xref: /freebsd/sys/dev/fdt/fdt_common.c (revision 6bfca4dcab07dad45a805879d954876b353c0810)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2009-2014 The FreeBSD Foundation
5  *
6  * This software was developed by Andrew Turner under sponsorship from
7  * the FreeBSD Foundation.
8  * This software was developed by Semihalf under sponsorship from
9  * the FreeBSD Foundation.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/bus.h>
38 #include <sys/limits.h>
39 #include <sys/sysctl.h>
40 
41 #include <machine/resource.h>
42 
43 #include <dev/fdt/fdt_common.h>
44 #include <dev/ofw/ofw_bus.h>
45 #include <dev/ofw/ofw_bus_subr.h>
46 #include <dev/ofw/openfirm.h>
47 
48 #include "ofw_bus_if.h"
49 
50 #ifdef DEBUG
51 #define debugf(fmt, args...) do { printf("%s(): ", __func__);	\
52     printf(fmt,##args); } while (0)
53 #else
54 #define debugf(fmt, args...)
55 #endif
56 
57 #define FDT_COMPAT_LEN	255
58 
59 #define FDT_REG_CELLS	4
60 #define FDT_RANGES_SIZE 48
61 
62 SYSCTL_NODE(_hw, OID_AUTO, fdt, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
63     "Flattened Device Tree");
64 
65 vm_paddr_t fdt_immr_pa;
66 vm_offset_t fdt_immr_va;
67 vm_offset_t fdt_immr_size;
68 
69 struct fdt_ic_list fdt_ic_list_head = SLIST_HEAD_INITIALIZER(fdt_ic_list_head);
70 
71 static int
72 fdt_get_range_by_busaddr(phandle_t node, u_long addr, u_long *base,
73     u_long *size)
74 {
75 	pcell_t ranges[32], *rangesptr;
76 	pcell_t addr_cells, size_cells, par_addr_cells;
77 	u_long bus_addr, par_bus_addr, pbase, psize;
78 	int err, i, len, tuple_size, tuples;
79 
80 	if (node == 0) {
81 		*base = 0;
82 		*size = ULONG_MAX;
83 		return (0);
84 	}
85 
86 	if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
87 		return (ENXIO);
88 	/*
89 	 * Process 'ranges' property.
90 	 */
91 	par_addr_cells = fdt_parent_addr_cells(node);
92 	if (par_addr_cells > 2) {
93 		return (ERANGE);
94 	}
95 
96 	len = OF_getproplen(node, "ranges");
97 	if (len < 0)
98 		return (-1);
99 	if (len > sizeof(ranges))
100 		return (ENOMEM);
101 	if (len == 0) {
102 		return (fdt_get_range_by_busaddr(OF_parent(node), addr,
103 		    base, size));
104 	}
105 
106 	if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0)
107 		return (EINVAL);
108 
109 	tuple_size = addr_cells + par_addr_cells + size_cells;
110 	tuples = len / (tuple_size * sizeof(cell_t));
111 
112 	if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2)
113 		return (ERANGE);
114 
115 	*base = 0;
116 	*size = 0;
117 
118 	for (i = 0; i < tuples; i++) {
119 		rangesptr = &ranges[i * tuple_size];
120 
121 		bus_addr = fdt_data_get((void *)rangesptr, addr_cells);
122 		if (bus_addr != addr)
123 			continue;
124 		rangesptr += addr_cells;
125 
126 		par_bus_addr = fdt_data_get((void *)rangesptr, par_addr_cells);
127 		rangesptr += par_addr_cells;
128 
129 		err = fdt_get_range_by_busaddr(OF_parent(node), par_bus_addr,
130 		    &pbase, &psize);
131 		if (err > 0)
132 			return (err);
133 		if (err == 0)
134 			*base = pbase;
135 		else
136 			*base = par_bus_addr;
137 
138 		*size = fdt_data_get((void *)rangesptr, size_cells);
139 
140 		return (0);
141 	}
142 
143 	return (EINVAL);
144 }
145 
146 int
147 fdt_get_range(phandle_t node, int range_id, u_long *base, u_long *size)
148 {
149 	pcell_t ranges[FDT_RANGES_SIZE], *rangesptr;
150 	pcell_t addr_cells, size_cells, par_addr_cells;
151 	u_long par_bus_addr, pbase, psize;
152 	int err, len;
153 
154 	if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
155 		return (ENXIO);
156 	/*
157 	 * Process 'ranges' property.
158 	 */
159 	par_addr_cells = fdt_parent_addr_cells(node);
160 	if (par_addr_cells > 2)
161 		return (ERANGE);
162 
163 	len = OF_getproplen(node, "ranges");
164 	if (len > sizeof(ranges))
165 		return (ENOMEM);
166 	if (len == 0) {
167 		*base = 0;
168 		*size = ULONG_MAX;
169 		return (0);
170 	}
171 
172 	if (!(range_id < len))
173 		return (ERANGE);
174 
175 	if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0)
176 		return (EINVAL);
177 
178 	if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2)
179 		return (ERANGE);
180 
181 	*base = 0;
182 	*size = 0;
183 	rangesptr = &ranges[range_id];
184 
185 	*base = fdt_data_get((void *)rangesptr, addr_cells);
186 	rangesptr += addr_cells;
187 
188 	par_bus_addr = fdt_data_get((void *)rangesptr, par_addr_cells);
189 	rangesptr += par_addr_cells;
190 
191 	err = fdt_get_range_by_busaddr(OF_parent(node), par_bus_addr,
192 	   &pbase, &psize);
193 	if (err == 0)
194 		*base += pbase;
195 	else
196 		*base += par_bus_addr;
197 
198 	*size = fdt_data_get((void *)rangesptr, size_cells);
199 	return (0);
200 }
201 
202 int
203 fdt_immr_addr(vm_offset_t immr_va)
204 {
205 	phandle_t node;
206 	u_long base, size;
207 	int r;
208 
209 	/*
210 	 * Try to access the SOC node directly i.e. through /aliases/.
211 	 */
212 	if ((node = OF_finddevice("soc")) != -1)
213 		if (ofw_bus_node_is_compatible(node, "simple-bus"))
214 			goto moveon;
215 	/*
216 	 * Find the node the long way.
217 	 */
218 	if ((node = OF_finddevice("/")) == -1)
219 		return (ENXIO);
220 
221 	if ((node = fdt_find_compatible(node, "simple-bus", 0)) == 0)
222 		return (ENXIO);
223 
224 moveon:
225 	if ((r = fdt_get_range(node, 0, &base, &size)) == 0) {
226 		fdt_immr_pa = base;
227 		fdt_immr_va = immr_va;
228 		fdt_immr_size = size;
229 	}
230 
231 	return (r);
232 }
233 
234 int
235 fdt_is_compatible_strict(phandle_t node, const char *compatible)
236 {
237 	char compat[FDT_COMPAT_LEN];
238 
239 	if (OF_getproplen(node, "compatible") <= 0)
240 		return (0);
241 
242 	if (OF_getprop(node, "compatible", compat, FDT_COMPAT_LEN) < 0)
243 		return (0);
244 
245 	if (strncasecmp(compat, compatible, FDT_COMPAT_LEN) == 0)
246 		/* This fits. */
247 		return (1);
248 
249 	return (0);
250 }
251 
252 phandle_t
253 fdt_find_compatible(phandle_t start, const char *compat, int strict)
254 {
255 	phandle_t child;
256 
257 	/*
258 	 * Traverse all children of 'start' node, and find first with
259 	 * matching 'compatible' property.
260 	 */
261 	for (child = OF_child(start); child != 0; child = OF_peer(child))
262 		if (ofw_bus_node_is_compatible(child, compat)) {
263 			if (strict)
264 				if (!fdt_is_compatible_strict(child, compat))
265 					continue;
266 			return (child);
267 		}
268 	return (0);
269 }
270 
271 phandle_t
272 fdt_depth_search_compatible(phandle_t start, const char *compat, int strict)
273 {
274 	phandle_t child, node;
275 
276 	/*
277 	 * Depth-search all descendants of 'start' node, and find first with
278 	 * matching 'compatible' property.
279 	 */
280 	for (node = OF_child(start); node != 0; node = OF_peer(node)) {
281 		if (ofw_bus_node_is_compatible(node, compat) &&
282 		    (strict == 0 || fdt_is_compatible_strict(node, compat))) {
283 			return (node);
284 		}
285 		child = fdt_depth_search_compatible(node, compat, strict);
286 		if (child != 0)
287 			return (child);
288 	}
289 	return (0);
290 }
291 
292 int
293 fdt_parent_addr_cells(phandle_t node)
294 {
295 	pcell_t addr_cells;
296 
297 	/* Find out #address-cells of the superior bus. */
298 	if (OF_searchprop(OF_parent(node), "#address-cells", &addr_cells,
299 	    sizeof(addr_cells)) <= 0)
300 		return (2);
301 
302 	return ((int)fdt32_to_cpu(addr_cells));
303 }
304 
305 u_long
306 fdt_data_get(void *data, int cells)
307 {
308 
309 	if (cells == 1)
310 		return (fdt32_to_cpu(*((uint32_t *)data)));
311 
312 	return (fdt64_to_cpu(*((uint64_t *)data)));
313 }
314 
315 int
316 fdt_addrsize_cells(phandle_t node, int *addr_cells, int *size_cells)
317 {
318 	pcell_t cell;
319 	int cell_size;
320 
321 	/*
322 	 * Retrieve #{address,size}-cells.
323 	 */
324 	cell_size = sizeof(cell);
325 	if (OF_getencprop(node, "#address-cells", &cell, cell_size) < cell_size)
326 		cell = 2;
327 	*addr_cells = (int)cell;
328 
329 	if (OF_getencprop(node, "#size-cells", &cell, cell_size) < cell_size)
330 		cell = 1;
331 	*size_cells = (int)cell;
332 
333 	if (*addr_cells > 3 || *size_cells > 2)
334 		return (ERANGE);
335 	return (0);
336 }
337 
338 int
339 fdt_data_to_res(pcell_t *data, int addr_cells, int size_cells, u_long *start,
340     u_long *count)
341 {
342 
343 	/* Address portion. */
344 	if (addr_cells > 2)
345 		return (ERANGE);
346 
347 	*start = fdt_data_get((void *)data, addr_cells);
348 	data += addr_cells;
349 
350 	/* Size portion. */
351 	if (size_cells > 2)
352 		return (ERANGE);
353 
354 	*count = fdt_data_get((void *)data, size_cells);
355 	return (0);
356 }
357 
358 int
359 fdt_regsize(phandle_t node, u_long *base, u_long *size)
360 {
361 	pcell_t reg[4];
362 	int addr_cells, len, size_cells;
363 
364 	if (fdt_addrsize_cells(OF_parent(node), &addr_cells, &size_cells))
365 		return (ENXIO);
366 
367 	if ((sizeof(pcell_t) * (addr_cells + size_cells)) > sizeof(reg))
368 		return (ENOMEM);
369 
370 	len = OF_getprop(node, "reg", &reg, sizeof(reg));
371 	if (len <= 0)
372 		return (EINVAL);
373 
374 	*base = fdt_data_get(&reg[0], addr_cells);
375 	*size = fdt_data_get(&reg[addr_cells], size_cells);
376 	return (0);
377 }
378 
379 int
380 fdt_get_phyaddr(phandle_t node, device_t dev, int *phy_addr, void **phy_sc)
381 {
382 	phandle_t phy_node;
383 	pcell_t phy_handle, phy_reg;
384 	uint32_t i;
385 	device_t parent, child;
386 
387 	if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
388 	    sizeof(phy_handle)) <= 0)
389 		return (ENXIO);
390 
391 	phy_node = OF_node_from_xref(phy_handle);
392 
393 	if (OF_getencprop(phy_node, "reg", (void *)&phy_reg,
394 	    sizeof(phy_reg)) <= 0)
395 		return (ENXIO);
396 
397 	*phy_addr = phy_reg;
398 
399 	if (phy_sc == NULL)
400 		return (0);
401 
402 	/*
403 	 * Search for softc used to communicate with phy.
404 	 */
405 
406 	/*
407 	 * Step 1: Search for ancestor of the phy-node with a "phy-handle"
408 	 * property set.
409 	 */
410 	phy_node = OF_parent(phy_node);
411 	while (phy_node != 0) {
412 		if (OF_getprop(phy_node, "phy-handle", (void *)&phy_handle,
413 		    sizeof(phy_handle)) > 0)
414 			break;
415 		phy_node = OF_parent(phy_node);
416 	}
417 	if (phy_node == 0)
418 		return (ENXIO);
419 
420 	/*
421 	 * Step 2: For each device with the same parent and name as ours
422 	 * compare its node with the one found in step 1, ancestor of phy
423 	 * node (stored in phy_node).
424 	 */
425 	parent = device_get_parent(dev);
426 	i = 0;
427 	child = device_find_child(parent, device_get_name(dev), i);
428 	while (child != NULL) {
429 		if (ofw_bus_get_node(child) == phy_node)
430 			break;
431 		i++;
432 		child = device_find_child(parent, device_get_name(dev), i);
433 	}
434 	if (child == NULL)
435 		return (ENXIO);
436 
437 	/*
438 	 * Use softc of the device found.
439 	 */
440 	*phy_sc = (void *)device_get_softc(child);
441 
442 	return (0);
443 }
444 
445 int
446 fdt_get_reserved_regions(struct mem_region *mr, int *mrcnt)
447 {
448 	pcell_t reserve[FDT_REG_CELLS * FDT_MEM_REGIONS];
449 	pcell_t *reservep;
450 	phandle_t memory, root;
451 	int addr_cells, size_cells;
452 	int i, res_len, rv, tuple_size, tuples;
453 
454 	root = OF_finddevice("/");
455 	memory = OF_finddevice("/memory");
456 	if (memory == -1) {
457 		rv = ENXIO;
458 		goto out;
459 	}
460 
461 	if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells,
462 	    &size_cells)) != 0)
463 		goto out;
464 
465 	if (addr_cells > 2) {
466 		rv = ERANGE;
467 		goto out;
468 	}
469 
470 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
471 
472 	res_len = OF_getproplen(root, "memreserve");
473 	if (res_len <= 0 || res_len > sizeof(reserve)) {
474 		rv = ERANGE;
475 		goto out;
476 	}
477 
478 	if (OF_getprop(root, "memreserve", reserve, res_len) <= 0) {
479 		rv = ENXIO;
480 		goto out;
481 	}
482 
483 	tuples = res_len / tuple_size;
484 	reservep = (pcell_t *)&reserve;
485 	for (i = 0; i < tuples; i++) {
486 
487 		rv = fdt_data_to_res(reservep, addr_cells, size_cells,
488 			(u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size);
489 
490 		if (rv != 0)
491 			goto out;
492 
493 		reservep += addr_cells + size_cells;
494 	}
495 
496 	*mrcnt = i;
497 	rv = 0;
498 out:
499 	return (rv);
500 }
501 
502 int
503 fdt_get_reserved_mem(struct mem_region *reserved, int *mreserved)
504 {
505 	pcell_t reg[FDT_REG_CELLS];
506 	phandle_t child, root;
507 	int addr_cells, size_cells;
508 	int i, rv;
509 
510 	root = OF_finddevice("/reserved-memory");
511 	if (root == -1) {
512 		return (ENXIO);
513 	}
514 
515 	if ((rv = fdt_addrsize_cells(root, &addr_cells, &size_cells)) != 0)
516 		return (rv);
517 
518 	if (addr_cells + size_cells > FDT_REG_CELLS)
519 		panic("Too many address and size cells %d %d", addr_cells,
520 		    size_cells);
521 
522 	i = 0;
523 	for (child = OF_child(root); child != 0; child = OF_peer(child)) {
524 		if (!OF_hasprop(child, "no-map"))
525 			continue;
526 
527 		rv = OF_getprop(child, "reg", reg, sizeof(reg));
528 		if (rv <= 0)
529 			/* XXX: Does a no-map of a dynamic range make sense? */
530 			continue;
531 
532 		fdt_data_to_res(reg, addr_cells, size_cells,
533 		    (u_long *)&reserved[i].mr_start,
534 		    (u_long *)&reserved[i].mr_size);
535 		i++;
536 	}
537 
538 	*mreserved = i;
539 
540 	return (0);
541 }
542 
543 int
544 fdt_get_mem_regions(struct mem_region *mr, int *mrcnt, uint64_t *memsize)
545 {
546 	pcell_t reg[FDT_REG_CELLS * FDT_MEM_REGIONS];
547 	pcell_t *regp;
548 	phandle_t memory;
549 	uint64_t memory_size;
550 	int addr_cells, size_cells;
551 	int i, reg_len, rv, tuple_size, tuples;
552 
553 	memory = OF_finddevice("/memory");
554 	if (memory == -1) {
555 		rv = ENXIO;
556 		goto out;
557 	}
558 
559 	if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells,
560 	    &size_cells)) != 0)
561 		goto out;
562 
563 	if (addr_cells > 2) {
564 		rv = ERANGE;
565 		goto out;
566 	}
567 
568 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
569 	reg_len = OF_getproplen(memory, "reg");
570 	if (reg_len <= 0 || reg_len > sizeof(reg)) {
571 		rv = ERANGE;
572 		goto out;
573 	}
574 
575 	if (OF_getprop(memory, "reg", reg, reg_len) <= 0) {
576 		rv = ENXIO;
577 		goto out;
578 	}
579 
580 	memory_size = 0;
581 	tuples = reg_len / tuple_size;
582 	regp = (pcell_t *)&reg;
583 	for (i = 0; i < tuples; i++) {
584 
585 		rv = fdt_data_to_res(regp, addr_cells, size_cells,
586 			(u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size);
587 
588 		if (rv != 0)
589 			goto out;
590 
591 		regp += addr_cells + size_cells;
592 		memory_size += mr[i].mr_size;
593 	}
594 
595 	if (memory_size == 0) {
596 		rv = ERANGE;
597 		goto out;
598 	}
599 
600 	*mrcnt = i;
601 	if (memsize != NULL)
602 		*memsize = memory_size;
603 	rv = 0;
604 out:
605 	return (rv);
606 }
607 
608 int
609 fdt_get_chosen_bootargs(char *bootargs, size_t max_size)
610 {
611 	phandle_t chosen;
612 
613 	chosen = OF_finddevice("/chosen");
614 	if (chosen == -1)
615 		return (ENXIO);
616 	if (OF_getprop(chosen, "bootargs", bootargs, max_size) == -1)
617 		return (ENXIO);
618 	return (0);
619 }
620