xref: /freebsd/sys/dev/fdt/fdt_common.c (revision 5bf5ca772c6de2d53344a78cf461447cc322ccea)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2009-2014 The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * This software was developed by Andrew Turner under sponsorship from
8  * the FreeBSD Foundation.
9  * This software was developed by Semihalf under sponsorship from
10  * the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/module.h>
41 #include <sys/bus.h>
42 #include <sys/limits.h>
43 #include <sys/sysctl.h>
44 
45 #include <machine/resource.h>
46 
47 #include <dev/fdt/fdt_common.h>
48 #include <dev/ofw/ofw_bus.h>
49 #include <dev/ofw/ofw_bus_subr.h>
50 #include <dev/ofw/openfirm.h>
51 
52 #include "ofw_bus_if.h"
53 
54 #ifdef DEBUG
55 #define debugf(fmt, args...) do { printf("%s(): ", __func__);	\
56     printf(fmt,##args); } while (0)
57 #else
58 #define debugf(fmt, args...)
59 #endif
60 
61 #define FDT_COMPAT_LEN	255
62 #define FDT_TYPE_LEN	64
63 
64 #define FDT_REG_CELLS	4
65 #define FDT_RANGES_SIZE 48
66 
67 SYSCTL_NODE(_hw, OID_AUTO, fdt, CTLFLAG_RD, 0, "Flattened Device Tree");
68 
69 vm_paddr_t fdt_immr_pa;
70 vm_offset_t fdt_immr_va;
71 vm_offset_t fdt_immr_size;
72 
73 struct fdt_ic_list fdt_ic_list_head = SLIST_HEAD_INITIALIZER(fdt_ic_list_head);
74 
75 static int fdt_is_compatible(phandle_t, const char *);
76 
77 static int
78 fdt_get_range_by_busaddr(phandle_t node, u_long addr, u_long *base,
79     u_long *size)
80 {
81 	pcell_t ranges[32], *rangesptr;
82 	pcell_t addr_cells, size_cells, par_addr_cells;
83 	u_long bus_addr, par_bus_addr, pbase, psize;
84 	int err, i, len, tuple_size, tuples;
85 
86 	if (node == 0) {
87 		*base = 0;
88 		*size = ULONG_MAX;
89 		return (0);
90 	}
91 
92 	if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
93 		return (ENXIO);
94 	/*
95 	 * Process 'ranges' property.
96 	 */
97 	par_addr_cells = fdt_parent_addr_cells(node);
98 	if (par_addr_cells > 2) {
99 		return (ERANGE);
100 	}
101 
102 	len = OF_getproplen(node, "ranges");
103 	if (len < 0)
104 		return (-1);
105 	if (len > sizeof(ranges))
106 		return (ENOMEM);
107 	if (len == 0) {
108 		return (fdt_get_range_by_busaddr(OF_parent(node), addr,
109 		    base, size));
110 	}
111 
112 	if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0)
113 		return (EINVAL);
114 
115 	tuple_size = addr_cells + par_addr_cells + size_cells;
116 	tuples = len / (tuple_size * sizeof(cell_t));
117 
118 	if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2)
119 		return (ERANGE);
120 
121 	*base = 0;
122 	*size = 0;
123 
124 	for (i = 0; i < tuples; i++) {
125 		rangesptr = &ranges[i * tuple_size];
126 
127 		bus_addr = fdt_data_get((void *)rangesptr, addr_cells);
128 		if (bus_addr != addr)
129 			continue;
130 		rangesptr += addr_cells;
131 
132 		par_bus_addr = fdt_data_get((void *)rangesptr, par_addr_cells);
133 		rangesptr += par_addr_cells;
134 
135 		err = fdt_get_range_by_busaddr(OF_parent(node), par_bus_addr,
136 		    &pbase, &psize);
137 		if (err > 0)
138 			return (err);
139 		if (err == 0)
140 			*base = pbase;
141 		else
142 			*base = par_bus_addr;
143 
144 		*size = fdt_data_get((void *)rangesptr, size_cells);
145 
146 		return (0);
147 	}
148 
149 	return (EINVAL);
150 }
151 
152 int
153 fdt_get_range(phandle_t node, int range_id, u_long *base, u_long *size)
154 {
155 	pcell_t ranges[FDT_RANGES_SIZE], *rangesptr;
156 	pcell_t addr_cells, size_cells, par_addr_cells;
157 	u_long par_bus_addr, pbase, psize;
158 	int err, len;
159 
160 	if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
161 		return (ENXIO);
162 	/*
163 	 * Process 'ranges' property.
164 	 */
165 	par_addr_cells = fdt_parent_addr_cells(node);
166 	if (par_addr_cells > 2)
167 		return (ERANGE);
168 
169 	len = OF_getproplen(node, "ranges");
170 	if (len > sizeof(ranges))
171 		return (ENOMEM);
172 	if (len == 0) {
173 		*base = 0;
174 		*size = ULONG_MAX;
175 		return (0);
176 	}
177 
178 	if (!(range_id < len))
179 		return (ERANGE);
180 
181 	if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0)
182 		return (EINVAL);
183 
184 	if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2)
185 		return (ERANGE);
186 
187 	*base = 0;
188 	*size = 0;
189 	rangesptr = &ranges[range_id];
190 
191 	*base = fdt_data_get((void *)rangesptr, addr_cells);
192 	rangesptr += addr_cells;
193 
194 	par_bus_addr = fdt_data_get((void *)rangesptr, par_addr_cells);
195 	rangesptr += par_addr_cells;
196 
197 	err = fdt_get_range_by_busaddr(OF_parent(node), par_bus_addr,
198 	   &pbase, &psize);
199 	if (err == 0)
200 		*base += pbase;
201 	else
202 		*base += par_bus_addr;
203 
204 	*size = fdt_data_get((void *)rangesptr, size_cells);
205 	return (0);
206 }
207 
208 int
209 fdt_immr_addr(vm_offset_t immr_va)
210 {
211 	phandle_t node;
212 	u_long base, size;
213 	int r;
214 
215 	/*
216 	 * Try to access the SOC node directly i.e. through /aliases/.
217 	 */
218 	if ((node = OF_finddevice("soc")) != 0)
219 		if (fdt_is_compatible(node, "simple-bus"))
220 			goto moveon;
221 	/*
222 	 * Find the node the long way.
223 	 */
224 	if ((node = OF_finddevice("/")) == 0)
225 		return (ENXIO);
226 
227 	if ((node = fdt_find_compatible(node, "simple-bus", 0)) == 0)
228 		return (ENXIO);
229 
230 moveon:
231 	if ((r = fdt_get_range(node, 0, &base, &size)) == 0) {
232 		fdt_immr_pa = base;
233 		fdt_immr_va = immr_va;
234 		fdt_immr_size = size;
235 	}
236 
237 	return (r);
238 }
239 
240 /*
241  * This routine is an early-usage version of the ofw_bus_is_compatible() when
242  * the ofw_bus I/F is not available (like early console routines and similar).
243  * Note the buffer has to be on the stack since malloc() is usually not
244  * available in such cases either.
245  */
246 static int
247 fdt_is_compatible(phandle_t node, const char *compatstr)
248 {
249 	char buf[FDT_COMPAT_LEN];
250 	char *compat;
251 	int len, onelen, l, rv;
252 
253 	if ((len = OF_getproplen(node, "compatible")) <= 0)
254 		return (0);
255 
256 	compat = (char *)&buf;
257 	bzero(compat, FDT_COMPAT_LEN);
258 
259 	if (OF_getprop(node, "compatible", compat, FDT_COMPAT_LEN) < 0)
260 		return (0);
261 
262 	onelen = strlen(compatstr);
263 	rv = 0;
264 	while (len > 0) {
265 		if (strncasecmp(compat, compatstr, onelen) == 0) {
266 			/* Found it. */
267 			rv = 1;
268 			break;
269 		}
270 		/* Slide to the next sub-string. */
271 		l = strlen(compat) + 1;
272 		compat += l;
273 		len -= l;
274 	}
275 
276 	return (rv);
277 }
278 
279 int
280 fdt_is_compatible_strict(phandle_t node, const char *compatible)
281 {
282 	char compat[FDT_COMPAT_LEN];
283 
284 	if (OF_getproplen(node, "compatible") <= 0)
285 		return (0);
286 
287 	if (OF_getprop(node, "compatible", compat, FDT_COMPAT_LEN) < 0)
288 		return (0);
289 
290 	if (strncasecmp(compat, compatible, FDT_COMPAT_LEN) == 0)
291 		/* This fits. */
292 		return (1);
293 
294 	return (0);
295 }
296 
297 phandle_t
298 fdt_find_compatible(phandle_t start, const char *compat, int strict)
299 {
300 	phandle_t child;
301 
302 	/*
303 	 * Traverse all children of 'start' node, and find first with
304 	 * matching 'compatible' property.
305 	 */
306 	for (child = OF_child(start); child != 0; child = OF_peer(child))
307 		if (fdt_is_compatible(child, compat)) {
308 			if (strict)
309 				if (!fdt_is_compatible_strict(child, compat))
310 					continue;
311 			return (child);
312 		}
313 	return (0);
314 }
315 
316 phandle_t
317 fdt_depth_search_compatible(phandle_t start, const char *compat, int strict)
318 {
319 	phandle_t child, node;
320 
321 	/*
322 	 * Depth-search all descendants of 'start' node, and find first with
323 	 * matching 'compatible' property.
324 	 */
325 	for (node = OF_child(start); node != 0; node = OF_peer(node)) {
326 		if (fdt_is_compatible(node, compat) &&
327 		    (strict == 0 || fdt_is_compatible_strict(node, compat))) {
328 			return (node);
329 		}
330 		child = fdt_depth_search_compatible(node, compat, strict);
331 		if (child != 0)
332 			return (child);
333 	}
334 	return (0);
335 }
336 
337 int
338 fdt_is_enabled(phandle_t node)
339 {
340 	char *stat;
341 	int ena, len;
342 
343 	len = OF_getprop_alloc(node, "status", sizeof(char),
344 	    (void **)&stat);
345 
346 	if (len <= 0)
347 		/* It is OK if no 'status' property. */
348 		return (1);
349 
350 	/* Anything other than 'okay' means disabled. */
351 	ena = 0;
352 	if (strncmp((char *)stat, "okay", len) == 0)
353 		ena = 1;
354 
355 	OF_prop_free(stat);
356 	return (ena);
357 }
358 
359 int
360 fdt_is_type(phandle_t node, const char *typestr)
361 {
362 	char type[FDT_TYPE_LEN];
363 
364 	if (OF_getproplen(node, "device_type") <= 0)
365 		return (0);
366 
367 	if (OF_getprop(node, "device_type", type, FDT_TYPE_LEN) < 0)
368 		return (0);
369 
370 	if (strncasecmp(type, typestr, FDT_TYPE_LEN) == 0)
371 		/* This fits. */
372 		return (1);
373 
374 	return (0);
375 }
376 
377 int
378 fdt_parent_addr_cells(phandle_t node)
379 {
380 	pcell_t addr_cells;
381 
382 	/* Find out #address-cells of the superior bus. */
383 	if (OF_searchprop(OF_parent(node), "#address-cells", &addr_cells,
384 	    sizeof(addr_cells)) <= 0)
385 		return (2);
386 
387 	return ((int)fdt32_to_cpu(addr_cells));
388 }
389 
390 int
391 fdt_pm_is_enabled(phandle_t node)
392 {
393 	int ret;
394 
395 	ret = 1;
396 
397 #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
398 	ret = fdt_pm(node);
399 #endif
400 	return (ret);
401 }
402 
403 u_long
404 fdt_data_get(void *data, int cells)
405 {
406 
407 	if (cells == 1)
408 		return (fdt32_to_cpu(*((uint32_t *)data)));
409 
410 	return (fdt64_to_cpu(*((uint64_t *)data)));
411 }
412 
413 int
414 fdt_addrsize_cells(phandle_t node, int *addr_cells, int *size_cells)
415 {
416 	pcell_t cell;
417 	int cell_size;
418 
419 	/*
420 	 * Retrieve #{address,size}-cells.
421 	 */
422 	cell_size = sizeof(cell);
423 	if (OF_getencprop(node, "#address-cells", &cell, cell_size) < cell_size)
424 		cell = 2;
425 	*addr_cells = (int)cell;
426 
427 	if (OF_getencprop(node, "#size-cells", &cell, cell_size) < cell_size)
428 		cell = 1;
429 	*size_cells = (int)cell;
430 
431 	if (*addr_cells > 3 || *size_cells > 2)
432 		return (ERANGE);
433 	return (0);
434 }
435 
436 int
437 fdt_data_to_res(pcell_t *data, int addr_cells, int size_cells, u_long *start,
438     u_long *count)
439 {
440 
441 	/* Address portion. */
442 	if (addr_cells > 2)
443 		return (ERANGE);
444 
445 	*start = fdt_data_get((void *)data, addr_cells);
446 	data += addr_cells;
447 
448 	/* Size portion. */
449 	if (size_cells > 2)
450 		return (ERANGE);
451 
452 	*count = fdt_data_get((void *)data, size_cells);
453 	return (0);
454 }
455 
456 int
457 fdt_regsize(phandle_t node, u_long *base, u_long *size)
458 {
459 	pcell_t reg[4];
460 	int addr_cells, len, size_cells;
461 
462 	if (fdt_addrsize_cells(OF_parent(node), &addr_cells, &size_cells))
463 		return (ENXIO);
464 
465 	if ((sizeof(pcell_t) * (addr_cells + size_cells)) > sizeof(reg))
466 		return (ENOMEM);
467 
468 	len = OF_getprop(node, "reg", &reg, sizeof(reg));
469 	if (len <= 0)
470 		return (EINVAL);
471 
472 	*base = fdt_data_get(&reg[0], addr_cells);
473 	*size = fdt_data_get(&reg[addr_cells], size_cells);
474 	return (0);
475 }
476 
477 int
478 fdt_reg_to_rl(phandle_t node, struct resource_list *rl)
479 {
480 	u_long end, count, start;
481 	pcell_t *reg, *regptr;
482 	pcell_t addr_cells, size_cells;
483 	int tuple_size, tuples;
484 	int i, rv;
485 	long busaddr, bussize;
486 
487 	if (fdt_addrsize_cells(OF_parent(node), &addr_cells, &size_cells) != 0)
488 		return (ENXIO);
489 	if (fdt_get_range(OF_parent(node), 0, &busaddr, &bussize)) {
490 		busaddr = 0;
491 		bussize = 0;
492 	}
493 
494 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
495 	tuples = OF_getprop_alloc(node, "reg", tuple_size, (void **)&reg);
496 	debugf("addr_cells = %d, size_cells = %d\n", addr_cells, size_cells);
497 	debugf("tuples = %d, tuple size = %d\n", tuples, tuple_size);
498 	if (tuples <= 0)
499 		/* No 'reg' property in this node. */
500 		return (0);
501 
502 	regptr = reg;
503 	for (i = 0; i < tuples; i++) {
504 
505 		rv = fdt_data_to_res(reg, addr_cells, size_cells, &start,
506 		    &count);
507 		if (rv != 0) {
508 			resource_list_free(rl);
509 			goto out;
510 		}
511 		reg += addr_cells + size_cells;
512 
513 		/* Calculate address range relative to base. */
514 		start += busaddr;
515 		end = start + count - 1;
516 
517 		debugf("reg addr start = %lx, end = %lx, count = %lx\n", start,
518 		    end, count);
519 
520 		resource_list_add(rl, SYS_RES_MEMORY, i, start, end,
521 		    count);
522 	}
523 	rv = 0;
524 
525 out:
526 	OF_prop_free(regptr);
527 	return (rv);
528 }
529 
530 int
531 fdt_get_phyaddr(phandle_t node, device_t dev, int *phy_addr, void **phy_sc)
532 {
533 	phandle_t phy_node;
534 	pcell_t phy_handle, phy_reg;
535 	uint32_t i;
536 	device_t parent, child;
537 
538 	if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
539 	    sizeof(phy_handle)) <= 0)
540 		return (ENXIO);
541 
542 	phy_node = OF_node_from_xref(phy_handle);
543 
544 	if (OF_getencprop(phy_node, "reg", (void *)&phy_reg,
545 	    sizeof(phy_reg)) <= 0)
546 		return (ENXIO);
547 
548 	*phy_addr = phy_reg;
549 
550 	/*
551 	 * Search for softc used to communicate with phy.
552 	 */
553 
554 	/*
555 	 * Step 1: Search for ancestor of the phy-node with a "phy-handle"
556 	 * property set.
557 	 */
558 	phy_node = OF_parent(phy_node);
559 	while (phy_node != 0) {
560 		if (OF_getprop(phy_node, "phy-handle", (void *)&phy_handle,
561 		    sizeof(phy_handle)) > 0)
562 			break;
563 		phy_node = OF_parent(phy_node);
564 	}
565 	if (phy_node == 0)
566 		return (ENXIO);
567 
568 	/*
569 	 * Step 2: For each device with the same parent and name as ours
570 	 * compare its node with the one found in step 1, ancestor of phy
571 	 * node (stored in phy_node).
572 	 */
573 	parent = device_get_parent(dev);
574 	i = 0;
575 	child = device_find_child(parent, device_get_name(dev), i);
576 	while (child != NULL) {
577 		if (ofw_bus_get_node(child) == phy_node)
578 			break;
579 		i++;
580 		child = device_find_child(parent, device_get_name(dev), i);
581 	}
582 	if (child == NULL)
583 		return (ENXIO);
584 
585 	/*
586 	 * Use softc of the device found.
587 	 */
588 	*phy_sc = (void *)device_get_softc(child);
589 
590 	return (0);
591 }
592 
593 int
594 fdt_get_reserved_regions(struct mem_region *mr, int *mrcnt)
595 {
596 	pcell_t reserve[FDT_REG_CELLS * FDT_MEM_REGIONS];
597 	pcell_t *reservep;
598 	phandle_t memory, root;
599 	int addr_cells, size_cells;
600 	int i, res_len, rv, tuple_size, tuples;
601 
602 	root = OF_finddevice("/");
603 	memory = OF_finddevice("/memory");
604 	if (memory == -1) {
605 		rv = ENXIO;
606 		goto out;
607 	}
608 
609 	if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells,
610 	    &size_cells)) != 0)
611 		goto out;
612 
613 	if (addr_cells > 2) {
614 		rv = ERANGE;
615 		goto out;
616 	}
617 
618 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
619 
620 	res_len = OF_getproplen(root, "memreserve");
621 	if (res_len <= 0 || res_len > sizeof(reserve)) {
622 		rv = ERANGE;
623 		goto out;
624 	}
625 
626 	if (OF_getprop(root, "memreserve", reserve, res_len) <= 0) {
627 		rv = ENXIO;
628 		goto out;
629 	}
630 
631 	tuples = res_len / tuple_size;
632 	reservep = (pcell_t *)&reserve;
633 	for (i = 0; i < tuples; i++) {
634 
635 		rv = fdt_data_to_res(reservep, addr_cells, size_cells,
636 			(u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size);
637 
638 		if (rv != 0)
639 			goto out;
640 
641 		reservep += addr_cells + size_cells;
642 	}
643 
644 	*mrcnt = i;
645 	rv = 0;
646 out:
647 	return (rv);
648 }
649 
650 int
651 fdt_get_mem_regions(struct mem_region *mr, int *mrcnt, uint64_t *memsize)
652 {
653 	pcell_t reg[FDT_REG_CELLS * FDT_MEM_REGIONS];
654 	pcell_t *regp;
655 	phandle_t memory;
656 	uint64_t memory_size;
657 	int addr_cells, size_cells;
658 	int i, reg_len, rv, tuple_size, tuples;
659 
660 	memory = OF_finddevice("/memory");
661 	if (memory == -1) {
662 		rv = ENXIO;
663 		goto out;
664 	}
665 
666 	if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells,
667 	    &size_cells)) != 0)
668 		goto out;
669 
670 	if (addr_cells > 2) {
671 		rv = ERANGE;
672 		goto out;
673 	}
674 
675 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
676 	reg_len = OF_getproplen(memory, "reg");
677 	if (reg_len <= 0 || reg_len > sizeof(reg)) {
678 		rv = ERANGE;
679 		goto out;
680 	}
681 
682 	if (OF_getprop(memory, "reg", reg, reg_len) <= 0) {
683 		rv = ENXIO;
684 		goto out;
685 	}
686 
687 	memory_size = 0;
688 	tuples = reg_len / tuple_size;
689 	regp = (pcell_t *)&reg;
690 	for (i = 0; i < tuples; i++) {
691 
692 		rv = fdt_data_to_res(regp, addr_cells, size_cells,
693 			(u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size);
694 
695 		if (rv != 0)
696 			goto out;
697 
698 		regp += addr_cells + size_cells;
699 		memory_size += mr[i].mr_size;
700 	}
701 
702 	if (memory_size == 0) {
703 		rv = ERANGE;
704 		goto out;
705 	}
706 
707 	*mrcnt = i;
708 	if (memsize != NULL)
709 		*memsize = memory_size;
710 	rv = 0;
711 out:
712 	return (rv);
713 }
714 
715 int
716 fdt_get_unit(device_t dev)
717 {
718 	const char * name;
719 
720 	name = ofw_bus_get_name(dev);
721 	name = strchr(name, '@') + 1;
722 
723 	return (strtol(name,NULL,0));
724 }
725 
726 int
727 fdt_get_chosen_bootargs(char *bootargs, size_t max_size)
728 {
729 	phandle_t chosen;
730 
731 	chosen = OF_finddevice("/chosen");
732 	if (chosen == -1)
733 		return (ENXIO);
734 	if (OF_getprop(chosen, "bootargs", bootargs, max_size) == -1)
735 		return (ENXIO);
736 	return (0);
737 }
738