xref: /freebsd/sys/dev/fdt/fdt_common.c (revision 361e428888e630eb708c72cf31579a25ba5d4f03)
1 /*-
2  * Copyright (c) 2009-2014 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * This software was developed by Andrew Turner under sponsorship from
6  * the FreeBSD Foundation.
7  * This software was developed by Semihalf under sponsorship from
8  * the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/module.h>
39 #include <sys/bus.h>
40 #include <sys/limits.h>
41 
42 #include <machine/resource.h>
43 
44 #include <dev/fdt/fdt_common.h>
45 #include <dev/ofw/ofw_bus.h>
46 #include <dev/ofw/ofw_bus_subr.h>
47 #include <dev/ofw/openfirm.h>
48 
49 #include "ofw_bus_if.h"
50 
51 #ifdef DEBUG
52 #define debugf(fmt, args...) do { printf("%s(): ", __func__);	\
53     printf(fmt,##args); } while (0)
54 #else
55 #define debugf(fmt, args...)
56 #endif
57 
58 #define FDT_COMPAT_LEN	255
59 #define FDT_TYPE_LEN	64
60 
61 #define FDT_REG_CELLS	4
62 
63 vm_paddr_t fdt_immr_pa;
64 vm_offset_t fdt_immr_va;
65 vm_offset_t fdt_immr_size;
66 
67 struct fdt_ic_list fdt_ic_list_head = SLIST_HEAD_INITIALIZER(fdt_ic_list_head);
68 
69 static int
70 fdt_get_range_by_busaddr(phandle_t node, u_long addr, u_long *base,
71     u_long *size)
72 {
73 	pcell_t ranges[32], *rangesptr;
74 	pcell_t addr_cells, size_cells, par_addr_cells;
75 	u_long bus_addr, par_bus_addr, pbase, psize;
76 	int err, i, len, tuple_size, tuples;
77 
78 	if (node == 0) {
79 		*base = 0;
80 		*size = ULONG_MAX;
81 		return (0);
82 	}
83 
84 	if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
85 		return (ENXIO);
86 	/*
87 	 * Process 'ranges' property.
88 	 */
89 	par_addr_cells = fdt_parent_addr_cells(node);
90 	if (par_addr_cells > 2) {
91 		return (ERANGE);
92 	}
93 
94 	len = OF_getproplen(node, "ranges");
95 	if (len < 0)
96 		return (-1);
97 	if (len > sizeof(ranges))
98 		return (ENOMEM);
99 	if (len == 0) {
100 		return (fdt_get_range_by_busaddr(OF_parent(node), addr,
101 		    base, size));
102 	}
103 
104 	if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0)
105 		return (EINVAL);
106 
107 	tuple_size = addr_cells + par_addr_cells + size_cells;
108 	tuples = len / (tuple_size * sizeof(cell_t));
109 
110 	if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2)
111 		return (ERANGE);
112 
113 	*base = 0;
114 	*size = 0;
115 
116 	for (i = 0; i < tuples; i++) {
117 		rangesptr = &ranges[i * tuple_size];
118 
119 		bus_addr = fdt_data_get((void *)rangesptr, addr_cells);
120 		if (bus_addr != addr)
121 			continue;
122 		rangesptr += addr_cells;
123 
124 		par_bus_addr = fdt_data_get((void *)rangesptr, par_addr_cells);
125 		rangesptr += par_addr_cells;
126 
127 		err = fdt_get_range_by_busaddr(OF_parent(node), par_bus_addr,
128 		    &pbase, &psize);
129 		if (err > 0)
130 			return (err);
131 		if (err == 0)
132 			*base = pbase;
133 		else
134 			*base = par_bus_addr;
135 
136 		*size = fdt_data_get((void *)rangesptr, size_cells);
137 
138 		return (0);
139 	}
140 
141 	return (EINVAL);
142 }
143 
144 int
145 fdt_get_range(phandle_t node, int range_id, u_long *base, u_long *size)
146 {
147 	pcell_t ranges[6], *rangesptr;
148 	pcell_t addr_cells, size_cells, par_addr_cells;
149 	u_long par_bus_addr, pbase, psize;
150 	int err, len, tuple_size, tuples;
151 
152 	if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
153 		return (ENXIO);
154 	/*
155 	 * Process 'ranges' property.
156 	 */
157 	par_addr_cells = fdt_parent_addr_cells(node);
158 	if (par_addr_cells > 2)
159 		return (ERANGE);
160 
161 	len = OF_getproplen(node, "ranges");
162 	if (len > sizeof(ranges))
163 		return (ENOMEM);
164 	if (len == 0) {
165 		*base = 0;
166 		*size = ULONG_MAX;
167 		return (0);
168 	}
169 
170 	if (!(range_id < len))
171 		return (ERANGE);
172 
173 	if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0)
174 		return (EINVAL);
175 
176 	tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells +
177 	    size_cells);
178 	tuples = len / tuple_size;
179 
180 	if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2)
181 		return (ERANGE);
182 
183 	*base = 0;
184 	*size = 0;
185 	rangesptr = &ranges[range_id];
186 
187 	*base = fdt_data_get((void *)rangesptr, addr_cells);
188 	rangesptr += addr_cells;
189 
190 	par_bus_addr = fdt_data_get((void *)rangesptr, par_addr_cells);
191 	rangesptr += par_addr_cells;
192 
193 	err = fdt_get_range_by_busaddr(OF_parent(node), par_bus_addr,
194 	   &pbase, &psize);
195 	if (err == 0)
196 		*base += pbase;
197 	else
198 		*base += par_bus_addr;
199 
200 	*size = fdt_data_get((void *)rangesptr, size_cells);
201 	return (0);
202 }
203 
204 int
205 fdt_immr_addr(vm_offset_t immr_va)
206 {
207 	phandle_t node;
208 	u_long base, size;
209 	int r;
210 
211 	/*
212 	 * Try to access the SOC node directly i.e. through /aliases/.
213 	 */
214 	if ((node = OF_finddevice("soc")) != 0)
215 		if (fdt_is_compatible(node, "simple-bus"))
216 			goto moveon;
217 	/*
218 	 * Find the node the long way.
219 	 */
220 	if ((node = OF_finddevice("/")) == 0)
221 		return (ENXIO);
222 
223 	if ((node = fdt_find_compatible(node, "simple-bus", 0)) == 0)
224 		return (ENXIO);
225 
226 moveon:
227 	if ((r = fdt_get_range(node, 0, &base, &size)) == 0) {
228 		fdt_immr_pa = base;
229 		fdt_immr_va = immr_va;
230 		fdt_immr_size = size;
231 	}
232 
233 	return (r);
234 }
235 
236 /*
237  * This routine is an early-usage version of the ofw_bus_is_compatible() when
238  * the ofw_bus I/F is not available (like early console routines and similar).
239  * Note the buffer has to be on the stack since malloc() is usually not
240  * available in such cases either.
241  */
242 int
243 fdt_is_compatible(phandle_t node, const char *compatstr)
244 {
245 	char buf[FDT_COMPAT_LEN];
246 	char *compat;
247 	int len, onelen, l, rv;
248 
249 	if ((len = OF_getproplen(node, "compatible")) <= 0)
250 		return (0);
251 
252 	compat = (char *)&buf;
253 	bzero(compat, FDT_COMPAT_LEN);
254 
255 	if (OF_getprop(node, "compatible", compat, FDT_COMPAT_LEN) < 0)
256 		return (0);
257 
258 	onelen = strlen(compatstr);
259 	rv = 0;
260 	while (len > 0) {
261 		if (strncasecmp(compat, compatstr, onelen) == 0) {
262 			/* Found it. */
263 			rv = 1;
264 			break;
265 		}
266 		/* Slide to the next sub-string. */
267 		l = strlen(compat) + 1;
268 		compat += l;
269 		len -= l;
270 	}
271 
272 	return (rv);
273 }
274 
275 int
276 fdt_is_compatible_strict(phandle_t node, const char *compatible)
277 {
278 	char compat[FDT_COMPAT_LEN];
279 
280 	if (OF_getproplen(node, "compatible") <= 0)
281 		return (0);
282 
283 	if (OF_getprop(node, "compatible", compat, FDT_COMPAT_LEN) < 0)
284 		return (0);
285 
286 	if (strncasecmp(compat, compatible, FDT_COMPAT_LEN) == 0)
287 		/* This fits. */
288 		return (1);
289 
290 	return (0);
291 }
292 
293 phandle_t
294 fdt_find_compatible(phandle_t start, const char *compat, int strict)
295 {
296 	phandle_t child;
297 
298 	/*
299 	 * Traverse all children of 'start' node, and find first with
300 	 * matching 'compatible' property.
301 	 */
302 	for (child = OF_child(start); child != 0; child = OF_peer(child))
303 		if (fdt_is_compatible(child, compat)) {
304 			if (strict)
305 				if (!fdt_is_compatible_strict(child, compat))
306 					continue;
307 			return (child);
308 		}
309 	return (0);
310 }
311 
312 phandle_t
313 fdt_depth_search_compatible(phandle_t start, const char *compat, int strict)
314 {
315 	phandle_t child, node;
316 
317 	/*
318 	 * Depth-search all descendants of 'start' node, and find first with
319 	 * matching 'compatible' property.
320 	 */
321 	for (node = OF_child(start); node != 0; node = OF_peer(node)) {
322 		if (fdt_is_compatible(node, compat) &&
323 		    (strict == 0 || fdt_is_compatible_strict(node, compat))) {
324 			return (node);
325 		}
326 		child = fdt_depth_search_compatible(node, compat, strict);
327 		if (child != 0)
328 			return (child);
329 	}
330 	return (0);
331 }
332 
333 int
334 fdt_is_enabled(phandle_t node)
335 {
336 	char *stat;
337 	int ena, len;
338 
339 	len = OF_getprop_alloc(node, "status", sizeof(char),
340 	    (void **)&stat);
341 
342 	if (len <= 0)
343 		/* It is OK if no 'status' property. */
344 		return (1);
345 
346 	/* Anything other than 'okay' means disabled. */
347 	ena = 0;
348 	if (strncmp((char *)stat, "okay", len) == 0)
349 		ena = 1;
350 
351 	free(stat, M_OFWPROP);
352 	return (ena);
353 }
354 
355 int
356 fdt_is_type(phandle_t node, const char *typestr)
357 {
358 	char type[FDT_TYPE_LEN];
359 
360 	if (OF_getproplen(node, "device_type") <= 0)
361 		return (0);
362 
363 	if (OF_getprop(node, "device_type", type, FDT_TYPE_LEN) < 0)
364 		return (0);
365 
366 	if (strncasecmp(type, typestr, FDT_TYPE_LEN) == 0)
367 		/* This fits. */
368 		return (1);
369 
370 	return (0);
371 }
372 
373 int
374 fdt_parent_addr_cells(phandle_t node)
375 {
376 	pcell_t addr_cells;
377 
378 	/* Find out #address-cells of the superior bus. */
379 	if (OF_searchprop(OF_parent(node), "#address-cells", &addr_cells,
380 	    sizeof(addr_cells)) <= 0)
381 		return (2);
382 
383 	return ((int)fdt32_to_cpu(addr_cells));
384 }
385 
386 int
387 fdt_pm_is_enabled(phandle_t node)
388 {
389 	int ret;
390 
391 	ret = 1;
392 
393 #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
394 	ret = fdt_pm(node);
395 #endif
396 	return (ret);
397 }
398 
399 u_long
400 fdt_data_get(void *data, int cells)
401 {
402 
403 	if (cells == 1)
404 		return (fdt32_to_cpu(*((uint32_t *)data)));
405 
406 	return (fdt64_to_cpu(*((uint64_t *)data)));
407 }
408 
409 int
410 fdt_addrsize_cells(phandle_t node, int *addr_cells, int *size_cells)
411 {
412 	pcell_t cell;
413 	int cell_size;
414 
415 	/*
416 	 * Retrieve #{address,size}-cells.
417 	 */
418 	cell_size = sizeof(cell);
419 	if (OF_getprop(node, "#address-cells", &cell, cell_size) < cell_size)
420 		cell = 2;
421 	*addr_cells = fdt32_to_cpu((int)cell);
422 
423 	if (OF_getprop(node, "#size-cells", &cell, cell_size) < cell_size)
424 		cell = 1;
425 	*size_cells = fdt32_to_cpu((int)cell);
426 
427 	if (*addr_cells > 3 || *size_cells > 2)
428 		return (ERANGE);
429 	return (0);
430 }
431 
432 int
433 fdt_data_to_res(pcell_t *data, int addr_cells, int size_cells, u_long *start,
434     u_long *count)
435 {
436 
437 	/* Address portion. */
438 	if (addr_cells > 2)
439 		return (ERANGE);
440 
441 	*start = fdt_data_get((void *)data, addr_cells);
442 	data += addr_cells;
443 
444 	/* Size portion. */
445 	if (size_cells > 2)
446 		return (ERANGE);
447 
448 	*count = fdt_data_get((void *)data, size_cells);
449 	return (0);
450 }
451 
452 int
453 fdt_regsize(phandle_t node, u_long *base, u_long *size)
454 {
455 	pcell_t reg[4];
456 	int addr_cells, len, size_cells;
457 
458 	if (fdt_addrsize_cells(OF_parent(node), &addr_cells, &size_cells))
459 		return (ENXIO);
460 
461 	if ((sizeof(pcell_t) * (addr_cells + size_cells)) > sizeof(reg))
462 		return (ENOMEM);
463 
464 	len = OF_getprop(node, "reg", &reg, sizeof(reg));
465 	if (len <= 0)
466 		return (EINVAL);
467 
468 	*base = fdt_data_get(&reg[0], addr_cells);
469 	*size = fdt_data_get(&reg[addr_cells], size_cells);
470 	return (0);
471 }
472 
473 int
474 fdt_reg_to_rl(phandle_t node, struct resource_list *rl)
475 {
476 	u_long end, count, start;
477 	pcell_t *reg, *regptr;
478 	pcell_t addr_cells, size_cells;
479 	int tuple_size, tuples;
480 	int i, rv;
481 	long busaddr, bussize;
482 
483 	if (fdt_addrsize_cells(OF_parent(node), &addr_cells, &size_cells) != 0)
484 		return (ENXIO);
485 	if (fdt_get_range(OF_parent(node), 0, &busaddr, &bussize)) {
486 		busaddr = 0;
487 		bussize = 0;
488 	}
489 
490 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
491 	tuples = OF_getprop_alloc(node, "reg", tuple_size, (void **)&reg);
492 	debugf("addr_cells = %d, size_cells = %d\n", addr_cells, size_cells);
493 	debugf("tuples = %d, tuple size = %d\n", tuples, tuple_size);
494 	if (tuples <= 0)
495 		/* No 'reg' property in this node. */
496 		return (0);
497 
498 	regptr = reg;
499 	for (i = 0; i < tuples; i++) {
500 
501 		rv = fdt_data_to_res(reg, addr_cells, size_cells, &start,
502 		    &count);
503 		if (rv != 0) {
504 			resource_list_free(rl);
505 			goto out;
506 		}
507 		reg += addr_cells + size_cells;
508 
509 		/* Calculate address range relative to base. */
510 		start += busaddr;
511 		end = start + count - 1;
512 
513 		debugf("reg addr start = %lx, end = %lx, count = %lx\n", start,
514 		    end, count);
515 
516 		resource_list_add(rl, SYS_RES_MEMORY, i, start, end,
517 		    count);
518 	}
519 	rv = 0;
520 
521 out:
522 	free(regptr, M_OFWPROP);
523 	return (rv);
524 }
525 
526 int
527 fdt_get_phyaddr(phandle_t node, device_t dev, int *phy_addr, void **phy_sc)
528 {
529 	phandle_t phy_node;
530 	pcell_t phy_handle, phy_reg;
531 	uint32_t i;
532 	device_t parent, child;
533 
534 	if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
535 	    sizeof(phy_handle)) <= 0)
536 		return (ENXIO);
537 
538 	phy_node = OF_node_from_xref(phy_handle);
539 
540 	if (OF_getprop(phy_node, "reg", (void *)&phy_reg,
541 	    sizeof(phy_reg)) <= 0)
542 		return (ENXIO);
543 
544 	*phy_addr = fdt32_to_cpu(phy_reg);
545 
546 	/*
547 	 * Search for softc used to communicate with phy.
548 	 */
549 
550 	/*
551 	 * Step 1: Search for ancestor of the phy-node with a "phy-handle"
552 	 * property set.
553 	 */
554 	phy_node = OF_parent(phy_node);
555 	while (phy_node != 0) {
556 		if (OF_getprop(phy_node, "phy-handle", (void *)&phy_handle,
557 		    sizeof(phy_handle)) > 0)
558 			break;
559 		phy_node = OF_parent(phy_node);
560 	}
561 	if (phy_node == 0)
562 		return (ENXIO);
563 
564 	/*
565 	 * Step 2: For each device with the same parent and name as ours
566 	 * compare its node with the one found in step 1, ancestor of phy
567 	 * node (stored in phy_node).
568 	 */
569 	parent = device_get_parent(dev);
570 	i = 0;
571 	child = device_find_child(parent, device_get_name(dev), i);
572 	while (child != NULL) {
573 		if (ofw_bus_get_node(child) == phy_node)
574 			break;
575 		i++;
576 		child = device_find_child(parent, device_get_name(dev), i);
577 	}
578 	if (child == NULL)
579 		return (ENXIO);
580 
581 	/*
582 	 * Use softc of the device found.
583 	 */
584 	*phy_sc = (void *)device_get_softc(child);
585 
586 	return (0);
587 }
588 
589 int
590 fdt_get_reserved_regions(struct mem_region *mr, int *mrcnt)
591 {
592 	pcell_t reserve[FDT_REG_CELLS * FDT_MEM_REGIONS];
593 	pcell_t *reservep;
594 	phandle_t memory, root;
595 	uint32_t memory_size;
596 	int addr_cells, size_cells;
597 	int i, max_size, res_len, rv, tuple_size, tuples;
598 
599 	max_size = sizeof(reserve);
600 	root = OF_finddevice("/");
601 	memory = OF_finddevice("/memory");
602 	if (memory == -1) {
603 		rv = ENXIO;
604 		goto out;
605 	}
606 
607 	if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells,
608 	    &size_cells)) != 0)
609 		goto out;
610 
611 	if (addr_cells > 2) {
612 		rv = ERANGE;
613 		goto out;
614 	}
615 
616 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
617 
618 	res_len = OF_getproplen(root, "memreserve");
619 	if (res_len <= 0 || res_len > sizeof(reserve)) {
620 		rv = ERANGE;
621 		goto out;
622 	}
623 
624 	if (OF_getprop(root, "memreserve", reserve, res_len) <= 0) {
625 		rv = ENXIO;
626 		goto out;
627 	}
628 
629 	memory_size = 0;
630 	tuples = res_len / tuple_size;
631 	reservep = (pcell_t *)&reserve;
632 	for (i = 0; i < tuples; i++) {
633 
634 		rv = fdt_data_to_res(reservep, addr_cells, size_cells,
635 			(u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size);
636 
637 		if (rv != 0)
638 			goto out;
639 
640 		reservep += addr_cells + size_cells;
641 	}
642 
643 	*mrcnt = i;
644 	rv = 0;
645 out:
646 	return (rv);
647 }
648 
649 int
650 fdt_get_mem_regions(struct mem_region *mr, int *mrcnt, uint32_t *memsize)
651 {
652 	pcell_t reg[FDT_REG_CELLS * FDT_MEM_REGIONS];
653 	pcell_t *regp;
654 	phandle_t memory;
655 	uint32_t memory_size;
656 	int addr_cells, size_cells;
657 	int i, max_size, reg_len, rv, tuple_size, tuples;
658 
659 	max_size = sizeof(reg);
660 	memory = OF_finddevice("/memory");
661 	if (memory == -1) {
662 		rv = ENXIO;
663 		goto out;
664 	}
665 
666 	if ((rv = fdt_addrsize_cells(OF_parent(memory), &addr_cells,
667 	    &size_cells)) != 0)
668 		goto out;
669 
670 	if (addr_cells > 2) {
671 		rv = ERANGE;
672 		goto out;
673 	}
674 
675 	tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
676 	reg_len = OF_getproplen(memory, "reg");
677 	if (reg_len <= 0 || reg_len > sizeof(reg)) {
678 		rv = ERANGE;
679 		goto out;
680 	}
681 
682 	if (OF_getprop(memory, "reg", reg, reg_len) <= 0) {
683 		rv = ENXIO;
684 		goto out;
685 	}
686 
687 	memory_size = 0;
688 	tuples = reg_len / tuple_size;
689 	regp = (pcell_t *)&reg;
690 	for (i = 0; i < tuples; i++) {
691 
692 		rv = fdt_data_to_res(regp, addr_cells, size_cells,
693 			(u_long *)&mr[i].mr_start, (u_long *)&mr[i].mr_size);
694 
695 		if (rv != 0)
696 			goto out;
697 
698 		regp += addr_cells + size_cells;
699 		memory_size += mr[i].mr_size;
700 	}
701 
702 	if (memory_size == 0) {
703 		rv = ERANGE;
704 		goto out;
705 	}
706 
707 	*mrcnt = i;
708 	*memsize = memory_size;
709 	rv = 0;
710 out:
711 	return (rv);
712 }
713 
714 int
715 fdt_get_unit(device_t dev)
716 {
717 	const char * name;
718 
719 	name = ofw_bus_get_name(dev);
720 	name = strchr(name, '@') + 1;
721 
722 	return (strtol(name,NULL,0));
723 }
724