_OFWPROP);
499 	}
500 
501 	return (0);
502 }
503 
504 int
505 fdt_get_phyaddr(phandle_t node, device_t dev, int *phy_addr, void **phy_sc)
506 {
507 	phandle_t phy_node;
508 	pcell_t phy_handle, phy_reg;
509 	uint32_t i;
510 	device_t parent, child;
511 
512 	if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
513 	    sizeof(phy_handle)) <= 0)
514 		return (ENXIO);
515 
516 	phy_node = OF_xref_phandle(phy_handle);
517 
518 	if (OF_getprop(phy_node, "reg", (void *)&phy_reg,
519 	    sizeof(phy_reg)) <= 0)
520 		return (ENXIO);
521 
522 	*phy_addr = fdt32_to_cpu(phy_reg);
523 
524 	/*
525 	 * Search for softc used to communicate with phy.
526 	 */
527 
528 	/*
529 	 * Step 1: Search for ancestor of the phy-node with a "phy-handle"
530 	 * property set.
531 	 */
532 	phy_node = OF_parent(phy_node);
533 	while (phy_node != 0) {
534 		if (OF_getprop(phy_node, "phy-handle", (void *)&phy_handle,
535 		    sizeof(phy_handle)) > 0)
536 			break;
537 		phy_node = OF_parent(phy_node);
538 	}
539 	if (phy_node == 0)
540 		return (ENXIO);
541 
542 	/*
543 	 * Step 2: For each device with the same parent and name as ours
544 	 * compare its node with the one found in step 1, ancestor of phy
545 	 * node (stored in phy_node).
546 	 */
547 	parent = device_get_parent(dev);
548 	i = 0;
549 	child = device_find_child(parent, device_get_name(dev), i);
550 	while (child != NULL) {
551 		if (ofw_bus_get_node(child) == phy_node)
552 			break;
553 		i++;
554 		child = device_find_child(parent, device_get_name(dev), i);
555 	}
556 	if (child == NULL)
557 		return (ENXIO);
558 
559 	/*
560 	 * Use softc of the device found.
561 	 */
562 	*phy_sc = (void *)device_get_softc(child);
563 
564 	return (0);
565 }
566 
567 int
568 fdt_get_reserved_regions(struct mem_region *mr, int *mrcnt)
569 {
570 	pcell_t reserve[FDT_REG_CELLS * FDT_MEM_REGIONS];
571 	pcell_t *reservep;
572 	phandle_t memory, root;
573 	uint32_t memory_size;
574 	int addr_cells, size_cells;
575 	int i, max_size, res_len, rv, tuple_size, tuples;
576 
577 	max_size = sizeof(reserve);
578 	root = OF_finddevice("/");
579 	memory = OF_finddevice("/memory");
580 	if (memory == -1) {
581 		rv = ENXIO;
582 		goto out;
583 	}
584 
585 	if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells,
586 	    &size_cells)) != 0)
587 		goto out;
588 
589 	if (addr_cells > 2) {
590 		rv = ERANGE;
591 		goto out;
592 	}
593 
594 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
595 
596 	res_len = OF_getproplen(root, "memreserve");
597 	if (res_len <= 0 || res_len > sizeof(reserve)) {
598 		rv = ERANGE;
599 		goto out;
600 	}
601 
602 	if (OF_getprop(root, "memreserve", reserve, res_len) <= 0) {
603 		rv = ENXIO;
604 		goto out;
605 	}
606 
607 	memory_size = 0;
608 	tuples = res_len / tuple_size;
609 	reservep = (pcell_t *)&reserve;
610 	for (i = 0; i < tuples; i++) {
611 
612 		rv = fdt_data_to_res(reservep, addr_cells, size_cells,
613 			(u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size);
614 
615 		if (rv != 0)
616 			goto out;
617 
618 		reservep += addr_cells + size_cells;
619 	}
620 
621 	*mrcnt = i;
622 	rv = 0;
623 out:
624 	return (rv);
625 }
626 
627 int
628 fdt_get_mem_regions(struct mem_region *mr, int *mrcnt, uint32_t *memsize)
629 {
630 	pcell_t reg[FDT_REG_CELLS * FDT_MEM_REGIONS];
631 	pcell_t *regp;
632 	phandle_t memory;
633 	uint32_t memory_size;
634 	int addr_cells, size_cells;
635 	int i, max_size, reg_len, rv, tuple_size, tuples;
636 
637 	max_size = sizeof(reg);
638 	memory = OF_finddevice("/memory");
639 	if (memory == -1) {
640 		rv = ENXIO;
641 		goto out;
642 	}
643 
644 	if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells,
645 	    &size_cells)) != 0)
646 		goto out;
647 
648 	if (addr_cells > 2) {
649 		rv = ERANGE;
650 		goto out;
651 	}
652 
653 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
654 	reg_len = OF_getproplen(memory, "reg");
655 	if (reg_len <= 0 || reg_len > sizeof(reg)) {
656 		rv = ERANGE;
657 		goto out;
658 	}
659 
660 	if (OF_getprop(memory, "reg", reg, reg_len) <= 0) {
661 		rv = ENXIO;
662 		goto out;
663 	}
664 
665 	memory_size = 0;
666 	tuples = reg_len / tuple_size;
667 	regp = (pcell_t *)&reg;
668 	for (i = 0; i < tuples; i++) {
669 
670 		rv = fdt_data_to_res(regp, addr_cells, size_cells,
671 			(u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size);
672 
673 		if (rv != 0)
674 			goto out;
675 
676 		regp += addr_cells + size_cells;
677 		memory_size += mr[i].mr_size;
678 	}
679 
680 	if (memory_size == 0) {
681 		rv = ERANGE;
682 		goto out;
683 	}
684 
685 	*mrcnt = i;
686 	*memsize = memory_size;
687 	rv = 0;
688 out:
689 	return (rv);
690 }
691 
692 int
693 fdt_get_unit(device_t dev)
694 {
695 	const char * name;
696 
697 	name = ofw_bus_get_name(dev);
698 	name = strchr(name, '@') + 1;
699 
700 	return (strtol(name,NULL,0));
701 }
702